diff options
Diffstat (limited to 'llvm/lib/Target/SparcV9/InstrSched/InstrScheduling.cpp')
-rw-r--r-- | llvm/lib/Target/SparcV9/InstrSched/InstrScheduling.cpp | 1499 |
1 files changed, 1499 insertions, 0 deletions
diff --git a/llvm/lib/Target/SparcV9/InstrSched/InstrScheduling.cpp b/llvm/lib/Target/SparcV9/InstrSched/InstrScheduling.cpp new file mode 100644 index 00000000000..69ecb90f31d --- /dev/null +++ b/llvm/lib/Target/SparcV9/InstrSched/InstrScheduling.cpp @@ -0,0 +1,1499 @@ +//===- InstrScheduling.cpp - Generic Instruction Scheduling support -------===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the llvm/CodeGen/InstrScheduling.h interface, along with +// generic support routines for instruction scheduling. +// +//===----------------------------------------------------------------------===// + +#include "SchedPriorities.h" +#include "llvm/BasicBlock.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/Target/TargetMachine.h" +#include "../../Target/SparcV9/MachineCodeForInstruction.h" +#include "../../Target/SparcV9/LiveVar/FunctionLiveVarInfo.h" +#include "../../Target/SparcV9/SparcV9InstrInfo.h" +#include "llvm/Support/CommandLine.h" +#include <algorithm> +#include <iostream> + +namespace llvm { + +SchedDebugLevel_t SchedDebugLevel; + +static cl::opt<bool> EnableFillingDelaySlots("sched-fill-delay-slots", + cl::desc("Fill branch delay slots during local scheduling")); + +static cl::opt<SchedDebugLevel_t, true> +SDL_opt("dsched", cl::Hidden, cl::location(SchedDebugLevel), + cl::desc("enable instruction scheduling debugging information"), + cl::values( + clEnumValN(Sched_NoDebugInfo, "n", "disable debug output"), + clEnumValN(Sched_PrintMachineCode, "y", "print machine code after scheduling"), + clEnumValN(Sched_PrintSchedTrace, "t", "print trace of scheduling actions"), + clEnumValN(Sched_PrintSchedGraphs, "g", "print scheduling graphs"), + clEnumValEnd)); + + +//************************* Internal Data Types *****************************/ + +class InstrSchedule; +class SchedulingManager; + + +//---------------------------------------------------------------------- +// class InstrGroup: +// +// Represents a group of instructions scheduled to be issued +// in a single cycle. +//---------------------------------------------------------------------- + +class InstrGroup { + InstrGroup(const InstrGroup&); // DO NOT IMPLEMENT + void operator=(const InstrGroup&); // DO NOT IMPLEMENT + +public: + inline const SchedGraphNode* operator[](unsigned int slotNum) const { + assert(slotNum < group.size()); + return group[slotNum]; + } + +private: + friend class InstrSchedule; + + inline void addInstr(const SchedGraphNode* node, unsigned int slotNum) { + assert(slotNum < group.size()); + group[slotNum] = node; + } + + /*ctor*/ InstrGroup(unsigned int nslots) + : group(nslots, NULL) {} + + /*ctor*/ InstrGroup(); // disable: DO NOT IMPLEMENT + +private: + std::vector<const SchedGraphNode*> group; +}; + + +//---------------------------------------------------------------------- +// class ScheduleIterator: +// +// Iterates over the machine instructions in the for a single basic block. +// The schedule is represented by an InstrSchedule object. +//---------------------------------------------------------------------- + +template<class _NodeType> +class ScheduleIterator : public forward_iterator<_NodeType, ptrdiff_t> { +private: + unsigned cycleNum; + unsigned slotNum; + const InstrSchedule& S; +public: + typedef ScheduleIterator<_NodeType> _Self; + + /*ctor*/ inline ScheduleIterator(const InstrSchedule& _schedule, + unsigned _cycleNum, + unsigned _slotNum) + : cycleNum(_cycleNum), slotNum(_slotNum), S(_schedule) { + skipToNextInstr(); + } + + /*ctor*/ inline ScheduleIterator(const _Self& x) + : cycleNum(x.cycleNum), slotNum(x.slotNum), S(x.S) {} + + inline bool operator==(const _Self& x) const { + return (slotNum == x.slotNum && cycleNum== x.cycleNum && &S==&x.S); + } + + inline bool operator!=(const _Self& x) const { return !operator==(x); } + + inline _NodeType* operator*() const; + inline _NodeType* operator->() const { return operator*(); } + + _Self& operator++(); // Preincrement + inline _Self operator++(int) { // Postincrement + _Self tmp(*this); ++*this; return tmp; + } + + static _Self begin(const InstrSchedule& _schedule); + static _Self end( const InstrSchedule& _schedule); + +private: + inline _Self& operator=(const _Self& x); // DISABLE -- DO NOT IMPLEMENT + void skipToNextInstr(); +}; + + +//---------------------------------------------------------------------- +// class InstrSchedule: +// +// Represents the schedule of machine instructions for a single basic block. +//---------------------------------------------------------------------- + +class InstrSchedule { + const unsigned int nslots; + unsigned int numInstr; + std::vector<InstrGroup*> groups; // indexed by cycle number + std::vector<cycles_t> startTime; // indexed by node id + + InstrSchedule(InstrSchedule&); // DO NOT IMPLEMENT + void operator=(InstrSchedule&); // DO NOT IMPLEMENT + +public: // iterators + typedef ScheduleIterator<SchedGraphNode> iterator; + typedef ScheduleIterator<const SchedGraphNode> const_iterator; + + iterator begin() { return iterator::begin(*this); } + const_iterator begin() const { return const_iterator::begin(*this); } + iterator end() { return iterator::end(*this); } + const_iterator end() const { return const_iterator::end(*this); } + +public: // constructors and destructor + /*ctor*/ InstrSchedule (unsigned int _nslots, + unsigned int _numNodes); + /*dtor*/ ~InstrSchedule (); + +public: // accessor functions to query chosen schedule + const SchedGraphNode* getInstr (unsigned int slotNum, + cycles_t c) const { + const InstrGroup* igroup = this->getIGroup(c); + return (igroup == NULL)? NULL : (*igroup)[slotNum]; + } + + inline InstrGroup* getIGroup (cycles_t c) { + if ((unsigned)c >= groups.size()) + groups.resize(c+1); + if (groups[c] == NULL) + groups[c] = new InstrGroup(nslots); + return groups[c]; + } + + inline const InstrGroup* getIGroup (cycles_t c) const { + assert((unsigned)c < groups.size()); + return groups[c]; + } + + inline cycles_t getStartTime (unsigned int nodeId) const { + assert(nodeId < startTime.size()); + return startTime[nodeId]; + } + + unsigned int getNumInstructions() const { + return numInstr; + } + + inline void scheduleInstr (const SchedGraphNode* node, + unsigned int slotNum, + cycles_t cycle) { + InstrGroup* igroup = this->getIGroup(cycle); + if (!((*igroup)[slotNum] == NULL)) { + std::cerr << "Slot already filled?\n"; + abort(); + } + igroup->addInstr(node, slotNum); + assert(node->getNodeId() < startTime.size()); + startTime[node->getNodeId()] = cycle; + ++numInstr; + } + +private: + friend class ScheduleIterator<SchedGraphNode>; + friend class ScheduleIterator<const SchedGraphNode>; + /*ctor*/ InstrSchedule (); // Disable: DO NOT IMPLEMENT. +}; + +template<class NodeType> +inline NodeType *ScheduleIterator<NodeType>::operator*() const { + assert(cycleNum < S.groups.size()); + return (*S.groups[cycleNum])[slotNum]; +} + + +/*ctor*/ +InstrSchedule::InstrSchedule(unsigned int _nslots, unsigned int _numNodes) + : nslots(_nslots), + numInstr(0), + groups(2 * _numNodes / _nslots), // 2 x lower-bound for #cycles + startTime(_numNodes, (cycles_t) -1) // set all to -1 +{ +} + + +/*dtor*/ +InstrSchedule::~InstrSchedule() +{ + for (unsigned c=0, NC=groups.size(); c < NC; c++) + if (groups[c] != NULL) + delete groups[c]; // delete InstrGroup objects +} + + +template<class _NodeType> +inline +void +ScheduleIterator<_NodeType>::skipToNextInstr() +{ + while(cycleNum < S.groups.size() && S.groups[cycleNum] == NULL) + ++cycleNum; // skip cycles with no instructions + + while (cycleNum < S.groups.size() && + (*S.groups[cycleNum])[slotNum] == NULL) + { + ++slotNum; + if (slotNum == S.nslots) { + ++cycleNum; + slotNum = 0; + while(cycleNum < S.groups.size() && S.groups[cycleNum] == NULL) + ++cycleNum; // skip cycles with no instructions + } + } +} + +template<class _NodeType> +inline +ScheduleIterator<_NodeType>& +ScheduleIterator<_NodeType>::operator++() // Preincrement +{ + ++slotNum; + if (slotNum == S.nslots) { + ++cycleNum; + slotNum = 0; + } + skipToNextInstr(); + return *this; +} + +template<class _NodeType> +ScheduleIterator<_NodeType> +ScheduleIterator<_NodeType>::begin(const InstrSchedule& _schedule) +{ + return _Self(_schedule, 0, 0); +} + +template<class _NodeType> +ScheduleIterator<_NodeType> +ScheduleIterator<_NodeType>::end(const InstrSchedule& _schedule) +{ + return _Self(_schedule, _schedule.groups.size(), 0); +} + + +//---------------------------------------------------------------------- +// class DelaySlotInfo: +// +// Record information about delay slots for a single branch instruction. +// Delay slots are simply indexed by slot number 1 ... numDelaySlots +//---------------------------------------------------------------------- + +class DelaySlotInfo { + const SchedGraphNode* brNode; + unsigned ndelays; + std::vector<const SchedGraphNode*> delayNodeVec; + cycles_t delayedNodeCycle; + unsigned delayedNodeSlotNum; + + DelaySlotInfo(const DelaySlotInfo &); // DO NOT IMPLEMENT + void operator=(const DelaySlotInfo&); // DO NOT IMPLEMENT +public: + /*ctor*/ DelaySlotInfo (const SchedGraphNode* _brNode, + unsigned _ndelays) + : brNode(_brNode), ndelays(_ndelays), + delayedNodeCycle(0), delayedNodeSlotNum(0) {} + + inline unsigned getNumDelays () { + return ndelays; + } + + inline const std::vector<const SchedGraphNode*>& getDelayNodeVec() { + return delayNodeVec; + } + + inline void addDelayNode (const SchedGraphNode* node) { + delayNodeVec.push_back(node); + assert(delayNodeVec.size() <= ndelays && "Too many delay slot instrs!"); + } + + inline void recordChosenSlot (cycles_t cycle, unsigned slotNum) { + delayedNodeCycle = cycle; + delayedNodeSlotNum = slotNum; + } + + unsigned scheduleDelayedNode (SchedulingManager& S); +}; + + +//---------------------------------------------------------------------- +// class SchedulingManager: +// +// Represents the schedule of machine instructions for a single basic block. +//---------------------------------------------------------------------- + +class SchedulingManager { + SchedulingManager(SchedulingManager &); // DO NOT IMPLEMENT + void operator=(const SchedulingManager &); // DO NOT IMPLEMENT +public: // publicly accessible data members + const unsigned nslots; + const TargetSchedInfo& schedInfo; + SchedPriorities& schedPrio; + InstrSchedule isched; + +private: + unsigned totalInstrCount; + cycles_t curTime; + cycles_t nextEarliestIssueTime; // next cycle we can issue + // indexed by slot# + std::vector<hash_set<const SchedGraphNode*> > choicesForSlot; + std::vector<const SchedGraphNode*> choiceVec; // indexed by node ptr + std::vector<int> numInClass; // indexed by sched class + std::vector<cycles_t> nextEarliestStartTime; // indexed by opCode + hash_map<const SchedGraphNode*, DelaySlotInfo*> delaySlotInfoForBranches; + // indexed by branch node ptr + +public: + SchedulingManager(const TargetMachine& _target, const SchedGraph* graph, + SchedPriorities& schedPrio); + ~SchedulingManager() { + for (hash_map<const SchedGraphNode*, + DelaySlotInfo*>::iterator I = delaySlotInfoForBranches.begin(), + E = delaySlotInfoForBranches.end(); I != E; ++I) + delete I->second; + } + + //---------------------------------------------------------------------- + // Simplify access to the machine instruction info + //---------------------------------------------------------------------- + + inline const TargetInstrInfo& getInstrInfo () const { + return schedInfo.getInstrInfo(); + } + + //---------------------------------------------------------------------- + // Interface for checking and updating the current time + //---------------------------------------------------------------------- + + inline cycles_t getTime () const { + return curTime; + } + + inline cycles_t getEarliestIssueTime() const { + return nextEarliestIssueTime; + } + + inline cycles_t getEarliestStartTimeForOp(MachineOpCode opCode) const { + assert(opCode < (int) nextEarliestStartTime.size()); + return nextEarliestStartTime[opCode]; + } + + // Update current time to specified cycle + inline void updateTime (cycles_t c) { + curTime = c; + schedPrio.updateTime(c); + } + + //---------------------------------------------------------------------- + // Functions to manage the choices for the current cycle including: + // -- a vector of choices by priority (choiceVec) + // -- vectors of the choices for each instruction slot (choicesForSlot[]) + // -- number of choices in each sched class, used to check issue conflicts + // between choices for a single cycle + //---------------------------------------------------------------------- + + inline unsigned int getNumChoices () const { + return choiceVec.size(); + } + + inline unsigned getNumChoicesInClass (const InstrSchedClass& sc) const { + assert(sc < numInClass.size() && "Invalid op code or sched class!"); + return numInClass[sc]; + } + + inline const SchedGraphNode* getChoice(unsigned int i) const { + // assert(i < choiceVec.size()); don't check here. + return choiceVec[i]; + } + + inline hash_set<const SchedGraphNode*>& getChoicesForSlot(unsigned slotNum) { + assert(slotNum < nslots); + return choicesForSlot[slotNum]; + } + + inline void addChoice (const SchedGraphNode* node) { + // Append the instruction to the vector of choices for current cycle. + // Increment numInClass[c] for the sched class to which the instr belongs. + choiceVec.push_back(node); + const InstrSchedClass& sc = schedInfo.getSchedClass(node->getOpcode()); + assert(sc < numInClass.size()); + numInClass[sc]++; + } + + inline void addChoiceToSlot (unsigned int slotNum, + const SchedGraphNode* node) { + // Add the instruction to the choice set for the specified slot + assert(slotNum < nslots); + choicesForSlot[slotNum].insert(node); + } + + inline void resetChoices () { + choiceVec.clear(); + for (unsigned int s=0; s < nslots; s++) + choicesForSlot[s].clear(); + for (unsigned int c=0; c < numInClass.size(); c++) + numInClass[c] = 0; + } + + //---------------------------------------------------------------------- + // Code to query and manage the partial instruction schedule so far + //---------------------------------------------------------------------- + + inline unsigned int getNumScheduled () const { + return isched.getNumInstructions(); + } + + inline unsigned int getNumUnscheduled() const { + return totalInstrCount - isched.getNumInstructions(); + } + + inline bool isScheduled (const SchedGraphNode* node) const { + return (isched.getStartTime(node->getNodeId()) >= 0); + } + + inline void scheduleInstr (const SchedGraphNode* node, + unsigned int slotNum, + cycles_t cycle) + { + assert(! isScheduled(node) && "Instruction already scheduled?"); + + // add the instruction to the schedule + isched.scheduleInstr(node, slotNum, cycle); + + // update the earliest start times of all nodes that conflict with `node' + // and the next-earliest time anything can issue if `node' causes bubbles + updateEarliestStartTimes(node, cycle); + + // remove the instruction from the choice sets for all slots + for (unsigned s=0; s < nslots; s++) + choicesForSlot[s].erase(node); + + // and decrement the instr count for the sched class to which it belongs + const InstrSchedClass& sc = schedInfo.getSchedClass(node->getOpcode()); + assert(sc < numInClass.size()); + numInClass[sc]--; + } + + //---------------------------------------------------------------------- + // Create and retrieve delay slot info for delayed instructions + //---------------------------------------------------------------------- + + inline DelaySlotInfo* getDelaySlotInfoForInstr(const SchedGraphNode* bn, + bool createIfMissing=false) + { + hash_map<const SchedGraphNode*, DelaySlotInfo*>::const_iterator + I = delaySlotInfoForBranches.find(bn); + if (I != delaySlotInfoForBranches.end()) + return I->second; + + if (!createIfMissing) return 0; + + DelaySlotInfo *dinfo = + new DelaySlotInfo(bn, getInstrInfo().getNumDelaySlots(bn->getOpcode())); + return delaySlotInfoForBranches[bn] = dinfo; + } + +private: + SchedulingManager(); // DISABLED: DO NOT IMPLEMENT + void updateEarliestStartTimes(const SchedGraphNode* node, cycles_t schedTime); +}; + + +/*ctor*/ +SchedulingManager::SchedulingManager(const TargetMachine& target, + const SchedGraph* graph, + SchedPriorities& _schedPrio) + : nslots(target.getSchedInfo()->getMaxNumIssueTotal()), + schedInfo(*target.getSchedInfo()), + schedPrio(_schedPrio), + isched(nslots, graph->getNumNodes()), + totalInstrCount(graph->getNumNodes() - 2), + nextEarliestIssueTime(0), + choicesForSlot(nslots), + numInClass(target.getSchedInfo()->getNumSchedClasses(), 0), // set all to 0 + nextEarliestStartTime(target.getInstrInfo()->getNumOpcodes(), + (cycles_t) 0) // set all to 0 +{ + updateTime(0); + + // Note that an upper bound on #choices for each slot is = nslots since + // we use this vector to hold a feasible set of instructions, and more + // would be infeasible. Reserve that much memory since it is probably small. + for (unsigned int i=0; i < nslots; i++) + choicesForSlot[i].resize(nslots); +} + + +void +SchedulingManager::updateEarliestStartTimes(const SchedGraphNode* node, + cycles_t schedTime) +{ + if (schedInfo.numBubblesAfter(node->getOpcode()) > 0) + { // Update next earliest time before which *nothing* can issue. + nextEarliestIssueTime = std::max(nextEarliestIssueTime, + curTime + 1 + schedInfo.numBubblesAfter(node->getOpcode())); + } + + const std::vector<MachineOpCode>& + conflictVec = schedInfo.getConflictList(node->getOpcode()); + + for (unsigned i=0; i < conflictVec.size(); i++) + { + MachineOpCode toOp = conflictVec[i]; + cycles_t est=schedTime + schedInfo.getMinIssueGap(node->getOpcode(),toOp); + assert(toOp < (int) nextEarliestStartTime.size()); + if (nextEarliestStartTime[toOp] < est) + nextEarliestStartTime[toOp] = est; + } +} + +//************************* Internal Functions *****************************/ + + +static void +AssignInstructionsToSlots(class SchedulingManager& S, unsigned maxIssue) +{ + // find the slot to start from, in the current cycle + unsigned int startSlot = 0; + cycles_t curTime = S.getTime(); + + assert(maxIssue > 0 && maxIssue <= S.nslots - startSlot); + + // If only one instruction can be issued, do so. + if (maxIssue == 1) + for (unsigned s=startSlot; s < S.nslots; s++) + if (S.getChoicesForSlot(s).size() > 0) { + // found the one instruction + S.scheduleInstr(*S.getChoicesForSlot(s).begin(), s, curTime); + return; + } + + // Otherwise, choose from the choices for each slot + // + InstrGroup* igroup = S.isched.getIGroup(S.getTime()); + assert(igroup != NULL && "Group creation failed?"); + + // Find a slot that has only a single choice, and take it. + // If all slots have 0 or multiple choices, pick the first slot with + // choices and use its last instruction (just to avoid shifting the vector). + unsigned numIssued; + for (numIssued = 0; numIssued < maxIssue; numIssued++) { + int chosenSlot = -1; + for (unsigned s=startSlot; s < S.nslots; s++) + if ((*igroup)[s] == NULL && S.getChoicesForSlot(s).size() == 1) { + chosenSlot = (int) s; + break; + } + + if (chosenSlot == -1) + for (unsigned s=startSlot; s < S.nslots; s++) + if ((*igroup)[s] == NULL && S.getChoicesForSlot(s).size() > 0) { + chosenSlot = (int) s; + break; + } + + if (chosenSlot != -1) { + // Insert the chosen instr in the chosen slot and + // erase it from all slots. + const SchedGraphNode* node= *S.getChoicesForSlot(chosenSlot).begin(); + S.scheduleInstr(node, chosenSlot, curTime); + } + } + + assert(numIssued > 0 && "Should not happen when maxIssue > 0!"); +} + + +// +// For now, just assume we are scheduling within a single basic block. +// Get the machine instruction vector for the basic block and clear it, +// then append instructions in scheduled order. +// Also, re-insert the dummy PHI instructions that were at the beginning +// of the basic block, since they are not part of the schedule. +// +static void +RecordSchedule(MachineBasicBlock &MBB, const SchedulingManager& S) +{ + const TargetInstrInfo& mii = S.schedInfo.getInstrInfo(); + + // Lets make sure we didn't lose any instructions, except possibly + // some NOPs from delay slots. Also, PHIs are not included in the schedule. + unsigned numInstr = 0; + for (MachineBasicBlock::iterator I=MBB.begin(); I != MBB.end(); ++I) + if (!(I->getOpcode() == V9::NOP || I->getOpcode() == V9::PHI)) + ++numInstr; + assert(S.isched.getNumInstructions() >= numInstr && + "Lost some non-NOP instructions during scheduling!"); + + if (S.isched.getNumInstructions() == 0) + return; // empty basic block! + + // First find the dummy instructions at the start of the basic block + MachineBasicBlock::iterator I = MBB.begin(); + for ( ; I != MBB.end(); ++I) + if (I->getOpcode() != V9::PHI) + break; + + // Remove all except the dummy PHI instructions from MBB, and + // pre-allocate create space for the ones we will put back in. + while (I != MBB.end()) + MBB.remove(I++); + + InstrSchedule::const_iterator NIend = S.isched.end(); + for (InstrSchedule::const_iterator NI = S.isched.begin(); NI != NIend; ++NI) + MBB.push_back(const_cast<MachineInstr*>((*NI)->getMachineInstr())); +} + + + +static void +MarkSuccessorsReady(SchedulingManager& S, const SchedGraphNode* node) +{ + // Check if any successors are now ready that were not already marked + // ready before, and that have not yet been scheduled. + // + for (sg_succ_const_iterator SI = succ_begin(node); SI !=succ_end(node); ++SI) + if (! (*SI)->isDummyNode() + && ! S.isScheduled(*SI) + && ! S.schedPrio.nodeIsReady(*SI)) + { + // successor not scheduled and not marked ready; check *its* preds. + + bool succIsReady = true; + for (sg_pred_const_iterator P=pred_begin(*SI); P != pred_end(*SI); ++P) + if (! (*P)->isDummyNode() && ! S.isScheduled(*P)) { + succIsReady = false; + break; + } + + if (succIsReady) // add the successor to the ready list + S.schedPrio.insertReady(*SI); + } +} + + +// Choose up to `nslots' FEASIBLE instructions and assign each +// instruction to all possible slots that do not violate feasibility. +// FEASIBLE means it should be guaranteed that the set +// of chosen instructions can be issued in a single group. +// +// Return value: +// maxIssue : total number of feasible instructions +// S.choicesForSlot[i=0..nslots] : set of instructions feasible in slot i +// +static unsigned +FindSlotChoices(SchedulingManager& S, + DelaySlotInfo*& getDelaySlotInfo) +{ + // initialize result vectors to empty + S.resetChoices(); + + // find the slot to start from, in the current cycle + unsigned int startSlot = 0; + InstrGroup* igroup = S.isched.getIGroup(S.getTime()); + for (int s = S.nslots - 1; s >= 0; s--) + if ((*igroup)[s] != NULL) { + startSlot = s+1; + break; + } + + // Make sure we pick at most one instruction that would break the group. + // Also, if we do pick one, remember which it was. + unsigned int indexForBreakingNode = S.nslots; + unsigned int indexForDelayedInstr = S.nslots; + DelaySlotInfo* delaySlotInfo = NULL; + + getDelaySlotInfo = NULL; + + // Choose instructions in order of priority. + // Add choices to the choice vector in the SchedulingManager class as + // we choose them so that subsequent choices will be correctly tested + // for feasibility, w.r.t. higher priority choices for the same cycle. + // + while (S.getNumChoices() < S.nslots - startSlot) { + const SchedGraphNode* nextNode=S.schedPrio.getNextHighest(S,S.getTime()); + if (nextNode == NULL) + break; // no more instructions for this cycle + + if (S.getInstrInfo().getNumDelaySlots(nextNode->getOpcode()) > 0) { + delaySlotInfo = S.getDelaySlotInfoForInstr(nextNode); + if (delaySlotInfo != NULL) { + if (indexForBreakingNode < S.nslots) + // cannot issue a delayed instr in the same cycle as one + // that breaks the issue group or as another delayed instr + nextNode = NULL; + else + indexForDelayedInstr = S.getNumChoices(); + } + } else if (S.schedInfo.breaksIssueGroup(nextNode->getOpcode())) { + if (indexForBreakingNode < S.nslots) + // have a breaking instruction already so throw this one away + nextNode = NULL; + else + indexForBreakingNode = S.getNumChoices(); + } + + if (nextNode != NULL) { + S.addChoice(nextNode); + + if (S.schedInfo.isSingleIssue(nextNode->getOpcode())) { + assert(S.getNumChoices() == 1 && + "Prioritizer returned invalid instr for this cycle!"); + break; + } + } + + if (indexForDelayedInstr < S.nslots) + break; // leave the rest for delay slots + } + + assert(S.getNumChoices() <= S.nslots); + assert(! (indexForDelayedInstr < S.nslots && + indexForBreakingNode < S.nslots) && "Cannot have both in a cycle"); + + // Assign each chosen instruction to all possible slots for that instr. + // But if only one instruction was chosen, put it only in the first + // feasible slot; no more analysis will be needed. + // + if (indexForDelayedInstr >= S.nslots && + indexForBreakingNode >= S.nslots) + { // No instructions that break the issue group or that have delay slots. + // This is the common case, so handle it separately for efficiency. + + if (S.getNumChoices() == 1) { + MachineOpCode opCode = S.getChoice(0)->getOpcode(); + unsigned int s; + for (s=startSlot; s < S.nslots; s++) + if (S.schedInfo.instrCanUseSlot(opCode, s)) + break; + assert(s < S.nslots && "No feasible slot for this opCode?"); + S.addChoiceToSlot(s, S.getChoice(0)); + } else { + for (unsigned i=0; i < S.getNumChoices(); i++) { + MachineOpCode opCode = S.getChoice(i)->getOpcode(); + for (unsigned int s=startSlot; s < S.nslots; s++) + if (S.schedInfo.instrCanUseSlot(opCode, s)) + S.addChoiceToSlot(s, S.getChoice(i)); + } + } + } else if (indexForDelayedInstr < S.nslots) { + // There is an instruction that needs delay slots. + // Try to assign that instruction to a higher slot than any other + // instructions in the group, so that its delay slots can go + // right after it. + // + + assert(indexForDelayedInstr == S.getNumChoices() - 1 && + "Instruction with delay slots should be last choice!"); + assert(delaySlotInfo != NULL && "No delay slot info for instr?"); + + const SchedGraphNode* delayedNode = S.getChoice(indexForDelayedInstr); + MachineOpCode delayOpCode = delayedNode->getOpcode(); + unsigned ndelays= S.getInstrInfo().getNumDelaySlots(delayOpCode); + + unsigned delayedNodeSlot = S.nslots; + int highestSlotUsed; + + // Find the last possible slot for the delayed instruction that leaves + // at least `d' slots vacant after it (d = #delay slots) + for (int s = S.nslots-ndelays-1; s >= (int) startSlot; s--) + if (S.schedInfo.instrCanUseSlot(delayOpCode, s)) { + delayedNodeSlot = s; + break; + } + + highestSlotUsed = -1; + for (unsigned i=0; i < S.getNumChoices() - 1; i++) { + // Try to assign every other instruction to a lower numbered + // slot than delayedNodeSlot. + MachineOpCode opCode =S.getChoice(i)->getOpcode(); + bool noSlotFound = true; + unsigned int s; + for (s=startSlot; s < delayedNodeSlot; s++) + if (S.schedInfo.instrCanUseSlot(opCode, s)) { + S.addChoiceToSlot(s, S.getChoice(i)); + noSlotFound = false; + } + + // No slot before `delayedNodeSlot' was found for this opCode + // Use a later slot, and allow some delay slots to fall in + // the next cycle. + if (noSlotFound) + for ( ; s < S.nslots; s++) + if (S.schedInfo.instrCanUseSlot(opCode, s)) { + S.addChoiceToSlot(s, S.getChoice(i)); + break; + } + + assert(s < S.nslots && "No feasible slot for instruction?"); + + highestSlotUsed = std::max(highestSlotUsed, (int) s); + } + + assert(highestSlotUsed <= (int) S.nslots-1 && "Invalid slot used?"); + + // We will put the delayed node in the first slot after the + // highest slot used. But we just mark that for now, and + // schedule it separately because we want to schedule the delay + // slots for the node at the same time. + cycles_t dcycle = S.getTime(); + unsigned int dslot = highestSlotUsed + 1; + if (dslot == S.nslots) { + dslot = 0; + ++dcycle; + } + delaySlotInfo->recordChosenSlot(dcycle, dslot); + getDelaySlotInfo = delaySlotInfo; + } else { + // There is an instruction that breaks the issue group. + // For such an instruction, assign to the last possible slot in + // the current group, and then don't assign any other instructions + // to later slots. + assert(indexForBreakingNode < S.nslots); + const SchedGraphNode* breakingNode=S.getChoice(indexForBreakingNode); + unsigned breakingSlot = INT_MAX; + unsigned int nslotsToUse = S.nslots; + + // Find the last possible slot for this instruction. + for (int s = S.nslots-1; s >= (int) startSlot; s--) + if (S.schedInfo.instrCanUseSlot(breakingNode->getOpcode(), s)) { + breakingSlot = s; + break; + } + assert(breakingSlot < S.nslots && + "No feasible slot for `breakingNode'?"); + + // Higher priority instructions than the one that breaks the group: + // These can be assigned to all slots, but will be assigned only + // to earlier slots if possible. + for (unsigned i=0; + i < S.getNumChoices() && i < indexForBreakingNode; i++) + { + MachineOpCode opCode =S.getChoice(i)->getOpcode(); + + // If a higher priority instruction cannot be assigned to + // any earlier slots, don't schedule the breaking instruction. + // + bool foundLowerSlot = false; + nslotsToUse = S.nslots; // May be modified in the loop + for (unsigned int s=startSlot; s < nslotsToUse; s++) + if (S.schedInfo.instrCanUseSlot(opCode, s)) { + if (breakingSlot < S.nslots && s < breakingSlot) { + foundLowerSlot = true; + nslotsToUse = breakingSlot; // RESETS LOOP UPPER BOUND! + } + + S.addChoiceToSlot(s, S.getChoice(i)); + } + + if (!foundLowerSlot) + breakingSlot = INT_MAX; // disable breaking instr + } + + // Assign the breaking instruction (if any) to a single slot + // Otherwise, just ignore the instruction. It will simply be + // scheduled in a later cycle. + if (breakingSlot < S.nslots) { + S.addChoiceToSlot(breakingSlot, breakingNode); + nslotsToUse = breakingSlot; + } else + nslotsToUse = S.nslots; + + // For lower priority instructions than the one that breaks the + // group, only assign them to slots lower than the breaking slot. + // Otherwise, just ignore the instruction. + for (unsigned i=indexForBreakingNode+1; i < S.getNumChoices(); i++) { + MachineOpCode opCode = S.getChoice(i)->getOpcode(); + for (unsigned int s=startSlot; s < nslotsToUse; s++) + if (S.schedInfo.instrCanUseSlot(opCode, s)) + S.addChoiceToSlot(s, S.getChoice(i)); + } + } // endif (no delay slots and no breaking slots) + + return S.getNumChoices(); +} + + +static unsigned +ChooseOneGroup(SchedulingManager& S) +{ + assert(S.schedPrio.getNumReady() > 0 + && "Don't get here without ready instructions."); + + cycles_t firstCycle = S.getTime(); + DelaySlotInfo* getDelaySlotInfo = NULL; + + // Choose up to `nslots' feasible instructions and their possible slots. + unsigned numIssued = FindSlotChoices(S, getDelaySlotInfo); + + while (numIssued == 0) { + S.updateTime(S.getTime()+1); + numIssued = FindSlotChoices(S, getDelaySlotInfo); + } + + AssignInstructionsToSlots(S, numIssued); + + if (getDelaySlotInfo != NULL) + numIssued += getDelaySlotInfo->scheduleDelayedNode(S); + + // Print trace of scheduled instructions before newly ready ones + if (SchedDebugLevel >= Sched_PrintSchedTrace) { + for (cycles_t c = firstCycle; c <= S.getTime(); c++) { + std::cerr << " Cycle " << (long)c <<" : Scheduled instructions:\n"; + const InstrGroup* igroup = S.isched.getIGroup(c); + for (unsigned int s=0; s < S.nslots; s++) { + std::cerr << " "; + if ((*igroup)[s] != NULL) + std::cerr << * ((*igroup)[s])->getMachineInstr() << "\n"; + else + std::cerr << "<none>\n"; + } + } + } + + return numIssued; +} + + +static void +ForwardListSchedule(SchedulingManager& S) +{ + unsigned N; + const SchedGraphNode* node; + + S.schedPrio.initialize(); + + while ((N = S.schedPrio.getNumReady()) > 0) { + cycles_t nextCycle = S.getTime(); + + // Choose one group of instructions for a cycle, plus any delay slot + // instructions (which may overflow into successive cycles). + // This will advance S.getTime() to the last cycle in which + // instructions are actually issued. + // + unsigned numIssued = ChooseOneGroup(S); + assert(numIssued > 0 && "Deadlock in list scheduling algorithm?"); + + // Notify the priority manager of scheduled instructions and mark + // any successors that may now be ready + // + for (cycles_t c = nextCycle; c <= S.getTime(); c++) { + const InstrGroup* igroup = S.isched.getIGroup(c); + for (unsigned int s=0; s < S.nslots; s++) + if ((node = (*igroup)[s]) != NULL) { + S.schedPrio.issuedReadyNodeAt(S.getTime(), node); + MarkSuccessorsReady(S, node); + } + } + + // Move to the next the next earliest cycle for which + // an instruction can be issued, or the next earliest in which + // one will be ready, or to the next cycle, whichever is latest. + // + S.updateTime(std::max(S.getTime() + 1, + std::max(S.getEarliestIssueTime(), + S.schedPrio.getEarliestReadyTime()))); + } +} + + +//--------------------------------------------------------------------- +// Code for filling delay slots for delayed terminator instructions +// (e.g., BRANCH and RETURN). Delay slots for non-terminator +// instructions (e.g., CALL) are not handled here because they almost +// always can be filled with instructions from the call sequence code +// before a call. That's preferable because we incur many tradeoffs here +// when we cannot find single-cycle instructions that can be reordered. +//---------------------------------------------------------------------- + +static bool +NodeCanFillDelaySlot(const SchedulingManager& S, + const SchedGraphNode* node, + const SchedGraphNode* brNode, + bool nodeIsPredecessor) +{ + assert(! node->isDummyNode()); + + // don't put a branch in the delay slot of another branch + if (S.getInstrInfo().isBranch(node->getOpcode())) + return false; + + // don't put a single-issue instruction in the delay slot of a branch + if (S.schedInfo.isSingleIssue(node->getOpcode())) + return false; + + // don't put a load-use dependence in the delay slot of a branch + const TargetInstrInfo& mii = S.getInstrInfo(); + + for (SchedGraphNode::const_iterator EI = node->beginInEdges(); + EI != node->endInEdges(); ++EI) + if (! ((SchedGraphNode*)(*EI)->getSrc())->isDummyNode() + && mii.isLoad(((SchedGraphNode*)(*EI)->getSrc())->getOpcode()) + && (*EI)->getDepType() == SchedGraphEdge::CtrlDep) + return false; + + // Finally, if the instruction precedes the branch, we make sure the + // instruction can be reordered relative to the branch. We simply check + // if the instr. has only 1 outgoing edge, viz., a CD edge to the branch. + // + if (nodeIsPredecessor) { + bool onlyCDEdgeToBranch = true; + for (SchedGraphNode::const_iterator OEI = node->beginOutEdges(); + OEI != node->endOutEdges(); ++OEI) + if (! ((SchedGraphNode*)(*OEI)->getSink())->isDummyNode() + && ((*OEI)->getSink() != brNode + || (*OEI)->getDepType() != SchedGraphEdge::CtrlDep)) + { + onlyCDEdgeToBranch = false; + break; + } + + if (!onlyCDEdgeToBranch) + return false; + } + + return true; +} + + +static void +MarkNodeForDelaySlot(SchedulingManager& S, + SchedGraph* graph, + SchedGraphNode* node, + const SchedGraphNode* brNode, + bool nodeIsPredecessor) +{ + if (nodeIsPredecessor) { + // If node is in the same basic block (i.e., precedes brNode), + // remove it and all its incident edges from the graph. Make sure we + // add dummy edges for pred/succ nodes that become entry/exit nodes. + graph->eraseIncidentEdges(node, /*addDummyEdges*/ true); + } else { + // If the node was from a target block, add the node to the graph + // and add a CD edge from brNode to node. + assert(0 && "NOT IMPLEMENTED YET"); + } + + DelaySlotInfo* dinfo = S.getDelaySlotInfoForInstr(brNode, /*create*/ true); + dinfo->addDelayNode(node); +} + + +void +FindUsefulInstructionsForDelaySlots(SchedulingManager& S, + SchedGraphNode* brNode, + std::vector<SchedGraphNode*>& sdelayNodeVec) +{ + const TargetInstrInfo& mii = S.getInstrInfo(); + unsigned ndelays = + mii.getNumDelaySlots(brNode->getOpcode()); + + if (ndelays == 0) + return; + + sdelayNodeVec.reserve(ndelays); + + // Use a separate vector to hold the feasible multi-cycle nodes. + // These will be used if not enough single-cycle nodes are found. + // + std::vector<SchedGraphNode*> mdelayNodeVec; + + for (sg_pred_iterator P = pred_begin(brNode); + P != pred_end(brNode) && sdelayNodeVec.size() < ndelays; ++P) + if (! (*P)->isDummyNode() && + ! mii.isNop((*P)->getOpcode()) && + NodeCanFillDelaySlot(S, *P, brNode, /*pred*/ true)) + { + if (mii.maxLatency((*P)->getOpcode()) > 1) + mdelayNodeVec.push_back(*P); + else + sdelayNodeVec.push_back(*P); + } + + // If not enough single-cycle instructions were found, select the + // lowest-latency multi-cycle instructions and use them. + // Note that this is the most efficient code when only 1 (or even 2) + // values need to be selected. + // + while (sdelayNodeVec.size() < ndelays && mdelayNodeVec.size() > 0) { + unsigned lmin = + mii.maxLatency(mdelayNodeVec[0]->getOpcode()); + unsigned minIndex = 0; + for (unsigned i=1; i < mdelayNodeVec.size(); i++) + { + unsigned li = + mii.maxLatency(mdelayNodeVec[i]->getOpcode()); + if (lmin >= li) + { + lmin = li; + minIndex = i; + } + } + sdelayNodeVec.push_back(mdelayNodeVec[minIndex]); + if (sdelayNodeVec.size() < ndelays) // avoid the last erase! + mdelayNodeVec.erase(mdelayNodeVec.begin() + minIndex); + } +} + + +// Remove the NOPs currently in delay slots from the graph. +// Mark instructions specified in sdelayNodeVec to replace them. +// If not enough useful instructions were found, mark the NOPs to be used +// for filling delay slots, otherwise, otherwise just discard them. +// +static void ReplaceNopsWithUsefulInstr(SchedulingManager& S, + SchedGraphNode* node, + // FIXME: passing vector BY VALUE!!! + std::vector<SchedGraphNode*> sdelayNodeVec, + SchedGraph* graph) +{ + std::vector<SchedGraphNode*> nopNodeVec; // this will hold unused NOPs + const TargetInstrInfo& mii = S.getInstrInfo(); + const MachineInstr* brInstr = node->getMachineInstr(); + unsigned ndelays= mii.getNumDelaySlots(brInstr->getOpcode()); + assert(ndelays > 0 && "Unnecessary call to replace NOPs"); + + // Remove the NOPs currently in delay slots from the graph. + // If not enough useful instructions were found, use the NOPs to + // fill delay slots, otherwise, just discard them. + // + unsigned int firstDelaySlotIdx = node->getOrigIndexInBB() + 1; + MachineBasicBlock& MBB = node->getMachineBasicBlock(); + MachineBasicBlock::iterator MBBI = MBB.begin(); + std::advance(MBBI, firstDelaySlotIdx - 1); + if (!(&*MBBI++ == brInstr)) { + std::cerr << "Incorrect instr. index in basic block for brInstr"; + abort(); + } + + // First find all useful instructions already in the delay slots + // and USE THEM. We'll throw away the unused alternatives below + // + MachineBasicBlock::iterator Tmp = MBBI; + for (unsigned i = 0; i != ndelays; ++i, ++MBBI) + if (!mii.isNop(MBBI->getOpcode())) + sdelayNodeVec.insert(sdelayNodeVec.begin(), + graph->getGraphNodeForInstr(MBBI)); + MBBI = Tmp; + + // Then find the NOPs and keep only as many as are needed. + // Put the rest in nopNodeVec to be deleted. + for (unsigned i=firstDelaySlotIdx; i < firstDelaySlotIdx+ndelays; ++i, ++MBBI) + if (mii.isNop(MBBI->getOpcode())) + if (sdelayNodeVec.size() < ndelays) + sdelayNodeVec.push_back(graph->getGraphNodeForInstr(MBBI)); + else { + nopNodeVec.push_back(graph->getGraphNodeForInstr(MBBI)); + + //remove the MI from the Machine Code For Instruction + const TerminatorInst *TI = MBB.getBasicBlock()->getTerminator(); + MachineCodeForInstruction& llvmMvec = + MachineCodeForInstruction::get((const Instruction *)TI); + + for(MachineCodeForInstruction::iterator mciI=llvmMvec.begin(), + mciE=llvmMvec.end(); mciI!=mciE; ++mciI){ + if (*mciI == MBBI) + llvmMvec.erase(mciI); + } + } + + assert(sdelayNodeVec.size() >= ndelays); + + // If some delay slots were already filled, throw away that many new choices + if (sdelayNodeVec.size() > ndelays) + sdelayNodeVec.resize(ndelays); + + // Mark the nodes chosen for delay slots. This removes them from the graph. + for (unsigned i=0; i < sdelayNodeVec.size(); i++) + MarkNodeForDelaySlot(S, graph, sdelayNodeVec[i], node, true); + + // And remove the unused NOPs from the graph. + for (unsigned i=0; i < nopNodeVec.size(); i++) + graph->eraseIncidentEdges(nopNodeVec[i], /*addDummyEdges*/ true); +} + + +// For all delayed instructions, choose instructions to put in the delay +// slots and pull those out of the graph. Mark them for the delay slots +// in the DelaySlotInfo object for that graph node. If no useful work +// is found for a delay slot, use the NOP that is currently in that slot. +// +// We try to fill the delay slots with useful work for all instructions +// EXCEPT CALLS AND RETURNS. +// For CALLs and RETURNs, it is nearly always possible to use one of the +// call sequence instrs and putting anything else in the delay slot could be +// suboptimal. Also, it complicates generating the calling sequence code in +// regalloc. +// +static void +ChooseInstructionsForDelaySlots(SchedulingManager& S, MachineBasicBlock &MBB, + SchedGraph *graph) +{ + const TargetInstrInfo& mii = S.getInstrInfo(); + + Instruction *termInstr = (Instruction*)MBB.getBasicBlock()->getTerminator(); + MachineCodeForInstruction &termMvec=MachineCodeForInstruction::get(termInstr); + std::vector<SchedGraphNode*> delayNodeVec; + const MachineInstr* brInstr = NULL; + + if (EnableFillingDelaySlots && + termInstr->getOpcode() != Instruction::Ret) + { + // To find instructions that need delay slots without searching the full + // machine code, we assume that the only delayed instructions are CALLs + // or instructions generated for the terminator inst. + // Find the first branch instr in the sequence of machine instrs for term + // + unsigned first = 0; + while (first < termMvec.size() && + ! mii.isBranch(termMvec[first]->getOpcode())) + { + ++first; + } + assert(first < termMvec.size() && + "No branch instructions for BR? Ok, but weird! Delete assertion."); + + brInstr = (first < termMvec.size())? termMvec[first] : NULL; + + // Compute a vector of the nodes chosen for delay slots and then + // mark delay slots to replace NOPs with these useful instructions. + // + if (brInstr != NULL) { + SchedGraphNode* brNode = graph->getGraphNodeForInstr(brInstr); + FindUsefulInstructionsForDelaySlots(S, brNode, delayNodeVec); + ReplaceNopsWithUsefulInstr(S, brNode, delayNodeVec, graph); + } + } + + // Also mark delay slots for other delayed instructions to hold NOPs. + // Simply passing in an empty delayNodeVec will have this effect. + // If brInstr is not handled above (EnableFillingDelaySlots == false), + // brInstr will be NULL so this will handle the branch instrs. as well. + // + delayNodeVec.clear(); + for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I) + if (I != brInstr && mii.getNumDelaySlots(I->getOpcode()) > 0) { + SchedGraphNode* node = graph->getGraphNodeForInstr(I); + ReplaceNopsWithUsefulInstr(S, node, delayNodeVec, graph); + } +} + + +// +// Schedule the delayed branch and its delay slots +// +unsigned +DelaySlotInfo::scheduleDelayedNode(SchedulingManager& S) +{ + assert(delayedNodeSlotNum < S.nslots && "Illegal slot for branch"); + assert(S.isched.getInstr(delayedNodeSlotNum, delayedNodeCycle) == NULL + && "Slot for branch should be empty"); + + unsigned int nextSlot = delayedNodeSlotNum; + cycles_t nextTime = delayedNodeCycle; + + S.scheduleInstr(brNode, nextSlot, nextTime); + + for (unsigned d=0; d < ndelays; d++) { + ++nextSlot; + if (nextSlot == S.nslots) { + nextSlot = 0; + nextTime++; + } + + // Find the first feasible instruction for this delay slot + // Note that we only check for issue restrictions here. + // We do *not* check for flow dependences but rely on pipeline + // interlocks to resolve them. Machines without interlocks + // will require this code to be modified. + for (unsigned i=0; i < delayNodeVec.size(); i++) { + const SchedGraphNode* dnode = delayNodeVec[i]; + if ( ! S.isScheduled(dnode) + && S.schedInfo.instrCanUseSlot(dnode->getOpcode(), nextSlot) + && instrIsFeasible(S, dnode->getOpcode())) { + S.scheduleInstr(dnode, nextSlot, nextTime); + break; + } + } + } + + // Update current time if delay slots overflowed into later cycles. + // Do this here because we know exactly which cycle is the last cycle + // that contains delay slots. The next loop doesn't compute that. + if (nextTime > S.getTime()) + S.updateTime(nextTime); + + // Now put any remaining instructions in the unfilled delay slots. + // This could lead to suboptimal performance but needed for correctness. + nextSlot = delayedNodeSlotNum; + nextTime = delayedNodeCycle; + for (unsigned i=0; i < delayNodeVec.size(); i++) + if (! S.isScheduled(delayNodeVec[i])) { + do { // find the next empty slot + ++nextSlot; + if (nextSlot == S.nslots) { + nextSlot = 0; + nextTime++; + } + } while (S.isched.getInstr(nextSlot, nextTime) != NULL); + + S.scheduleInstr(delayNodeVec[i], nextSlot, nextTime); + break; + } + + return 1 + ndelays; +} + + +// Check if the instruction would conflict with instructions already +// chosen for the current cycle +// +static inline bool +ConflictsWithChoices(const SchedulingManager& S, + MachineOpCode opCode) +{ + // Check if the instruction must issue by itself, and some feasible + // choices have already been made for this cycle + if (S.getNumChoices() > 0 && S.schedInfo.isSingleIssue(opCode)) + return true; + + // For each class that opCode belongs to, check if there are too many + // instructions of that class. + // + const InstrSchedClass sc = S.schedInfo.getSchedClass(opCode); + return (S.getNumChoicesInClass(sc) == S.schedInfo.getMaxIssueForClass(sc)); +} + + +//************************* External Functions *****************************/ + + +//--------------------------------------------------------------------------- +// Function: ViolatesMinimumGap +// +// Purpose: +// Check minimum gap requirements relative to instructions scheduled in +// previous cycles. +// Note that we do not need to consider `nextEarliestIssueTime' here because +// that is also captured in the earliest start times for each opcode. +//--------------------------------------------------------------------------- + +static inline bool +ViolatesMinimumGap(const SchedulingManager& S, + MachineOpCode opCode, + const cycles_t inCycle) +{ + return (inCycle < S.getEarliestStartTimeForOp(opCode)); +} + + +//--------------------------------------------------------------------------- +// Function: instrIsFeasible +// +// Purpose: +// Check if any issue restrictions would prevent the instruction from +// being issued in the current cycle +//--------------------------------------------------------------------------- + +bool +instrIsFeasible(const SchedulingManager& S, + MachineOpCode opCode) +{ + // skip the instruction if it cannot be issued due to issue restrictions + // caused by previously issued instructions + if (ViolatesMinimumGap(S, opCode, S.getTime())) + return false; + + // skip the instruction if it cannot be issued due to issue restrictions + // caused by previously chosen instructions for the current cycle + if (ConflictsWithChoices(S, opCode)) + return false; + + return true; +} + +//--------------------------------------------------------------------------- +// Function: ScheduleInstructionsWithSSA +// +// Purpose: +// Entry point for instruction scheduling on SSA form. +// Schedules the machine instructions generated by instruction selection. +// Assumes that register allocation has not been done, i.e., operands +// are still in SSA form. +//--------------------------------------------------------------------------- + +namespace { + class InstructionSchedulingWithSSA : public FunctionPass { + const TargetMachine ⌖ + public: + inline InstructionSchedulingWithSSA(const TargetMachine &T) : target(T) {} + + const char *getPassName() const { return "Instruction Scheduling"; } + + // getAnalysisUsage - We use LiveVarInfo... + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired<FunctionLiveVarInfo>(); + AU.setPreservesCFG(); + } + + bool runOnFunction(Function &F); + }; +} // end anonymous namespace + + +bool InstructionSchedulingWithSSA::runOnFunction(Function &F) +{ + SchedGraphSet graphSet(&F, target); + + if (SchedDebugLevel >= Sched_PrintSchedGraphs) { + std::cerr << "\n*** SCHEDULING GRAPHS FOR INSTRUCTION SCHEDULING\n"; + graphSet.dump(); + } + + for (SchedGraphSet::const_iterator GI=graphSet.begin(), GE=graphSet.end(); + GI != GE; ++GI) + { + SchedGraph* graph = (*GI); + MachineBasicBlock &MBB = graph->getBasicBlock(); + + if (SchedDebugLevel >= Sched_PrintSchedTrace) + std::cerr << "\n*** TRACE OF INSTRUCTION SCHEDULING OPERATIONS\n\n"; + + // expensive! + SchedPriorities schedPrio(&F, graph, getAnalysis<FunctionLiveVarInfo>()); + SchedulingManager S(target, graph, schedPrio); + + ChooseInstructionsForDelaySlots(S, MBB, graph); // modifies graph + ForwardListSchedule(S); // computes schedule in S + RecordSchedule(MBB, S); // records schedule in BB + } + + if (SchedDebugLevel >= Sched_PrintMachineCode) { + std::cerr << "\n*** Machine instructions after INSTRUCTION SCHEDULING\n"; + MachineFunction::get(&F).dump(); + } + + return false; +} + + +FunctionPass *createInstructionSchedulingWithSSAPass(const TargetMachine &tgt) { + return new InstructionSchedulingWithSSA(tgt); +} + +} // End llvm namespace + |