diff options
Diffstat (limited to 'llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp')
-rw-r--r-- | llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp | 1854 |
1 files changed, 1854 insertions, 0 deletions
diff --git a/llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp b/llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp new file mode 100644 index 00000000000..c5ed9282c6a --- /dev/null +++ b/llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp @@ -0,0 +1,1854 @@ +//===- HexagonConstExtenders.cpp ------------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +#include "HexagonInstrInfo.h" +#include "HexagonRegisterInfo.h" +#include "HexagonSubtarget.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Pass.h" +#include <map> +#include <set> +#include <utility> +#include <vector> + +#define DEBUG_TYPE "hexagon-cext-opt" + +using namespace llvm; + +static cl::opt<unsigned> CountThreshold("hexagon-cext-threshold", + cl::init(3), cl::Hidden, cl::ZeroOrMore, + cl::desc("Minimum number of extenders to trigger replacement")); + +static cl::opt<unsigned> ReplaceLimit("hexagon-cext-limit", cl::init(0), + cl::Hidden, cl::ZeroOrMore, cl::desc("Maximum number of replacements")); + +namespace llvm { + void initializeHexagonConstExtendersPass(PassRegistry&); + FunctionPass *createHexagonConstExtenders(); +} + +namespace { + struct OffsetRange { + int32_t Min = INT_MIN, Max = INT_MAX; + uint8_t Align = 1; + + OffsetRange() = default; + OffsetRange(int32_t L, int32_t H, uint8_t A) + : Min(L), Max(H), Align(A) {} + OffsetRange &intersect(OffsetRange A) { + Align = std::max(Align, A.Align); + Min = std::max(Min, A.Min); + Max = std::min(Max, A.Max); + // Canonicalize empty ranges. + if (Min > Max) + std::tie(Min, Max, Align) = std::make_tuple(0, -1, 1); + return *this; + } + OffsetRange &shift(int32_t S) { + assert(alignTo(std::abs(S), Align) == uint64_t(std::abs(S))); + Min += S; + Max += S; + return *this; + } + OffsetRange &extendBy(int32_t D) { + // If D < 0, extend Min, otherwise extend Max. + if (D < 0) + Min = (INT_MIN-D < Min) ? Min+D : INT_MIN; + else + Max = (INT_MAX-D > Max) ? Max+D : INT_MAX; + return *this; + } + bool empty() const { + return Min > Max; + } + bool contains(int32_t V) const { + return Min <= V && V <= Max && (V % Align) == 0; + } + bool operator==(const OffsetRange &R) const { + return Min == R.Min && Max == R.Max && Align == R.Align; + } + bool operator!=(const OffsetRange &R) const { + return !operator==(R); + } + bool operator<(const OffsetRange &R) const { + if (Min != R.Min) + return Min < R.Min; + if (Max != R.Max) + return Max < R.Max; + return Align < R.Align; + } + static OffsetRange zero() { return {0, 0, 1}; } + }; + + struct RangeTree { + struct Node { + Node(const OffsetRange &R) : MaxEnd(R.Max), Range(R) {} + unsigned Height = 1; + unsigned Count = 1; + int32_t MaxEnd; + const OffsetRange &Range; + Node *Left = nullptr, *Right = nullptr; + }; + + Node *Root = nullptr; + + void add(const OffsetRange &R) { + Root = add(Root, R); + } + void erase(const Node *N) { + Root = remove(Root, N); + delete N; + } + void order(SmallVectorImpl<Node*> &Seq) const { + order(Root, Seq); + } + SmallVector<Node*,8> nodesWith(int32_t P, bool CheckAlign = true) { + SmallVector<Node*,8> Nodes; + nodesWith(Root, P, CheckAlign, Nodes); + return Nodes; + } + void dump() const; + ~RangeTree() { + SmallVector<Node*,8> Nodes; + order(Nodes); + for (Node *N : Nodes) + delete N; + } + + private: + void dump(const Node *N) const; + void order(Node *N, SmallVectorImpl<Node*> &Seq) const; + void nodesWith(Node *N, int32_t P, bool CheckA, + SmallVectorImpl<Node*> &Seq) const; + + Node *add(Node *N, const OffsetRange &R); + Node *remove(Node *N, const Node *D); + Node *rotateLeft(Node *Lower, Node *Higher); + Node *rotateRight(Node *Lower, Node *Higher); + unsigned height(Node *N) { + return N != nullptr ? N->Height : 0; + } + Node *update(Node *N) { + assert(N != nullptr); + N->Height = 1 + std::max(height(N->Left), height(N->Right)); + if (N->Left) + N->MaxEnd = std::max(N->MaxEnd, N->Left->MaxEnd); + if (N->Right) + N->MaxEnd = std::max(N->MaxEnd, N->Right->MaxEnd); + return N; + } + Node *rebalance(Node *N) { + assert(N != nullptr); + int32_t Balance = height(N->Right) - height(N->Left); + if (Balance < -1) + return rotateRight(N->Left, N); + if (Balance > 1) + return rotateLeft(N->Right, N); + return N; + } + }; + + struct Loc { + MachineBasicBlock *Block = nullptr; + MachineBasicBlock::iterator At; + + Loc(MachineBasicBlock *B, MachineBasicBlock::iterator It) + : Block(B), At(It) { + if (B->end() == It) { + Pos = -1; + } else { + assert(It->getParent() == B); + Pos = std::distance(B->begin(), It); + } + } + bool operator<(Loc A) const { + if (Block != A.Block) + return Block->getNumber() < A.Block->getNumber(); + if (A.Pos == -1) + return Pos != A.Pos; + return Pos != -1 && Pos < A.Pos; + } + private: + int Pos = 0; + }; + + struct HexagonConstExtenders : public MachineFunctionPass { + static char ID; + HexagonConstExtenders() : MachineFunctionPass(ID) {} + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<MachineDominatorTree>(); + AU.addPreserved<MachineDominatorTree>(); + MachineFunctionPass::getAnalysisUsage(AU); + } + + StringRef getPassName() const override { + return "Hexagon constant-extender optimization"; + } + bool runOnMachineFunction(MachineFunction &MF) override; + + private: + struct Register { + Register() = default; + Register(unsigned R, unsigned S) : Reg(R), Sub(S) {} + Register(const MachineOperand &Op) + : Reg(Op.getReg()), Sub(Op.getSubReg()) {} + Register &operator=(const MachineOperand &Op) { + if (Op.isReg()) { + Reg = Op.getReg(); + Sub = Op.getSubReg(); + } else if (Op.isFI()) { + Reg = TargetRegisterInfo::index2StackSlot(Op.getIndex()); + } + return *this; + } + bool isVReg() const { + return Reg != 0 && !TargetRegisterInfo::isStackSlot(Reg) && + TargetRegisterInfo::isVirtualRegister(Reg); + } + bool isSlot() const { + return Reg != 0 && TargetRegisterInfo::isStackSlot(Reg); + } + operator MachineOperand() const { + if (isVReg()) + return MachineOperand::CreateReg(Reg, /*Def*/false, /*Imp*/false, + /*Kill*/false, /*Dead*/false, /*Undef*/false, + /*EarlyClobber*/false, Sub); + if (TargetRegisterInfo::isStackSlot(Reg)) { + int FI = TargetRegisterInfo::stackSlot2Index(Reg); + return MachineOperand::CreateFI(FI); + } + llvm_unreachable("Cannot create MachineOperand"); + } + bool operator==(Register R) const { return Reg == R.Reg && Sub == R.Sub; } + bool operator!=(Register R) const { return !operator==(R); } + bool operator<(Register R) const { + // For std::map. + return Reg < R.Reg || (Reg == R.Reg && Sub < R.Sub); + } + unsigned Reg = 0, Sub = 0; + }; + + struct ExtExpr { + // A subexpression in which the extender is used. In general, this + // represents an expression where adding D to the extender will be + // equivalent to adding D to the expression as a whole. In other + // words, expr(add(##V,D) = add(expr(##V),D). + + // The original motivation for this are the io/ur addressing modes, + // where the offset is extended. Consider the io example: + // In memw(Rs+##V), the ##V could be replaced by a register Rt to + // form the rr mode: memw(Rt+Rs<<0). In such case, however, the + // register Rt must have exactly the value of ##V. If there was + // another instruction memw(Rs+##V+4), it would need a different Rt. + // Now, if Rt was initialized as "##V+Rs<<0", both of these + // instructions could use the same Rt, just with different offsets. + // Here it's clear that "initializer+4" should be the same as if + // the offset 4 was added to the ##V in the initializer. + + // The only kinds of expressions that support the requirement of + // commuting with addition are addition and subtraction from ##V. + // Include shifting the Rs to account for the ur addressing mode: + // ##Val + Rs << S + // ##Val - Rs + Register Rs; + unsigned S = 0; + bool Neg = false; + + ExtExpr() = default; + ExtExpr(Register RS, bool NG, unsigned SH) : Rs(RS), S(SH), Neg(NG) {} + // Expression is trivial if it does not modify the extender. + bool trivial() const { + return Rs.Reg == 0; + } + bool operator==(const ExtExpr &Ex) const { + return Rs == Ex.Rs && S == Ex.S && Neg == Ex.Neg; + } + bool operator!=(const ExtExpr &Ex) const { + return !operator==(Ex); + } + bool operator<(const ExtExpr &Ex) const { + if (Rs != Ex.Rs) + return Rs < Ex.Rs; + if (S != Ex.S) + return S < Ex.S; + return !Neg && Ex.Neg; + } + }; + + struct ExtDesc { + MachineInstr *UseMI = nullptr; + unsigned OpNum = -1u; + // The subexpression in which the extender is used (e.g. address + // computation). + ExtExpr Expr; + // Optional register that is assigned the value of Expr. + Register Rd; + // Def means that the output of the instruction may differ from the + // original by a constant c, and that the difference can be corrected + // by adding/subtracting c in all users of the defined register. + bool IsDef = false; + + MachineOperand &getOp() { + return UseMI->getOperand(OpNum); + } + const MachineOperand &getOp() const { + return UseMI->getOperand(OpNum); + } + }; + + struct ExtRoot { + union { + const ConstantFP *CFP; // MO_FPImmediate + const char *SymbolName; // MO_ExternalSymbol + const GlobalValue *GV; // MO_GlobalAddress + const BlockAddress *BA; // MO_BlockAddress + int64_t ImmVal; // MO_Immediate, MO_TargetIndex, + // and MO_ConstantPoolIndex + } V; + unsigned Kind; // Same as in MachineOperand. + unsigned char TF; // TargetFlags. + + ExtRoot(const MachineOperand &Op); + bool operator==(const ExtRoot &ER) const { + return Kind == ER.Kind && V.ImmVal == ER.V.ImmVal; + } + bool operator!=(const ExtRoot &ER) const { + return !operator==(ER); + } + bool operator<(const ExtRoot &ER) const; + }; + + struct ExtValue : public ExtRoot { + int32_t Offset; + + ExtValue(const MachineOperand &Op); + ExtValue(const ExtDesc &ED) : ExtValue(ED.getOp()) {} + ExtValue(const ExtRoot &ER, int32_t Off) : ExtRoot(ER), Offset(Off) {} + bool operator<(const ExtValue &EV) const; + bool operator==(const ExtValue &EV) const { + return ExtRoot(*this) == ExtRoot(EV) && Offset == EV.Offset; + } + bool operator!=(const ExtValue &EV) const { + return !operator==(EV); + } + explicit operator MachineOperand() const; + }; + + using IndexList = SetVector<unsigned>; + using ExtenderInit = std::pair<ExtValue, ExtExpr>; + using AssignmentMap = std::map<ExtenderInit, IndexList>; + using LocDefMap = std::map<Loc, IndexList>; + + const HexagonInstrInfo *HII = nullptr; + const HexagonRegisterInfo *HRI = nullptr; + MachineDominatorTree *MDT = nullptr; + MachineRegisterInfo *MRI = nullptr; + std::vector<ExtDesc> Extenders; + std::vector<unsigned> NewRegs; + + bool isStoreImmediate(unsigned Opc) const; + bool isRegOffOpcode(unsigned ExtOpc) const ; + unsigned getRegOffOpcode(unsigned ExtOpc) const; + unsigned getDirectRegReplacement(unsigned ExtOpc) const; + OffsetRange getOffsetRange(Register R, const MachineInstr &MI) const; + OffsetRange getOffsetRange(const ExtDesc &ED) const; + OffsetRange getOffsetRange(Register Rd) const; + + void recordExtender(MachineInstr &MI, unsigned OpNum); + void collectInstr(MachineInstr &MI); + void collect(MachineFunction &MF); + void assignInits(const ExtRoot &ER, unsigned Begin, unsigned End, + AssignmentMap &IMap); + void calculatePlacement(const ExtenderInit &ExtI, const IndexList &Refs, + LocDefMap &Defs); + Register insertInitializer(Loc DefL, const ExtenderInit &ExtI); + bool replaceInstrExact(const ExtDesc &ED, Register ExtR); + bool replaceInstrExpr(const ExtDesc &ED, const ExtenderInit &ExtI, + Register ExtR, int32_t &Diff); + bool replaceInstr(unsigned Idx, Register ExtR, const ExtenderInit &ExtI); + bool replaceExtenders(const AssignmentMap &IMap); + + unsigned getOperandIndex(const MachineInstr &MI, + const MachineOperand &Op) const; + const MachineOperand &getPredicateOp(const MachineInstr &MI) const; + const MachineOperand &getLoadResultOp(const MachineInstr &MI) const; + const MachineOperand &getStoredValueOp(const MachineInstr &MI) const; + + friend struct PrintRegister; + friend struct PrintExpr; + friend struct PrintInit; + friend struct PrintIMap; + friend raw_ostream &operator<< (raw_ostream &OS, + const struct PrintRegister &P); + friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintExpr &P); + friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintInit &P); + friend raw_ostream &operator<< (raw_ostream &OS, const ExtDesc &ED); + friend raw_ostream &operator<< (raw_ostream &OS, const ExtRoot &ER); + friend raw_ostream &operator<< (raw_ostream &OS, const ExtValue &EV); + friend raw_ostream &operator<< (raw_ostream &OS, const OffsetRange &OR); + friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintIMap &P); + }; + + using HCE = HexagonConstExtenders; + + raw_ostream &operator<< (raw_ostream &OS, const OffsetRange &OR) { + if (OR.Min > OR.Max) + OS << '!'; + OS << '[' << OR.Min << ',' << OR.Max << "]a" << unsigned(OR.Align); + return OS; + } + + struct PrintRegister { + PrintRegister(HCE::Register R, const HexagonRegisterInfo &I) + : Rs(R), HRI(I) {} + HCE::Register Rs; + const HexagonRegisterInfo &HRI; + }; + + raw_ostream &operator<< (raw_ostream &OS, const PrintRegister &P) { + if (P.Rs.Reg != 0) + OS << PrintReg(P.Rs.Reg, &P.HRI, P.Rs.Sub); + else + OS << "noreg"; + return OS; + } + + struct PrintExpr { + PrintExpr(const HCE::ExtExpr &E, const HexagonRegisterInfo &I) + : Ex(E), HRI(I) {} + const HCE::ExtExpr &Ex; + const HexagonRegisterInfo &HRI; + }; + + raw_ostream &operator<< (raw_ostream &OS, const PrintExpr &P) { + OS << "## " << (P.Ex.Neg ? "- " : "+ "); + if (P.Ex.Rs.Reg != 0) + OS << PrintReg(P.Ex.Rs.Reg, &P.HRI, P.Ex.Rs.Sub); + else + OS << "__"; + OS << " << " << P.Ex.S; + return OS; + } + + struct PrintInit { + PrintInit(const HCE::ExtenderInit &EI, const HexagonRegisterInfo &I) + : ExtI(EI), HRI(I) {} + const HCE::ExtenderInit &ExtI; + const HexagonRegisterInfo &HRI; + }; + + raw_ostream &operator<< (raw_ostream &OS, const PrintInit &P) { + OS << '[' << P.ExtI.first << ", " + << PrintExpr(P.ExtI.second, P.HRI) << ']'; + return OS; + } + + raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtDesc &ED) { + assert(ED.OpNum != -1u); + const MachineBasicBlock &MBB = *ED.getOp().getParent()->getParent(); + const MachineFunction &MF = *MBB.getParent(); + const auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); + OS << "bb#" << MBB.getNumber() << ": "; + if (ED.Rd.Reg != 0) + OS << PrintReg(ED.Rd.Reg, &HRI, ED.Rd.Sub); + else + OS << "__"; + OS << " = " << PrintExpr(ED.Expr, HRI); + if (ED.IsDef) + OS << ", def"; + return OS; + } + + raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtRoot &ER) { + switch (ER.Kind) { + case MachineOperand::MO_Immediate: + OS << "imm:" << ER.V.ImmVal; + break; + case MachineOperand::MO_FPImmediate: + OS << "fpi:" << *ER.V.CFP; + break; + case MachineOperand::MO_ExternalSymbol: + OS << "sym:" << *ER.V.SymbolName; + break; + case MachineOperand::MO_GlobalAddress: + OS << "gad:" << ER.V.GV->getName(); + break; + case MachineOperand::MO_BlockAddress: + OS << "blk:" << *ER.V.BA; + break; + case MachineOperand::MO_TargetIndex: + OS << "tgi:" << ER.V.ImmVal; + break; + case MachineOperand::MO_ConstantPoolIndex: + OS << "cpi:" << ER.V.ImmVal; + break; + case MachineOperand::MO_JumpTableIndex: + OS << "jti:" << ER.V.ImmVal; + break; + default: + OS << "???:" << ER.V.ImmVal; + break; + } + return OS; + } + + raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtValue &EV) { + OS << HCE::ExtRoot(EV) << " off:" << EV.Offset; + return OS; + } + + struct PrintIMap { + PrintIMap(const HCE::AssignmentMap &M, const HexagonRegisterInfo &I) + : IMap(M), HRI(I) {} + const HCE::AssignmentMap &IMap; + const HexagonRegisterInfo &HRI; + }; + + raw_ostream &operator<< (raw_ostream &OS, const PrintIMap &P) { + OS << "{\n"; + for (const std::pair<HCE::ExtenderInit,HCE::IndexList> &Q : P.IMap) { + OS << " " << PrintInit(Q.first, P.HRI) << " -> {"; + for (unsigned I : Q.second) + OS << ' ' << I; + OS << " }\n"; + } + OS << "}\n"; + return OS; + } +} + +INITIALIZE_PASS_BEGIN(HexagonConstExtenders, "hexagon-cext-opt", + "Hexagon constant-extender optimization", false, false) +INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) +INITIALIZE_PASS_END(HexagonConstExtenders, "hexagon-cext-opt", + "Hexagon constant-extender optimization", false, false) + +static unsigned ReplaceCounter = 0; + +char HCE::ID = 0; + +void RangeTree::dump() const { + dbgs() << "Root: " << Root << '\n'; + if (Root) + dump(Root); +} + +void RangeTree::dump(const Node *N) const { + dbgs() << "Node: " << N << '\n'; + dbgs() << " Height: " << N->Height << '\n'; + dbgs() << " Count: " << N->Count << '\n'; + dbgs() << " MaxEnd: " << N->MaxEnd << '\n'; + dbgs() << " Range: " << N->Range << '\n'; + dbgs() << " Left: " << N->Left << '\n'; + dbgs() << " Right: " << N->Right << "\n\n"; + + if (N->Left) + dump(N->Left); + if (N->Right) + dump(N->Right); +} + +void RangeTree::order(Node *N, SmallVectorImpl<Node*> &Seq) const { + if (N == nullptr) + return; + order(N->Left, Seq); + Seq.push_back(N); + order(N->Right, Seq); +} + +void RangeTree::nodesWith(Node *N, int32_t P, bool CheckA, + SmallVectorImpl<Node*> &Seq) const { + if (N == nullptr || N->MaxEnd < P) + return; + nodesWith(N->Left, P, CheckA, Seq); + if (N->Range.Min <= P) { + if ((CheckA && N->Range.contains(P)) || (!CheckA && P <= N->Range.Max)) + Seq.push_back(N); + nodesWith(N->Right, P, CheckA, Seq); + } +} + +RangeTree::Node *RangeTree::add(Node *N, const OffsetRange &R) { + if (N == nullptr) + return new Node(R); + + if (N->Range == R) { + N->Count++; + return N; + } + + if (R < N->Range) + N->Left = add(N->Left, R); + else + N->Right = add(N->Right, R); + return rebalance(update(N)); +} + +RangeTree::Node *RangeTree::remove(Node *N, const Node *D) { + assert(N != nullptr); + + if (N != D) { + assert(N->Range != D->Range && "N and D should not be equal"); + if (D->Range < N->Range) + N->Left = remove(N->Left, D); + else + N->Right = remove(N->Right, D); + return rebalance(update(N)); + } + + // We got to the node we need to remove. If any of its children are + // missing, simply replace it with the other child. + if (N->Left == nullptr || N->Right == nullptr) + return (N->Left == nullptr) ? N->Right : N->Left; + + // Find the rightmost child of N->Left, remove it and plug it in place + // of N. + Node *M = N->Left; + while (M->Right) + M = M->Right; + M->Left = remove(N->Left, M); + M->Right = N->Right; + return rebalance(update(M)); +} + +RangeTree::Node *RangeTree::rotateLeft(Node *Lower, Node *Higher) { + assert(Higher->Right == Lower); + // The Lower node is on the right from Higher. Make sure that Lower's + // balance is greater to the right. Otherwise the rotation will create + // an unbalanced tree again. + if (height(Lower->Left) > height(Lower->Right)) + Lower = rotateRight(Lower->Left, Lower); + assert(height(Lower->Left) <= height(Lower->Right)); + Higher->Right = Lower->Left; + update(Higher); + Lower->Left = Higher; + update(Lower); + return Lower; +} + +RangeTree::Node *RangeTree::rotateRight(Node *Lower, Node *Higher) { + assert(Higher->Left == Lower); + // The Lower node is on the left from Higher. Make sure that Lower's + // balance is greater to the left. Otherwise the rotation will create + // an unbalanced tree again. + if (height(Lower->Left) < height(Lower->Right)) + Lower = rotateLeft(Lower->Right, Lower); + assert(height(Lower->Left) >= height(Lower->Right)); + Higher->Left = Lower->Right; + update(Higher); + Lower->Right = Higher; + update(Lower); + return Lower; +} + + +HCE::ExtRoot::ExtRoot(const MachineOperand &Op) { + // Always store ImmVal, since it's the field used for comparisons. + V.ImmVal = 0; + if (Op.isImm()) + ; // Keep 0. Do not use Op.getImm() for value here (treat 0 as the root). + else if (Op.isFPImm()) + V.CFP = Op.getFPImm(); + else if (Op.isSymbol()) + V.SymbolName = Op.getSymbolName(); + else if (Op.isGlobal()) + V.GV = Op.getGlobal(); + else if (Op.isBlockAddress()) + V.BA = Op.getBlockAddress(); + else if (Op.isCPI() || Op.isTargetIndex() || Op.isJTI()) + V.ImmVal = Op.getIndex(); + else + llvm_unreachable("Unexpected operand type"); + + Kind = Op.getType(); + TF = Op.getTargetFlags(); +} + +bool HCE::ExtRoot::operator< (const HCE::ExtRoot &ER) const { + if (Kind != ER.Kind) + return Kind < ER.Kind; + switch (Kind) { + case MachineOperand::MO_Immediate: + case MachineOperand::MO_TargetIndex: + case MachineOperand::MO_ConstantPoolIndex: + case MachineOperand::MO_JumpTableIndex: + return V.ImmVal < ER.V.ImmVal; + case MachineOperand::MO_FPImmediate: { + const APFloat &ThisF = V.CFP->getValueAPF(); + const APFloat &OtherF = ER.V.CFP->getValueAPF(); + return ThisF.bitcastToAPInt().ult(OtherF.bitcastToAPInt()); + } + case MachineOperand::MO_ExternalSymbol: + return StringRef(V.SymbolName) < StringRef(ER.V.SymbolName); + case MachineOperand::MO_GlobalAddress: + assert(V.GV->hasName() && ER.V.GV->hasName()); + return V.GV->getName() < ER.V.GV->getName(); + case MachineOperand::MO_BlockAddress: { + const BasicBlock *ThisB = V.BA->getBasicBlock(); + const BasicBlock *OtherB = ER.V.BA->getBasicBlock(); + assert(ThisB->getParent() == OtherB->getParent()); + const Function &F = *ThisB->getParent(); + return std::distance(F.begin(), ThisB->getIterator()) < + std::distance(F.begin(), OtherB->getIterator()); + } + } + return V.ImmVal < ER.V.ImmVal; +} + +HCE::ExtValue::ExtValue(const MachineOperand &Op) : ExtRoot(Op) { + if (Op.isImm()) + Offset = Op.getImm(); + else if (Op.isFPImm() || Op.isJTI()) + Offset = 0; + else if (Op.isSymbol() || Op.isGlobal() || Op.isBlockAddress() || + Op.isCPI() || Op.isTargetIndex()) + Offset = Op.getOffset(); + else + llvm_unreachable("Unexpected operand type"); +} + +bool HCE::ExtValue::operator< (const HCE::ExtValue &EV) const { + const ExtRoot &ER = *this; + if (!(ER == ExtRoot(EV))) + return ER < EV; + return Offset < EV.Offset; +} + +HCE::ExtValue::operator MachineOperand() const { + switch (Kind) { + case MachineOperand::MO_Immediate: + return MachineOperand::CreateImm(V.ImmVal + Offset); + case MachineOperand::MO_FPImmediate: + assert(Offset == 0); + return MachineOperand::CreateFPImm(V.CFP); + case MachineOperand::MO_ExternalSymbol: + assert(Offset == 0); + return MachineOperand::CreateES(V.SymbolName, TF); + case MachineOperand::MO_GlobalAddress: + return MachineOperand::CreateGA(V.GV, Offset, TF); + case MachineOperand::MO_BlockAddress: + return MachineOperand::CreateBA(V.BA, Offset, TF); + case MachineOperand::MO_TargetIndex: + return MachineOperand::CreateTargetIndex(V.ImmVal, Offset, TF); + case MachineOperand::MO_ConstantPoolIndex: + return MachineOperand::CreateCPI(V.ImmVal, Offset, TF); + case MachineOperand::MO_JumpTableIndex: + assert(Offset == 0); + default: + llvm_unreachable("Unhandled kind"); + } +} + +bool HCE::isStoreImmediate(unsigned Opc) const { + switch (Opc) { + case Hexagon::S4_storeirbt_io: + case Hexagon::S4_storeirbf_io: + case Hexagon::S4_storeirht_io: + case Hexagon::S4_storeirhf_io: + case Hexagon::S4_storeirit_io: + case Hexagon::S4_storeirif_io: + case Hexagon::S4_storeirb_io: + case Hexagon::S4_storeirh_io: + case Hexagon::S4_storeiri_io: + return true; + default: + break; + } + return false; +} + +bool HCE::isRegOffOpcode(unsigned Opc) const { + switch (Opc) { + case Hexagon::L2_loadrub_io: + case Hexagon::L2_loadrb_io: + case Hexagon::L2_loadruh_io: + case Hexagon::L2_loadrh_io: + case Hexagon::L2_loadri_io: + case Hexagon::L2_loadrd_io: + case Hexagon::L2_loadbzw2_io: + case Hexagon::L2_loadbzw4_io: + case Hexagon::L2_loadbsw2_io: + case Hexagon::L2_loadbsw4_io: + case Hexagon::L2_loadalignh_io: + case Hexagon::L2_loadalignb_io: + case Hexagon::L2_ploadrubt_io: + case Hexagon::L2_ploadrubf_io: + case Hexagon::L2_ploadrbt_io: + case Hexagon::L2_ploadrbf_io: + case Hexagon::L2_ploadruht_io: + case Hexagon::L2_ploadruhf_io: + case Hexagon::L2_ploadrht_io: + case Hexagon::L2_ploadrhf_io: + case Hexagon::L2_ploadrit_io: + case Hexagon::L2_ploadrif_io: + case Hexagon::L2_ploadrdt_io: + case Hexagon::L2_ploadrdf_io: + case Hexagon::S2_storerb_io: + case Hexagon::S2_storerh_io: + case Hexagon::S2_storerf_io: + case Hexagon::S2_storeri_io: + case Hexagon::S2_storerd_io: + case Hexagon::S2_pstorerbt_io: + case Hexagon::S2_pstorerbf_io: + case Hexagon::S2_pstorerht_io: + case Hexagon::S2_pstorerhf_io: + case Hexagon::S2_pstorerft_io: + case Hexagon::S2_pstorerff_io: + case Hexagon::S2_pstorerit_io: + case Hexagon::S2_pstorerif_io: + case Hexagon::S2_pstorerdt_io: + case Hexagon::S2_pstorerdf_io: + case Hexagon::A2_addi: + return true; + default: + break; + } + return false; +} + +unsigned HCE::getRegOffOpcode(unsigned ExtOpc) const { + // If there exists an instruction that takes a register and offset, + // that corresponds to the ExtOpc, return it, otherwise return 0. + using namespace Hexagon; + switch (ExtOpc) { + case A2_tfrsi: return A2_addi; + default: + break; + } + const MCInstrDesc &D = HII->get(ExtOpc); + if (D.mayLoad() || D.mayStore()) { + uint64_t F = D.TSFlags; + unsigned AM = (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask; + switch (AM) { + case HexagonII::Absolute: + case HexagonII::AbsoluteSet: + case HexagonII::BaseLongOffset: + switch (ExtOpc) { + case PS_loadrubabs: + case L4_loadrub_ap: + case L4_loadrub_ur: return L2_loadrub_io; + case PS_loadrbabs: + case L4_loadrb_ap: + case L4_loadrb_ur: return L2_loadrb_io; + case PS_loadruhabs: + case L4_loadruh_ap: + case L4_loadruh_ur: return L2_loadruh_io; + case PS_loadrhabs: + case L4_loadrh_ap: + case L4_loadrh_ur: return L2_loadrh_io; + case PS_loadriabs: + case L4_loadri_ap: + case L4_loadri_ur: return L2_loadri_io; + case PS_loadrdabs: + case L4_loadrd_ap: + case L4_loadrd_ur: return L2_loadrd_io; + case L4_loadbzw2_ap: + case L4_loadbzw2_ur: return L2_loadbzw2_io; + case L4_loadbzw4_ap: + case L4_loadbzw4_ur: return L2_loadbzw4_io; + case L4_loadbsw2_ap: + case L4_loadbsw2_ur: return L2_loadbsw2_io; + case L4_loadbsw4_ap: + case L4_loadbsw4_ur: return L2_loadbsw4_io; + case L4_loadalignh_ap: + case L4_loadalignh_ur: return L2_loadalignh_io; + case L4_loadalignb_ap: + case L4_loadalignb_ur: return L2_loadalignb_io; + case L4_ploadrubt_abs: return L2_ploadrubt_io; + case L4_ploadrubf_abs: return L2_ploadrubf_io; + case L4_ploadrbt_abs: return L2_ploadrbt_io; + case L4_ploadrbf_abs: return L2_ploadrbf_io; + case L4_ploadruht_abs: return L2_ploadruht_io; + case L4_ploadruhf_abs: return L2_ploadruhf_io; + case L4_ploadrht_abs: return L2_ploadrht_io; + case L4_ploadrhf_abs: return L2_ploadrhf_io; + case L4_ploadrit_abs: return L2_ploadrit_io; + case L4_ploadrif_abs: return L2_ploadrif_io; + case L4_ploadrdt_abs: return L2_ploadrdt_io; + case L4_ploadrdf_abs: return L2_ploadrdf_io; + case PS_storerbabs: + case S4_storerb_ap: + case S4_storerb_ur: return S2_storerb_io; + case PS_storerhabs: + case S4_storerh_ap: + case S4_storerh_ur: return S2_storerh_io; + case PS_storerfabs: + case S4_storerf_ap: + case S4_storerf_ur: return S2_storerf_io; + case PS_storeriabs: + case S4_storeri_ap: + case S4_storeri_ur: return S2_storeri_io; + case PS_storerdabs: + case S4_storerd_ap: + case S4_storerd_ur: return S2_storerd_io; + case S4_pstorerbt_abs: return S2_pstorerbt_io; + case S4_pstorerbf_abs: return S2_pstorerbf_io; + case S4_pstorerht_abs: return S2_pstorerht_io; + case S4_pstorerhf_abs: return S2_pstorerhf_io; + case S4_pstorerft_abs: return S2_pstorerft_io; + case S4_pstorerff_abs: return S2_pstorerff_io; + case S4_pstorerit_abs: return S2_pstorerit_io; + case S4_pstorerif_abs: return S2_pstorerif_io; + case S4_pstorerdt_abs: return S2_pstorerdt_io; + case S4_pstorerdf_abs: return S2_pstorerdf_io; + default: + break; + } + break; + case HexagonII::BaseImmOffset: + if (!isStoreImmediate(ExtOpc)) + return ExtOpc; + break; + default: + break; + } + } + return 0; +} + +unsigned HCE::getDirectRegReplacement(unsigned ExtOpc) const { + switch (ExtOpc) { + case Hexagon::A2_addi: return Hexagon::A2_add; + case Hexagon::A2_andir: return Hexagon::A2_and; + case Hexagon::A2_combineii: return Hexagon::A4_combineri; + case Hexagon::A2_orir: return Hexagon::A2_or; + case Hexagon::A2_paddif: return Hexagon::A2_paddf; + case Hexagon::A2_paddit: return Hexagon::A2_paddt; + case Hexagon::A2_subri: return Hexagon::A2_sub; + case Hexagon::A2_tfrsi: return TargetOpcode::COPY; + case Hexagon::A4_cmpbeqi: return Hexagon::A4_cmpbeq; + case Hexagon::A4_cmpbgti: return Hexagon::A4_cmpbgt; + case Hexagon::A4_cmpbgtui: return Hexagon::A4_cmpbgtu; + case Hexagon::A4_cmpheqi: return Hexagon::A4_cmpheq; + case Hexagon::A4_cmphgti: return Hexagon::A4_cmphgt; + case Hexagon::A4_cmphgtui: return Hexagon::A4_cmphgtu; + case Hexagon::A4_combineii: return Hexagon::A4_combineir; + case Hexagon::A4_combineir: return TargetOpcode::REG_SEQUENCE; + case Hexagon::A4_combineri: return TargetOpcode::REG_SEQUENCE; + case Hexagon::A4_rcmpeqi: return Hexagon::A4_rcmpeq; + case Hexagon::A4_rcmpneqi: return Hexagon::A4_rcmpneq; + case Hexagon::C2_cmoveif: return Hexagon::A2_tfrpf; + case Hexagon::C2_cmoveit: return Hexagon::A2_tfrpt; + case Hexagon::C2_cmpeqi: return Hexagon::C2_cmpeq; + case Hexagon::C2_cmpgti: return Hexagon::C2_cmpgt; + case Hexagon::C2_cmpgtui: return Hexagon::C2_cmpgtu; + case Hexagon::C2_muxii: return Hexagon::C2_muxir; + case Hexagon::C2_muxir: return Hexagon::C2_mux; + case Hexagon::C2_muxri: return Hexagon::C2_mux; + case Hexagon::C4_cmpltei: return Hexagon::C4_cmplte; + case Hexagon::C4_cmplteui: return Hexagon::C4_cmplteu; + case Hexagon::C4_cmpneqi: return Hexagon::C4_cmpneq; + case Hexagon::M2_accii: return Hexagon::M2_acci; // T -> T + /* No M2_macsin */ + case Hexagon::M2_macsip: return Hexagon::M2_maci; // T -> T + case Hexagon::M2_mpysin: return Hexagon::M2_mpyi; + case Hexagon::M2_mpysip: return Hexagon::M2_mpyi; + case Hexagon::M2_mpysmi: return Hexagon::M2_mpyi; + case Hexagon::M2_naccii: return Hexagon::M2_nacci; // T -> T + case Hexagon::M4_mpyri_addi: return Hexagon::M4_mpyri_addr; + case Hexagon::M4_mpyri_addr: return Hexagon::M4_mpyrr_addr; // _ -> T + case Hexagon::M4_mpyrr_addi: return Hexagon::M4_mpyrr_addr; // _ -> T + case Hexagon::S4_addaddi: return Hexagon::M2_acci; // _ -> T + case Hexagon::S4_addi_asl_ri: return Hexagon::S2_asl_i_r_acc; // T -> T + case Hexagon::S4_addi_lsr_ri: return Hexagon::S2_lsr_i_r_acc; // T -> T + case Hexagon::S4_andi_asl_ri: return Hexagon::S2_asl_i_r_and; // T -> T + case Hexagon::S4_andi_lsr_ri: return Hexagon::S2_lsr_i_r_and; // T -> T + case Hexagon::S4_ori_asl_ri: return Hexagon::S2_asl_i_r_or; // T -> T + case Hexagon::S4_ori_lsr_ri: return Hexagon::S2_lsr_i_r_or; // T -> T + case Hexagon::S4_subaddi: return Hexagon::M2_subacc; // _ -> T + case Hexagon::S4_subi_asl_ri: return Hexagon::S2_asl_i_r_nac; // T -> T + case Hexagon::S4_subi_lsr_ri: return Hexagon::S2_lsr_i_r_nac; // T -> T + + // Store-immediates: + case Hexagon::S4_storeirbf_io: return Hexagon::S2_pstorerbf_io; + case Hexagon::S4_storeirb_io: return Hexagon::S2_storerb_io; + case Hexagon::S4_storeirbt_io: return Hexagon::S2_pstorerbt_io; + case Hexagon::S4_storeirhf_io: return Hexagon::S2_pstorerhf_io; + case Hexagon::S4_storeirh_io: return Hexagon::S2_storerh_io; + case Hexagon::S4_storeirht_io: return Hexagon::S2_pstorerht_io; + case Hexagon::S4_storeirif_io: return Hexagon::S2_pstorerif_io; + case Hexagon::S4_storeiri_io: return Hexagon::S2_storeri_io; + case Hexagon::S4_storeirit_io: return Hexagon::S2_pstorerit_io; + + default: + break; + } + return 0; +} + +// Return the allowable deviation from the current value of Rb which the +// instruction MI can accommodate. +// The instruction MI is a user of register Rb, which is defined via an +// extender. It may be possible for MI to be tweaked to work for a register +// defined with a slightly different value. For example +// ... = L2_loadrub_io Rb, 0 +// can be modifed to be +// ... = L2_loadrub_io Rb', 1 +// if Rb' = Rb-1. +OffsetRange HCE::getOffsetRange(Register Rb, const MachineInstr &MI) const { + unsigned Opc = MI.getOpcode(); + // Instructions that are constant-extended may be replaced with something + // else that no longer offers the same range as the original. + if (!isRegOffOpcode(Opc) || HII->isConstExtended(MI)) + return OffsetRange::zero(); + + if (Opc == Hexagon::A2_addi) { + const MachineOperand &Op1 = MI.getOperand(1), &Op2 = MI.getOperand(2); + if (Rb != Register(Op1) || !Op2.isImm()) + return OffsetRange::zero(); + OffsetRange R = { -(1<<15)+1, (1<<15)-1, 1 }; + return R.shift(Op2.getImm()); + } + + // HII::getBaseAndOffsetPosition returns the increment position as "offset". + if (HII->isPostIncrement(MI)) + return OffsetRange::zero(); + + const MCInstrDesc &D = HII->get(Opc); + assert(D.mayLoad() || D.mayStore()); + + unsigned BaseP, OffP; + if (!HII->getBaseAndOffsetPosition(MI, BaseP, OffP) || + Rb != Register(MI.getOperand(BaseP)) || + !MI.getOperand(OffP).isImm()) + return OffsetRange::zero(); + + uint64_t F = (D.TSFlags >> HexagonII::MemAccessSizePos) & + HexagonII::MemAccesSizeMask; + uint8_t A = HexagonII::getMemAccessSizeInBytes(HexagonII::MemAccessSize(F)); + unsigned L = Log2_32(A); + unsigned S = 10+L; // sint11_L + int32_t Min = -alignDown((1<<S)-1, A); + int32_t Max = 0; // Force non-negative offsets. + + OffsetRange R = { Min, Max, A }; + int32_t Off = MI.getOperand(OffP).getImm(); + return R.shift(Off); +} + +// Return the allowable deviation from the current value of the extender ED, +// for which the instruction corresponding to ED can be modified without +// using an extender. +// The instruction uses the extender directly. It will be replaced with +// another instruction, say MJ, where the extender will be replaced with a +// register. MJ can allow some variability with respect to the value of +// that register, as is the case with indexed memory instructions. +OffsetRange HCE::getOffsetRange(const ExtDesc &ED) const { + // The only way that there can be a non-zero range available is if + // the instruction using ED will be converted to an indexed memory + // instruction. + unsigned IdxOpc = getRegOffOpcode(ED.UseMI->getOpcode()); + switch (IdxOpc) { + case 0: + return OffsetRange::zero(); + case Hexagon::A2_addi: // s16 + return { -32767, 32767, 1 }; + case Hexagon::A2_subri: // s10 + return { -511, 511, 1 }; + } + + if (!ED.UseMI->mayLoad() && !ED.UseMI->mayStore()) + return OffsetRange::zero(); + const MCInstrDesc &D = HII->get(IdxOpc); + uint64_t F = (D.TSFlags >> HexagonII::MemAccessSizePos) & + HexagonII::MemAccesSizeMask; + uint8_t A = HexagonII::getMemAccessSizeInBytes(HexagonII::MemAccessSize(F)); + unsigned L = Log2_32(A); + unsigned S = 10+L; // sint11_L + int32_t Min = -alignDown((1<<S)-1, A); + int32_t Max = 0; // Force non-negative offsets. + return { Min, Max, A }; +} + +// Get the allowable deviation from the current value of Rd by checking +// all uses of Rd. +OffsetRange HCE::getOffsetRange(Register Rd) const { + OffsetRange Range; + for (const MachineOperand &Op : MRI->use_operands(Rd.Reg)) { + // Make sure that the register being used by this operand is identical + // to the register that was defined: using a different subregister + // precludes any non-trivial range. + if (Rd != Register(Op)) + return OffsetRange::zero(); + Range.intersect(getOffsetRange(Rd, *Op.getParent())); + } + return Range; +} + +void HCE::recordExtender(MachineInstr &MI, unsigned OpNum) { + unsigned Opc = MI.getOpcode(); + ExtDesc ED; + ED.OpNum = OpNum; + + bool IsLoad = MI.mayLoad(); + bool IsStore = MI.mayStore(); + + if (IsLoad || IsStore) { + unsigned AM = HII->getAddrMode(MI); + switch (AM) { + // (Re: ##Off + Rb<<S) = Rd: ##Val + case HexagonII::Absolute: // (__: ## + __<<_) + break; + case HexagonII::AbsoluteSet: // (Rd: ## + __<<_) + ED.Rd = MI.getOperand(OpNum-1); + ED.IsDef = true; + break; + case HexagonII::BaseImmOffset: // (__: ## + Rs<<0) + // Store-immediates are treated as non-memory operations, since + // it's the value being stored that is extended (as opposed to + // a part of the address). + if (!isStoreImmediate(Opc)) + ED.Expr.Rs = MI.getOperand(OpNum-1); + break; + case HexagonII::BaseLongOffset: // (__: ## + Rs<<S) + ED.Expr.Rs = MI.getOperand(OpNum-2); + ED.Expr.S = MI.getOperand(OpNum-1).getImm(); + break; + default: + llvm_unreachable("Unhandled memory instruction"); + } + } else { + switch (Opc) { + case Hexagon::A2_tfrsi: // (Rd: ## + __<<_) + ED.Rd = MI.getOperand(0); + ED.IsDef = true; + break; + case Hexagon::A2_combineii: // (Rd: ## + __<<_) + case Hexagon::A4_combineir: + ED.Rd = { MI.getOperand(0).getReg(), Hexagon::isub_hi }; + ED.IsDef = true; + break; + case Hexagon::A4_combineri: // (Rd: ## + __<<_) + ED.Rd = { MI.getOperand(0).getReg(), Hexagon::isub_lo }; + ED.IsDef = true; + break; + case Hexagon::A2_addi: // (Rd: ## + Rs<<0) + ED.Rd = MI.getOperand(0); + ED.Expr.Rs = MI.getOperand(OpNum-1); + break; + case Hexagon::M2_accii: // (__: ## + Rs<<0) + case Hexagon::M2_naccii: + case Hexagon::S4_addaddi: + ED.Expr.Rs = MI.getOperand(OpNum-1); + break; + case Hexagon::A2_subri: // (Rd: ## - Rs<<0) + ED.Rd = MI.getOperand(0); + ED.Expr.Rs = MI.getOperand(OpNum+1); + ED.Expr.Neg = true; + break; + case Hexagon::S4_subaddi: // (__: ## - Rs<<0) + ED.Expr.Rs = MI.getOperand(OpNum+1); + ED.Expr.Neg = true; + default: // (__: ## + __<<_) + break; + } + } + + ED.UseMI = &MI; + Extenders.push_back(ED); +} + +void HCE::collectInstr(MachineInstr &MI) { + if (!HII->isConstExtended(MI)) + return; + + // Skip some non-convertible instructions. + unsigned Opc = MI.getOpcode(); + switch (Opc) { + case Hexagon::M2_macsin: // There is no Rx -= mpyi(Rs,Rt). + case Hexagon::C4_addipc: + case Hexagon::S4_or_andi: + case Hexagon::S4_or_andix: + case Hexagon::S4_or_ori: + return; + } + recordExtender(MI, HII->getCExtOpNum(MI)); +} + +void HCE::collect(MachineFunction &MF) { + Extenders.clear(); + for (MachineBasicBlock &MBB : MF) + for (MachineInstr &MI : MBB) + collectInstr(MI); +} + +void HCE::assignInits(const ExtRoot &ER, unsigned Begin, unsigned End, + AssignmentMap &IMap) { + // Sanity check: make sure that all extenders in the range [Begin..End) + // share the same root ER. + for (unsigned I = Begin; I != End; ++I) + assert(ER == ExtRoot(Extenders[I].getOp())); + + // Construct the list of ranges, such that for each P in Ranges[I], + // a register Reg = ER+P can be used in place of Extender[I]. If the + // instruction allows, uses in the form of Reg+Off are considered + // (here, Off = required_value - P). + std::vector<OffsetRange> Ranges(End-Begin); + + // For each extender that is a def, visit all uses of the defined register, + // and produce an offset range that works for all uses. The def doesn't + // have to be checked, because it can become dead if all uses can be updated + // to use a different reg/offset. + for (unsigned I = Begin; I != End; ++I) { + const ExtDesc &ED = Extenders[I]; + if (!ED.IsDef) + continue; + ExtValue EV(ED); + DEBUG(dbgs() << " =" << I << ". " << EV << " " << ED << '\n'); + assert(ED.Rd.Reg != 0); + Ranges[I-Begin] = getOffsetRange(ED.Rd).shift(EV.Offset); + // A2_tfrsi is a special case: it will be replaced with A2_addi, which + // has a 16-bit signed offset. This means that A2_tfrsi not only has a + // range coming from its uses, but also from the fact that its replacement + // has a range as well. + if (ED.UseMI->getOpcode() == Hexagon::A2_tfrsi) { + int32_t D = alignDown(32767, Ranges[I-Begin].Align); // XXX hardcoded + Ranges[I-Begin].extendBy(-D).extendBy(D); + } + } + + // Visit all non-def extenders. For each one, determine the offset range + // available for it. + for (unsigned I = Begin; I != End; ++I) { + const ExtDesc &ED = Extenders[I]; + if (ED.IsDef) + continue; + ExtValue EV(ED); + DEBUG(dbgs() << " " << I << ". " << EV << " " << ED << '\n'); + OffsetRange Dev = getOffsetRange(ED); + Ranges[I-Begin].intersect(Dev.shift(EV.Offset)); + } + + // Here for each I there is a corresponding Range[I]. Construct the + // inverse map, that to each range will assign the set of indexes in + // [Begin..End) that this range corresponds to. + std::map<OffsetRange, IndexList> RangeMap; + for (unsigned I = Begin; I != End; ++I) + RangeMap[Ranges[I-Begin]].insert(I); + + DEBUG({ + dbgs() << "Ranges\n"; + for (unsigned I = Begin; I != End; ++I) + dbgs() << " " << I << ". " << Ranges[I-Begin] << '\n'; + dbgs() << "RangeMap\n"; + for (auto &P : RangeMap) { + dbgs() << " " << P.first << " ->"; + for (unsigned I : P.second) + dbgs() << ' ' << I; + dbgs() << '\n'; + } + }); + + // Select the definition points, and generate the assignment between + // these points and the uses. + + // For each candidate offset, keep a pair CandData consisting of + // the total number of ranges containing that candidate, and the + // vector of corresponding RangeTree nodes. + using CandData = std::pair<unsigned, SmallVector<RangeTree::Node*,8>>; + std::map<int32_t, CandData> CandMap; + + RangeTree Tree; + for (const OffsetRange &R : Ranges) + Tree.add(R); + SmallVector<RangeTree::Node*,8> Nodes; + Tree.order(Nodes); + + auto MaxAlign = [](const SmallVectorImpl<RangeTree::Node*> &Nodes) { + uint8_t Align = 1; + for (RangeTree::Node *N : Nodes) + Align = std::max(Align, N->Range.Align); + return Align; + }; + + // Construct the set of all potential definition points from the endpoints + // of the ranges. If a given endpoint also belongs to a different range, + // but with a higher alignment, also consider the more-highly-aligned + // value of this endpoint. + std::set<int32_t> CandSet; + for (RangeTree::Node *N : Nodes) { + const OffsetRange &R = N->Range; + uint8_t A0 = MaxAlign(Tree.nodesWith(R.Min, false)); + CandSet.insert(R.Min); + if (R.Align < A0) + CandSet.insert(R.Min < 0 ? -alignDown(-R.Min, A0) : alignTo(R.Min, A0)); + uint8_t A1 = MaxAlign(Tree.nodesWith(R.Max, false)); + CandSet.insert(R.Max); + if (R.Align < A1) + CandSet.insert(R.Max < 0 ? -alignTo(-R.Max, A1) : alignDown(R.Max, A1)); + } + + // Build the assignment map: candidate C -> { list of extender indexes }. + // This has to be done iteratively: + // - pick the candidate that covers the maximum number of extenders, + // - add the candidate to the map, + // - remove the extenders from the pool. + while (true) { + using CMap = std::map<int32_t,unsigned>; + CMap Counts; + for (auto It = CandSet.begin(), Et = CandSet.end(); It != Et; ) { + auto &&V = Tree.nodesWith(*It); + unsigned N = std::accumulate(V.begin(), V.end(), 0u, + [](unsigned Acc, const RangeTree::Node *N) { + return Acc + N->Count; + }); + if (N != 0) + Counts.insert({*It, N}); + It = (N != 0) ? std::next(It) : CandSet.erase(It); + } + if (Counts.empty()) + break; + + // Find the best candidate with respect to the number of extenders covered. + auto BestIt = std::max_element(Counts.begin(), Counts.end(), + [](const CMap::value_type &A, const CMap::value_type &B) { + return A.second < B.second || + (A.second == B.second && A < B); + }); + int32_t Best = BestIt->first; + ExtValue BestV(ER, Best); + for (RangeTree::Node *N : Tree.nodesWith(Best)) { + for (unsigned I : RangeMap[N->Range]) + IMap[{BestV,Extenders[I].Expr}].insert(I); + Tree.erase(N); + } + } + + DEBUG(dbgs() << "IMap (before fixup) = " << PrintIMap(IMap, *HRI)); + + // There is some ambiguity in what initializer should be used, if the + // descriptor's subexpression is non-trivial: it can be the entire + // subexpression (which is what has been done so far), or it can be + // the extender's value itself, if all corresponding extenders have the + // exact value of the initializer (i.e. require offset of 0). + + // To reduce the number of initializers, merge such special cases. + for (std::pair<const ExtenderInit,IndexList> &P : IMap) { + // Skip trivial initializers. + if (P.first.second.trivial()) + continue; + // If the corresponding trivial initializer does not exist, skip this + // entry. + const ExtValue &EV = P.first.first; + AssignmentMap::iterator F = IMap.find({EV, ExtExpr()}); + if (F == IMap.end()) + continue; + // Finally, check if all extenders have the same value as the initializer. + auto SameValue = [&EV,this](unsigned I) { + const ExtDesc &ED = Extenders[I]; + return ExtValue(ED).Offset == EV.Offset; + }; + if (all_of(P.second, SameValue)) { + F->second.insert(P.second.begin(), P.second.end()); + P.second.clear(); + } + } + + DEBUG(dbgs() << "IMap (after fixup) = " << PrintIMap(IMap, *HRI)); +} + +void HCE::calculatePlacement(const ExtenderInit &ExtI, const IndexList &Refs, + LocDefMap &Defs) { + if (Refs.empty()) + return; + + // The placement calculation is somewhat simple right now: it finds a + // single location for the def that dominates all refs. Since this may + // place the def far from the uses, producing several locations for + // defs that collectively dominate all refs could be better. + // For now only do the single one. + DenseSet<MachineBasicBlock*> Blocks; + DenseSet<MachineInstr*> RefMIs; + const ExtDesc &ED0 = Extenders[Refs[0]]; + MachineBasicBlock *DomB = ED0.UseMI->getParent(); + RefMIs.insert(ED0.UseMI); + Blocks.insert(DomB); + for (unsigned i = 1, e = Refs.size(); i != e; ++i) { + const ExtDesc &ED = Extenders[Refs[i]]; + MachineBasicBlock *MBB = ED.UseMI->getParent(); + RefMIs.insert(ED.UseMI); + DomB = MDT->findNearestCommonDominator(DomB, MBB); + Blocks.insert(MBB); + } + +#ifndef NDEBUG + // The block DomB should be dominated by the def of each register used + // in the initializer. + Register Rs = ExtI.second.Rs; // Only one reg allowed now. + const MachineInstr *DefI = Rs.isVReg() ? MRI->getVRegDef(Rs.Reg) : nullptr; + + // This should be guaranteed given that the entire expression is used + // at each instruction in Refs. Add an assertion just in case. + assert(!DefI || MDT->dominates(DefI->getParent(), DomB)); +#endif + + MachineBasicBlock::iterator It; + if (Blocks.count(DomB)) { + // Try to find the latest possible location for the def. + MachineBasicBlock::iterator End = DomB->end(); + for (It = DomB->begin(); It != End; ++It) + if (RefMIs.count(&*It)) + break; + assert(It != End && "Should have found a ref in DomB"); + } else { + // DomB does not contain any refs. + It = DomB->getFirstTerminator(); + } + Loc DefLoc(DomB, It); + Defs.emplace(DefLoc, Refs); +} + +HCE::Register HCE::insertInitializer(Loc DefL, const ExtenderInit &ExtI) { + unsigned DefR = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); + MachineBasicBlock &MBB = *DefL.Block; + MachineBasicBlock::iterator At = DefL.At; + DebugLoc dl = DefL.Block->findDebugLoc(DefL.At); + const ExtValue &EV = ExtI.first; + MachineOperand ExtOp(EV); + + const ExtExpr &Ex = ExtI.second; + const MachineInstr *InitI = nullptr; + + if (Ex.Rs.isSlot()) { + assert(Ex.S == 0 && "Cannot have a shift of a stack slot"); + assert(!Ex.Neg && "Cannot subtract a stack slot"); + // DefR = PS_fi Rb,##EV + InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::PS_fi), DefR) + .add(MachineOperand(Ex.Rs)) + .add(ExtOp); + } else { + assert((Ex.Rs.Reg == 0 || Ex.Rs.isVReg()) && "Expecting virtual register"); + if (Ex.trivial()) { + // DefR = ##EV + InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_tfrsi), DefR) + .add(ExtOp); + } else if (Ex.S == 0) { + if (Ex.Neg) { + // DefR = sub(##EV,Rb) + InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_subri), DefR) + .add(ExtOp) + .add(MachineOperand(Ex.Rs)); + } else { + // DefR = add(Rb,##EV) + InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_addi), DefR) + .add(MachineOperand(Ex.Rs)) + .add(ExtOp); + } + } else { + unsigned NewOpc = Ex.Neg ? Hexagon::S4_subi_asl_ri + : Hexagon::S4_addi_asl_ri; + // DefR = add(##EV,asl(Rb,S)) + InitI = BuildMI(MBB, At, dl, HII->get(NewOpc), DefR) + .add(ExtOp) + .add(MachineOperand(Ex.Rs)) + .addImm(Ex.S); + } + } + + assert(InitI); + (void)InitI; + DEBUG(dbgs() << "Inserted def in bb#" << MBB.getNumber() + << " for initializer: " << PrintInit(ExtI, *HRI) + << "\n " << *InitI); + return { DefR, 0 }; +} + +// Replace the extender at index Idx with the register ExtR. +bool HCE::replaceInstrExact(const ExtDesc &ED, Register ExtR) { + MachineInstr &MI = *ED.UseMI; + MachineBasicBlock &MBB = *MI.getParent(); + MachineBasicBlock::iterator At = MI.getIterator(); + DebugLoc dl = MI.getDebugLoc(); + unsigned ExtOpc = MI.getOpcode(); + + // With a few exceptions, direct replacement amounts to creating an + // instruction with a corresponding register opcode, with all operands + // the same, except for the register used in place of the extender. + unsigned RegOpc = getDirectRegReplacement(ExtOpc); + + if (RegOpc == TargetOpcode::REG_SEQUENCE) { + if (ExtOpc == Hexagon::A4_combineri) + BuildMI(MBB, At, dl, HII->get(RegOpc)) + .add(MI.getOperand(0)) + .add(MI.getOperand(1)) + .addImm(Hexagon::isub_hi) + .add(MachineOperand(ExtR)) + .addImm(Hexagon::isub_lo); + else if (ExtOpc == Hexagon::A4_combineir) + BuildMI(MBB, At, dl, HII->get(RegOpc)) + .add(MI.getOperand(0)) + .add(MachineOperand(ExtR)) + .addImm(Hexagon::isub_hi) + .add(MI.getOperand(2)) + .addImm(Hexagon::isub_lo); + else + llvm_unreachable("Unexpected opcode became REG_SEQUENCE"); + MBB.erase(MI); + return true; + } + if (ExtOpc == Hexagon::C2_cmpgei || ExtOpc == Hexagon::C2_cmpgeui) { + unsigned NewOpc = ExtOpc == Hexagon::C2_cmpgei ? Hexagon::C2_cmplt + : Hexagon::C2_cmpltu; + BuildMI(MBB, At, dl, HII->get(NewOpc)) + .add(MI.getOperand(0)) + .add(MachineOperand(ExtR)) + .add(MI.getOperand(1)); + MBB.erase(MI); + return true; + } + + if (RegOpc != 0) { + MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(RegOpc)); + unsigned RegN = ED.OpNum; + // Copy all operands except the one that has the extender. + for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { + if (i != RegN) + MIB.add(MI.getOperand(i)); + else + MIB.add(MachineOperand(ExtR)); + } + MIB.setMemRefs(MI.memoperands_begin(), MI.memoperands_end()); + MBB.erase(MI); + return true; + } + + if ((MI.mayLoad() || MI.mayStore()) && !isStoreImmediate(ExtOpc)) { + // For memory instructions, there is an asymmetry in the addressing + // modes. Addressing modes allowing extenders can be replaced with + // addressing modes that use registers, but the order of operands + // (or even their number) may be different. + // Replacements: + // BaseImmOffset (io) -> BaseRegOffset (rr) + // BaseLongOffset (ur) -> BaseRegOffset (rr) + unsigned RegOpc, Shift; + unsigned AM = HII->getAddrMode(MI); + if (AM == HexagonII::BaseImmOffset) { + RegOpc = HII->changeAddrMode_io_rr(ExtOpc); + Shift = 0; + } else if (AM == HexagonII::BaseLongOffset) { + // Loads: Rd = L4_loadri_ur Rs, S, ## + // Stores: S4_storeri_ur Rs, S, ##, Rt + RegOpc = HII->changeAddrMode_ur_rr(ExtOpc); + Shift = MI.getOperand(MI.mayLoad() ? 2 : 1).getImm(); + } else { + llvm_unreachable("Unexpected addressing mode"); + } +#ifndef NDEBUG + if (RegOpc == -1u) { + dbgs() << "\nExtOpc: " << HII->getName(ExtOpc) << " has no rr version\n"; + llvm_unreachable("No corresponding rr instruction"); + } +#endif + + unsigned BaseP, OffP; + HII->getBaseAndOffsetPosition(MI, BaseP, OffP); + + // Build an rr instruction: (RegOff + RegBase<<0) + MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(RegOpc)); + // First, add the def for loads. + if (MI.mayLoad()) + MIB.add(getLoadResultOp(MI)); + // Handle possible predication. + if (HII->isPredicated(MI)) + MIB.add(getPredicateOp(MI)); + // Build the address. + MIB.add(MachineOperand(ExtR)); // RegOff + MIB.add(MI.getOperand(BaseP)); // RegBase + MIB.addImm(Shift); // << Shift + // Add the stored value for stores. + if (MI.mayStore()) + MIB.add(getStoredValueOp(MI)); + MIB.setMemRefs(MI.memoperands_begin(), MI.memoperands_end()); + MBB.erase(MI); + return true; + } + +#ifndef NDEBUG + dbgs() << '\n' << MI; +#endif + llvm_unreachable("Unhandled exact replacement"); + return false; +} + +// Replace the extender ED with a form corresponding to the initializer ExtI. +bool HCE::replaceInstrExpr(const ExtDesc &ED, const ExtenderInit &ExtI, + Register ExtR, int32_t &Diff) { + MachineInstr &MI = *ED.UseMI; + MachineBasicBlock &MBB = *MI.getParent(); + MachineBasicBlock::iterator At = MI.getIterator(); + DebugLoc dl = MI.getDebugLoc(); + unsigned ExtOpc = MI.getOpcode(); + + if (ExtOpc == Hexagon::A2_tfrsi) { + // A2_tfrsi is a special case: it's replaced with A2_addi, which introduces + // another range. One range is the one that's common to all tfrsi's uses, + // this one is the range of immediates in A2_addi. When calculating ranges, + // the addi's 16-bit argument was included, so now we need to make it such + // that the produced value is in the range for the uses alone. + // Most of the time, simply adding Diff will make the addi produce exact + // result, but if Diff is outside of the 16-bit range, some adjustment + // will be needed. + unsigned IdxOpc = getRegOffOpcode(ExtOpc); + assert(IdxOpc == Hexagon::A2_addi); + + // Clamp Diff to the 16 bit range. + int32_t D = isInt<16>(Diff) ? Diff : (Diff > 32767 ? 32767 : -32767); + BuildMI(MBB, At, dl, HII->get(IdxOpc)) + .add(MI.getOperand(0)) + .add(MachineOperand(ExtR)) + .addImm(D); + Diff -= D; +#ifndef NDEBUG + // Make sure the output is within allowable range for uses. + OffsetRange Uses = getOffsetRange(MI.getOperand(0)); + assert(Uses.contains(Diff)); +#endif + MBB.erase(MI); + return true; + } + + const ExtValue &EV = ExtI.first; (void)EV; + const ExtExpr &Ex = ExtI.second; (void)Ex; + + if (ExtOpc == Hexagon::A2_addi || ExtOpc == Hexagon::A2_subri) { + // If addi/subri are replaced with the exactly matching initializer, + // they amount to COPY. + // Check that the initializer is an exact match (for simplicity). + bool IsAddi = ExtOpc == Hexagon::A2_addi; + const MachineOperand &RegOp = MI.getOperand(IsAddi ? 1 : 2); + const MachineOperand &ImmOp = MI.getOperand(IsAddi ? 2 : 1); + assert(Ex.Rs == RegOp && EV == ImmOp && Ex.Neg != IsAddi && + "Initializer mismatch"); + BuildMI(MBB, At, dl, HII->get(TargetOpcode::COPY)) + .add(MI.getOperand(0)) + .add(MachineOperand(ExtR)); + Diff = 0; + MBB.erase(MI); + return true; + } + if (ExtOpc == Hexagon::M2_accii || ExtOpc == Hexagon::M2_naccii || + ExtOpc == Hexagon::S4_addaddi || ExtOpc == Hexagon::S4_subaddi) { + // M2_accii: add(Rt,add(Rs,V)) (tied) + // M2_naccii: sub(Rt,add(Rs,V)) + // S4_addaddi: add(Rt,add(Rs,V)) + // S4_subaddi: add(Rt,sub(V,Rs)) + // Check that Rs and V match the initializer expression. The Rs+V is the + // combination that is considered "subexpression" for V, although Rx+V + // would also be valid. + bool IsSub = ExtOpc == Hexagon::S4_subaddi; + Register Rs = MI.getOperand(IsSub ? 3 : 2); + ExtValue V = MI.getOperand(IsSub ? 2 : 3); + assert(EV == V && Rs == Ex.Rs && IsSub == Ex.Neg && "Initializer mismatch"); + unsigned NewOpc = ExtOpc == Hexagon::M2_naccii ? Hexagon::A2_sub + : Hexagon::A2_add; + BuildMI(MBB, At, dl, HII->get(NewOpc)) + .add(MI.getOperand(0)) + .add(MI.getOperand(1)) + .add(MachineOperand(ExtR)); + MBB.erase(MI); + return true; + } + + if (MI.mayLoad() || MI.mayStore()) { + unsigned IdxOpc = getRegOffOpcode(ExtOpc); + assert(IdxOpc && "Expecting indexed opcode"); + MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(IdxOpc)); + // Construct the new indexed instruction. + // First, add the def for loads. + if (MI.mayLoad()) + MIB.add(getLoadResultOp(MI)); + // Handle possible predication. + if (HII->isPredicated(MI)) + MIB.add(getPredicateOp(MI)); + // Build the address. + MIB.add(MachineOperand(ExtR)); + MIB.addImm(Diff); + // Add the stored value for stores. + if (MI.mayStore()) + MIB.add(getStoredValueOp(MI)); + MIB.setMemRefs(MI.memoperands_begin(), MI.memoperands_end()); + MBB.erase(MI); + return true; + } + +#ifndef NDEBUG + dbgs() << '\n' << PrintInit(ExtI, *HRI) << " " << MI; +#endif + llvm_unreachable("Unhandled expr replacement"); + return false; +} + +bool HCE::replaceInstr(unsigned Idx, Register ExtR, const ExtenderInit &ExtI) { + if (ReplaceLimit.getNumOccurrences()) { + if (ReplaceLimit <= ReplaceCounter) + return false; + ++ReplaceCounter; + } + const ExtDesc &ED = Extenders[Idx]; + assert((!ED.IsDef || ED.Rd.Reg != 0) && "Missing Rd for def"); + const ExtValue &DefV = ExtI.first; + assert(ExtRoot(ExtValue(ED)) == ExtRoot(DefV) && "Extender root mismatch"); + const ExtExpr &DefEx = ExtI.second; + + ExtValue EV(ED); + int32_t Diff = EV.Offset - DefV.Offset; + const MachineInstr &MI = *ED.UseMI; + DEBUG(dbgs() << __func__ << " Idx:" << Idx << " ExtR:" + << PrintRegister(ExtR, *HRI) << " Diff:" << Diff << '\n'); + + // These two addressing modes must be converted into indexed forms + // regardless of what the initializer looks like. + bool IsAbs = false, IsAbsSet = false; + if (MI.mayLoad() || MI.mayStore()) { + unsigned AM = HII->getAddrMode(MI); + IsAbs = AM == HexagonII::Absolute; + IsAbsSet = AM == HexagonII::AbsoluteSet; + } + + // If it's a def, remember all operands that need to be updated. + // If ED is a def, and Diff is not 0, then all uses of the register Rd + // defined by ED must be in the form (Rd, imm), i.e. the immediate offset + // must follow the Rd in the operand list. + std::vector<std::pair<MachineInstr*,unsigned>> RegOps; + if (ED.IsDef && Diff != 0) { + for (MachineOperand &Op : MRI->use_operands(ED.Rd.Reg)) { + MachineInstr &UI = *Op.getParent(); + RegOps.push_back({&UI, getOperandIndex(UI, Op)}); + } + } + + // Replace the instruction. + bool Replaced = false; + if (Diff == 0 && DefEx.trivial() && !IsAbs && !IsAbsSet) + Replaced = replaceInstrExact(ED, ExtR); + else + Replaced = replaceInstrExpr(ED, ExtI, ExtR, Diff); + + if (Diff != 0 && Replaced && ED.IsDef) { + // Update offsets of the def's uses. + for (std::pair<MachineInstr*,unsigned> P : RegOps) { + unsigned J = P.second; + assert(P.first->getNumOperands() < J+1 && + P.first->getOperand(J+1).isImm()); + MachineOperand &ImmOp = P.first->getOperand(J+1); + ImmOp.setImm(ImmOp.getImm() + Diff); + } + // If it was an absolute-set instruction, the "set" part has been removed. + // ExtR will now be the register with the extended value, and since all + // users of Rd have been updated, all that needs to be done is to replace + // Rd with ExtR. + if (IsAbsSet) { + assert(ED.Rd.Sub == 0 && ExtR.Sub == 0); + MRI->replaceRegWith(ED.Rd.Reg, ExtR.Reg); + } + } + + return Replaced; +} + +bool HCE::replaceExtenders(const AssignmentMap &IMap) { + LocDefMap Defs; + bool Changed = false; + + for (const std::pair<ExtenderInit,IndexList> &P : IMap) { + const IndexList &Idxs = P.second; + if (Idxs.size() < CountThreshold) + continue; + + Defs.clear(); + calculatePlacement(P.first, Idxs, Defs); + for (const std::pair<Loc,IndexList> &Q : Defs) { + Register DefR = insertInitializer(Q.first, P.first); + NewRegs.push_back(DefR.Reg); + for (unsigned I : Q.second) + Changed |= replaceInstr(I, DefR, P.first); + } + } + return Changed; +} + +unsigned HCE::getOperandIndex(const MachineInstr &MI, + const MachineOperand &Op) const { + for (unsigned i = 0, n = MI.getNumOperands(); i != n; ++i) + if (&MI.getOperand(i) == &Op) + return i; + llvm_unreachable("Not an operand of MI"); +} + +const MachineOperand &HCE::getPredicateOp(const MachineInstr &MI) const { + assert(HII->isPredicated(MI)); + for (const MachineOperand &Op : MI.operands()) { + if (!Op.isReg() || !Op.isUse() || + MRI->getRegClass(Op.getReg()) != &Hexagon::PredRegsRegClass) + continue; + assert(Op.getSubReg() == 0 && "Predicate register with a subregister"); + return Op; + } + llvm_unreachable("Predicate operand not found"); +} + +const MachineOperand &HCE::getLoadResultOp(const MachineInstr &MI) const { + assert(MI.mayLoad()); + return MI.getOperand(0); +} + +const MachineOperand &HCE::getStoredValueOp(const MachineInstr &MI) const { + assert(MI.mayStore()); + return MI.getOperand(MI.getNumExplicitOperands()-1); +} + +bool HCE::runOnMachineFunction(MachineFunction &MF) { + if (skipFunction(*MF.getFunction())) + return false; + DEBUG(MF.print(dbgs() << "Before " << getPassName() << '\n', nullptr)); + + HII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); + HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); + MDT = &getAnalysis<MachineDominatorTree>(); + MRI = &MF.getRegInfo(); + AssignmentMap IMap; + + collect(MF); + std::sort(Extenders.begin(), Extenders.end(), + [](const ExtDesc &A, const ExtDesc &B) { + return ExtValue(A) < ExtValue(B); + }); + + bool Changed = false; + DEBUG(dbgs() << "Collected " << Extenders.size() << " extenders\n"); + for (unsigned I = 0, E = Extenders.size(); I != E; ) { + unsigned B = I; + const ExtRoot &T = Extenders[B].getOp(); + while (I != E && ExtRoot(Extenders[I].getOp()) == T) + ++I; + + IMap.clear(); + assignInits(T, B, I, IMap); + Changed |= replaceExtenders(IMap); + } + + DEBUG({ + if (Changed) + MF.print(dbgs() << "After " << getPassName() << '\n', nullptr); + else + dbgs() << "No changes\n"; + }); + return Changed; +} + +FunctionPass *llvm::createHexagonConstExtenders() { + return new HexagonConstExtenders(); +} |