summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target/ARM64/MCTargetDesc/ARM64AddressingModes.h
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Target/ARM64/MCTargetDesc/ARM64AddressingModes.h')
-rw-r--r--llvm/lib/Target/ARM64/MCTargetDesc/ARM64AddressingModes.h738
1 files changed, 0 insertions, 738 deletions
diff --git a/llvm/lib/Target/ARM64/MCTargetDesc/ARM64AddressingModes.h b/llvm/lib/Target/ARM64/MCTargetDesc/ARM64AddressingModes.h
deleted file mode 100644
index 53bd3545a59..00000000000
--- a/llvm/lib/Target/ARM64/MCTargetDesc/ARM64AddressingModes.h
+++ /dev/null
@@ -1,738 +0,0 @@
-//===- ARM64AddressingModes.h - ARM64 Addressing Modes ----------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file contains the ARM64 addressing mode implementation stuff.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_TARGET_ARM64_ARM64ADDRESSINGMODES_H
-#define LLVM_TARGET_ARM64_ARM64ADDRESSINGMODES_H
-
-#include "llvm/ADT/APFloat.h"
-#include "llvm/ADT/APInt.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/MathExtras.h"
-#include <cassert>
-
-namespace llvm {
-
-/// ARM64_AM - ARM64 Addressing Mode Stuff
-namespace ARM64_AM {
-
-//===----------------------------------------------------------------------===//
-// Shifts
-//
-
-enum ShiftExtendType {
- InvalidShiftExtend = -1,
- LSL = 0,
- LSR,
- ASR,
- ROR,
- MSL,
-
- UXTB,
- UXTH,
- UXTW,
- UXTX,
-
- SXTB,
- SXTH,
- SXTW,
- SXTX,
-};
-
-/// getShiftName - Get the string encoding for the shift type.
-static inline const char *getShiftExtendName(ARM64_AM::ShiftExtendType ST) {
- switch (ST) {
- default: assert(false && "unhandled shift type!");
- case ARM64_AM::LSL: return "lsl";
- case ARM64_AM::LSR: return "lsr";
- case ARM64_AM::ASR: return "asr";
- case ARM64_AM::ROR: return "ror";
- case ARM64_AM::MSL: return "msl";
- case ARM64_AM::UXTB: return "uxtb";
- case ARM64_AM::UXTH: return "uxth";
- case ARM64_AM::UXTW: return "uxtw";
- case ARM64_AM::UXTX: return "uxtx";
- case ARM64_AM::SXTB: return "sxtb";
- case ARM64_AM::SXTH: return "sxth";
- case ARM64_AM::SXTW: return "sxtw";
- case ARM64_AM::SXTX: return "sxtx";
- }
- return nullptr;
-}
-
-/// getShiftType - Extract the shift type.
-static inline ARM64_AM::ShiftExtendType getShiftType(unsigned Imm) {
- switch ((Imm >> 6) & 0x7) {
- default: return ARM64_AM::InvalidShiftExtend;
- case 0: return ARM64_AM::LSL;
- case 1: return ARM64_AM::LSR;
- case 2: return ARM64_AM::ASR;
- case 3: return ARM64_AM::ROR;
- case 4: return ARM64_AM::MSL;
- }
-}
-
-/// getShiftValue - Extract the shift value.
-static inline unsigned getShiftValue(unsigned Imm) {
- return Imm & 0x3f;
-}
-
-/// getShifterImm - Encode the shift type and amount:
-/// imm: 6-bit shift amount
-/// shifter: 000 ==> lsl
-/// 001 ==> lsr
-/// 010 ==> asr
-/// 011 ==> ror
-/// 100 ==> msl
-/// {8-6} = shifter
-/// {5-0} = imm
-static inline unsigned getShifterImm(ARM64_AM::ShiftExtendType ST,
- unsigned Imm) {
- assert((Imm & 0x3f) == Imm && "Illegal shifted immedate value!");
- unsigned STEnc = 0;
- switch (ST) {
- default: llvm_unreachable("Invalid shift requested");
- case ARM64_AM::LSL: STEnc = 0; break;
- case ARM64_AM::LSR: STEnc = 1; break;
- case ARM64_AM::ASR: STEnc = 2; break;
- case ARM64_AM::ROR: STEnc = 3; break;
- case ARM64_AM::MSL: STEnc = 4; break;
- }
- return (STEnc << 6) | (Imm & 0x3f);
-}
-
-//===----------------------------------------------------------------------===//
-// Extends
-//
-
-/// getArithShiftValue - get the arithmetic shift value.
-static inline unsigned getArithShiftValue(unsigned Imm) {
- return Imm & 0x7;
-}
-
-/// getExtendType - Extract the extend type for operands of arithmetic ops.
-static inline ARM64_AM::ShiftExtendType getExtendType(unsigned Imm) {
- assert((Imm & 0x7) == Imm && "invalid immediate!");
- switch (Imm) {
- default: llvm_unreachable("Compiler bug!");
- case 0: return ARM64_AM::UXTB;
- case 1: return ARM64_AM::UXTH;
- case 2: return ARM64_AM::UXTW;
- case 3: return ARM64_AM::UXTX;
- case 4: return ARM64_AM::SXTB;
- case 5: return ARM64_AM::SXTH;
- case 6: return ARM64_AM::SXTW;
- case 7: return ARM64_AM::SXTX;
- }
-}
-
-static inline ARM64_AM::ShiftExtendType getArithExtendType(unsigned Imm) {
- return getExtendType((Imm >> 3) & 0x7);
-}
-
-/// Mapping from extend bits to required operation:
-/// shifter: 000 ==> uxtb
-/// 001 ==> uxth
-/// 010 ==> uxtw
-/// 011 ==> uxtx
-/// 100 ==> sxtb
-/// 101 ==> sxth
-/// 110 ==> sxtw
-/// 111 ==> sxtx
-inline unsigned getExtendEncoding(ARM64_AM::ShiftExtendType ET) {
- switch (ET) {
- default: llvm_unreachable("Invalid extend type requested");
- case ARM64_AM::UXTB: return 0; break;
- case ARM64_AM::UXTH: return 1; break;
- case ARM64_AM::UXTW: return 2; break;
- case ARM64_AM::UXTX: return 3; break;
- case ARM64_AM::SXTB: return 4; break;
- case ARM64_AM::SXTH: return 5; break;
- case ARM64_AM::SXTW: return 6; break;
- case ARM64_AM::SXTX: return 7; break;
- }
-}
-
-/// getArithExtendImm - Encode the extend type and shift amount for an
-/// arithmetic instruction:
-/// imm: 3-bit extend amount
-/// {5-3} = shifter
-/// {2-0} = imm3
-static inline unsigned getArithExtendImm(ARM64_AM::ShiftExtendType ET,
- unsigned Imm) {
- assert((Imm & 0x7) == Imm && "Illegal shifted immedate value!");
- return (getExtendEncoding(ET) << 3) | (Imm & 0x7);
-}
-
-/// getMemDoShift - Extract the "do shift" flag value for load/store
-/// instructions.
-static inline bool getMemDoShift(unsigned Imm) {
- return (Imm & 0x1) != 0;
-}
-
-/// getExtendType - Extract the extend type for the offset operand of
-/// loads/stores.
-static inline ARM64_AM::ShiftExtendType getMemExtendType(unsigned Imm) {
- return getExtendType((Imm >> 1) & 0x7);
-}
-
-/// getExtendImm - Encode the extend type and amount for a load/store inst:
-/// doshift: should the offset be scaled by the access size
-/// shifter: 000 ==> uxtb
-/// 001 ==> uxth
-/// 010 ==> uxtw
-/// 011 ==> uxtx
-/// 100 ==> sxtb
-/// 101 ==> sxth
-/// 110 ==> sxtw
-/// 111 ==> sxtx
-/// {3-1} = shifter
-/// {0} = doshift
-static inline unsigned getMemExtendImm(ARM64_AM::ShiftExtendType ET,
- bool DoShift) {
- return (getExtendEncoding(ET) << 1) | unsigned(DoShift);
-}
-
-static inline uint64_t ror(uint64_t elt, unsigned size) {
- return ((elt & 1) << (size-1)) | (elt >> 1);
-}
-
-/// processLogicalImmediate - Determine if an immediate value can be encoded
-/// as the immediate operand of a logical instruction for the given register
-/// size. If so, return true with "encoding" set to the encoded value in
-/// the form N:immr:imms.
-static inline bool processLogicalImmediate(uint64_t imm, unsigned regSize,
- uint64_t &encoding) {
- if (imm == 0ULL || imm == ~0ULL ||
- (regSize != 64 && (imm >> regSize != 0 || imm == ~0U)))
- return false;
-
- unsigned size = 2;
- uint64_t eltVal = imm;
-
- // First, determine the element size.
- while (size < regSize) {
- unsigned numElts = regSize / size;
- unsigned mask = (1ULL << size) - 1;
- uint64_t lowestEltVal = imm & mask;
-
- bool allMatched = true;
- for (unsigned i = 1; i < numElts; ++i) {
- uint64_t currEltVal = (imm >> (i*size)) & mask;
- if (currEltVal != lowestEltVal) {
- allMatched = false;
- break;
- }
- }
-
- if (allMatched) {
- eltVal = lowestEltVal;
- break;
- }
-
- size *= 2;
- }
-
- // Second, determine the rotation to make the element be: 0^m 1^n.
- for (unsigned i = 0; i < size; ++i) {
- eltVal = ror(eltVal, size);
- uint32_t clz = countLeadingZeros(eltVal) - (64 - size);
- uint32_t cto = CountTrailingOnes_64(eltVal);
-
- if (clz + cto == size) {
- // Encode in immr the number of RORs it would take to get *from* this
- // element value to our target value, where i+1 is the number of RORs
- // to go the opposite direction.
- unsigned immr = size - (i + 1);
-
- // If size has a 1 in the n'th bit, create a value that has zeroes in
- // bits [0, n] and ones above that.
- uint64_t nimms = ~(size-1) << 1;
-
- // Or the CTO value into the low bits, which must be below the Nth bit
- // bit mentioned above.
- nimms |= (cto-1);
-
- // Extract the seventh bit and toggle it to create the N field.
- unsigned N = ((nimms >> 6) & 1) ^ 1;
-
- encoding = (N << 12) | (immr << 6) | (nimms & 0x3f);
- return true;
- }
- }
-
- return false;
-}
-
-/// isLogicalImmediate - Return true if the immediate is valid for a logical
-/// immediate instruction of the given register size. Return false otherwise.
-static inline bool isLogicalImmediate(uint64_t imm, unsigned regSize) {
- uint64_t encoding;
- return processLogicalImmediate(imm, regSize, encoding);
-}
-
-/// encodeLogicalImmediate - Return the encoded immediate value for a logical
-/// immediate instruction of the given register size.
-static inline uint64_t encodeLogicalImmediate(uint64_t imm, unsigned regSize) {
- uint64_t encoding = 0;
- bool res = processLogicalImmediate(imm, regSize, encoding);
- assert(res && "invalid logical immediate");
- (void)res;
- return encoding;
-}
-
-/// decodeLogicalImmediate - Decode a logical immediate value in the form
-/// "N:immr:imms" (where the immr and imms fields are each 6 bits) into the
-/// integer value it represents with regSize bits.
-static inline uint64_t decodeLogicalImmediate(uint64_t val, unsigned regSize) {
- // Extract the N, imms, and immr fields.
- unsigned N = (val >> 12) & 1;
- unsigned immr = (val >> 6) & 0x3f;
- unsigned imms = val & 0x3f;
-
- assert((regSize == 64 || N == 0) && "undefined logical immediate encoding");
- int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
- assert(len >= 0 && "undefined logical immediate encoding");
- unsigned size = (1 << len);
- unsigned R = immr & (size - 1);
- unsigned S = imms & (size - 1);
- assert(S != size - 1 && "undefined logical immediate encoding");
- uint64_t pattern = (1ULL << (S + 1)) - 1;
- for (unsigned i = 0; i < R; ++i)
- pattern = ror(pattern, size);
-
- // Replicate the pattern to fill the regSize.
- while (size != regSize) {
- pattern |= (pattern << size);
- size *= 2;
- }
- return pattern;
-}
-
-/// isValidDecodeLogicalImmediate - Check to see if the logical immediate value
-/// in the form "N:immr:imms" (where the immr and imms fields are each 6 bits)
-/// is a valid encoding for an integer value with regSize bits.
-static inline bool isValidDecodeLogicalImmediate(uint64_t val,
- unsigned regSize) {
- // Extract the N and imms fields needed for checking.
- unsigned N = (val >> 12) & 1;
- unsigned imms = val & 0x3f;
-
- if (regSize == 32 && N != 0) // undefined logical immediate encoding
- return false;
- int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
- if (len < 0) // undefined logical immediate encoding
- return false;
- unsigned size = (1 << len);
- unsigned S = imms & (size - 1);
- if (S == size - 1) // undefined logical immediate encoding
- return false;
-
- return true;
-}
-
-//===----------------------------------------------------------------------===//
-// Floating-point Immediates
-//
-static inline float getFPImmFloat(unsigned Imm) {
- // We expect an 8-bit binary encoding of a floating-point number here.
- union {
- uint32_t I;
- float F;
- } FPUnion;
-
- uint8_t Sign = (Imm >> 7) & 0x1;
- uint8_t Exp = (Imm >> 4) & 0x7;
- uint8_t Mantissa = Imm & 0xf;
-
- // 8-bit FP iEEEE Float Encoding
- // abcd efgh aBbbbbbc defgh000 00000000 00000000
- //
- // where B = NOT(b);
-
- FPUnion.I = 0;
- FPUnion.I |= Sign << 31;
- FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
- FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
- FPUnion.I |= (Exp & 0x3) << 23;
- FPUnion.I |= Mantissa << 19;
- return FPUnion.F;
-}
-
-/// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
-/// floating-point value. If the value cannot be represented as an 8-bit
-/// floating-point value, then return -1.
-static inline int getFP32Imm(const APInt &Imm) {
- uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
- int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127; // -126 to 127
- int64_t Mantissa = Imm.getZExtValue() & 0x7fffff; // 23 bits
-
- // We can handle 4 bits of mantissa.
- // mantissa = (16+UInt(e:f:g:h))/16.
- if (Mantissa & 0x7ffff)
- return -1;
- Mantissa >>= 19;
- if ((Mantissa & 0xf) != Mantissa)
- return -1;
-
- // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
- if (Exp < -3 || Exp > 4)
- return -1;
- Exp = ((Exp+3) & 0x7) ^ 4;
-
- return ((int)Sign << 7) | (Exp << 4) | Mantissa;
-}
-
-static inline int getFP32Imm(const APFloat &FPImm) {
- return getFP32Imm(FPImm.bitcastToAPInt());
-}
-
-/// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
-/// floating-point value. If the value cannot be represented as an 8-bit
-/// floating-point value, then return -1.
-static inline int getFP64Imm(const APInt &Imm) {
- uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
- int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023
- uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
-
- // We can handle 4 bits of mantissa.
- // mantissa = (16+UInt(e:f:g:h))/16.
- if (Mantissa & 0xffffffffffffULL)
- return -1;
- Mantissa >>= 48;
- if ((Mantissa & 0xf) != Mantissa)
- return -1;
-
- // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
- if (Exp < -3 || Exp > 4)
- return -1;
- Exp = ((Exp+3) & 0x7) ^ 4;
-
- return ((int)Sign << 7) | (Exp << 4) | Mantissa;
-}
-
-static inline int getFP64Imm(const APFloat &FPImm) {
- return getFP64Imm(FPImm.bitcastToAPInt());
-}
-
-//===--------------------------------------------------------------------===//
-// AdvSIMD Modified Immediates
-//===--------------------------------------------------------------------===//
-
-// 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh
-static inline bool isAdvSIMDModImmType1(uint64_t Imm) {
- return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
- ((Imm & 0xffffff00ffffff00ULL) == 0);
-}
-
-static inline uint8_t encodeAdvSIMDModImmType1(uint64_t Imm) {
- return (Imm & 0xffULL);
-}
-
-static inline uint64_t decodeAdvSIMDModImmType1(uint8_t Imm) {
- uint64_t EncVal = Imm;
- return (EncVal << 32) | EncVal;
-}
-
-// 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00
-static inline bool isAdvSIMDModImmType2(uint64_t Imm) {
- return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
- ((Imm & 0xffff00ffffff00ffULL) == 0);
-}
-
-static inline uint8_t encodeAdvSIMDModImmType2(uint64_t Imm) {
- return (Imm & 0xff00ULL) >> 8;
-}
-
-static inline uint64_t decodeAdvSIMDModImmType2(uint8_t Imm) {
- uint64_t EncVal = Imm;
- return (EncVal << 40) | (EncVal << 8);
-}
-
-// 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00
-static inline bool isAdvSIMDModImmType3(uint64_t Imm) {
- return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
- ((Imm & 0xff00ffffff00ffffULL) == 0);
-}
-
-static inline uint8_t encodeAdvSIMDModImmType3(uint64_t Imm) {
- return (Imm & 0xff0000ULL) >> 16;
-}
-
-static inline uint64_t decodeAdvSIMDModImmType3(uint8_t Imm) {
- uint64_t EncVal = Imm;
- return (EncVal << 48) | (EncVal << 16);
-}
-
-// abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00
-static inline bool isAdvSIMDModImmType4(uint64_t Imm) {
- return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
- ((Imm & 0x00ffffff00ffffffULL) == 0);
-}
-
-static inline uint8_t encodeAdvSIMDModImmType4(uint64_t Imm) {
- return (Imm & 0xff000000ULL) >> 24;
-}
-
-static inline uint64_t decodeAdvSIMDModImmType4(uint8_t Imm) {
- uint64_t EncVal = Imm;
- return (EncVal << 56) | (EncVal << 24);
-}
-
-// 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh
-static inline bool isAdvSIMDModImmType5(uint64_t Imm) {
- return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
- (((Imm & 0x00ff0000ULL) >> 16) == (Imm & 0x000000ffULL)) &&
- ((Imm & 0xff00ff00ff00ff00ULL) == 0);
-}
-
-static inline uint8_t encodeAdvSIMDModImmType5(uint64_t Imm) {
- return (Imm & 0xffULL);
-}
-
-static inline uint64_t decodeAdvSIMDModImmType5(uint8_t Imm) {
- uint64_t EncVal = Imm;
- return (EncVal << 48) | (EncVal << 32) | (EncVal << 16) | EncVal;
-}
-
-// abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00
-static inline bool isAdvSIMDModImmType6(uint64_t Imm) {
- return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
- (((Imm & 0xff000000ULL) >> 16) == (Imm & 0x0000ff00ULL)) &&
- ((Imm & 0x00ff00ff00ff00ffULL) == 0);
-}
-
-static inline uint8_t encodeAdvSIMDModImmType6(uint64_t Imm) {
- return (Imm & 0xff00ULL) >> 8;
-}
-
-static inline uint64_t decodeAdvSIMDModImmType6(uint8_t Imm) {
- uint64_t EncVal = Imm;
- return (EncVal << 56) | (EncVal << 40) | (EncVal << 24) | (EncVal << 8);
-}
-
-// 0x00 0x00 abcdefgh 0xFF 0x00 0x00 abcdefgh 0xFF
-static inline bool isAdvSIMDModImmType7(uint64_t Imm) {
- return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
- ((Imm & 0xffff00ffffff00ffULL) == 0x000000ff000000ffULL);
-}
-
-static inline uint8_t encodeAdvSIMDModImmType7(uint64_t Imm) {
- return (Imm & 0xff00ULL) >> 8;
-}
-
-static inline uint64_t decodeAdvSIMDModImmType7(uint8_t Imm) {
- uint64_t EncVal = Imm;
- return (EncVal << 40) | (EncVal << 8) | 0x000000ff000000ffULL;
-}
-
-// 0x00 abcdefgh 0xFF 0xFF 0x00 abcdefgh 0xFF 0xFF
-static inline bool isAdvSIMDModImmType8(uint64_t Imm) {
- return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
- ((Imm & 0xff00ffffff00ffffULL) == 0x0000ffff0000ffffULL);
-}
-
-static inline uint64_t decodeAdvSIMDModImmType8(uint8_t Imm) {
- uint64_t EncVal = Imm;
- return (EncVal << 48) | (EncVal << 16) | 0x0000ffff0000ffffULL;
-}
-
-static inline uint8_t encodeAdvSIMDModImmType8(uint64_t Imm) {
- return (Imm & 0x00ff0000ULL) >> 16;
-}
-
-// abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh
-static inline bool isAdvSIMDModImmType9(uint64_t Imm) {
- return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
- ((Imm >> 48) == (Imm & 0x0000ffffULL)) &&
- ((Imm >> 56) == (Imm & 0x000000ffULL));
-}
-
-static inline uint8_t encodeAdvSIMDModImmType9(uint64_t Imm) {
- return (Imm & 0xffULL);
-}
-
-static inline uint64_t decodeAdvSIMDModImmType9(uint8_t Imm) {
- uint64_t EncVal = Imm;
- EncVal |= (EncVal << 8);
- EncVal |= (EncVal << 16);
- EncVal |= (EncVal << 32);
- return EncVal;
-}
-
-// aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh
-// cmode: 1110, op: 1
-static inline bool isAdvSIMDModImmType10(uint64_t Imm) {
- uint64_t ByteA = Imm & 0xff00000000000000ULL;
- uint64_t ByteB = Imm & 0x00ff000000000000ULL;
- uint64_t ByteC = Imm & 0x0000ff0000000000ULL;
- uint64_t ByteD = Imm & 0x000000ff00000000ULL;
- uint64_t ByteE = Imm & 0x00000000ff000000ULL;
- uint64_t ByteF = Imm & 0x0000000000ff0000ULL;
- uint64_t ByteG = Imm & 0x000000000000ff00ULL;
- uint64_t ByteH = Imm & 0x00000000000000ffULL;
-
- return (ByteA == 0ULL || ByteA == 0xff00000000000000ULL) &&
- (ByteB == 0ULL || ByteB == 0x00ff000000000000ULL) &&
- (ByteC == 0ULL || ByteC == 0x0000ff0000000000ULL) &&
- (ByteD == 0ULL || ByteD == 0x000000ff00000000ULL) &&
- (ByteE == 0ULL || ByteE == 0x00000000ff000000ULL) &&
- (ByteF == 0ULL || ByteF == 0x0000000000ff0000ULL) &&
- (ByteG == 0ULL || ByteG == 0x000000000000ff00ULL) &&
- (ByteH == 0ULL || ByteH == 0x00000000000000ffULL);
-}
-
-static inline uint8_t encodeAdvSIMDModImmType10(uint64_t Imm) {
- uint8_t BitA = (Imm & 0xff00000000000000ULL) != 0;
- uint8_t BitB = (Imm & 0x00ff000000000000ULL) != 0;
- uint8_t BitC = (Imm & 0x0000ff0000000000ULL) != 0;
- uint8_t BitD = (Imm & 0x000000ff00000000ULL) != 0;
- uint8_t BitE = (Imm & 0x00000000ff000000ULL) != 0;
- uint8_t BitF = (Imm & 0x0000000000ff0000ULL) != 0;
- uint8_t BitG = (Imm & 0x000000000000ff00ULL) != 0;
- uint8_t BitH = (Imm & 0x00000000000000ffULL) != 0;
-
- uint8_t EncVal = BitA;
- EncVal <<= 1;
- EncVal |= BitB;
- EncVal <<= 1;
- EncVal |= BitC;
- EncVal <<= 1;
- EncVal |= BitD;
- EncVal <<= 1;
- EncVal |= BitE;
- EncVal <<= 1;
- EncVal |= BitF;
- EncVal <<= 1;
- EncVal |= BitG;
- EncVal <<= 1;
- EncVal |= BitH;
- return EncVal;
-}
-
-static inline uint64_t decodeAdvSIMDModImmType10(uint8_t Imm) {
- uint64_t EncVal = 0;
- if (Imm & 0x80) EncVal |= 0xff00000000000000ULL;
- if (Imm & 0x40) EncVal |= 0x00ff000000000000ULL;
- if (Imm & 0x20) EncVal |= 0x0000ff0000000000ULL;
- if (Imm & 0x10) EncVal |= 0x000000ff00000000ULL;
- if (Imm & 0x08) EncVal |= 0x00000000ff000000ULL;
- if (Imm & 0x04) EncVal |= 0x0000000000ff0000ULL;
- if (Imm & 0x02) EncVal |= 0x000000000000ff00ULL;
- if (Imm & 0x01) EncVal |= 0x00000000000000ffULL;
- return EncVal;
-}
-
-// aBbbbbbc defgh000 0x00 0x00 aBbbbbbc defgh000 0x00 0x00
-static inline bool isAdvSIMDModImmType11(uint64_t Imm) {
- uint64_t BString = (Imm & 0x7E000000ULL) >> 25;
- return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
- (BString == 0x1f || BString == 0x20) &&
- ((Imm & 0x0007ffff0007ffffULL) == 0);
-}
-
-static inline uint8_t encodeAdvSIMDModImmType11(uint64_t Imm) {
- uint8_t BitA = (Imm & 0x80000000ULL) != 0;
- uint8_t BitB = (Imm & 0x20000000ULL) != 0;
- uint8_t BitC = (Imm & 0x01000000ULL) != 0;
- uint8_t BitD = (Imm & 0x00800000ULL) != 0;
- uint8_t BitE = (Imm & 0x00400000ULL) != 0;
- uint8_t BitF = (Imm & 0x00200000ULL) != 0;
- uint8_t BitG = (Imm & 0x00100000ULL) != 0;
- uint8_t BitH = (Imm & 0x00080000ULL) != 0;
-
- uint8_t EncVal = BitA;
- EncVal <<= 1;
- EncVal |= BitB;
- EncVal <<= 1;
- EncVal |= BitC;
- EncVal <<= 1;
- EncVal |= BitD;
- EncVal <<= 1;
- EncVal |= BitE;
- EncVal <<= 1;
- EncVal |= BitF;
- EncVal <<= 1;
- EncVal |= BitG;
- EncVal <<= 1;
- EncVal |= BitH;
- return EncVal;
-}
-
-static inline uint64_t decodeAdvSIMDModImmType11(uint8_t Imm) {
- uint64_t EncVal = 0;
- if (Imm & 0x80) EncVal |= 0x80000000ULL;
- if (Imm & 0x40) EncVal |= 0x3e000000ULL;
- else EncVal |= 0x40000000ULL;
- if (Imm & 0x20) EncVal |= 0x01000000ULL;
- if (Imm & 0x10) EncVal |= 0x00800000ULL;
- if (Imm & 0x08) EncVal |= 0x00400000ULL;
- if (Imm & 0x04) EncVal |= 0x00200000ULL;
- if (Imm & 0x02) EncVal |= 0x00100000ULL;
- if (Imm & 0x01) EncVal |= 0x00080000ULL;
- return (EncVal << 32) | EncVal;
-}
-
-// aBbbbbbb bbcdefgh 0x00 0x00 0x00 0x00 0x00 0x00
-static inline bool isAdvSIMDModImmType12(uint64_t Imm) {
- uint64_t BString = (Imm & 0x7fc0000000000000ULL) >> 54;
- return ((BString == 0xff || BString == 0x100) &&
- ((Imm & 0x0000ffffffffffffULL) == 0));
-}
-
-static inline uint8_t encodeAdvSIMDModImmType12(uint64_t Imm) {
- uint8_t BitA = (Imm & 0x8000000000000000ULL) != 0;
- uint8_t BitB = (Imm & 0x0040000000000000ULL) != 0;
- uint8_t BitC = (Imm & 0x0020000000000000ULL) != 0;
- uint8_t BitD = (Imm & 0x0010000000000000ULL) != 0;
- uint8_t BitE = (Imm & 0x0008000000000000ULL) != 0;
- uint8_t BitF = (Imm & 0x0004000000000000ULL) != 0;
- uint8_t BitG = (Imm & 0x0002000000000000ULL) != 0;
- uint8_t BitH = (Imm & 0x0001000000000000ULL) != 0;
-
- uint8_t EncVal = BitA;
- EncVal <<= 1;
- EncVal |= BitB;
- EncVal <<= 1;
- EncVal |= BitC;
- EncVal <<= 1;
- EncVal |= BitD;
- EncVal <<= 1;
- EncVal |= BitE;
- EncVal <<= 1;
- EncVal |= BitF;
- EncVal <<= 1;
- EncVal |= BitG;
- EncVal <<= 1;
- EncVal |= BitH;
- return EncVal;
-}
-
-static inline uint64_t decodeAdvSIMDModImmType12(uint8_t Imm) {
- uint64_t EncVal = 0;
- if (Imm & 0x80) EncVal |= 0x8000000000000000ULL;
- if (Imm & 0x40) EncVal |= 0x3fc0000000000000ULL;
- else EncVal |= 0x4000000000000000ULL;
- if (Imm & 0x20) EncVal |= 0x0020000000000000ULL;
- if (Imm & 0x10) EncVal |= 0x0010000000000000ULL;
- if (Imm & 0x08) EncVal |= 0x0008000000000000ULL;
- if (Imm & 0x04) EncVal |= 0x0004000000000000ULL;
- if (Imm & 0x02) EncVal |= 0x0002000000000000ULL;
- if (Imm & 0x01) EncVal |= 0x0001000000000000ULL;
- return (EncVal << 32) | EncVal;
-}
-
-} // end namespace ARM64_AM
-
-} // end namespace llvm
-
-#endif
OpenPOWER on IntegriCloud