diff options
Diffstat (limited to 'llvm/lib/Target/ARM64/ARM64ISelLowering.cpp')
| -rw-r--r-- | llvm/lib/Target/ARM64/ARM64ISelLowering.cpp | 7895 |
1 files changed, 0 insertions, 7895 deletions
diff --git a/llvm/lib/Target/ARM64/ARM64ISelLowering.cpp b/llvm/lib/Target/ARM64/ARM64ISelLowering.cpp deleted file mode 100644 index c24b7deea94..00000000000 --- a/llvm/lib/Target/ARM64/ARM64ISelLowering.cpp +++ /dev/null @@ -1,7895 +0,0 @@ -//===-- ARM64ISelLowering.cpp - ARM64 DAG Lowering Implementation --------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements the ARM64TargetLowering class. -// -//===----------------------------------------------------------------------===// - -#include "ARM64ISelLowering.h" -#include "ARM64PerfectShuffle.h" -#include "ARM64Subtarget.h" -#include "ARM64CallingConv.h" -#include "ARM64MachineFunctionInfo.h" -#include "ARM64TargetMachine.h" -#include "ARM64TargetObjectFile.h" -#include "MCTargetDesc/ARM64AddressingModes.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/CodeGen/CallingConvLower.h" -#include "llvm/CodeGen/MachineFrameInfo.h" -#include "llvm/CodeGen/MachineInstrBuilder.h" -#include "llvm/CodeGen/MachineRegisterInfo.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/Type.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Target/TargetOptions.h" -using namespace llvm; - -#define DEBUG_TYPE "arm64-lower" - -STATISTIC(NumTailCalls, "Number of tail calls"); -STATISTIC(NumShiftInserts, "Number of vector shift inserts"); - -enum AlignMode { - StrictAlign, - NoStrictAlign -}; - -static cl::opt<AlignMode> -Align(cl::desc("Load/store alignment support"), - cl::Hidden, cl::init(NoStrictAlign), - cl::values( - clEnumValN(StrictAlign, "arm64-strict-align", - "Disallow all unaligned memory accesses"), - clEnumValN(NoStrictAlign, "arm64-no-strict-align", - "Allow unaligned memory accesses"), - clEnumValEnd)); - -// Place holder until extr generation is tested fully. -static cl::opt<bool> -EnableARM64ExtrGeneration("arm64-extr-generation", cl::Hidden, - cl::desc("Allow ARM64 (or (shift)(shift))->extract"), - cl::init(true)); - -static cl::opt<bool> -EnableARM64SlrGeneration("arm64-shift-insert-generation", cl::Hidden, - cl::desc("Allow ARM64 SLI/SRI formation"), - cl::init(false)); - -//===----------------------------------------------------------------------===// -// ARM64 Lowering public interface. -//===----------------------------------------------------------------------===// -static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) { - if (TM.getSubtarget<ARM64Subtarget>().isTargetDarwin()) - return new ARM64_MachoTargetObjectFile(); - - return new ARM64_ELFTargetObjectFile(); -} - -ARM64TargetLowering::ARM64TargetLowering(ARM64TargetMachine &TM) - : TargetLowering(TM, createTLOF(TM)) { - Subtarget = &TM.getSubtarget<ARM64Subtarget>(); - - // ARM64 doesn't have comparisons which set GPRs or setcc instructions, so - // we have to make something up. Arbitrarily, choose ZeroOrOne. - setBooleanContents(ZeroOrOneBooleanContent); - // When comparing vectors the result sets the different elements in the - // vector to all-one or all-zero. - setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); - - // Set up the register classes. - addRegisterClass(MVT::i32, &ARM64::GPR32allRegClass); - addRegisterClass(MVT::i64, &ARM64::GPR64allRegClass); - - if (Subtarget->hasFPARMv8()) { - addRegisterClass(MVT::f16, &ARM64::FPR16RegClass); - addRegisterClass(MVT::f32, &ARM64::FPR32RegClass); - addRegisterClass(MVT::f64, &ARM64::FPR64RegClass); - addRegisterClass(MVT::f128, &ARM64::FPR128RegClass); - } - - if (Subtarget->hasNEON()) { - addRegisterClass(MVT::v16i8, &ARM64::FPR8RegClass); - addRegisterClass(MVT::v8i16, &ARM64::FPR16RegClass); - // Someone set us up the NEON. - addDRTypeForNEON(MVT::v2f32); - addDRTypeForNEON(MVT::v8i8); - addDRTypeForNEON(MVT::v4i16); - addDRTypeForNEON(MVT::v2i32); - addDRTypeForNEON(MVT::v1i64); - addDRTypeForNEON(MVT::v1f64); - - addQRTypeForNEON(MVT::v4f32); - addQRTypeForNEON(MVT::v2f64); - addQRTypeForNEON(MVT::v16i8); - addQRTypeForNEON(MVT::v8i16); - addQRTypeForNEON(MVT::v4i32); - addQRTypeForNEON(MVT::v2i64); - } - - // Compute derived properties from the register classes - computeRegisterProperties(); - - // Provide all sorts of operation actions - setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); - setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); - setOperationAction(ISD::SETCC, MVT::i32, Custom); - setOperationAction(ISD::SETCC, MVT::i64, Custom); - setOperationAction(ISD::SETCC, MVT::f32, Custom); - setOperationAction(ISD::SETCC, MVT::f64, Custom); - setOperationAction(ISD::BRCOND, MVT::Other, Expand); - setOperationAction(ISD::BR_CC, MVT::i32, Custom); - setOperationAction(ISD::BR_CC, MVT::i64, Custom); - setOperationAction(ISD::BR_CC, MVT::f32, Custom); - setOperationAction(ISD::BR_CC, MVT::f64, Custom); - setOperationAction(ISD::SELECT, MVT::i32, Custom); - setOperationAction(ISD::SELECT, MVT::i64, Custom); - setOperationAction(ISD::SELECT, MVT::f32, Custom); - setOperationAction(ISD::SELECT, MVT::f64, Custom); - setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); - setOperationAction(ISD::SELECT_CC, MVT::i64, Custom); - setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); - setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); - setOperationAction(ISD::BR_JT, MVT::Other, Expand); - setOperationAction(ISD::JumpTable, MVT::i64, Custom); - - setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); - setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); - setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); - - setOperationAction(ISD::FREM, MVT::f32, Expand); - setOperationAction(ISD::FREM, MVT::f64, Expand); - setOperationAction(ISD::FREM, MVT::f80, Expand); - - // Custom lowering hooks are needed for XOR - // to fold it into CSINC/CSINV. - setOperationAction(ISD::XOR, MVT::i32, Custom); - setOperationAction(ISD::XOR, MVT::i64, Custom); - - // Virtually no operation on f128 is legal, but LLVM can't expand them when - // there's a valid register class, so we need custom operations in most cases. - setOperationAction(ISD::FABS, MVT::f128, Expand); - setOperationAction(ISD::FADD, MVT::f128, Custom); - setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); - setOperationAction(ISD::FCOS, MVT::f128, Expand); - setOperationAction(ISD::FDIV, MVT::f128, Custom); - setOperationAction(ISD::FMA, MVT::f128, Expand); - setOperationAction(ISD::FMUL, MVT::f128, Custom); - setOperationAction(ISD::FNEG, MVT::f128, Expand); - setOperationAction(ISD::FPOW, MVT::f128, Expand); - setOperationAction(ISD::FREM, MVT::f128, Expand); - setOperationAction(ISD::FRINT, MVT::f128, Expand); - setOperationAction(ISD::FSIN, MVT::f128, Expand); - setOperationAction(ISD::FSINCOS, MVT::f128, Expand); - setOperationAction(ISD::FSQRT, MVT::f128, Expand); - setOperationAction(ISD::FSUB, MVT::f128, Custom); - setOperationAction(ISD::FTRUNC, MVT::f128, Expand); - setOperationAction(ISD::SETCC, MVT::f128, Custom); - setOperationAction(ISD::BR_CC, MVT::f128, Custom); - setOperationAction(ISD::SELECT, MVT::f128, Custom); - setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); - setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom); - - // Lowering for many of the conversions is actually specified by the non-f128 - // type. The LowerXXX function will be trivial when f128 isn't involved. - setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); - setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); - setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom); - setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); - setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); - setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom); - setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); - setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); - setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom); - setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); - setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); - setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom); - setOperationAction(ISD::FP_ROUND, MVT::f32, Custom); - setOperationAction(ISD::FP_ROUND, MVT::f64, Custom); - - // Variable arguments. - setOperationAction(ISD::VASTART, MVT::Other, Custom); - setOperationAction(ISD::VAARG, MVT::Other, Custom); - setOperationAction(ISD::VACOPY, MVT::Other, Custom); - setOperationAction(ISD::VAEND, MVT::Other, Expand); - - // Variable-sized objects. - setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); - setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); - setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); - - // Exception handling. - // FIXME: These are guesses. Has this been defined yet? - setExceptionPointerRegister(ARM64::X0); - setExceptionSelectorRegister(ARM64::X1); - - // Constant pool entries - setOperationAction(ISD::ConstantPool, MVT::i64, Custom); - - // BlockAddress - setOperationAction(ISD::BlockAddress, MVT::i64, Custom); - - // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences. - setOperationAction(ISD::ADDC, MVT::i32, Custom); - setOperationAction(ISD::ADDE, MVT::i32, Custom); - setOperationAction(ISD::SUBC, MVT::i32, Custom); - setOperationAction(ISD::SUBE, MVT::i32, Custom); - setOperationAction(ISD::ADDC, MVT::i64, Custom); - setOperationAction(ISD::ADDE, MVT::i64, Custom); - setOperationAction(ISD::SUBC, MVT::i64, Custom); - setOperationAction(ISD::SUBE, MVT::i64, Custom); - - // ARM64 lacks both left-rotate and popcount instructions. - setOperationAction(ISD::ROTL, MVT::i32, Expand); - setOperationAction(ISD::ROTL, MVT::i64, Expand); - - // ARM64 doesn't have {U|S}MUL_LOHI. - setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); - setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); - - - // Expand the undefined-at-zero variants to cttz/ctlz to their defined-at-zero - // counterparts, which ARM64 supports directly. - setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); - setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); - setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); - setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); - - setOperationAction(ISD::CTPOP, MVT::i32, Custom); - setOperationAction(ISD::CTPOP, MVT::i64, Custom); - - setOperationAction(ISD::SDIVREM, MVT::i32, Expand); - setOperationAction(ISD::SDIVREM, MVT::i64, Expand); - setOperationAction(ISD::SREM, MVT::i32, Expand); - setOperationAction(ISD::SREM, MVT::i64, Expand); - setOperationAction(ISD::UDIVREM, MVT::i32, Expand); - setOperationAction(ISD::UDIVREM, MVT::i64, Expand); - setOperationAction(ISD::UREM, MVT::i32, Expand); - setOperationAction(ISD::UREM, MVT::i64, Expand); - - // Custom lower Add/Sub/Mul with overflow. - setOperationAction(ISD::SADDO, MVT::i32, Custom); - setOperationAction(ISD::SADDO, MVT::i64, Custom); - setOperationAction(ISD::UADDO, MVT::i32, Custom); - setOperationAction(ISD::UADDO, MVT::i64, Custom); - setOperationAction(ISD::SSUBO, MVT::i32, Custom); - setOperationAction(ISD::SSUBO, MVT::i64, Custom); - setOperationAction(ISD::USUBO, MVT::i32, Custom); - setOperationAction(ISD::USUBO, MVT::i64, Custom); - setOperationAction(ISD::SMULO, MVT::i32, Custom); - setOperationAction(ISD::SMULO, MVT::i64, Custom); - setOperationAction(ISD::UMULO, MVT::i32, Custom); - setOperationAction(ISD::UMULO, MVT::i64, Custom); - - setOperationAction(ISD::FSIN, MVT::f32, Expand); - setOperationAction(ISD::FSIN, MVT::f64, Expand); - setOperationAction(ISD::FCOS, MVT::f32, Expand); - setOperationAction(ISD::FCOS, MVT::f64, Expand); - setOperationAction(ISD::FPOW, MVT::f32, Expand); - setOperationAction(ISD::FPOW, MVT::f64, Expand); - setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); - setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); - - // ARM64 has implementations of a lot of rounding-like FP operations. - static MVT RoundingTypes[] = { MVT::f32, MVT::f64}; - for (unsigned I = 0; I < array_lengthof(RoundingTypes); ++I) { - MVT Ty = RoundingTypes[I]; - setOperationAction(ISD::FFLOOR, Ty, Legal); - setOperationAction(ISD::FNEARBYINT, Ty, Legal); - setOperationAction(ISD::FCEIL, Ty, Legal); - setOperationAction(ISD::FRINT, Ty, Legal); - setOperationAction(ISD::FTRUNC, Ty, Legal); - setOperationAction(ISD::FROUND, Ty, Legal); - } - - setOperationAction(ISD::PREFETCH, MVT::Other, Custom); - - if (Subtarget->isTargetMachO()) { - // For iOS, we don't want to the normal expansion of a libcall to - // sincos. We want to issue a libcall to __sincos_stret to avoid memory - // traffic. - setOperationAction(ISD::FSINCOS, MVT::f64, Custom); - setOperationAction(ISD::FSINCOS, MVT::f32, Custom); - } else { - setOperationAction(ISD::FSINCOS, MVT::f64, Expand); - setOperationAction(ISD::FSINCOS, MVT::f32, Expand); - } - - // ARM64 does not have floating-point extending loads, i1 sign-extending load, - // floating-point truncating stores, or v2i32->v2i16 truncating store. - setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand); - setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand); - setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand); - setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Expand); - setTruncStoreAction(MVT::f32, MVT::f16, Expand); - setTruncStoreAction(MVT::f64, MVT::f32, Expand); - setTruncStoreAction(MVT::f64, MVT::f16, Expand); - setTruncStoreAction(MVT::f128, MVT::f80, Expand); - setTruncStoreAction(MVT::f128, MVT::f64, Expand); - setTruncStoreAction(MVT::f128, MVT::f32, Expand); - setTruncStoreAction(MVT::f128, MVT::f16, Expand); - // Indexed loads and stores are supported. - for (unsigned im = (unsigned)ISD::PRE_INC; - im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { - setIndexedLoadAction(im, MVT::i8, Legal); - setIndexedLoadAction(im, MVT::i16, Legal); - setIndexedLoadAction(im, MVT::i32, Legal); - setIndexedLoadAction(im, MVT::i64, Legal); - setIndexedLoadAction(im, MVT::f64, Legal); - setIndexedLoadAction(im, MVT::f32, Legal); - setIndexedStoreAction(im, MVT::i8, Legal); - setIndexedStoreAction(im, MVT::i16, Legal); - setIndexedStoreAction(im, MVT::i32, Legal); - setIndexedStoreAction(im, MVT::i64, Legal); - setIndexedStoreAction(im, MVT::f64, Legal); - setIndexedStoreAction(im, MVT::f32, Legal); - } - - // Trap. - setOperationAction(ISD::TRAP, MVT::Other, Legal); - - // We combine OR nodes for bitfield operations. - setTargetDAGCombine(ISD::OR); - - // Vector add and sub nodes may conceal a high-half opportunity. - // Also, try to fold ADD into CSINC/CSINV.. - setTargetDAGCombine(ISD::ADD); - setTargetDAGCombine(ISD::SUB); - - setTargetDAGCombine(ISD::XOR); - setTargetDAGCombine(ISD::SINT_TO_FP); - setTargetDAGCombine(ISD::UINT_TO_FP); - - setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); - - setTargetDAGCombine(ISD::ANY_EXTEND); - setTargetDAGCombine(ISD::ZERO_EXTEND); - setTargetDAGCombine(ISD::SIGN_EXTEND); - setTargetDAGCombine(ISD::BITCAST); - setTargetDAGCombine(ISD::CONCAT_VECTORS); - setTargetDAGCombine(ISD::STORE); - - setTargetDAGCombine(ISD::MUL); - - setTargetDAGCombine(ISD::SELECT); - setTargetDAGCombine(ISD::VSELECT); - - setTargetDAGCombine(ISD::INTRINSIC_VOID); - setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); - setTargetDAGCombine(ISD::INSERT_VECTOR_ELT); - - MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 8; - MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 4; - MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 4; - - setStackPointerRegisterToSaveRestore(ARM64::SP); - - setSchedulingPreference(Sched::Hybrid); - - // Enable TBZ/TBNZ - MaskAndBranchFoldingIsLegal = true; - - setMinFunctionAlignment(2); - - RequireStrictAlign = (Align == StrictAlign); - - setHasExtractBitsInsn(true); - - if (Subtarget->hasNEON()) { - // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to - // silliness like this: - setOperationAction(ISD::FABS, MVT::v1f64, Expand); - setOperationAction(ISD::FADD, MVT::v1f64, Expand); - setOperationAction(ISD::FCEIL, MVT::v1f64, Expand); - setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand); - setOperationAction(ISD::FCOS, MVT::v1f64, Expand); - setOperationAction(ISD::FDIV, MVT::v1f64, Expand); - setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand); - setOperationAction(ISD::FMA, MVT::v1f64, Expand); - setOperationAction(ISD::FMUL, MVT::v1f64, Expand); - setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand); - setOperationAction(ISD::FNEG, MVT::v1f64, Expand); - setOperationAction(ISD::FPOW, MVT::v1f64, Expand); - setOperationAction(ISD::FREM, MVT::v1f64, Expand); - setOperationAction(ISD::FROUND, MVT::v1f64, Expand); - setOperationAction(ISD::FRINT, MVT::v1f64, Expand); - setOperationAction(ISD::FSIN, MVT::v1f64, Expand); - setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand); - setOperationAction(ISD::FSQRT, MVT::v1f64, Expand); - setOperationAction(ISD::FSUB, MVT::v1f64, Expand); - setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand); - setOperationAction(ISD::SETCC, MVT::v1f64, Expand); - setOperationAction(ISD::BR_CC, MVT::v1f64, Expand); - setOperationAction(ISD::SELECT, MVT::v1f64, Expand); - setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand); - setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand); - - setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand); - setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand); - setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand); - setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand); - setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand); - - setOperationAction(ISD::MUL, MVT::v1i64, Expand); - - // ARM64 doesn't have a direct vector ->f32 conversion instructions for - // elements smaller than i32, so promote the input to i32 first. - setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Promote); - setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Promote); - setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Promote); - setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Promote); - // Similarly, there is no direct i32 -> f64 vector conversion instruction. - setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom); - setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom); - setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom); - setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom); - - // ARM64 doesn't have MUL.2d: - setOperationAction(ISD::MUL, MVT::v2i64, Expand); - setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal); - setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); - // Likewise, narrowing and extending vector loads/stores aren't handled - // directly. - for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; - VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) { - - setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT, - Expand); - - setOperationAction(ISD::MULHS, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::MULHU, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand); - - setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand); - - for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; - InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT) - setTruncStoreAction((MVT::SimpleValueType)VT, - (MVT::SimpleValueType)InnerVT, Expand); - setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand); - setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand); - setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand); - } - - // ARM64 has implementations of a lot of rounding-like FP operations. - static MVT RoundingVecTypes[] = {MVT::v2f32, MVT::v4f32, MVT::v2f64 }; - for (unsigned I = 0; I < array_lengthof(RoundingVecTypes); ++I) { - MVT Ty = RoundingVecTypes[I]; - setOperationAction(ISD::FFLOOR, Ty, Legal); - setOperationAction(ISD::FNEARBYINT, Ty, Legal); - setOperationAction(ISD::FCEIL, Ty, Legal); - setOperationAction(ISD::FRINT, Ty, Legal); - setOperationAction(ISD::FTRUNC, Ty, Legal); - setOperationAction(ISD::FROUND, Ty, Legal); - } - } -} - -void ARM64TargetLowering::addTypeForNEON(EVT VT, EVT PromotedBitwiseVT) { - if (VT == MVT::v2f32) { - setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote); - AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i32); - - setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote); - AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i32); - } else if (VT == MVT::v2f64 || VT == MVT::v4f32) { - setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote); - AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i64); - - setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote); - AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i64); - } - - // Mark vector float intrinsics as expand. - if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) { - setOperationAction(ISD::FSIN, VT.getSimpleVT(), Expand); - setOperationAction(ISD::FCOS, VT.getSimpleVT(), Expand); - setOperationAction(ISD::FPOWI, VT.getSimpleVT(), Expand); - setOperationAction(ISD::FPOW, VT.getSimpleVT(), Expand); - setOperationAction(ISD::FLOG, VT.getSimpleVT(), Expand); - setOperationAction(ISD::FLOG2, VT.getSimpleVT(), Expand); - setOperationAction(ISD::FLOG10, VT.getSimpleVT(), Expand); - setOperationAction(ISD::FEXP, VT.getSimpleVT(), Expand); - setOperationAction(ISD::FEXP2, VT.getSimpleVT(), Expand); - } - - setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom); - setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom); - setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom); - setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom); - setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Custom); - setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom); - setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom); - setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom); - setOperationAction(ISD::AND, VT.getSimpleVT(), Custom); - setOperationAction(ISD::OR, VT.getSimpleVT(), Custom); - setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom); - setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal); - - setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand); - setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand); - setOperationAction(ISD::VSELECT, VT.getSimpleVT(), Expand); - setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand); - - // CNT supports only B element sizes. - if (VT != MVT::v8i8 && VT != MVT::v16i8) - setOperationAction(ISD::CTPOP, VT.getSimpleVT(), Expand); - - setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand); - setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand); - setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand); - setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand); - setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand); - - setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom); - setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom); - - if (Subtarget->isLittleEndian()) { - for (unsigned im = (unsigned)ISD::PRE_INC; - im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { - setIndexedLoadAction(im, VT.getSimpleVT(), Legal); - setIndexedStoreAction(im, VT.getSimpleVT(), Legal); - } - } -} - -void ARM64TargetLowering::addDRTypeForNEON(MVT VT) { - addRegisterClass(VT, &ARM64::FPR64RegClass); - addTypeForNEON(VT, MVT::v2i32); -} - -void ARM64TargetLowering::addQRTypeForNEON(MVT VT) { - addRegisterClass(VT, &ARM64::FPR128RegClass); - addTypeForNEON(VT, MVT::v4i32); -} - -EVT ARM64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const { - if (!VT.isVector()) - return MVT::i32; - return VT.changeVectorElementTypeToInteger(); -} - -/// computeKnownBitsForTargetNode - Determine which of the bits specified in -/// Mask are known to be either zero or one and return them in the -/// KnownZero/KnownOne bitsets. -void ARM64TargetLowering::computeKnownBitsForTargetNode( - const SDValue Op, APInt &KnownZero, APInt &KnownOne, - const SelectionDAG &DAG, unsigned Depth) const { - switch (Op.getOpcode()) { - default: - break; - case ARM64ISD::CSEL: { - APInt KnownZero2, KnownOne2; - DAG.computeKnownBits(Op->getOperand(0), KnownZero, KnownOne, Depth + 1); - DAG.computeKnownBits(Op->getOperand(1), KnownZero2, KnownOne2, Depth + 1); - KnownZero &= KnownZero2; - KnownOne &= KnownOne2; - break; - } - case ISD::INTRINSIC_W_CHAIN: { - ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1)); - Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue()); - switch (IntID) { - default: return; - case Intrinsic::arm64_ldaxr: - case Intrinsic::arm64_ldxr: { - unsigned BitWidth = KnownOne.getBitWidth(); - EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT(); - unsigned MemBits = VT.getScalarType().getSizeInBits(); - KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits); - return; - } - } - break; - } - case ISD::INTRINSIC_WO_CHAIN: - case ISD::INTRINSIC_VOID: { - unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); - switch (IntNo) { - default: - break; - case Intrinsic::arm64_neon_umaxv: - case Intrinsic::arm64_neon_uminv: { - // Figure out the datatype of the vector operand. The UMINV instruction - // will zero extend the result, so we can mark as known zero all the - // bits larger than the element datatype. 32-bit or larget doesn't need - // this as those are legal types and will be handled by isel directly. - MVT VT = Op.getOperand(1).getValueType().getSimpleVT(); - unsigned BitWidth = KnownZero.getBitWidth(); - if (VT == MVT::v8i8 || VT == MVT::v16i8) { - assert(BitWidth >= 8 && "Unexpected width!"); - APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8); - KnownZero |= Mask; - } else if (VT == MVT::v4i16 || VT == MVT::v8i16) { - assert(BitWidth >= 16 && "Unexpected width!"); - APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16); - KnownZero |= Mask; - } - break; - } break; - } - } - } -} - -MVT ARM64TargetLowering::getScalarShiftAmountTy(EVT LHSTy) const { - return MVT::i64; -} - -unsigned ARM64TargetLowering::getMaximalGlobalOffset() const { - // FIXME: On ARM64, this depends on the type. - // Basically, the addressable offsets are o to 4095 * Ty.getSizeInBytes(). - // and the offset has to be a multiple of the related size in bytes. - return 4095; -} - -FastISel * -ARM64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, - const TargetLibraryInfo *libInfo) const { - return ARM64::createFastISel(funcInfo, libInfo); -} - -const char *ARM64TargetLowering::getTargetNodeName(unsigned Opcode) const { - switch (Opcode) { - default: - return nullptr; - case ARM64ISD::CALL: return "ARM64ISD::CALL"; - case ARM64ISD::ADRP: return "ARM64ISD::ADRP"; - case ARM64ISD::ADDlow: return "ARM64ISD::ADDlow"; - case ARM64ISD::LOADgot: return "ARM64ISD::LOADgot"; - case ARM64ISD::RET_FLAG: return "ARM64ISD::RET_FLAG"; - case ARM64ISD::BRCOND: return "ARM64ISD::BRCOND"; - case ARM64ISD::CSEL: return "ARM64ISD::CSEL"; - case ARM64ISD::FCSEL: return "ARM64ISD::FCSEL"; - case ARM64ISD::CSINV: return "ARM64ISD::CSINV"; - case ARM64ISD::CSNEG: return "ARM64ISD::CSNEG"; - case ARM64ISD::CSINC: return "ARM64ISD::CSINC"; - case ARM64ISD::THREAD_POINTER: return "ARM64ISD::THREAD_POINTER"; - case ARM64ISD::TLSDESC_CALL: return "ARM64ISD::TLSDESC_CALL"; - case ARM64ISD::ADC: return "ARM64ISD::ADC"; - case ARM64ISD::SBC: return "ARM64ISD::SBC"; - case ARM64ISD::ADDS: return "ARM64ISD::ADDS"; - case ARM64ISD::SUBS: return "ARM64ISD::SUBS"; - case ARM64ISD::ADCS: return "ARM64ISD::ADCS"; - case ARM64ISD::SBCS: return "ARM64ISD::SBCS"; - case ARM64ISD::ANDS: return "ARM64ISD::ANDS"; - case ARM64ISD::FCMP: return "ARM64ISD::FCMP"; - case ARM64ISD::FMIN: return "ARM64ISD::FMIN"; - case ARM64ISD::FMAX: return "ARM64ISD::FMAX"; - case ARM64ISD::DUP: return "ARM64ISD::DUP"; - case ARM64ISD::DUPLANE8: return "ARM64ISD::DUPLANE8"; - case ARM64ISD::DUPLANE16: return "ARM64ISD::DUPLANE16"; - case ARM64ISD::DUPLANE32: return "ARM64ISD::DUPLANE32"; - case ARM64ISD::DUPLANE64: return "ARM64ISD::DUPLANE64"; - case ARM64ISD::MOVI: return "ARM64ISD::MOVI"; - case ARM64ISD::MOVIshift: return "ARM64ISD::MOVIshift"; - case ARM64ISD::MOVIedit: return "ARM64ISD::MOVIedit"; - case ARM64ISD::MOVImsl: return "ARM64ISD::MOVImsl"; - case ARM64ISD::FMOV: return "ARM64ISD::FMOV"; - case ARM64ISD::MVNIshift: return "ARM64ISD::MVNIshift"; - case ARM64ISD::MVNImsl: return "ARM64ISD::MVNImsl"; - case ARM64ISD::BICi: return "ARM64ISD::BICi"; - case ARM64ISD::ORRi: return "ARM64ISD::ORRi"; - case ARM64ISD::BSL: return "ARM64ISD::BSL"; - case ARM64ISD::NEG: return "ARM64ISD::NEG"; - case ARM64ISD::EXTR: return "ARM64ISD::EXTR"; - case ARM64ISD::ZIP1: return "ARM64ISD::ZIP1"; - case ARM64ISD::ZIP2: return "ARM64ISD::ZIP2"; - case ARM64ISD::UZP1: return "ARM64ISD::UZP1"; - case ARM64ISD::UZP2: return "ARM64ISD::UZP2"; - case ARM64ISD::TRN1: return "ARM64ISD::TRN1"; - case ARM64ISD::TRN2: return "ARM64ISD::TRN2"; - case ARM64ISD::REV16: return "ARM64ISD::REV16"; - case ARM64ISD::REV32: return "ARM64ISD::REV32"; - case ARM64ISD::REV64: return "ARM64ISD::REV64"; - case ARM64ISD::EXT: return "ARM64ISD::EXT"; - case ARM64ISD::VSHL: return "ARM64ISD::VSHL"; - case ARM64ISD::VLSHR: return "ARM64ISD::VLSHR"; - case ARM64ISD::VASHR: return "ARM64ISD::VASHR"; - case ARM64ISD::CMEQ: return "ARM64ISD::CMEQ"; - case ARM64ISD::CMGE: return "ARM64ISD::CMGE"; - case ARM64ISD::CMGT: return "ARM64ISD::CMGT"; - case ARM64ISD::CMHI: return "ARM64ISD::CMHI"; - case ARM64ISD::CMHS: return "ARM64ISD::CMHS"; - case ARM64ISD::FCMEQ: return "ARM64ISD::FCMEQ"; - case ARM64ISD::FCMGE: return "ARM64ISD::FCMGE"; - case ARM64ISD::FCMGT: return "ARM64ISD::FCMGT"; - case ARM64ISD::CMEQz: return "ARM64ISD::CMEQz"; - case ARM64ISD::CMGEz: return "ARM64ISD::CMGEz"; - case ARM64ISD::CMGTz: return "ARM64ISD::CMGTz"; - case ARM64ISD::CMLEz: return "ARM64ISD::CMLEz"; - case ARM64ISD::CMLTz: return "ARM64ISD::CMLTz"; - case ARM64ISD::FCMEQz: return "ARM64ISD::FCMEQz"; - case ARM64ISD::FCMGEz: return "ARM64ISD::FCMGEz"; - case ARM64ISD::FCMGTz: return "ARM64ISD::FCMGTz"; - case ARM64ISD::FCMLEz: return "ARM64ISD::FCMLEz"; - case ARM64ISD::FCMLTz: return "ARM64ISD::FCMLTz"; - case ARM64ISD::NOT: return "ARM64ISD::NOT"; - case ARM64ISD::BIT: return "ARM64ISD::BIT"; - case ARM64ISD::CBZ: return "ARM64ISD::CBZ"; - case ARM64ISD::CBNZ: return "ARM64ISD::CBNZ"; - case ARM64ISD::TBZ: return "ARM64ISD::TBZ"; - case ARM64ISD::TBNZ: return "ARM64ISD::TBNZ"; - case ARM64ISD::TC_RETURN: return "ARM64ISD::TC_RETURN"; - case ARM64ISD::SITOF: return "ARM64ISD::SITOF"; - case ARM64ISD::UITOF: return "ARM64ISD::UITOF"; - case ARM64ISD::SQSHL_I: return "ARM64ISD::SQSHL_I"; - case ARM64ISD::UQSHL_I: return "ARM64ISD::UQSHL_I"; - case ARM64ISD::SRSHR_I: return "ARM64ISD::SRSHR_I"; - case ARM64ISD::URSHR_I: return "ARM64ISD::URSHR_I"; - case ARM64ISD::SQSHLU_I: return "ARM64ISD::SQSHLU_I"; - case ARM64ISD::WrapperLarge: return "ARM64ISD::WrapperLarge"; - case ARM64ISD::LD2post: return "ARM64ISD::LD2post"; - case ARM64ISD::LD3post: return "ARM64ISD::LD3post"; - case ARM64ISD::LD4post: return "ARM64ISD::LD4post"; - case ARM64ISD::ST2post: return "ARM64ISD::ST2post"; - case ARM64ISD::ST3post: return "ARM64ISD::ST3post"; - case ARM64ISD::ST4post: return "ARM64ISD::ST4post"; - case ARM64ISD::LD1x2post: return "ARM64ISD::LD1x2post"; - case ARM64ISD::LD1x3post: return "ARM64ISD::LD1x3post"; - case ARM64ISD::LD1x4post: return "ARM64ISD::LD1x4post"; - case ARM64ISD::ST1x2post: return "ARM64ISD::ST1x2post"; - case ARM64ISD::ST1x3post: return "ARM64ISD::ST1x3post"; - case ARM64ISD::ST1x4post: return "ARM64ISD::ST1x4post"; - case ARM64ISD::LD1DUPpost: return "ARM64ISD::LD1DUPpost"; - case ARM64ISD::LD2DUPpost: return "ARM64ISD::LD2DUPpost"; - case ARM64ISD::LD3DUPpost: return "ARM64ISD::LD3DUPpost"; - case ARM64ISD::LD4DUPpost: return "ARM64ISD::LD4DUPpost"; - case ARM64ISD::LD1LANEpost: return "ARM64ISD::LD1LANEpost"; - case ARM64ISD::LD2LANEpost: return "ARM64ISD::LD2LANEpost"; - case ARM64ISD::LD3LANEpost: return "ARM64ISD::LD3LANEpost"; - case ARM64ISD::LD4LANEpost: return "ARM64ISD::LD4LANEpost"; - case ARM64ISD::ST2LANEpost: return "ARM64ISD::ST2LANEpost"; - case ARM64ISD::ST3LANEpost: return "ARM64ISD::ST3LANEpost"; - case ARM64ISD::ST4LANEpost: return "ARM64ISD::ST4LANEpost"; - } -} - -MachineBasicBlock * -ARM64TargetLowering::EmitF128CSEL(MachineInstr *MI, - MachineBasicBlock *MBB) const { - // We materialise the F128CSEL pseudo-instruction as some control flow and a - // phi node: - - // OrigBB: - // [... previous instrs leading to comparison ...] - // b.ne TrueBB - // b EndBB - // TrueBB: - // ; Fallthrough - // EndBB: - // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB] - - const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); - MachineFunction *MF = MBB->getParent(); - const BasicBlock *LLVM_BB = MBB->getBasicBlock(); - DebugLoc DL = MI->getDebugLoc(); - MachineFunction::iterator It = MBB; - ++It; - - unsigned DestReg = MI->getOperand(0).getReg(); - unsigned IfTrueReg = MI->getOperand(1).getReg(); - unsigned IfFalseReg = MI->getOperand(2).getReg(); - unsigned CondCode = MI->getOperand(3).getImm(); - bool NZCVKilled = MI->getOperand(4).isKill(); - - MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB); - MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB); - MF->insert(It, TrueBB); - MF->insert(It, EndBB); - - // Transfer rest of current basic-block to EndBB - EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)), - MBB->end()); - EndBB->transferSuccessorsAndUpdatePHIs(MBB); - - BuildMI(MBB, DL, TII->get(ARM64::Bcc)).addImm(CondCode).addMBB(TrueBB); - BuildMI(MBB, DL, TII->get(ARM64::B)).addMBB(EndBB); - MBB->addSuccessor(TrueBB); - MBB->addSuccessor(EndBB); - - // TrueBB falls through to the end. - TrueBB->addSuccessor(EndBB); - - if (!NZCVKilled) { - TrueBB->addLiveIn(ARM64::NZCV); - EndBB->addLiveIn(ARM64::NZCV); - } - - BuildMI(*EndBB, EndBB->begin(), DL, TII->get(ARM64::PHI), DestReg) - .addReg(IfTrueReg) - .addMBB(TrueBB) - .addReg(IfFalseReg) - .addMBB(MBB); - - MI->eraseFromParent(); - return EndBB; -} - -MachineBasicBlock * -ARM64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, - MachineBasicBlock *BB) const { - switch (MI->getOpcode()) { - default: -#ifndef NDEBUG - MI->dump(); -#endif - assert(0 && "Unexpected instruction for custom inserter!"); - break; - - case ARM64::F128CSEL: - return EmitF128CSEL(MI, BB); - - case TargetOpcode::STACKMAP: - case TargetOpcode::PATCHPOINT: - return emitPatchPoint(MI, BB); - } - llvm_unreachable("Unexpected instruction for custom inserter!"); -} - -//===----------------------------------------------------------------------===// -// ARM64 Lowering private implementation. -//===----------------------------------------------------------------------===// - -//===----------------------------------------------------------------------===// -// Lowering Code -//===----------------------------------------------------------------------===// - -/// changeIntCCToARM64CC - Convert a DAG integer condition code to an ARM64 CC -static ARM64CC::CondCode changeIntCCToARM64CC(ISD::CondCode CC) { - switch (CC) { - default: - llvm_unreachable("Unknown condition code!"); - case ISD::SETNE: - return ARM64CC::NE; - case ISD::SETEQ: - return ARM64CC::EQ; - case ISD::SETGT: - return ARM64CC::GT; - case ISD::SETGE: - return ARM64CC::GE; - case ISD::SETLT: - return ARM64CC::LT; - case ISD::SETLE: - return ARM64CC::LE; - case ISD::SETUGT: - return ARM64CC::HI; - case ISD::SETUGE: - return ARM64CC::HS; - case ISD::SETULT: - return ARM64CC::LO; - case ISD::SETULE: - return ARM64CC::LS; - } -} - -/// changeFPCCToARM64CC - Convert a DAG fp condition code to an ARM64 CC. -static void changeFPCCToARM64CC(ISD::CondCode CC, ARM64CC::CondCode &CondCode, - ARM64CC::CondCode &CondCode2) { - CondCode2 = ARM64CC::AL; - switch (CC) { - default: - llvm_unreachable("Unknown FP condition!"); - case ISD::SETEQ: - case ISD::SETOEQ: - CondCode = ARM64CC::EQ; - break; - case ISD::SETGT: - case ISD::SETOGT: - CondCode = ARM64CC::GT; - break; - case ISD::SETGE: - case ISD::SETOGE: - CondCode = ARM64CC::GE; - break; - case ISD::SETOLT: - CondCode = ARM64CC::MI; - break; - case ISD::SETOLE: - CondCode = ARM64CC::LS; - break; - case ISD::SETONE: - CondCode = ARM64CC::MI; - CondCode2 = ARM64CC::GT; - break; - case ISD::SETO: - CondCode = ARM64CC::VC; - break; - case ISD::SETUO: - CondCode = ARM64CC::VS; - break; - case ISD::SETUEQ: - CondCode = ARM64CC::EQ; - CondCode2 = ARM64CC::VS; - break; - case ISD::SETUGT: - CondCode = ARM64CC::HI; - break; - case ISD::SETUGE: - CondCode = ARM64CC::PL; - break; - case ISD::SETLT: - case ISD::SETULT: - CondCode = ARM64CC::LT; - break; - case ISD::SETLE: - case ISD::SETULE: - CondCode = ARM64CC::LE; - break; - case ISD::SETNE: - case ISD::SETUNE: - CondCode = ARM64CC::NE; - break; - } -} - -/// changeVectorFPCCToARM64CC - Convert a DAG fp condition code to an ARM64 CC -/// usable with the vector instructions. Fewer operations are available without -/// a real NZCV register, so we have to use less efficient combinations to get -/// the same effect. -static void changeVectorFPCCToARM64CC(ISD::CondCode CC, - ARM64CC::CondCode &CondCode, - ARM64CC::CondCode &CondCode2, - bool &Invert) { - Invert = false; - switch (CC) { - default: - // Mostly the scalar mappings work fine. - changeFPCCToARM64CC(CC, CondCode, CondCode2); - break; - case ISD::SETUO: - Invert = true; // Fallthrough - case ISD::SETO: - CondCode = ARM64CC::MI; - CondCode2 = ARM64CC::GE; - break; - case ISD::SETUEQ: - case ISD::SETULT: - case ISD::SETULE: - case ISD::SETUGT: - case ISD::SETUGE: - // All of the compare-mask comparisons are ordered, but we can switch - // between the two by a double inversion. E.g. ULE == !OGT. - Invert = true; - changeFPCCToARM64CC(getSetCCInverse(CC, false), CondCode, CondCode2); - break; - } -} - -static bool isLegalArithImmed(uint64_t C) { - // Matches ARM64DAGToDAGISel::SelectArithImmed(). - return (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0); -} - -static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC, - SDLoc dl, SelectionDAG &DAG) { - EVT VT = LHS.getValueType(); - - if (VT.isFloatingPoint()) - return DAG.getNode(ARM64ISD::FCMP, dl, VT, LHS, RHS); - - // The CMP instruction is just an alias for SUBS, and representing it as - // SUBS means that it's possible to get CSE with subtract operations. - // A later phase can perform the optimization of setting the destination - // register to WZR/XZR if it ends up being unused. - unsigned Opcode = ARM64ISD::SUBS; - - if (RHS.getOpcode() == ISD::SUB && isa<ConstantSDNode>(RHS.getOperand(0)) && - cast<ConstantSDNode>(RHS.getOperand(0))->getZExtValue() == 0 && - (CC == ISD::SETEQ || CC == ISD::SETNE)) { - // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on - // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags - // can be set differently by this operation. It comes down to whether - // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then - // everything is fine. If not then the optimization is wrong. Thus general - // comparisons are only valid if op2 != 0. - - // So, finally, the only LLVM-native comparisons that don't mention C and V - // are SETEQ and SETNE. They're the only ones we can safely use CMN for in - // the absence of information about op2. - Opcode = ARM64ISD::ADDS; - RHS = RHS.getOperand(1); - } else if (LHS.getOpcode() == ISD::AND && isa<ConstantSDNode>(RHS) && - cast<ConstantSDNode>(RHS)->getZExtValue() == 0 && - !isUnsignedIntSetCC(CC)) { - // Similarly, (CMP (and X, Y), 0) can be implemented with a TST - // (a.k.a. ANDS) except that the flags are only guaranteed to work for one - // of the signed comparisons. - Opcode = ARM64ISD::ANDS; - RHS = LHS.getOperand(1); - LHS = LHS.getOperand(0); - } - - return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS) - .getValue(1); -} - -static SDValue getARM64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, - SDValue &ARM64cc, SelectionDAG &DAG, SDLoc dl) { - if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) { - EVT VT = RHS.getValueType(); - uint64_t C = RHSC->getZExtValue(); - if (!isLegalArithImmed(C)) { - // Constant does not fit, try adjusting it by one? - switch (CC) { - default: - break; - case ISD::SETLT: - case ISD::SETGE: - if ((VT == MVT::i32 && C != 0x80000000 && - isLegalArithImmed((uint32_t)(C - 1))) || - (VT == MVT::i64 && C != 0x80000000ULL && - isLegalArithImmed(C - 1ULL))) { - CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT; - C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1; - RHS = DAG.getConstant(C, VT); - } - break; - case ISD::SETULT: - case ISD::SETUGE: - if ((VT == MVT::i32 && C != 0 && - isLegalArithImmed((uint32_t)(C - 1))) || - (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) { - CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT; - C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1; - RHS = DAG.getConstant(C, VT); - } - break; - case ISD::SETLE: - case ISD::SETGT: - if ((VT == MVT::i32 && C != 0x7fffffff && - isLegalArithImmed((uint32_t)(C + 1))) || - (VT == MVT::i64 && C != 0x7ffffffffffffffULL && - isLegalArithImmed(C + 1ULL))) { - CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE; - C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1; - RHS = DAG.getConstant(C, VT); - } - break; - case ISD::SETULE: - case ISD::SETUGT: - if ((VT == MVT::i32 && C != 0xffffffff && - isLegalArithImmed((uint32_t)(C + 1))) || - (VT == MVT::i64 && C != 0xfffffffffffffffULL && - isLegalArithImmed(C + 1ULL))) { - CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; - C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1; - RHS = DAG.getConstant(C, VT); - } - break; - } - } - } - - SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); - ARM64CC::CondCode ARM64CC = changeIntCCToARM64CC(CC); - ARM64cc = DAG.getConstant(ARM64CC, MVT::i32); - return Cmp; -} - -static std::pair<SDValue, SDValue> -getARM64XALUOOp(ARM64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) { - assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) && - "Unsupported value type"); - SDValue Value, Overflow; - SDLoc DL(Op); - SDValue LHS = Op.getOperand(0); - SDValue RHS = Op.getOperand(1); - unsigned Opc = 0; - switch (Op.getOpcode()) { - default: - llvm_unreachable("Unknown overflow instruction!"); - case ISD::SADDO: - Opc = ARM64ISD::ADDS; - CC = ARM64CC::VS; - break; - case ISD::UADDO: - Opc = ARM64ISD::ADDS; - CC = ARM64CC::HS; - break; - case ISD::SSUBO: - Opc = ARM64ISD::SUBS; - CC = ARM64CC::VS; - break; - case ISD::USUBO: - Opc = ARM64ISD::SUBS; - CC = ARM64CC::LO; - break; - // Multiply needs a little bit extra work. - case ISD::SMULO: - case ISD::UMULO: { - CC = ARM64CC::NE; - bool IsSigned = (Op.getOpcode() == ISD::SMULO) ? true : false; - if (Op.getValueType() == MVT::i32) { - unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; - // For a 32 bit multiply with overflow check we want the instruction - // selector to generate a widening multiply (SMADDL/UMADDL). For that we - // need to generate the following pattern: - // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b)) - LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS); - RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS); - SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS); - SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul, - DAG.getConstant(0, MVT::i64)); - // On ARM64 the upper 32 bits are always zero extended for a 32 bit - // operation. We need to clear out the upper 32 bits, because we used a - // widening multiply that wrote all 64 bits. In the end this should be a - // noop. - Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add); - if (IsSigned) { - // The signed overflow check requires more than just a simple check for - // any bit set in the upper 32 bits of the result. These bits could be - // just the sign bits of a negative number. To perform the overflow - // check we have to arithmetic shift right the 32nd bit of the result by - // 31 bits. Then we compare the result to the upper 32 bits. - SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add, - DAG.getConstant(32, MVT::i64)); - UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits); - SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value, - DAG.getConstant(31, MVT::i64)); - // It is important that LowerBits is last, otherwise the arithmetic - // shift will not be folded into the compare (SUBS). - SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32); - Overflow = DAG.getNode(ARM64ISD::SUBS, DL, VTs, UpperBits, LowerBits) - .getValue(1); - } else { - // The overflow check for unsigned multiply is easy. We only need to - // check if any of the upper 32 bits are set. This can be done with a - // CMP (shifted register). For that we need to generate the following - // pattern: - // (i64 ARM64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32) - SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, - DAG.getConstant(32, MVT::i64)); - SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); - Overflow = - DAG.getNode(ARM64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64), - UpperBits).getValue(1); - } - break; - } - assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type"); - // For the 64 bit multiply - Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS); - if (IsSigned) { - SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS); - SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value, - DAG.getConstant(63, MVT::i64)); - // It is important that LowerBits is last, otherwise the arithmetic - // shift will not be folded into the compare (SUBS). - SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); - Overflow = DAG.getNode(ARM64ISD::SUBS, DL, VTs, UpperBits, LowerBits) - .getValue(1); - } else { - SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS); - SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); - Overflow = - DAG.getNode(ARM64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64), - UpperBits).getValue(1); - } - break; - } - } // switch (...) - - if (Opc) { - SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32); - - // Emit the ARM64 operation with overflow check. - Value = DAG.getNode(Opc, DL, VTs, LHS, RHS); - Overflow = Value.getValue(1); - } - return std::make_pair(Value, Overflow); -} - -SDValue ARM64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG, - RTLIB::Libcall Call) const { - SmallVector<SDValue, 2> Ops; - for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) - Ops.push_back(Op.getOperand(i)); - - return makeLibCall(DAG, Call, MVT::f128, &Ops[0], Ops.size(), false, - SDLoc(Op)).first; -} - -static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) { - SDValue Sel = Op.getOperand(0); - SDValue Other = Op.getOperand(1); - - // If neither operand is a SELECT_CC, give up. - if (Sel.getOpcode() != ISD::SELECT_CC) - std::swap(Sel, Other); - if (Sel.getOpcode() != ISD::SELECT_CC) - return Op; - - // The folding we want to perform is: - // (xor x, (select_cc a, b, cc, 0, -1) ) - // --> - // (csel x, (xor x, -1), cc ...) - // - // The latter will get matched to a CSINV instruction. - - ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get(); - SDValue LHS = Sel.getOperand(0); - SDValue RHS = Sel.getOperand(1); - SDValue TVal = Sel.getOperand(2); - SDValue FVal = Sel.getOperand(3); - SDLoc dl(Sel); - - // FIXME: This could be generalized to non-integer comparisons. - if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64) - return Op; - - ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal); - ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal); - - // The the values aren't constants, this isn't the pattern we're looking for. - if (!CFVal || !CTVal) - return Op; - - // We can commute the SELECT_CC by inverting the condition. This - // might be needed to make this fit into a CSINV pattern. - if (CTVal->isAllOnesValue() && CFVal->isNullValue()) { - std::swap(TVal, FVal); - std::swap(CTVal, CFVal); - CC = ISD::getSetCCInverse(CC, true); - } - - // If the constants line up, perform the transform! - if (CTVal->isNullValue() && CFVal->isAllOnesValue()) { - SDValue CCVal; - SDValue Cmp = getARM64Cmp(LHS, RHS, CC, CCVal, DAG, dl); - - FVal = Other; - TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other, - DAG.getConstant(-1ULL, Other.getValueType())); - - return DAG.getNode(ARM64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal, - CCVal, Cmp); - } - - return Op; -} - -static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { - EVT VT = Op.getValueType(); - - // Let legalize expand this if it isn't a legal type yet. - if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) - return SDValue(); - - SDVTList VTs = DAG.getVTList(VT, MVT::i32); - - unsigned Opc; - bool ExtraOp = false; - switch (Op.getOpcode()) { - default: - assert(0 && "Invalid code"); - case ISD::ADDC: - Opc = ARM64ISD::ADDS; - break; - case ISD::SUBC: - Opc = ARM64ISD::SUBS; - break; - case ISD::ADDE: - Opc = ARM64ISD::ADCS; - ExtraOp = true; - break; - case ISD::SUBE: - Opc = ARM64ISD::SBCS; - ExtraOp = true; - break; - } - - if (!ExtraOp) - return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1)); - return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1), - Op.getOperand(2)); -} - -static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) { - // Let legalize expand this if it isn't a legal type yet. - if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType())) - return SDValue(); - - ARM64CC::CondCode CC; - // The actual operation that sets the overflow or carry flag. - SDValue Value, Overflow; - std::tie(Value, Overflow) = getARM64XALUOOp(CC, Op, DAG); - - // We use 0 and 1 as false and true values. - SDValue TVal = DAG.getConstant(1, MVT::i32); - SDValue FVal = DAG.getConstant(0, MVT::i32); - - // We use an inverted condition, because the conditional select is inverted - // too. This will allow it to be selected to a single instruction: - // CSINC Wd, WZR, WZR, invert(cond). - SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), MVT::i32); - Overflow = DAG.getNode(ARM64ISD::CSEL, SDLoc(Op), MVT::i32, FVal, TVal, CCVal, - Overflow); - - SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); - return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), VTs, Value, Overflow); -} - -// Prefetch operands are: -// 1: Address to prefetch -// 2: bool isWrite -// 3: int locality (0 = no locality ... 3 = extreme locality) -// 4: bool isDataCache -static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) { - SDLoc DL(Op); - unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); - unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); - // The data thing is not used. - // unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); - - bool IsStream = !Locality; - // When the locality number is set - if (Locality) { - // The front-end should have filtered out the out-of-range values - assert(Locality <= 3 && "Prefetch locality out-of-range"); - // The locality degree is the opposite of the cache speed. - // Put the number the other way around. - // The encoding starts at 0 for level 1 - Locality = 3 - Locality; - } - - // built the mask value encoding the expected behavior. - unsigned PrfOp = (IsWrite << 4) | // Load/Store bit - (Locality << 1) | // Cache level bits - (unsigned)IsStream; // Stream bit - return DAG.getNode(ARM64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0), - DAG.getConstant(PrfOp, MVT::i32), Op.getOperand(1)); -} - -SDValue ARM64TargetLowering::LowerFP_EXTEND(SDValue Op, - SelectionDAG &DAG) const { - assert(Op.getValueType() == MVT::f128 && "Unexpected lowering"); - - RTLIB::Libcall LC; - LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType()); - - return LowerF128Call(Op, DAG, LC); -} - -SDValue ARM64TargetLowering::LowerFP_ROUND(SDValue Op, - SelectionDAG &DAG) const { - if (Op.getOperand(0).getValueType() != MVT::f128) { - // It's legal except when f128 is involved - return Op; - } - - RTLIB::Libcall LC; - LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType()); - - // FP_ROUND node has a second operand indicating whether it is known to be - // precise. That doesn't take part in the LibCall so we can't directly use - // LowerF128Call. - SDValue SrcVal = Op.getOperand(0); - return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1, - /*isSigned*/ false, SDLoc(Op)).first; -} - -static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) { - // Warning: We maintain cost tables in ARM64TargetTransformInfo.cpp. - // Any additional optimization in this function should be recorded - // in the cost tables. - EVT InVT = Op.getOperand(0).getValueType(); - EVT VT = Op.getValueType(); - - // FP_TO_XINT conversion from the same type are legal. - if (VT.getSizeInBits() == InVT.getSizeInBits()) - return Op; - - if (InVT == MVT::v2f64 || InVT == MVT::v4f32) { - SDLoc dl(Op); - SDValue Cv = - DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(), - Op.getOperand(0)); - return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv); - } else if (InVT == MVT::v2f32) { - SDLoc dl(Op); - SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v2f64, Op.getOperand(0)); - return DAG.getNode(Op.getOpcode(), dl, VT, Ext); - } - - // Type changing conversions are illegal. - return SDValue(); -} - -SDValue ARM64TargetLowering::LowerFP_TO_INT(SDValue Op, - SelectionDAG &DAG) const { - if (Op.getOperand(0).getValueType().isVector()) - return LowerVectorFP_TO_INT(Op, DAG); - - if (Op.getOperand(0).getValueType() != MVT::f128) { - // It's legal except when f128 is involved - return Op; - } - - RTLIB::Libcall LC; - if (Op.getOpcode() == ISD::FP_TO_SINT) - LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType()); - else - LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType()); - - SmallVector<SDValue, 2> Ops; - for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) - Ops.push_back(Op.getOperand(i)); - - return makeLibCall(DAG, LC, Op.getValueType(), &Ops[0], Ops.size(), false, - SDLoc(Op)).first; -} - -static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) { - // Warning: We maintain cost tables in ARM64TargetTransformInfo.cpp. - // Any additional optimization in this function should be recorded - // in the cost tables. - EVT VT = Op.getValueType(); - SDLoc dl(Op); - SDValue In = Op.getOperand(0); - EVT InVT = In.getValueType(); - - // v2i32 to v2f32 is legal. - if (VT == MVT::v2f32 && InVT == MVT::v2i32) - return Op; - - // This function only handles v2f64 outputs. - if (VT == MVT::v2f64) { - // Extend the input argument to a v2i64 that we can feed into the - // floating point conversion. Zero or sign extend based on whether - // we're doing a signed or unsigned float conversion. - unsigned Opc = - Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; - assert(Op.getNumOperands() == 1 && "FP conversions take one argument"); - SDValue Promoted = DAG.getNode(Opc, dl, MVT::v2i64, Op.getOperand(0)); - return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Promoted); - } - - // Scalarize v2i64 to v2f32 conversions. - std::vector<SDValue> BuildVectorOps; - for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { - SDValue Sclr = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, In, - DAG.getConstant(i, MVT::i64)); - Sclr = DAG.getNode(Op->getOpcode(), dl, MVT::f32, Sclr); - BuildVectorOps.push_back(Sclr); - } - - return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, BuildVectorOps); -} - -SDValue ARM64TargetLowering::LowerINT_TO_FP(SDValue Op, - SelectionDAG &DAG) const { - if (Op.getValueType().isVector()) - return LowerVectorINT_TO_FP(Op, DAG); - - // i128 conversions are libcalls. - if (Op.getOperand(0).getValueType() == MVT::i128) - return SDValue(); - - // Other conversions are legal, unless it's to the completely software-based - // fp128. - if (Op.getValueType() != MVT::f128) - return Op; - - RTLIB::Libcall LC; - if (Op.getOpcode() == ISD::SINT_TO_FP) - LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType()); - else - LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType()); - - return LowerF128Call(Op, DAG, LC); -} - -SDValue ARM64TargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const { - // For iOS, we want to call an alternative entry point: __sincos_stret, - // which returns the values in two S / D registers. - SDLoc dl(Op); - SDValue Arg = Op.getOperand(0); - EVT ArgVT = Arg.getValueType(); - Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); - - ArgListTy Args; - ArgListEntry Entry; - - Entry.Node = Arg; - Entry.Ty = ArgTy; - Entry.isSExt = false; - Entry.isZExt = false; - Args.push_back(Entry); - - const char *LibcallName = - (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret"; - SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy()); - - StructType *RetTy = StructType::get(ArgTy, ArgTy, NULL); - TargetLowering::CallLoweringInfo CLI(DAG); - CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) - .setCallee(CallingConv::Fast, RetTy, Callee, &Args, 0); - - std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); - return CallResult.first; -} - -SDValue ARM64TargetLowering::LowerOperation(SDValue Op, - SelectionDAG &DAG) const { - switch (Op.getOpcode()) { - default: - llvm_unreachable("unimplemented operand"); - return SDValue(); - case ISD::GlobalAddress: - return LowerGlobalAddress(Op, DAG); - case ISD::GlobalTLSAddress: - return LowerGlobalTLSAddress(Op, DAG); - case ISD::SETCC: - return LowerSETCC(Op, DAG); - case ISD::BR_CC: - return LowerBR_CC(Op, DAG); - case ISD::SELECT: - return LowerSELECT(Op, DAG); - case ISD::SELECT_CC: - return LowerSELECT_CC(Op, DAG); - case ISD::JumpTable: - return LowerJumpTable(Op, DAG); - case ISD::ConstantPool: - return LowerConstantPool(Op, DAG); - case ISD::BlockAddress: - return LowerBlockAddress(Op, DAG); - case ISD::VASTART: - return LowerVASTART(Op, DAG); - case ISD::VACOPY: - return LowerVACOPY(Op, DAG); - case ISD::VAARG: - return LowerVAARG(Op, DAG); - case ISD::ADDC: - case ISD::ADDE: - case ISD::SUBC: - case ISD::SUBE: - return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); - case ISD::SADDO: - case ISD::UADDO: - case ISD::SSUBO: - case ISD::USUBO: - case ISD::SMULO: - case ISD::UMULO: - return LowerXALUO(Op, DAG); - case ISD::FADD: - return LowerF128Call(Op, DAG, RTLIB::ADD_F128); - case ISD::FSUB: - return LowerF128Call(Op, DAG, RTLIB::SUB_F128); - case ISD::FMUL: - return LowerF128Call(Op, DAG, RTLIB::MUL_F128); - case ISD::FDIV: - return LowerF128Call(Op, DAG, RTLIB::DIV_F128); - case ISD::FP_ROUND: - return LowerFP_ROUND(Op, DAG); - case ISD::FP_EXTEND: - return LowerFP_EXTEND(Op, DAG); - case ISD::FRAMEADDR: - return LowerFRAMEADDR(Op, DAG); - case ISD::RETURNADDR: - return LowerRETURNADDR(Op, DAG); - case ISD::INSERT_VECTOR_ELT: - return LowerINSERT_VECTOR_ELT(Op, DAG); - case ISD::EXTRACT_VECTOR_ELT: - return LowerEXTRACT_VECTOR_ELT(Op, DAG); - case ISD::BUILD_VECTOR: - return LowerBUILD_VECTOR(Op, DAG); - case ISD::VECTOR_SHUFFLE: - return LowerVECTOR_SHUFFLE(Op, DAG); - case ISD::EXTRACT_SUBVECTOR: - return LowerEXTRACT_SUBVECTOR(Op, DAG); - case ISD::SRA: - case ISD::SRL: - case ISD::SHL: - return LowerVectorSRA_SRL_SHL(Op, DAG); - case ISD::SHL_PARTS: - return LowerShiftLeftParts(Op, DAG); - case ISD::SRL_PARTS: - case ISD::SRA_PARTS: - return LowerShiftRightParts(Op, DAG); - case ISD::CTPOP: - return LowerCTPOP(Op, DAG); - case ISD::FCOPYSIGN: - return LowerFCOPYSIGN(Op, DAG); - case ISD::AND: - return LowerVectorAND(Op, DAG); - case ISD::OR: - return LowerVectorOR(Op, DAG); - case ISD::XOR: - return LowerXOR(Op, DAG); - case ISD::PREFETCH: - return LowerPREFETCH(Op, DAG); - case ISD::SINT_TO_FP: - case ISD::UINT_TO_FP: - return LowerINT_TO_FP(Op, DAG); - case ISD::FP_TO_SINT: - case ISD::FP_TO_UINT: - return LowerFP_TO_INT(Op, DAG); - case ISD::FSINCOS: - return LowerFSINCOS(Op, DAG); - } -} - -/// getFunctionAlignment - Return the Log2 alignment of this function. -unsigned ARM64TargetLowering::getFunctionAlignment(const Function *F) const { - return 2; -} - -//===----------------------------------------------------------------------===// -// Calling Convention Implementation -//===----------------------------------------------------------------------===// - -#include "ARM64GenCallingConv.inc" - -/// Selects the correct CCAssignFn for a the given CallingConvention -/// value. -CCAssignFn *ARM64TargetLowering::CCAssignFnForCall(CallingConv::ID CC, - bool IsVarArg) const { - switch (CC) { - default: - llvm_unreachable("Unsupported calling convention."); - case CallingConv::WebKit_JS: - return CC_ARM64_WebKit_JS; - case CallingConv::C: - case CallingConv::Fast: - if (!Subtarget->isTargetDarwin()) - return CC_ARM64_AAPCS; - return IsVarArg ? CC_ARM64_DarwinPCS_VarArg : CC_ARM64_DarwinPCS; - } -} - -SDValue ARM64TargetLowering::LowerFormalArguments( - SDValue Chain, CallingConv::ID CallConv, bool isVarArg, - const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG, - SmallVectorImpl<SDValue> &InVals) const { - MachineFunction &MF = DAG.getMachineFunction(); - MachineFrameInfo *MFI = MF.getFrameInfo(); - - // Assign locations to all of the incoming arguments. - SmallVector<CCValAssign, 16> ArgLocs; - CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), - getTargetMachine(), ArgLocs, *DAG.getContext()); - - // At this point, Ins[].VT may already be promoted to i32. To correctly - // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and - // i8 to CC_ARM64_AAPCS with i32 being ValVT and i8 being LocVT. - // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here - // we use a special version of AnalyzeFormalArguments to pass in ValVT and - // LocVT. - unsigned NumArgs = Ins.size(); - Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin(); - unsigned CurArgIdx = 0; - for (unsigned i = 0; i != NumArgs; ++i) { - MVT ValVT = Ins[i].VT; - std::advance(CurOrigArg, Ins[i].OrigArgIndex - CurArgIdx); - CurArgIdx = Ins[i].OrigArgIndex; - - // Get type of the original argument. - EVT ActualVT = getValueType(CurOrigArg->getType(), /*AllowUnknown*/ true); - MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other; - // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16. - MVT LocVT = ValVT; - if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8) - LocVT = MVT::i8; - else if (ActualMVT == MVT::i16) - LocVT = MVT::i16; - - CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false); - bool Res = - AssignFn(i, ValVT, LocVT, CCValAssign::Full, Ins[i].Flags, CCInfo); - assert(!Res && "Call operand has unhandled type"); - (void)Res; - } - assert(ArgLocs.size() == Ins.size()); - SmallVector<SDValue, 16> ArgValues; - for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { - CCValAssign &VA = ArgLocs[i]; - - if (Ins[i].Flags.isByVal()) { - // Byval is used for HFAs in the PCS, but the system should work in a - // non-compliant manner for larger structs. - EVT PtrTy = getPointerTy(); - int Size = Ins[i].Flags.getByValSize(); - unsigned NumRegs = (Size + 7) / 8; - - // FIXME: This works on big-endian for composite byvals, which are the common - // case. It should also work for fundamental types too. - unsigned FrameIdx = - MFI->CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false); - SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy); - InVals.push_back(FrameIdxN); - - continue; - } if (VA.isRegLoc()) { - // Arguments stored in registers. - EVT RegVT = VA.getLocVT(); - - SDValue ArgValue; - const TargetRegisterClass *RC; - - if (RegVT == MVT::i32) - RC = &ARM64::GPR32RegClass; - else if (RegVT == MVT::i64) - RC = &ARM64::GPR64RegClass; - else if (RegVT == MVT::f32) - RC = &ARM64::FPR32RegClass; - else if (RegVT == MVT::f64 || RegVT.is64BitVector()) - RC = &ARM64::FPR64RegClass; - else if (RegVT == MVT::f128 || RegVT.is128BitVector()) - RC = &ARM64::FPR128RegClass; - else - llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering"); - - // Transform the arguments in physical registers into virtual ones. - unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); - ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT); - - // If this is an 8, 16 or 32-bit value, it is really passed promoted - // to 64 bits. Insert an assert[sz]ext to capture this, then - // truncate to the right size. - switch (VA.getLocInfo()) { - default: - llvm_unreachable("Unknown loc info!"); - case CCValAssign::Full: - break; - case CCValAssign::BCvt: - ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue); - break; - case CCValAssign::SExt: - ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue, - DAG.getValueType(VA.getValVT())); - ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue); - break; - case CCValAssign::ZExt: - ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue, - DAG.getValueType(VA.getValVT())); - ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue); - break; - } - - InVals.push_back(ArgValue); - - } else { // VA.isRegLoc() - assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem"); - unsigned ArgOffset = VA.getLocMemOffset(); - unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8; - - uint32_t BEAlign = 0; - if (ArgSize < 8 && !Subtarget->isLittleEndian()) - BEAlign = 8 - ArgSize; - - int FI = MFI->CreateFixedObject(ArgSize, ArgOffset + BEAlign, true); - - // Create load nodes to retrieve arguments from the stack. - SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); - SDValue ArgValue; - - // If the loc type and val type are not the same, create an anyext load. - if (VA.getLocVT().getSizeInBits() != VA.getValVT().getSizeInBits()) { - // We should only get here if this is a pure integer. - assert(!VA.getValVT().isVector() && VA.getValVT().isInteger() && - "Only integer extension supported!"); - ArgValue = DAG.getExtLoad(ISD::EXTLOAD, DL, VA.getValVT(), Chain, FIN, - MachinePointerInfo::getFixedStack(FI), - VA.getLocVT(), - false, false, false, 0); - } else { - ArgValue = DAG.getLoad(VA.getValVT(), DL, Chain, FIN, - MachinePointerInfo::getFixedStack(FI), false, - false, false, 0); - } - - InVals.push_back(ArgValue); - } - } - - // varargs - if (isVarArg) { - if (!Subtarget->isTargetDarwin()) { - // The AAPCS variadic function ABI is identical to the non-variadic - // one. As a result there may be more arguments in registers and we should - // save them for future reference. - saveVarArgRegisters(CCInfo, DAG, DL, Chain); - } - - ARM64FunctionInfo *AFI = MF.getInfo<ARM64FunctionInfo>(); - // This will point to the next argument passed via stack. - unsigned StackOffset = CCInfo.getNextStackOffset(); - // We currently pass all varargs at 8-byte alignment. - StackOffset = ((StackOffset + 7) & ~7); - AFI->setVarArgsStackIndex(MFI->CreateFixedObject(4, StackOffset, true)); - } - - ARM64FunctionInfo *FuncInfo = MF.getInfo<ARM64FunctionInfo>(); - unsigned StackArgSize = CCInfo.getNextStackOffset(); - bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; - if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) { - // This is a non-standard ABI so by fiat I say we're allowed to make full - // use of the stack area to be popped, which must be aligned to 16 bytes in - // any case: - StackArgSize = RoundUpToAlignment(StackArgSize, 16); - - // If we're expected to restore the stack (e.g. fastcc) then we'll be adding - // a multiple of 16. - FuncInfo->setArgumentStackToRestore(StackArgSize); - - // This realignment carries over to the available bytes below. Our own - // callers will guarantee the space is free by giving an aligned value to - // CALLSEQ_START. - } - // Even if we're not expected to free up the space, it's useful to know how - // much is there while considering tail calls (because we can reuse it). - FuncInfo->setBytesInStackArgArea(StackArgSize); - - return Chain; -} - -void ARM64TargetLowering::saveVarArgRegisters(CCState &CCInfo, - SelectionDAG &DAG, SDLoc DL, - SDValue &Chain) const { - MachineFunction &MF = DAG.getMachineFunction(); - MachineFrameInfo *MFI = MF.getFrameInfo(); - ARM64FunctionInfo *FuncInfo = MF.getInfo<ARM64FunctionInfo>(); - - SmallVector<SDValue, 8> MemOps; - - static const MCPhysReg GPRArgRegs[] = { ARM64::X0, ARM64::X1, ARM64::X2, - ARM64::X3, ARM64::X4, ARM64::X5, - ARM64::X6, ARM64::X7 }; - static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs); - unsigned FirstVariadicGPR = - CCInfo.getFirstUnallocated(GPRArgRegs, NumGPRArgRegs); - - unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR); - int GPRIdx = 0; - if (GPRSaveSize != 0) { - GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false); - - SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy()); - - for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) { - unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &ARM64::GPR64RegClass); - SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64); - SDValue Store = - DAG.getStore(Val.getValue(1), DL, Val, FIN, - MachinePointerInfo::getStack(i * 8), false, false, 0); - MemOps.push_back(Store); - FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN, - DAG.getConstant(8, getPointerTy())); - } - } - FuncInfo->setVarArgsGPRIndex(GPRIdx); - FuncInfo->setVarArgsGPRSize(GPRSaveSize); - - if (Subtarget->hasFPARMv8()) { - static const MCPhysReg FPRArgRegs[] = { ARM64::Q0, ARM64::Q1, ARM64::Q2, - ARM64::Q3, ARM64::Q4, ARM64::Q5, - ARM64::Q6, ARM64::Q7 }; - static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs); - unsigned FirstVariadicFPR = - CCInfo.getFirstUnallocated(FPRArgRegs, NumFPRArgRegs); - - unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR); - int FPRIdx = 0; - if (FPRSaveSize != 0) { - FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false); - - SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy()); - - for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) { - unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &ARM64::FPR128RegClass); - SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128); - - SDValue Store = - DAG.getStore(Val.getValue(1), DL, Val, FIN, - MachinePointerInfo::getStack(i * 16), false, false, 0); - MemOps.push_back(Store); - FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN, - DAG.getConstant(16, getPointerTy())); - } - } - FuncInfo->setVarArgsFPRIndex(FPRIdx); - FuncInfo->setVarArgsFPRSize(FPRSaveSize); - } - - if (!MemOps.empty()) { - Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); - } -} - -/// LowerCallResult - Lower the result values of a call into the -/// appropriate copies out of appropriate physical registers. -SDValue ARM64TargetLowering::LowerCallResult( - SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, - const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG, - SmallVectorImpl<SDValue> &InVals, bool isThisReturn, - SDValue ThisVal) const { - CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS ? RetCC_ARM64_WebKit_JS - : RetCC_ARM64_AAPCS; - // Assign locations to each value returned by this call. - SmallVector<CCValAssign, 16> RVLocs; - CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), - getTargetMachine(), RVLocs, *DAG.getContext()); - CCInfo.AnalyzeCallResult(Ins, RetCC); - - // Copy all of the result registers out of their specified physreg. - for (unsigned i = 0; i != RVLocs.size(); ++i) { - CCValAssign VA = RVLocs[i]; - - // Pass 'this' value directly from the argument to return value, to avoid - // reg unit interference - if (i == 0 && isThisReturn) { - assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 && - "unexpected return calling convention register assignment"); - InVals.push_back(ThisVal); - continue; - } - - SDValue Val = - DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag); - Chain = Val.getValue(1); - InFlag = Val.getValue(2); - - switch (VA.getLocInfo()) { - default: - llvm_unreachable("Unknown loc info!"); - case CCValAssign::Full: - break; - case CCValAssign::BCvt: - Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); - break; - } - - InVals.push_back(Val); - } - - return Chain; -} - -bool ARM64TargetLowering::isEligibleForTailCallOptimization( - SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, - bool isCalleeStructRet, bool isCallerStructRet, - const SmallVectorImpl<ISD::OutputArg> &Outs, - const SmallVectorImpl<SDValue> &OutVals, - const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { - // For CallingConv::C this function knows whether the ABI needs - // changing. That's not true for other conventions so they will have to opt in - // manually. - if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C) - return false; - - const MachineFunction &MF = DAG.getMachineFunction(); - const Function *CallerF = MF.getFunction(); - CallingConv::ID CallerCC = CallerF->getCallingConv(); - bool CCMatch = CallerCC == CalleeCC; - - // Byval parameters hand the function a pointer directly into the stack area - // we want to reuse during a tail call. Working around this *is* possible (see - // X86) but less efficient and uglier in LowerCall. - for (Function::const_arg_iterator i = CallerF->arg_begin(), - e = CallerF->arg_end(); - i != e; ++i) - if (i->hasByValAttr()) - return false; - - if (getTargetMachine().Options.GuaranteedTailCallOpt) { - if (IsTailCallConvention(CalleeCC) && CCMatch) - return true; - return false; - } - - // Now we search for cases where we can use a tail call without changing the - // ABI. Sibcall is used in some places (particularly gcc) to refer to this - // concept. - - // I want anyone implementing a new calling convention to think long and hard - // about this assert. - assert((!isVarArg || CalleeCC == CallingConv::C) && - "Unexpected variadic calling convention"); - - if (isVarArg && !Outs.empty()) { - // At least two cases here: if caller is fastcc then we can't have any - // memory arguments (we'd be expected to clean up the stack afterwards). If - // caller is C then we could potentially use its argument area. - - // FIXME: for now we take the most conservative of these in both cases: - // disallow all variadic memory operands. - SmallVector<CCValAssign, 16> ArgLocs; - CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), - getTargetMachine(), ArgLocs, *DAG.getContext()); - - CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true)); - for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) - if (!ArgLocs[i].isRegLoc()) - return false; - } - - // If the calling conventions do not match, then we'd better make sure the - // results are returned in the same way as what the caller expects. - if (!CCMatch) { - SmallVector<CCValAssign, 16> RVLocs1; - CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), - getTargetMachine(), RVLocs1, *DAG.getContext()); - CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForCall(CalleeCC, isVarArg)); - - SmallVector<CCValAssign, 16> RVLocs2; - CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), - getTargetMachine(), RVLocs2, *DAG.getContext()); - CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForCall(CallerCC, isVarArg)); - - if (RVLocs1.size() != RVLocs2.size()) - return false; - for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) { - if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc()) - return false; - if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo()) - return false; - if (RVLocs1[i].isRegLoc()) { - if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg()) - return false; - } else { - if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset()) - return false; - } - } - } - - // Nothing more to check if the callee is taking no arguments - if (Outs.empty()) - return true; - - SmallVector<CCValAssign, 16> ArgLocs; - CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), - getTargetMachine(), ArgLocs, *DAG.getContext()); - - CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg)); - - const ARM64FunctionInfo *FuncInfo = MF.getInfo<ARM64FunctionInfo>(); - - // If the stack arguments for this call would fit into our own save area then - // the call can be made tail. - return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea(); -} - -SDValue ARM64TargetLowering::addTokenForArgument(SDValue Chain, - SelectionDAG &DAG, - MachineFrameInfo *MFI, - int ClobberedFI) const { - SmallVector<SDValue, 8> ArgChains; - int64_t FirstByte = MFI->getObjectOffset(ClobberedFI); - int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1; - - // Include the original chain at the beginning of the list. When this is - // used by target LowerCall hooks, this helps legalize find the - // CALLSEQ_BEGIN node. - ArgChains.push_back(Chain); - - // Add a chain value for each stack argument corresponding - for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), - UE = DAG.getEntryNode().getNode()->use_end(); - U != UE; ++U) - if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) - if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) - if (FI->getIndex() < 0) { - int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex()); - int64_t InLastByte = InFirstByte; - InLastByte += MFI->getObjectSize(FI->getIndex()) - 1; - - if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || - (FirstByte <= InFirstByte && InFirstByte <= LastByte)) - ArgChains.push_back(SDValue(L, 1)); - } - - // Build a tokenfactor for all the chains. - return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); -} - -bool ARM64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC, - bool TailCallOpt) const { - return CallCC == CallingConv::Fast && TailCallOpt; -} - -bool ARM64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const { - return CallCC == CallingConv::Fast; -} - -/// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain, -/// and add input and output parameter nodes. -SDValue ARM64TargetLowering::LowerCall(CallLoweringInfo &CLI, - SmallVectorImpl<SDValue> &InVals) const { - SelectionDAG &DAG = CLI.DAG; - SDLoc &DL = CLI.DL; - SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; - SmallVector<SDValue, 32> &OutVals = CLI.OutVals; - SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; - SDValue Chain = CLI.Chain; - SDValue Callee = CLI.Callee; - bool &IsTailCall = CLI.IsTailCall; - CallingConv::ID CallConv = CLI.CallConv; - bool IsVarArg = CLI.IsVarArg; - - MachineFunction &MF = DAG.getMachineFunction(); - bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet(); - bool IsThisReturn = false; - - ARM64FunctionInfo *FuncInfo = MF.getInfo<ARM64FunctionInfo>(); - bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; - bool IsSibCall = false; - - if (IsTailCall) { - // Check if it's really possible to do a tail call. - IsTailCall = isEligibleForTailCallOptimization( - Callee, CallConv, IsVarArg, IsStructRet, - MF.getFunction()->hasStructRetAttr(), Outs, OutVals, Ins, DAG); - if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall()) - report_fatal_error("failed to perform tail call elimination on a call " - "site marked musttail"); - - // A sibling call is one where we're under the usual C ABI and not planning - // to change that but can still do a tail call: - if (!TailCallOpt && IsTailCall) - IsSibCall = true; - - if (IsTailCall) - ++NumTailCalls; - } - - // Analyze operands of the call, assigning locations to each operand. - SmallVector<CCValAssign, 16> ArgLocs; - CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), - getTargetMachine(), ArgLocs, *DAG.getContext()); - - if (IsVarArg) { - // Handle fixed and variable vector arguments differently. - // Variable vector arguments always go into memory. - unsigned NumArgs = Outs.size(); - - for (unsigned i = 0; i != NumArgs; ++i) { - MVT ArgVT = Outs[i].VT; - ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; - CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, - /*IsVarArg=*/ !Outs[i].IsFixed); - bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo); - assert(!Res && "Call operand has unhandled type"); - (void)Res; - } - } else { - // At this point, Outs[].VT may already be promoted to i32. To correctly - // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and - // i8 to CC_ARM64_AAPCS with i32 being ValVT and i8 being LocVT. - // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here - // we use a special version of AnalyzeCallOperands to pass in ValVT and - // LocVT. - unsigned NumArgs = Outs.size(); - for (unsigned i = 0; i != NumArgs; ++i) { - MVT ValVT = Outs[i].VT; - // Get type of the original argument. - EVT ActualVT = getValueType(CLI.getArgs()[Outs[i].OrigArgIndex].Ty, - /*AllowUnknown*/ true); - MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT; - ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; - // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16. - MVT LocVT = ValVT; - if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8) - LocVT = MVT::i8; - else if (ActualMVT == MVT::i16) - LocVT = MVT::i16; - - CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false); - bool Res = AssignFn(i, ValVT, LocVT, CCValAssign::Full, ArgFlags, CCInfo); - assert(!Res && "Call operand has unhandled type"); - (void)Res; - } - } - - // Get a count of how many bytes are to be pushed on the stack. - unsigned NumBytes = CCInfo.getNextStackOffset(); - - if (IsSibCall) { - // Since we're not changing the ABI to make this a tail call, the memory - // operands are already available in the caller's incoming argument space. - NumBytes = 0; - } - - // FPDiff is the byte offset of the call's argument area from the callee's. - // Stores to callee stack arguments will be placed in FixedStackSlots offset - // by this amount for a tail call. In a sibling call it must be 0 because the - // caller will deallocate the entire stack and the callee still expects its - // arguments to begin at SP+0. Completely unused for non-tail calls. - int FPDiff = 0; - - if (IsTailCall && !IsSibCall) { - unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea(); - - // Since callee will pop argument stack as a tail call, we must keep the - // popped size 16-byte aligned. - NumBytes = RoundUpToAlignment(NumBytes, 16); - - // FPDiff will be negative if this tail call requires more space than we - // would automatically have in our incoming argument space. Positive if we - // can actually shrink the stack. - FPDiff = NumReusableBytes - NumBytes; - - // The stack pointer must be 16-byte aligned at all times it's used for a - // memory operation, which in practice means at *all* times and in - // particular across call boundaries. Therefore our own arguments started at - // a 16-byte aligned SP and the delta applied for the tail call should - // satisfy the same constraint. - assert(FPDiff % 16 == 0 && "unaligned stack on tail call"); - } - - // Adjust the stack pointer for the new arguments... - // These operations are automatically eliminated by the prolog/epilog pass - if (!IsSibCall) - Chain = - DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), DL); - - SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, ARM64::SP, getPointerTy()); - - SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; - SmallVector<SDValue, 8> MemOpChains; - - // Walk the register/memloc assignments, inserting copies/loads. - for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e; - ++i, ++realArgIdx) { - CCValAssign &VA = ArgLocs[i]; - SDValue Arg = OutVals[realArgIdx]; - ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; - - // Promote the value if needed. - switch (VA.getLocInfo()) { - default: - llvm_unreachable("Unknown loc info!"); - case CCValAssign::Full: - break; - case CCValAssign::SExt: - Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); - break; - case CCValAssign::ZExt: - Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); - break; - case CCValAssign::AExt: - Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); - break; - case CCValAssign::BCvt: - Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); - break; - case CCValAssign::FPExt: - Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); - break; - } - - if (VA.isRegLoc()) { - if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i64) { - assert(VA.getLocVT() == MVT::i64 && - "unexpected calling convention register assignment"); - assert(!Ins.empty() && Ins[0].VT == MVT::i64 && - "unexpected use of 'returned'"); - IsThisReturn = true; - } - RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); - } else { - assert(VA.isMemLoc()); - - SDValue DstAddr; - MachinePointerInfo DstInfo; - - // FIXME: This works on big-endian for composite byvals, which are the - // common case. It should also work for fundamental types too. - uint32_t BEAlign = 0; - unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8 - : VA.getLocVT().getSizeInBits(); - OpSize = (OpSize + 7) / 8; - if (!Subtarget->isLittleEndian() && !Flags.isByVal()) { - if (OpSize < 8) - BEAlign = 8 - OpSize; - } - unsigned LocMemOffset = VA.getLocMemOffset(); - int32_t Offset = LocMemOffset + BEAlign; - SDValue PtrOff = DAG.getIntPtrConstant(Offset); - PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff); - - if (IsTailCall) { - Offset = Offset + FPDiff; - int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); - - DstAddr = DAG.getFrameIndex(FI, getPointerTy()); - DstInfo = MachinePointerInfo::getFixedStack(FI); - - // Make sure any stack arguments overlapping with where we're storing - // are loaded before this eventual operation. Otherwise they'll be - // clobbered. - Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI); - } else { - SDValue PtrOff = DAG.getIntPtrConstant(Offset); - - DstAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff); - DstInfo = MachinePointerInfo::getStack(LocMemOffset); - } - - if (Outs[i].Flags.isByVal()) { - SDValue SizeNode = - DAG.getConstant(Outs[i].Flags.getByValSize(), MVT::i64); - SDValue Cpy = DAG.getMemcpy( - Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(), - /*isVolatile = */ false, - /*alwaysInline = */ false, DstInfo, MachinePointerInfo()); - - MemOpChains.push_back(Cpy); - } else { - // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already - // promoted to a legal register type i32, we should truncate Arg back to - // i1/i8/i16. - if (Arg.getValueType().isSimple() && - Arg.getValueType().getSimpleVT() == MVT::i32 && - (VA.getLocVT() == MVT::i1 || VA.getLocVT() == MVT::i8 || - VA.getLocVT() == MVT::i16)) - Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getLocVT(), Arg); - - SDValue Store = - DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, false, false, 0); - MemOpChains.push_back(Store); - } - } - } - - if (!MemOpChains.empty()) - Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); - - // Build a sequence of copy-to-reg nodes chained together with token chain - // and flag operands which copy the outgoing args into the appropriate regs. - SDValue InFlag; - for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { - Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first, - RegsToPass[i].second, InFlag); - InFlag = Chain.getValue(1); - } - - // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every - // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol - // node so that legalize doesn't hack it. - if (getTargetMachine().getCodeModel() == CodeModel::Large && - Subtarget->isTargetMachO()) { - if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { - const GlobalValue *GV = G->getGlobal(); - bool InternalLinkage = GV->hasInternalLinkage(); - if (InternalLinkage) - Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0); - else { - Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, - ARM64II::MO_GOT); - Callee = DAG.getNode(ARM64ISD::LOADgot, DL, getPointerTy(), Callee); - } - } else if (ExternalSymbolSDNode *S = - dyn_cast<ExternalSymbolSDNode>(Callee)) { - const char *Sym = S->getSymbol(); - Callee = - DAG.getTargetExternalSymbol(Sym, getPointerTy(), ARM64II::MO_GOT); - Callee = DAG.getNode(ARM64ISD::LOADgot, DL, getPointerTy(), Callee); - } - } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { - const GlobalValue *GV = G->getGlobal(); - Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0); - } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { - const char *Sym = S->getSymbol(); - Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), 0); - } - - // We don't usually want to end the call-sequence here because we would tidy - // the frame up *after* the call, however in the ABI-changing tail-call case - // we've carefully laid out the parameters so that when sp is reset they'll be - // in the correct location. - if (IsTailCall && !IsSibCall) { - Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), - DAG.getIntPtrConstant(0, true), InFlag, DL); - InFlag = Chain.getValue(1); - } - - std::vector<SDValue> Ops; - Ops.push_back(Chain); - Ops.push_back(Callee); - - if (IsTailCall) { - // Each tail call may have to adjust the stack by a different amount, so - // this information must travel along with the operation for eventual - // consumption by emitEpilogue. - Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32)); - } - - // Add argument registers to the end of the list so that they are known live - // into the call. - for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) - Ops.push_back(DAG.getRegister(RegsToPass[i].first, - RegsToPass[i].second.getValueType())); - - // Add a register mask operand representing the call-preserved registers. - const uint32_t *Mask; - const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); - const ARM64RegisterInfo *ARI = static_cast<const ARM64RegisterInfo *>(TRI); - if (IsThisReturn) { - // For 'this' returns, use the X0-preserving mask if applicable - Mask = ARI->getThisReturnPreservedMask(CallConv); - if (!Mask) { - IsThisReturn = false; - Mask = ARI->getCallPreservedMask(CallConv); - } - } else - Mask = ARI->getCallPreservedMask(CallConv); - - assert(Mask && "Missing call preserved mask for calling convention"); - Ops.push_back(DAG.getRegisterMask(Mask)); - - if (InFlag.getNode()) - Ops.push_back(InFlag); - - SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); - - // If we're doing a tall call, use a TC_RETURN here rather than an - // actual call instruction. - if (IsTailCall) - return DAG.getNode(ARM64ISD::TC_RETURN, DL, NodeTys, Ops); - - // Returns a chain and a flag for retval copy to use. - Chain = DAG.getNode(ARM64ISD::CALL, DL, NodeTys, Ops); - InFlag = Chain.getValue(1); - - uint64_t CalleePopBytes = DoesCalleeRestoreStack(CallConv, TailCallOpt) - ? RoundUpToAlignment(NumBytes, 16) - : 0; - - Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), - DAG.getIntPtrConstant(CalleePopBytes, true), - InFlag, DL); - if (!Ins.empty()) - InFlag = Chain.getValue(1); - - // Handle result values, copying them out of physregs into vregs that we - // return. - return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, - InVals, IsThisReturn, - IsThisReturn ? OutVals[0] : SDValue()); -} - -bool ARM64TargetLowering::CanLowerReturn( - CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, - const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { - CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS ? RetCC_ARM64_WebKit_JS - : RetCC_ARM64_AAPCS; - SmallVector<CCValAssign, 16> RVLocs; - CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context); - return CCInfo.CheckReturn(Outs, RetCC); -} - -SDValue -ARM64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, - bool isVarArg, - const SmallVectorImpl<ISD::OutputArg> &Outs, - const SmallVectorImpl<SDValue> &OutVals, - SDLoc DL, SelectionDAG &DAG) const { - CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS ? RetCC_ARM64_WebKit_JS - : RetCC_ARM64_AAPCS; - SmallVector<CCValAssign, 16> RVLocs; - CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), - getTargetMachine(), RVLocs, *DAG.getContext()); - CCInfo.AnalyzeReturn(Outs, RetCC); - - // Copy the result values into the output registers. - SDValue Flag; - SmallVector<SDValue, 4> RetOps(1, Chain); - for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size(); - ++i, ++realRVLocIdx) { - CCValAssign &VA = RVLocs[i]; - assert(VA.isRegLoc() && "Can only return in registers!"); - SDValue Arg = OutVals[realRVLocIdx]; - - switch (VA.getLocInfo()) { - default: - llvm_unreachable("Unknown loc info!"); - case CCValAssign::Full: - break; - case CCValAssign::BCvt: - Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); - break; - } - - Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag); - Flag = Chain.getValue(1); - RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); - } - - RetOps[0] = Chain; // Update chain. - - // Add the flag if we have it. - if (Flag.getNode()) - RetOps.push_back(Flag); - - return DAG.getNode(ARM64ISD::RET_FLAG, DL, MVT::Other, RetOps); -} - -//===----------------------------------------------------------------------===// -// Other Lowering Code -//===----------------------------------------------------------------------===// - -SDValue ARM64TargetLowering::LowerGlobalAddress(SDValue Op, - SelectionDAG &DAG) const { - EVT PtrVT = getPointerTy(); - SDLoc DL(Op); - const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); - unsigned char OpFlags = - Subtarget->ClassifyGlobalReference(GV, getTargetMachine()); - - assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 && - "unexpected offset in global node"); - - // This also catched the large code model case for Darwin. - if ((OpFlags & ARM64II::MO_GOT) != 0) { - SDValue GotAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); - // FIXME: Once remat is capable of dealing with instructions with register - // operands, expand this into two nodes instead of using a wrapper node. - return DAG.getNode(ARM64ISD::LOADgot, DL, PtrVT, GotAddr); - } - - if (getTargetMachine().getCodeModel() == CodeModel::Large) { - const unsigned char MO_NC = ARM64II::MO_NC; - return DAG.getNode( - ARM64ISD::WrapperLarge, DL, PtrVT, - DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, ARM64II::MO_G3), - DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, ARM64II::MO_G2 | MO_NC), - DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, ARM64II::MO_G1 | MO_NC), - DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, ARM64II::MO_G0 | MO_NC)); - } else { - // Use ADRP/ADD or ADRP/LDR for everything else: the small model on ELF and - // the only correct model on Darwin. - SDValue Hi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, - OpFlags | ARM64II::MO_PAGE); - unsigned char LoFlags = OpFlags | ARM64II::MO_PAGEOFF | ARM64II::MO_NC; - SDValue Lo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, LoFlags); - - SDValue ADRP = DAG.getNode(ARM64ISD::ADRP, DL, PtrVT, Hi); - return DAG.getNode(ARM64ISD::ADDlow, DL, PtrVT, ADRP, Lo); - } -} - -/// \brief Convert a TLS address reference into the correct sequence of loads -/// and calls to compute the variable's address (for Darwin, currently) and -/// return an SDValue containing the final node. - -/// Darwin only has one TLS scheme which must be capable of dealing with the -/// fully general situation, in the worst case. This means: -/// + "extern __thread" declaration. -/// + Defined in a possibly unknown dynamic library. -/// -/// The general system is that each __thread variable has a [3 x i64] descriptor -/// which contains information used by the runtime to calculate the address. The -/// only part of this the compiler needs to know about is the first xword, which -/// contains a function pointer that must be called with the address of the -/// entire descriptor in "x0". -/// -/// Since this descriptor may be in a different unit, in general even the -/// descriptor must be accessed via an indirect load. The "ideal" code sequence -/// is: -/// adrp x0, _var@TLVPPAGE -/// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor -/// ldr x1, [x0] ; x1 contains 1st entry of descriptor, -/// ; the function pointer -/// blr x1 ; Uses descriptor address in x0 -/// ; Address of _var is now in x0. -/// -/// If the address of _var's descriptor *is* known to the linker, then it can -/// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for -/// a slight efficiency gain. -SDValue -ARM64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op, - SelectionDAG &DAG) const { - assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin"); - - SDLoc DL(Op); - MVT PtrVT = getPointerTy(); - const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); - - SDValue TLVPAddr = - DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, ARM64II::MO_TLS); - SDValue DescAddr = DAG.getNode(ARM64ISD::LOADgot, DL, PtrVT, TLVPAddr); - - // The first entry in the descriptor is a function pointer that we must call - // to obtain the address of the variable. - SDValue Chain = DAG.getEntryNode(); - SDValue FuncTLVGet = - DAG.getLoad(MVT::i64, DL, Chain, DescAddr, MachinePointerInfo::getGOT(), - false, true, true, 8); - Chain = FuncTLVGet.getValue(1); - - MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); - MFI->setAdjustsStack(true); - - // TLS calls preserve all registers except those that absolutely must be - // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be - // silly). - const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); - const ARM64RegisterInfo *ARI = static_cast<const ARM64RegisterInfo *>(TRI); - const uint32_t *Mask = ARI->getTLSCallPreservedMask(); - - // Finally, we can make the call. This is just a degenerate version of a - // normal ARM64 call node: x0 takes the address of the descriptor, and returns - // the address of the variable in this thread. - Chain = DAG.getCopyToReg(Chain, DL, ARM64::X0, DescAddr, SDValue()); - Chain = DAG.getNode(ARM64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue), - Chain, FuncTLVGet, DAG.getRegister(ARM64::X0, MVT::i64), - DAG.getRegisterMask(Mask), Chain.getValue(1)); - return DAG.getCopyFromReg(Chain, DL, ARM64::X0, PtrVT, Chain.getValue(1)); -} - -/// When accessing thread-local variables under either the general-dynamic or -/// local-dynamic system, we make a "TLS-descriptor" call. The variable will -/// have a descriptor, accessible via a PC-relative ADRP, and whose first entry -/// is a function pointer to carry out the resolution. This function takes the -/// address of the descriptor in X0 and returns the TPIDR_EL0 offset in X0. All -/// other registers (except LR, NZCV) are preserved. -/// -/// Thus, the ideal call sequence on AArch64 is: -/// -/// adrp x0, :tlsdesc:thread_var -/// ldr x8, [x0, :tlsdesc_lo12:thread_var] -/// add x0, x0, :tlsdesc_lo12:thread_var -/// .tlsdesccall thread_var -/// blr x8 -/// (TPIDR_EL0 offset now in x0). -/// -/// The ".tlsdesccall" directive instructs the assembler to insert a particular -/// relocation to help the linker relax this sequence if it turns out to be too -/// conservative. -/// -/// FIXME: we currently produce an extra, duplicated, ADRP instruction, but this -/// is harmless. -SDValue ARM64TargetLowering::LowerELFTLSDescCall(SDValue SymAddr, - SDValue DescAddr, SDLoc DL, - SelectionDAG &DAG) const { - EVT PtrVT = getPointerTy(); - - // The function we need to call is simply the first entry in the GOT for this - // descriptor, load it in preparation. - SDValue Func = DAG.getNode(ARM64ISD::LOADgot, DL, PtrVT, SymAddr); - - // TLS calls preserve all registers except those that absolutely must be - // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be - // silly). - const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); - const ARM64RegisterInfo *ARI = static_cast<const ARM64RegisterInfo *>(TRI); - const uint32_t *Mask = ARI->getTLSCallPreservedMask(); - - // The function takes only one argument: the address of the descriptor itself - // in X0. - SDValue Glue, Chain; - Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, ARM64::X0, DescAddr, Glue); - Glue = Chain.getValue(1); - - // We're now ready to populate the argument list, as with a normal call: - SmallVector<SDValue, 6> Ops; - Ops.push_back(Chain); - Ops.push_back(Func); - Ops.push_back(SymAddr); - Ops.push_back(DAG.getRegister(ARM64::X0, PtrVT)); - Ops.push_back(DAG.getRegisterMask(Mask)); - Ops.push_back(Glue); - - SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); - Chain = DAG.getNode(ARM64ISD::TLSDESC_CALL, DL, NodeTys, Ops); - Glue = Chain.getValue(1); - - return DAG.getCopyFromReg(Chain, DL, ARM64::X0, PtrVT, Glue); -} - -SDValue ARM64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op, - SelectionDAG &DAG) const { - assert(Subtarget->isTargetELF() && "This function expects an ELF target"); - assert(getTargetMachine().getCodeModel() == CodeModel::Small && - "ELF TLS only supported in small memory model"); - const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); - - TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal()); - - SDValue TPOff; - EVT PtrVT = getPointerTy(); - SDLoc DL(Op); - const GlobalValue *GV = GA->getGlobal(); - - SDValue ThreadBase = DAG.getNode(ARM64ISD::THREAD_POINTER, DL, PtrVT); - - if (Model == TLSModel::LocalExec) { - SDValue HiVar = DAG.getTargetGlobalAddress( - GV, DL, PtrVT, 0, ARM64II::MO_TLS | ARM64II::MO_G1); - SDValue LoVar = DAG.getTargetGlobalAddress( - GV, DL, PtrVT, 0, ARM64II::MO_TLS | ARM64II::MO_G0 | ARM64II::MO_NC); - - TPOff = SDValue(DAG.getMachineNode(ARM64::MOVZXi, DL, PtrVT, HiVar, - DAG.getTargetConstant(16, MVT::i32)), - 0); - TPOff = SDValue(DAG.getMachineNode(ARM64::MOVKXi, DL, PtrVT, TPOff, LoVar, - DAG.getTargetConstant(0, MVT::i32)), - 0); - } else if (Model == TLSModel::InitialExec) { - TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, ARM64II::MO_TLS); - TPOff = DAG.getNode(ARM64ISD::LOADgot, DL, PtrVT, TPOff); - } else if (Model == TLSModel::LocalDynamic) { - // Local-dynamic accesses proceed in two phases. A general-dynamic TLS - // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate - // the beginning of the module's TLS region, followed by a DTPREL offset - // calculation. - - // These accesses will need deduplicating if there's more than one. - ARM64FunctionInfo *MFI = - DAG.getMachineFunction().getInfo<ARM64FunctionInfo>(); - MFI->incNumLocalDynamicTLSAccesses(); - - // Accesses used in this sequence go via the TLS descriptor which lives in - // the GOT. Prepare an address we can use to handle this. - SDValue HiDesc = DAG.getTargetExternalSymbol( - "_TLS_MODULE_BASE_", PtrVT, ARM64II::MO_TLS | ARM64II::MO_PAGE); - SDValue LoDesc = DAG.getTargetExternalSymbol( - "_TLS_MODULE_BASE_", PtrVT, - ARM64II::MO_TLS | ARM64II::MO_PAGEOFF | ARM64II::MO_NC); - - // First argument to the descriptor call is the address of the descriptor - // itself. - SDValue DescAddr = DAG.getNode(ARM64ISD::ADRP, DL, PtrVT, HiDesc); - DescAddr = DAG.getNode(ARM64ISD::ADDlow, DL, PtrVT, DescAddr, LoDesc); - - // The call needs a relocation too for linker relaxation. It doesn't make - // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of - // the address. - SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT, - ARM64II::MO_TLS); - - // Now we can calculate the offset from TPIDR_EL0 to this module's - // thread-local area. - TPOff = LowerELFTLSDescCall(SymAddr, DescAddr, DL, DAG); - - // Now use :dtprel_whatever: operations to calculate this variable's offset - // in its thread-storage area. - SDValue HiVar = DAG.getTargetGlobalAddress( - GV, DL, MVT::i64, 0, ARM64II::MO_TLS | ARM64II::MO_G1); - SDValue LoVar = DAG.getTargetGlobalAddress( - GV, DL, MVT::i64, 0, ARM64II::MO_TLS | ARM64II::MO_G0 | ARM64II::MO_NC); - - SDValue DTPOff = - SDValue(DAG.getMachineNode(ARM64::MOVZXi, DL, PtrVT, HiVar, - DAG.getTargetConstant(16, MVT::i32)), - 0); - DTPOff = SDValue(DAG.getMachineNode(ARM64::MOVKXi, DL, PtrVT, DTPOff, LoVar, - DAG.getTargetConstant(0, MVT::i32)), - 0); - - TPOff = DAG.getNode(ISD::ADD, DL, PtrVT, TPOff, DTPOff); - } else if (Model == TLSModel::GeneralDynamic) { - // Accesses used in this sequence go via the TLS descriptor which lives in - // the GOT. Prepare an address we can use to handle this. - SDValue HiDesc = DAG.getTargetGlobalAddress( - GV, DL, PtrVT, 0, ARM64II::MO_TLS | ARM64II::MO_PAGE); - SDValue LoDesc = DAG.getTargetGlobalAddress( - GV, DL, PtrVT, 0, - ARM64II::MO_TLS | ARM64II::MO_PAGEOFF | ARM64II::MO_NC); - - // First argument to the descriptor call is the address of the descriptor - // itself. - SDValue DescAddr = DAG.getNode(ARM64ISD::ADRP, DL, PtrVT, HiDesc); - DescAddr = DAG.getNode(ARM64ISD::ADDlow, DL, PtrVT, DescAddr, LoDesc); - - // The call needs a relocation too for linker relaxation. It doesn't make - // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of - // the address. - SDValue SymAddr = - DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, ARM64II::MO_TLS); - - // Finally we can make a call to calculate the offset from tpidr_el0. - TPOff = LowerELFTLSDescCall(SymAddr, DescAddr, DL, DAG); - } else - llvm_unreachable("Unsupported ELF TLS access model"); - - return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff); -} - -SDValue ARM64TargetLowering::LowerGlobalTLSAddress(SDValue Op, - SelectionDAG &DAG) const { - if (Subtarget->isTargetDarwin()) - return LowerDarwinGlobalTLSAddress(Op, DAG); - else if (Subtarget->isTargetELF()) - return LowerELFGlobalTLSAddress(Op, DAG); - - llvm_unreachable("Unexpected platform trying to use TLS"); -} -SDValue ARM64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { - SDValue Chain = Op.getOperand(0); - ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); - SDValue LHS = Op.getOperand(2); - SDValue RHS = Op.getOperand(3); - SDValue Dest = Op.getOperand(4); - SDLoc dl(Op); - - // Handle f128 first, since lowering it will result in comparing the return - // value of a libcall against zero, which is just what the rest of LowerBR_CC - // is expecting to deal with. - if (LHS.getValueType() == MVT::f128) { - softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl); - - // If softenSetCCOperands returned a scalar, we need to compare the result - // against zero to select between true and false values. - if (!RHS.getNode()) { - RHS = DAG.getConstant(0, LHS.getValueType()); - CC = ISD::SETNE; - } - } - - // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch - // instruction. - unsigned Opc = LHS.getOpcode(); - if (LHS.getResNo() == 1 && isa<ConstantSDNode>(RHS) && - cast<ConstantSDNode>(RHS)->isOne() && - (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO || - Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) { - assert((CC == ISD::SETEQ || CC == ISD::SETNE) && - "Unexpected condition code."); - // Only lower legal XALUO ops. - if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0))) - return SDValue(); - - // The actual operation with overflow check. - ARM64CC::CondCode OFCC; - SDValue Value, Overflow; - std::tie(Value, Overflow) = getARM64XALUOOp(OFCC, LHS.getValue(0), DAG); - - if (CC == ISD::SETNE) - OFCC = getInvertedCondCode(OFCC); - SDValue CCVal = DAG.getConstant(OFCC, MVT::i32); - - return DAG.getNode(ARM64ISD::BRCOND, SDLoc(LHS), MVT::Other, Chain, Dest, - CCVal, Overflow); - } - - if (LHS.getValueType().isInteger()) { - assert((LHS.getValueType() == RHS.getValueType()) && - (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64)); - - // If the RHS of the comparison is zero, we can potentially fold this - // to a specialized branch. - const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS); - if (RHSC && RHSC->getZExtValue() == 0) { - if (CC == ISD::SETEQ) { - // See if we can use a TBZ to fold in an AND as well. - // TBZ has a smaller branch displacement than CBZ. If the offset is - // out of bounds, a late MI-layer pass rewrites branches. - // 403.gcc is an example that hits this case. - if (LHS.getOpcode() == ISD::AND && - isa<ConstantSDNode>(LHS.getOperand(1)) && - isPowerOf2_64(LHS.getConstantOperandVal(1))) { - SDValue Test = LHS.getOperand(0); - uint64_t Mask = LHS.getConstantOperandVal(1); - - // TBZ only operates on i64's, but the ext should be free. - if (Test.getValueType() == MVT::i32) - Test = DAG.getAnyExtOrTrunc(Test, dl, MVT::i64); - - return DAG.getNode(ARM64ISD::TBZ, dl, MVT::Other, Chain, Test, - DAG.getConstant(Log2_64(Mask), MVT::i64), Dest); - } - - return DAG.getNode(ARM64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest); - } else if (CC == ISD::SETNE) { - // See if we can use a TBZ to fold in an AND as well. - // TBZ has a smaller branch displacement than CBZ. If the offset is - // out of bounds, a late MI-layer pass rewrites branches. - // 403.gcc is an example that hits this case. - if (LHS.getOpcode() == ISD::AND && - isa<ConstantSDNode>(LHS.getOperand(1)) && - isPowerOf2_64(LHS.getConstantOperandVal(1))) { - SDValue Test = LHS.getOperand(0); - uint64_t Mask = LHS.getConstantOperandVal(1); - - // TBNZ only operates on i64's, but the ext should be free. - if (Test.getValueType() == MVT::i32) - Test = DAG.getAnyExtOrTrunc(Test, dl, MVT::i64); - - return DAG.getNode(ARM64ISD::TBNZ, dl, MVT::Other, Chain, Test, - DAG.getConstant(Log2_64(Mask), MVT::i64), Dest); - } - - return DAG.getNode(ARM64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest); - } - } - - SDValue CCVal; - SDValue Cmp = getARM64Cmp(LHS, RHS, CC, CCVal, DAG, dl); - return DAG.getNode(ARM64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal, - Cmp); - } - - assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); - - // Unfortunately, the mapping of LLVM FP CC's onto ARM64 CC's isn't totally - // clean. Some of them require two branches to implement. - SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); - ARM64CC::CondCode CC1, CC2; - changeFPCCToARM64CC(CC, CC1, CC2); - SDValue CC1Val = DAG.getConstant(CC1, MVT::i32); - SDValue BR1 = - DAG.getNode(ARM64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp); - if (CC2 != ARM64CC::AL) { - SDValue CC2Val = DAG.getConstant(CC2, MVT::i32); - return DAG.getNode(ARM64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val, - Cmp); - } - - return BR1; -} - -SDValue ARM64TargetLowering::LowerFCOPYSIGN(SDValue Op, - SelectionDAG &DAG) const { - EVT VT = Op.getValueType(); - SDLoc DL(Op); - - SDValue In1 = Op.getOperand(0); - SDValue In2 = Op.getOperand(1); - EVT SrcVT = In2.getValueType(); - if (SrcVT != VT) { - if (SrcVT == MVT::f32 && VT == MVT::f64) - In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2); - else if (SrcVT == MVT::f64 && VT == MVT::f32) - In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0)); - else - // FIXME: Src type is different, bail out for now. Can VT really be a - // vector type? - return SDValue(); - } - - EVT VecVT; - EVT EltVT; - SDValue EltMask, VecVal1, VecVal2; - if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) { - EltVT = MVT::i32; - VecVT = MVT::v4i32; - EltMask = DAG.getConstant(0x80000000ULL, EltVT); - - if (!VT.isVector()) { - VecVal1 = DAG.getTargetInsertSubreg(ARM64::ssub, DL, VecVT, - DAG.getUNDEF(VecVT), In1); - VecVal2 = DAG.getTargetInsertSubreg(ARM64::ssub, DL, VecVT, - DAG.getUNDEF(VecVT), In2); - } else { - VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1); - VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2); - } - } else if (VT == MVT::f64 || VT == MVT::v2f64) { - EltVT = MVT::i64; - VecVT = MVT::v2i64; - - // We want to materialize a mask with the the high bit set, but the AdvSIMD - // immediate moves cannot materialize that in a single instruction for - // 64-bit elements. Instead, materialize zero and then negate it. - EltMask = DAG.getConstant(0, EltVT); - - if (!VT.isVector()) { - VecVal1 = DAG.getTargetInsertSubreg(ARM64::dsub, DL, VecVT, - DAG.getUNDEF(VecVT), In1); - VecVal2 = DAG.getTargetInsertSubreg(ARM64::dsub, DL, VecVT, - DAG.getUNDEF(VecVT), In2); - } else { - VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1); - VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2); - } - } else { - llvm_unreachable("Invalid type for copysign!"); - } - - std::vector<SDValue> BuildVectorOps; - for (unsigned i = 0; i < VecVT.getVectorNumElements(); ++i) - BuildVectorOps.push_back(EltMask); - - SDValue BuildVec = DAG.getNode(ISD::BUILD_VECTOR, DL, VecVT, BuildVectorOps); - - // If we couldn't materialize the mask above, then the mask vector will be - // the zero vector, and we need to negate it here. - if (VT == MVT::f64 || VT == MVT::v2f64) { - BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec); - BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec); - BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec); - } - - SDValue Sel = - DAG.getNode(ARM64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec); - - if (VT == MVT::f32) - return DAG.getTargetExtractSubreg(ARM64::ssub, DL, VT, Sel); - else if (VT == MVT::f64) - return DAG.getTargetExtractSubreg(ARM64::dsub, DL, VT, Sel); - else - return DAG.getNode(ISD::BITCAST, DL, VT, Sel); -} - -SDValue ARM64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const { - if (DAG.getMachineFunction().getFunction()->getAttributes().hasAttribute( - AttributeSet::FunctionIndex, Attribute::NoImplicitFloat)) - return SDValue(); - - // While there is no integer popcount instruction, it can - // be more efficiently lowered to the following sequence that uses - // AdvSIMD registers/instructions as long as the copies to/from - // the AdvSIMD registers are cheap. - // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd - // CNT V0.8B, V0.8B // 8xbyte pop-counts - // ADDV B0, V0.8B // sum 8xbyte pop-counts - // UMOV X0, V0.B[0] // copy byte result back to integer reg - SDValue Val = Op.getOperand(0); - SDLoc DL(Op); - EVT VT = Op.getValueType(); - SDValue ZeroVec = DAG.getUNDEF(MVT::v8i8); - - SDValue VecVal; - if (VT == MVT::i32) { - VecVal = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); - VecVal = - DAG.getTargetInsertSubreg(ARM64::ssub, DL, MVT::v8i8, ZeroVec, VecVal); - } else { - VecVal = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val); - } - - SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, VecVal); - SDValue UaddLV = DAG.getNode( - ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32, - DAG.getConstant(Intrinsic::arm64_neon_uaddlv, MVT::i32), CtPop); - - if (VT == MVT::i64) - UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV); - return UaddLV; -} - -SDValue ARM64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { - - if (Op.getValueType().isVector()) - return LowerVSETCC(Op, DAG); - - SDValue LHS = Op.getOperand(0); - SDValue RHS = Op.getOperand(1); - ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); - SDLoc dl(Op); - - // We chose ZeroOrOneBooleanContents, so use zero and one. - EVT VT = Op.getValueType(); - SDValue TVal = DAG.getConstant(1, VT); - SDValue FVal = DAG.getConstant(0, VT); - - // Handle f128 first, since one possible outcome is a normal integer - // comparison which gets picked up by the next if statement. - if (LHS.getValueType() == MVT::f128) { - softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl); - - // If softenSetCCOperands returned a scalar, use it. - if (!RHS.getNode()) { - assert(LHS.getValueType() == Op.getValueType() && - "Unexpected setcc expansion!"); - return LHS; - } - } - - if (LHS.getValueType().isInteger()) { - SDValue CCVal; - SDValue Cmp = - getARM64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl); - - // Note that we inverted the condition above, so we reverse the order of - // the true and false operands here. This will allow the setcc to be - // matched to a single CSINC instruction. - return DAG.getNode(ARM64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp); - } - - // Now we know we're dealing with FP values. - assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); - - // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead - // and do the comparison. - SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); - - ARM64CC::CondCode CC1, CC2; - changeFPCCToARM64CC(CC, CC1, CC2); - if (CC2 == ARM64CC::AL) { - changeFPCCToARM64CC(ISD::getSetCCInverse(CC, false), CC1, CC2); - SDValue CC1Val = DAG.getConstant(CC1, MVT::i32); - - // Note that we inverted the condition above, so we reverse the order of - // the true and false operands here. This will allow the setcc to be - // matched to a single CSINC instruction. - return DAG.getNode(ARM64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp); - } else { - // Unfortunately, the mapping of LLVM FP CC's onto ARM64 CC's isn't totally - // clean. Some of them require two CSELs to implement. As is in this case, - // we emit the first CSEL and then emit a second using the output of the - // first as the RHS. We're effectively OR'ing the two CC's together. - - // FIXME: It would be nice if we could match the two CSELs to two CSINCs. - SDValue CC1Val = DAG.getConstant(CC1, MVT::i32); - SDValue CS1 = DAG.getNode(ARM64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp); - - SDValue CC2Val = DAG.getConstant(CC2, MVT::i32); - return DAG.getNode(ARM64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp); - } -} - -/// A SELECT_CC operation is really some kind of max or min if both values being -/// compared are, in some sense, equal to the results in either case. However, -/// it is permissible to compare f32 values and produce directly extended f64 -/// values. -/// -/// Extending the comparison operands would also be allowed, but is less likely -/// to happen in practice since their use is right here. Note that truncate -/// operations would *not* be semantically equivalent. -static bool selectCCOpsAreFMaxCompatible(SDValue Cmp, SDValue Result) { - if (Cmp == Result) - return true; - - ConstantFPSDNode *CCmp = dyn_cast<ConstantFPSDNode>(Cmp); - ConstantFPSDNode *CResult = dyn_cast<ConstantFPSDNode>(Result); - if (CCmp && CResult && Cmp.getValueType() == MVT::f32 && - Result.getValueType() == MVT::f64) { - bool Lossy; - APFloat CmpVal = CCmp->getValueAPF(); - CmpVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &Lossy); - return CResult->getValueAPF().bitwiseIsEqual(CmpVal); - } - - return Result->getOpcode() == ISD::FP_EXTEND && Result->getOperand(0) == Cmp; -} - -SDValue ARM64TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { - SDValue CC = Op->getOperand(0); - SDValue TVal = Op->getOperand(1); - SDValue FVal = Op->getOperand(2); - SDLoc DL(Op); - - unsigned Opc = CC.getOpcode(); - // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select - // instruction. - if (CC.getResNo() == 1 && - (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO || - Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) { - // Only lower legal XALUO ops. - if (!DAG.getTargetLoweringInfo().isTypeLegal(CC->getValueType(0))) - return SDValue(); - - ARM64CC::CondCode OFCC; - SDValue Value, Overflow; - std::tie(Value, Overflow) = getARM64XALUOOp(OFCC, CC.getValue(0), DAG); - SDValue CCVal = DAG.getConstant(OFCC, MVT::i32); - - return DAG.getNode(ARM64ISD::CSEL, DL, Op.getValueType(), TVal, FVal, CCVal, - Overflow); - } - - if (CC.getOpcode() == ISD::SETCC) - return DAG.getSelectCC(DL, CC.getOperand(0), CC.getOperand(1), TVal, FVal, - cast<CondCodeSDNode>(CC.getOperand(2))->get()); - else - return DAG.getSelectCC(DL, CC, DAG.getConstant(0, CC.getValueType()), TVal, - FVal, ISD::SETNE); -} - -SDValue ARM64TargetLowering::LowerSELECT_CC(SDValue Op, - SelectionDAG &DAG) const { - ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); - SDValue LHS = Op.getOperand(0); - SDValue RHS = Op.getOperand(1); - SDValue TVal = Op.getOperand(2); - SDValue FVal = Op.getOperand(3); - SDLoc dl(Op); - - // Handle f128 first, because it will result in a comparison of some RTLIB - // call result against zero. - if (LHS.getValueType() == MVT::f128) { - softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl); - - // If softenSetCCOperands returned a scalar, we need to compare the result - // against zero to select between true and false values. - if (!RHS.getNode()) { - RHS = DAG.getConstant(0, LHS.getValueType()); - CC = ISD::SETNE; - } - } - - // Handle integers first. - if (LHS.getValueType().isInteger()) { - assert((LHS.getValueType() == RHS.getValueType()) && - (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64)); - - unsigned Opcode = ARM64ISD::CSEL; - - // If both the TVal and the FVal are constants, see if we can swap them in - // order to for a CSINV or CSINC out of them. - ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal); - ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal); - - if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) { - std::swap(TVal, FVal); - std::swap(CTVal, CFVal); - CC = ISD::getSetCCInverse(CC, true); - } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) { - std::swap(TVal, FVal); - std::swap(CTVal, CFVal); - CC = ISD::getSetCCInverse(CC, true); - } else if (TVal.getOpcode() == ISD::XOR) { - // If TVal is a NOT we want to swap TVal and FVal so that we can match - // with a CSINV rather than a CSEL. - ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(1)); - - if (CVal && CVal->isAllOnesValue()) { - std::swap(TVal, FVal); - std::swap(CTVal, CFVal); - CC = ISD::getSetCCInverse(CC, true); - } - } else if (TVal.getOpcode() == ISD::SUB) { - // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so - // that we can match with a CSNEG rather than a CSEL. - ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(0)); - - if (CVal && CVal->isNullValue()) { - std::swap(TVal, FVal); - std::swap(CTVal, CFVal); - CC = ISD::getSetCCInverse(CC, true); - } - } else if (CTVal && CFVal) { - const int64_t TrueVal = CTVal->getSExtValue(); - const int64_t FalseVal = CFVal->getSExtValue(); - bool Swap = false; - - // If both TVal and FVal are constants, see if FVal is the - // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC - // instead of a CSEL in that case. - if (TrueVal == ~FalseVal) { - Opcode = ARM64ISD::CSINV; - } else if (TrueVal == -FalseVal) { - Opcode = ARM64ISD::CSNEG; - } else if (TVal.getValueType() == MVT::i32) { - // If our operands are only 32-bit wide, make sure we use 32-bit - // arithmetic for the check whether we can use CSINC. This ensures that - // the addition in the check will wrap around properly in case there is - // an overflow (which would not be the case if we do the check with - // 64-bit arithmetic). - const uint32_t TrueVal32 = CTVal->getZExtValue(); - const uint32_t FalseVal32 = CFVal->getZExtValue(); - - if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) { - Opcode = ARM64ISD::CSINC; - - if (TrueVal32 > FalseVal32) { - Swap = true; - } - } - // 64-bit check whether we can use CSINC. - } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) { - Opcode = ARM64ISD::CSINC; - - if (TrueVal > FalseVal) { - Swap = true; - } - } - - // Swap TVal and FVal if necessary. - if (Swap) { - std::swap(TVal, FVal); - std::swap(CTVal, CFVal); - CC = ISD::getSetCCInverse(CC, true); - } - - if (Opcode != ARM64ISD::CSEL) { - // Drop FVal since we can get its value by simply inverting/negating - // TVal. - FVal = TVal; - } - } - - SDValue CCVal; - SDValue Cmp = getARM64Cmp(LHS, RHS, CC, CCVal, DAG, dl); - - EVT VT = Op.getValueType(); - return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp); - } - - // Now we know we're dealing with FP values. - assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); - assert(LHS.getValueType() == RHS.getValueType()); - EVT VT = Op.getValueType(); - - // Try to match this select into a max/min operation, which have dedicated - // opcode in the instruction set. - // FIXME: This is not correct in the presence of NaNs, so we only enable this - // in no-NaNs mode. - if (getTargetMachine().Options.NoNaNsFPMath) { - SDValue MinMaxLHS = TVal, MinMaxRHS = FVal; - if (selectCCOpsAreFMaxCompatible(LHS, MinMaxRHS) && - selectCCOpsAreFMaxCompatible(RHS, MinMaxLHS)) { - CC = ISD::getSetCCSwappedOperands(CC); - std::swap(MinMaxLHS, MinMaxRHS); - } - - if (selectCCOpsAreFMaxCompatible(LHS, MinMaxLHS) && - selectCCOpsAreFMaxCompatible(RHS, MinMaxRHS)) { - switch (CC) { - default: - break; - case ISD::SETGT: - case ISD::SETGE: - case ISD::SETUGT: - case ISD::SETUGE: - case ISD::SETOGT: - case ISD::SETOGE: - return DAG.getNode(ARM64ISD::FMAX, dl, VT, MinMaxLHS, MinMaxRHS); - break; - case ISD::SETLT: - case ISD::SETLE: - case ISD::SETULT: - case ISD::SETULE: - case ISD::SETOLT: - case ISD::SETOLE: - return DAG.getNode(ARM64ISD::FMIN, dl, VT, MinMaxLHS, MinMaxRHS); - break; - } - } - } - - // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead - // and do the comparison. - SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); - - // Unfortunately, the mapping of LLVM FP CC's onto ARM64 CC's isn't totally - // clean. Some of them require two CSELs to implement. - ARM64CC::CondCode CC1, CC2; - changeFPCCToARM64CC(CC, CC1, CC2); - SDValue CC1Val = DAG.getConstant(CC1, MVT::i32); - SDValue CS1 = DAG.getNode(ARM64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp); - - // If we need a second CSEL, emit it, using the output of the first as the - // RHS. We're effectively OR'ing the two CC's together. - if (CC2 != ARM64CC::AL) { - SDValue CC2Val = DAG.getConstant(CC2, MVT::i32); - return DAG.getNode(ARM64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp); - } - - // Otherwise, return the output of the first CSEL. - return CS1; -} - -SDValue ARM64TargetLowering::LowerJumpTable(SDValue Op, - SelectionDAG &DAG) const { - // Jump table entries as PC relative offsets. No additional tweaking - // is necessary here. Just get the address of the jump table. - JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); - EVT PtrVT = getPointerTy(); - SDLoc DL(Op); - - if (getTargetMachine().getCodeModel() == CodeModel::Large && - !Subtarget->isTargetMachO()) { - const unsigned char MO_NC = ARM64II::MO_NC; - return DAG.getNode( - ARM64ISD::WrapperLarge, DL, PtrVT, - DAG.getTargetJumpTable(JT->getIndex(), PtrVT, ARM64II::MO_G3), - DAG.getTargetJumpTable(JT->getIndex(), PtrVT, ARM64II::MO_G2 | MO_NC), - DAG.getTargetJumpTable(JT->getIndex(), PtrVT, ARM64II::MO_G1 | MO_NC), - DAG.getTargetJumpTable(JT->getIndex(), PtrVT, ARM64II::MO_G0 | MO_NC)); - } - - SDValue Hi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, ARM64II::MO_PAGE); - SDValue Lo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, - ARM64II::MO_PAGEOFF | ARM64II::MO_NC); - SDValue ADRP = DAG.getNode(ARM64ISD::ADRP, DL, PtrVT, Hi); - return DAG.getNode(ARM64ISD::ADDlow, DL, PtrVT, ADRP, Lo); -} - -SDValue ARM64TargetLowering::LowerConstantPool(SDValue Op, - SelectionDAG &DAG) const { - ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); - EVT PtrVT = getPointerTy(); - SDLoc DL(Op); - - if (getTargetMachine().getCodeModel() == CodeModel::Large) { - // Use the GOT for the large code model on iOS. - if (Subtarget->isTargetMachO()) { - SDValue GotAddr = DAG.getTargetConstantPool( - CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(), - ARM64II::MO_GOT); - return DAG.getNode(ARM64ISD::LOADgot, DL, PtrVT, GotAddr); - } - - const unsigned char MO_NC = ARM64II::MO_NC; - return DAG.getNode( - ARM64ISD::WrapperLarge, DL, PtrVT, - DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(), - CP->getOffset(), ARM64II::MO_G3), - DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(), - CP->getOffset(), ARM64II::MO_G2 | MO_NC), - DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(), - CP->getOffset(), ARM64II::MO_G1 | MO_NC), - DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(), - CP->getOffset(), ARM64II::MO_G0 | MO_NC)); - } else { - // Use ADRP/ADD or ADRP/LDR for everything else: the small memory model on - // ELF, the only valid one on Darwin. - SDValue Hi = - DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(), - CP->getOffset(), ARM64II::MO_PAGE); - SDValue Lo = DAG.getTargetConstantPool( - CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(), - ARM64II::MO_PAGEOFF | ARM64II::MO_NC); - - SDValue ADRP = DAG.getNode(ARM64ISD::ADRP, DL, PtrVT, Hi); - return DAG.getNode(ARM64ISD::ADDlow, DL, PtrVT, ADRP, Lo); - } -} - -SDValue ARM64TargetLowering::LowerBlockAddress(SDValue Op, - SelectionDAG &DAG) const { - const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); - EVT PtrVT = getPointerTy(); - SDLoc DL(Op); - if (getTargetMachine().getCodeModel() == CodeModel::Large && - !Subtarget->isTargetMachO()) { - const unsigned char MO_NC = ARM64II::MO_NC; - return DAG.getNode( - ARM64ISD::WrapperLarge, DL, PtrVT, - DAG.getTargetBlockAddress(BA, PtrVT, 0, ARM64II::MO_G3), - DAG.getTargetBlockAddress(BA, PtrVT, 0, ARM64II::MO_G2 | MO_NC), - DAG.getTargetBlockAddress(BA, PtrVT, 0, ARM64II::MO_G1 | MO_NC), - DAG.getTargetBlockAddress(BA, PtrVT, 0, ARM64II::MO_G0 | MO_NC)); - } else { - SDValue Hi = DAG.getTargetBlockAddress(BA, PtrVT, 0, ARM64II::MO_PAGE); - SDValue Lo = DAG.getTargetBlockAddress(BA, PtrVT, 0, ARM64II::MO_PAGEOFF | - ARM64II::MO_NC); - SDValue ADRP = DAG.getNode(ARM64ISD::ADRP, DL, PtrVT, Hi); - return DAG.getNode(ARM64ISD::ADDlow, DL, PtrVT, ADRP, Lo); - } -} - -SDValue ARM64TargetLowering::LowerDarwin_VASTART(SDValue Op, - SelectionDAG &DAG) const { - ARM64FunctionInfo *FuncInfo = - DAG.getMachineFunction().getInfo<ARM64FunctionInfo>(); - - SDLoc DL(Op); - SDValue FR = - DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy()); - const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); - return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), - MachinePointerInfo(SV), false, false, 0); -} - -SDValue ARM64TargetLowering::LowerAAPCS_VASTART(SDValue Op, - SelectionDAG &DAG) const { - // The layout of the va_list struct is specified in the AArch64 Procedure Call - // Standard, section B.3. - MachineFunction &MF = DAG.getMachineFunction(); - ARM64FunctionInfo *FuncInfo = MF.getInfo<ARM64FunctionInfo>(); - SDLoc DL(Op); - - SDValue Chain = Op.getOperand(0); - SDValue VAList = Op.getOperand(1); - const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); - SmallVector<SDValue, 4> MemOps; - - // void *__stack at offset 0 - SDValue Stack = - DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy()); - MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList, - MachinePointerInfo(SV), false, false, 8)); - - // void *__gr_top at offset 8 - int GPRSize = FuncInfo->getVarArgsGPRSize(); - if (GPRSize > 0) { - SDValue GRTop, GRTopAddr; - - GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, - DAG.getConstant(8, getPointerTy())); - - GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), getPointerTy()); - GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop, - DAG.getConstant(GPRSize, getPointerTy())); - - MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr, - MachinePointerInfo(SV, 8), false, false, 8)); - } - - // void *__vr_top at offset 16 - int FPRSize = FuncInfo->getVarArgsFPRSize(); - if (FPRSize > 0) { - SDValue VRTop, VRTopAddr; - VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, - DAG.getConstant(16, getPointerTy())); - - VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), getPointerTy()); - VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop, - DAG.getConstant(FPRSize, getPointerTy())); - - MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr, - MachinePointerInfo(SV, 16), false, false, 8)); - } - - // int __gr_offs at offset 24 - SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, - DAG.getConstant(24, getPointerTy())); - MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32), - GROffsAddr, MachinePointerInfo(SV, 24), false, - false, 4)); - - // int __vr_offs at offset 28 - SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, - DAG.getConstant(28, getPointerTy())); - MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32), - VROffsAddr, MachinePointerInfo(SV, 28), false, - false, 4)); - - return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); -} - -SDValue ARM64TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { - return Subtarget->isTargetDarwin() ? LowerDarwin_VASTART(Op, DAG) - : LowerAAPCS_VASTART(Op, DAG); -} - -SDValue ARM64TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { - // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single - // pointer. - unsigned VaListSize = Subtarget->isTargetDarwin() ? 8 : 32; - const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); - const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); - - return DAG.getMemcpy(Op.getOperand(0), SDLoc(Op), Op.getOperand(1), - Op.getOperand(2), DAG.getConstant(VaListSize, MVT::i32), - 8, false, false, MachinePointerInfo(DestSV), - MachinePointerInfo(SrcSV)); -} - -SDValue ARM64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { - assert(Subtarget->isTargetDarwin() && - "automatic va_arg instruction only works on Darwin"); - - const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); - EVT VT = Op.getValueType(); - SDLoc DL(Op); - SDValue Chain = Op.getOperand(0); - SDValue Addr = Op.getOperand(1); - unsigned Align = Op.getConstantOperandVal(3); - - SDValue VAList = DAG.getLoad(getPointerTy(), DL, Chain, Addr, - MachinePointerInfo(V), false, false, false, 0); - Chain = VAList.getValue(1); - - if (Align > 8) { - assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2"); - VAList = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, - DAG.getConstant(Align - 1, getPointerTy())); - VAList = DAG.getNode(ISD::AND, DL, getPointerTy(), VAList, - DAG.getConstant(-(int64_t)Align, getPointerTy())); - } - - Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); - uint64_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy); - - // Scalar integer and FP values smaller than 64 bits are implicitly extended - // up to 64 bits. At the very least, we have to increase the striding of the - // vaargs list to match this, and for FP values we need to introduce - // FP_ROUND nodes as well. - if (VT.isInteger() && !VT.isVector()) - ArgSize = 8; - bool NeedFPTrunc = false; - if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) { - ArgSize = 8; - NeedFPTrunc = true; - } - - // Increment the pointer, VAList, to the next vaarg - SDValue VANext = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, - DAG.getConstant(ArgSize, getPointerTy())); - // Store the incremented VAList to the legalized pointer - SDValue APStore = DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V), - false, false, 0); - - // Load the actual argument out of the pointer VAList - if (NeedFPTrunc) { - // Load the value as an f64. - SDValue WideFP = DAG.getLoad(MVT::f64, DL, APStore, VAList, - MachinePointerInfo(), false, false, false, 0); - // Round the value down to an f32. - SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0), - DAG.getIntPtrConstant(1)); - SDValue Ops[] = { NarrowFP, WideFP.getValue(1) }; - // Merge the rounded value with the chain output of the load. - return DAG.getMergeValues(Ops, DL); - } - - return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo(), false, - false, false, 0); -} - -SDValue ARM64TargetLowering::LowerFRAMEADDR(SDValue Op, - SelectionDAG &DAG) const { - MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); - MFI->setFrameAddressIsTaken(true); - - EVT VT = Op.getValueType(); - SDLoc DL(Op); - unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); - SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, ARM64::FP, VT); - while (Depth--) - FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr, - MachinePointerInfo(), false, false, false, 0); - return FrameAddr; -} - -// FIXME? Maybe this could be a TableGen attribute on some registers and -// this table could be generated automatically from RegInfo. -unsigned ARM64TargetLowering::getRegisterByName(const char* RegName, - EVT VT) const { - unsigned Reg = StringSwitch<unsigned>(RegName) - .Case("sp", ARM64::SP) - .Default(0); - if (Reg) - return Reg; - report_fatal_error("Invalid register name global variable"); -} - -SDValue ARM64TargetLowering::LowerRETURNADDR(SDValue Op, - SelectionDAG &DAG) const { - MachineFunction &MF = DAG.getMachineFunction(); - MachineFrameInfo *MFI = MF.getFrameInfo(); - MFI->setReturnAddressIsTaken(true); - - EVT VT = Op.getValueType(); - SDLoc DL(Op); - unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); - if (Depth) { - SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); - SDValue Offset = DAG.getConstant(8, getPointerTy()); - return DAG.getLoad(VT, DL, DAG.getEntryNode(), - DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), - MachinePointerInfo(), false, false, false, 0); - } - - // Return LR, which contains the return address. Mark it an implicit live-in. - unsigned Reg = MF.addLiveIn(ARM64::LR, &ARM64::GPR64RegClass); - return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); -} - -/// LowerShiftRightParts - Lower SRA_PARTS, which returns two -/// i64 values and take a 2 x i64 value to shift plus a shift amount. -SDValue ARM64TargetLowering::LowerShiftRightParts(SDValue Op, - SelectionDAG &DAG) const { - assert(Op.getNumOperands() == 3 && "Not a double-shift!"); - EVT VT = Op.getValueType(); - unsigned VTBits = VT.getSizeInBits(); - SDLoc dl(Op); - SDValue ShOpLo = Op.getOperand(0); - SDValue ShOpHi = Op.getOperand(1); - SDValue ShAmt = Op.getOperand(2); - SDValue ARMcc; - unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL; - - assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS); - - SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, - DAG.getConstant(VTBits, MVT::i64), ShAmt); - SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt); - SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt, - DAG.getConstant(VTBits, MVT::i64)); - SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt); - - SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64), - ISD::SETGE, dl, DAG); - SDValue CCVal = DAG.getConstant(ARM64CC::GE, MVT::i32); - - SDValue FalseValLo = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); - SDValue TrueValLo = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt); - SDValue Lo = - DAG.getNode(ARM64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp); - - // ARM64 shifts larger than the register width are wrapped rather than - // clamped, so we can't just emit "hi >> x". - SDValue FalseValHi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt); - SDValue TrueValHi = Opc == ISD::SRA - ? DAG.getNode(Opc, dl, VT, ShOpHi, - DAG.getConstant(VTBits - 1, MVT::i64)) - : DAG.getConstant(0, VT); - SDValue Hi = - DAG.getNode(ARM64ISD::CSEL, dl, VT, TrueValHi, FalseValHi, CCVal, Cmp); - - SDValue Ops[2] = { Lo, Hi }; - return DAG.getMergeValues(Ops, dl); -} - -/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two -/// i64 values and take a 2 x i64 value to shift plus a shift amount. -SDValue ARM64TargetLowering::LowerShiftLeftParts(SDValue Op, - SelectionDAG &DAG) const { - assert(Op.getNumOperands() == 3 && "Not a double-shift!"); - EVT VT = Op.getValueType(); - unsigned VTBits = VT.getSizeInBits(); - SDLoc dl(Op); - SDValue ShOpLo = Op.getOperand(0); - SDValue ShOpHi = Op.getOperand(1); - SDValue ShAmt = Op.getOperand(2); - SDValue ARMcc; - - assert(Op.getOpcode() == ISD::SHL_PARTS); - SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, - DAG.getConstant(VTBits, MVT::i64), ShAmt); - SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); - SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt, - DAG.getConstant(VTBits, MVT::i64)); - SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); - SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); - - SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); - - SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64), - ISD::SETGE, dl, DAG); - SDValue CCVal = DAG.getConstant(ARM64CC::GE, MVT::i32); - SDValue Hi = DAG.getNode(ARM64ISD::CSEL, dl, VT, Tmp3, FalseVal, CCVal, Cmp); - - // ARM64 shifts of larger than register sizes are wrapped rather than clamped, - // so we can't just emit "lo << a" if a is too big. - SDValue TrueValLo = DAG.getConstant(0, VT); - SDValue FalseValLo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); - SDValue Lo = - DAG.getNode(ARM64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp); - - SDValue Ops[2] = { Lo, Hi }; - return DAG.getMergeValues(Ops, dl); -} - -bool -ARM64TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { - // The ARM64 target doesn't support folding offsets into global addresses. - return false; -} - -bool ARM64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { - // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases. - // FIXME: We should be able to handle f128 as well with a clever lowering. - if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32)) - return true; - - if (VT == MVT::f64) - return ARM64_AM::getFP64Imm(Imm) != -1; - else if (VT == MVT::f32) - return ARM64_AM::getFP32Imm(Imm) != -1; - return false; -} - -//===----------------------------------------------------------------------===// -// ARM64 Optimization Hooks -//===----------------------------------------------------------------------===// - -//===----------------------------------------------------------------------===// -// ARM64 Inline Assembly Support -//===----------------------------------------------------------------------===// - -// Table of Constraints -// TODO: This is the current set of constraints supported by ARM for the -// compiler, not all of them may make sense, e.g. S may be difficult to support. -// -// r - A general register -// w - An FP/SIMD register of some size in the range v0-v31 -// x - An FP/SIMD register of some size in the range v0-v15 -// I - Constant that can be used with an ADD instruction -// J - Constant that can be used with a SUB instruction -// K - Constant that can be used with a 32-bit logical instruction -// L - Constant that can be used with a 64-bit logical instruction -// M - Constant that can be used as a 32-bit MOV immediate -// N - Constant that can be used as a 64-bit MOV immediate -// Q - A memory reference with base register and no offset -// S - A symbolic address -// Y - Floating point constant zero -// Z - Integer constant zero -// -// Note that general register operands will be output using their 64-bit x -// register name, whatever the size of the variable, unless the asm operand -// is prefixed by the %w modifier. Floating-point and SIMD register operands -// will be output with the v prefix unless prefixed by the %b, %h, %s, %d or -// %q modifier. - -/// getConstraintType - Given a constraint letter, return the type of -/// constraint it is for this target. -ARM64TargetLowering::ConstraintType -ARM64TargetLowering::getConstraintType(const std::string &Constraint) const { - if (Constraint.size() == 1) { - switch (Constraint[0]) { - default: - break; - case 'z': - return C_Other; - case 'x': - case 'w': - return C_RegisterClass; - // An address with a single base register. Due to the way we - // currently handle addresses it is the same as 'r'. - case 'Q': - return C_Memory; - } - } - return TargetLowering::getConstraintType(Constraint); -} - -/// Examine constraint type and operand type and determine a weight value. -/// This object must already have been set up with the operand type -/// and the current alternative constraint selected. -TargetLowering::ConstraintWeight -ARM64TargetLowering::getSingleConstraintMatchWeight( - AsmOperandInfo &info, const char *constraint) const { - ConstraintWeight weight = CW_Invalid; - Value *CallOperandVal = info.CallOperandVal; - // If we don't have a value, we can't do a match, - // but allow it at the lowest weight. - if (!CallOperandVal) - return CW_Default; - Type *type = CallOperandVal->getType(); - // Look at the constraint type. - switch (*constraint) { - default: - weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); - break; - case 'x': - case 'w': - if (type->isFloatingPointTy() || type->isVectorTy()) - weight = CW_Register; - break; - case 'z': - weight = CW_Constant; - break; - } - return weight; -} - -std::pair<unsigned, const TargetRegisterClass *> -ARM64TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, - MVT VT) const { - if (Constraint.size() == 1) { - switch (Constraint[0]) { - case 'r': - if (VT.getSizeInBits() == 64) - return std::make_pair(0U, &ARM64::GPR64commonRegClass); - return std::make_pair(0U, &ARM64::GPR32commonRegClass); - case 'w': - if (VT == MVT::f32) - return std::make_pair(0U, &ARM64::FPR32RegClass); - if (VT.getSizeInBits() == 64) - return std::make_pair(0U, &ARM64::FPR64RegClass); - if (VT.getSizeInBits() == 128) - return std::make_pair(0U, &ARM64::FPR128RegClass); - break; - // The instructions that this constraint is designed for can - // only take 128-bit registers so just use that regclass. - case 'x': - if (VT.getSizeInBits() == 128) - return std::make_pair(0U, &ARM64::FPR128_loRegClass); - break; - } - } - if (StringRef("{cc}").equals_lower(Constraint)) - return std::make_pair(unsigned(ARM64::NZCV), &ARM64::CCRRegClass); - - // Use the default implementation in TargetLowering to convert the register - // constraint into a member of a register class. - std::pair<unsigned, const TargetRegisterClass *> Res; - Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); - - // Not found as a standard register? - if (!Res.second) { - unsigned Size = Constraint.size(); - if ((Size == 4 || Size == 5) && Constraint[0] == '{' && - tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') { - const std::string Reg = - std::string(&Constraint[2], &Constraint[Size - 1]); - int RegNo = atoi(Reg.c_str()); - if (RegNo >= 0 && RegNo <= 31) { - // v0 - v31 are aliases of q0 - q31. - // By default we'll emit v0-v31 for this unless there's a modifier where - // we'll emit the correct register as well. - Res.first = ARM64::FPR128RegClass.getRegister(RegNo); - Res.second = &ARM64::FPR128RegClass; - } - } - } - - return Res; -} - -/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops -/// vector. If it is invalid, don't add anything to Ops. -void ARM64TargetLowering::LowerAsmOperandForConstraint( - SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, - SelectionDAG &DAG) const { - SDValue Result; - - // Currently only support length 1 constraints. - if (Constraint.length() != 1) - return; - - char ConstraintLetter = Constraint[0]; - switch (ConstraintLetter) { - default: - break; - - // This set of constraints deal with valid constants for various instructions. - // Validate and return a target constant for them if we can. - case 'z': { - // 'z' maps to xzr or wzr so it needs an input of 0. - ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); - if (!C || C->getZExtValue() != 0) - return; - - if (Op.getValueType() == MVT::i64) - Result = DAG.getRegister(ARM64::XZR, MVT::i64); - else - Result = DAG.getRegister(ARM64::WZR, MVT::i32); - break; - } - - case 'I': - case 'J': - case 'K': - case 'L': - case 'M': - case 'N': - ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); - if (!C) - return; - - // Grab the value and do some validation. - uint64_t CVal = C->getZExtValue(); - switch (ConstraintLetter) { - // The I constraint applies only to simple ADD or SUB immediate operands: - // i.e. 0 to 4095 with optional shift by 12 - // The J constraint applies only to ADD or SUB immediates that would be - // valid when negated, i.e. if [an add pattern] were to be output as a SUB - // instruction [or vice versa], in other words -1 to -4095 with optional - // left shift by 12. - case 'I': - if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal)) - break; - return; - case 'J': { - uint64_t NVal = -C->getSExtValue(); - if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) - break; - return; - } - // The K and L constraints apply *only* to logical immediates, including - // what used to be the MOVI alias for ORR (though the MOVI alias has now - // been removed and MOV should be used). So these constraints have to - // distinguish between bit patterns that are valid 32-bit or 64-bit - // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but - // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice - // versa. - case 'K': - if (ARM64_AM::isLogicalImmediate(CVal, 32)) - break; - return; - case 'L': - if (ARM64_AM::isLogicalImmediate(CVal, 64)) - break; - return; - // The M and N constraints are a superset of K and L respectively, for use - // with the MOV (immediate) alias. As well as the logical immediates they - // also match 32 or 64-bit immediates that can be loaded either using a - // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca - // (M) or 64-bit 0x1234000000000000 (N) etc. - // As a note some of this code is liberally stolen from the asm parser. - case 'M': { - if (!isUInt<32>(CVal)) - return; - if (ARM64_AM::isLogicalImmediate(CVal, 32)) - break; - if ((CVal & 0xFFFF) == CVal) - break; - if ((CVal & 0xFFFF0000ULL) == CVal) - break; - uint64_t NCVal = ~(uint32_t)CVal; - if ((NCVal & 0xFFFFULL) == NCVal) - break; - if ((NCVal & 0xFFFF0000ULL) == NCVal) - break; - return; - } - case 'N': { - if (ARM64_AM::isLogicalImmediate(CVal, 64)) - break; - if ((CVal & 0xFFFFULL) == CVal) - break; - if ((CVal & 0xFFFF0000ULL) == CVal) - break; - if ((CVal & 0xFFFF00000000ULL) == CVal) - break; - if ((CVal & 0xFFFF000000000000ULL) == CVal) - break; - uint64_t NCVal = ~CVal; - if ((NCVal & 0xFFFFULL) == NCVal) - break; - if ((NCVal & 0xFFFF0000ULL) == NCVal) - break; - if ((NCVal & 0xFFFF00000000ULL) == NCVal) - break; - if ((NCVal & 0xFFFF000000000000ULL) == NCVal) - break; - return; - } - default: - return; - } - - // All assembler immediates are 64-bit integers. - Result = DAG.getTargetConstant(CVal, MVT::i64); - break; - } - - if (Result.getNode()) { - Ops.push_back(Result); - return; - } - - return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); -} - -//===----------------------------------------------------------------------===// -// ARM64 Advanced SIMD Support -//===----------------------------------------------------------------------===// - -/// WidenVector - Given a value in the V64 register class, produce the -/// equivalent value in the V128 register class. -static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) { - EVT VT = V64Reg.getValueType(); - unsigned NarrowSize = VT.getVectorNumElements(); - MVT EltTy = VT.getVectorElementType().getSimpleVT(); - MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize); - SDLoc DL(V64Reg); - - return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy), - V64Reg, DAG.getConstant(0, MVT::i32)); -} - -/// getExtFactor - Determine the adjustment factor for the position when -/// generating an "extract from vector registers" instruction. -static unsigned getExtFactor(SDValue &V) { - EVT EltType = V.getValueType().getVectorElementType(); - return EltType.getSizeInBits() / 8; -} - -/// NarrowVector - Given a value in the V128 register class, produce the -/// equivalent value in the V64 register class. -static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) { - EVT VT = V128Reg.getValueType(); - unsigned WideSize = VT.getVectorNumElements(); - MVT EltTy = VT.getVectorElementType().getSimpleVT(); - MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2); - SDLoc DL(V128Reg); - - return DAG.getTargetExtractSubreg(ARM64::dsub, DL, NarrowTy, V128Reg); -} - -// Gather data to see if the operation can be modelled as a -// shuffle in combination with VEXTs. -SDValue ARM64TargetLowering::ReconstructShuffle(SDValue Op, - SelectionDAG &DAG) const { - SDLoc dl(Op); - EVT VT = Op.getValueType(); - unsigned NumElts = VT.getVectorNumElements(); - - SmallVector<SDValue, 2> SourceVecs; - SmallVector<unsigned, 2> MinElts; - SmallVector<unsigned, 2> MaxElts; - - for (unsigned i = 0; i < NumElts; ++i) { - SDValue V = Op.getOperand(i); - if (V.getOpcode() == ISD::UNDEF) - continue; - else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) { - // A shuffle can only come from building a vector from various - // elements of other vectors. - return SDValue(); - } - - // Record this extraction against the appropriate vector if possible... - SDValue SourceVec = V.getOperand(0); - unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue(); - bool FoundSource = false; - for (unsigned j = 0; j < SourceVecs.size(); ++j) { - if (SourceVecs[j] == SourceVec) { - if (MinElts[j] > EltNo) - MinElts[j] = EltNo; - if (MaxElts[j] < EltNo) - MaxElts[j] = EltNo; - FoundSource = true; - break; - } - } - - // Or record a new source if not... - if (!FoundSource) { - SourceVecs.push_back(SourceVec); - MinElts.push_back(EltNo); - MaxElts.push_back(EltNo); - } - } - - // Currently only do something sane when at most two source vectors - // involved. - if (SourceVecs.size() > 2) - return SDValue(); - - SDValue ShuffleSrcs[2] = { DAG.getUNDEF(VT), DAG.getUNDEF(VT) }; - int VEXTOffsets[2] = { 0, 0 }; - - // This loop extracts the usage patterns of the source vectors - // and prepares appropriate SDValues for a shuffle if possible. - for (unsigned i = 0; i < SourceVecs.size(); ++i) { - if (SourceVecs[i].getValueType() == VT) { - // No VEXT necessary - ShuffleSrcs[i] = SourceVecs[i]; - VEXTOffsets[i] = 0; - continue; - } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) { - // We can pad out the smaller vector for free, so if it's part of a - // shuffle... - ShuffleSrcs[i] = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, SourceVecs[i], - DAG.getUNDEF(SourceVecs[i].getValueType())); - continue; - } - - // Don't attempt to extract subvectors from BUILD_VECTOR sources - // that expand or trunc the original value. - // TODO: We can try to bitcast and ANY_EXTEND the result but - // we need to consider the cost of vector ANY_EXTEND, and the - // legality of all the types. - if (SourceVecs[i].getValueType().getVectorElementType() != - VT.getVectorElementType()) - return SDValue(); - - // Since only 64-bit and 128-bit vectors are legal on ARM and - // we've eliminated the other cases... - assert(SourceVecs[i].getValueType().getVectorNumElements() == 2 * NumElts && - "unexpected vector sizes in ReconstructShuffle"); - - if (MaxElts[i] - MinElts[i] >= NumElts) { - // Span too large for a VEXT to cope - return SDValue(); - } - - if (MinElts[i] >= NumElts) { - // The extraction can just take the second half - VEXTOffsets[i] = NumElts; - ShuffleSrcs[i] = - DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SourceVecs[i], - DAG.getIntPtrConstant(NumElts)); - } else if (MaxElts[i] < NumElts) { - // The extraction can just take the first half - VEXTOffsets[i] = 0; - ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, - SourceVecs[i], DAG.getIntPtrConstant(0)); - } else { - // An actual VEXT is needed - VEXTOffsets[i] = MinElts[i]; - SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, - SourceVecs[i], DAG.getIntPtrConstant(0)); - SDValue VEXTSrc2 = - DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SourceVecs[i], - DAG.getIntPtrConstant(NumElts)); - unsigned Imm = VEXTOffsets[i] * getExtFactor(VEXTSrc1); - ShuffleSrcs[i] = DAG.getNode(ARM64ISD::EXT, dl, VT, VEXTSrc1, VEXTSrc2, - DAG.getConstant(Imm, MVT::i32)); - } - } - - SmallVector<int, 8> Mask; - - for (unsigned i = 0; i < NumElts; ++i) { - SDValue Entry = Op.getOperand(i); - if (Entry.getOpcode() == ISD::UNDEF) { - Mask.push_back(-1); - continue; - } - - SDValue ExtractVec = Entry.getOperand(0); - int ExtractElt = - cast<ConstantSDNode>(Op.getOperand(i).getOperand(1))->getSExtValue(); - if (ExtractVec == SourceVecs[0]) { - Mask.push_back(ExtractElt - VEXTOffsets[0]); - } else { - Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]); - } - } - - // Final check before we try to produce nonsense... - if (isShuffleMaskLegal(Mask, VT)) - return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1], - &Mask[0]); - - return SDValue(); -} - -// check if an EXT instruction can handle the shuffle mask when the -// vector sources of the shuffle are the same. -static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) { - unsigned NumElts = VT.getVectorNumElements(); - - // Assume that the first shuffle index is not UNDEF. Fail if it is. - if (M[0] < 0) - return false; - - Imm = M[0]; - - // If this is a VEXT shuffle, the immediate value is the index of the first - // element. The other shuffle indices must be the successive elements after - // the first one. - unsigned ExpectedElt = Imm; - for (unsigned i = 1; i < NumElts; ++i) { - // Increment the expected index. If it wraps around, just follow it - // back to index zero and keep going. - ++ExpectedElt; - if (ExpectedElt == NumElts) - ExpectedElt = 0; - - if (M[i] < 0) - continue; // ignore UNDEF indices - if (ExpectedElt != static_cast<unsigned>(M[i])) - return false; - } - - return true; -} - -// check if an EXT instruction can handle the shuffle mask when the -// vector sources of the shuffle are different. -static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT, - unsigned &Imm) { - // Look for the first non-undef element. - const int *FirstRealElt = std::find_if(M.begin(), M.end(), - [](int Elt) {return Elt >= 0;}); - - // Benefit form APInt to handle overflow when calculating expected element. - unsigned NumElts = VT.getVectorNumElements(); - unsigned MaskBits = APInt(32, NumElts * 2).logBase2(); - APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1); - // The following shuffle indices must be the successive elements after the - // first real element. - const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(), - [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;}); - if (FirstWrongElt != M.end()) - return false; - - // The index of an EXT is the first element if it is not UNDEF. - // Watch out for the beginning UNDEFs. The EXT index should be the expected - // value of the first element. E.g. - // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>. - // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>. - // ExpectedElt is the last mask index plus 1. - Imm = ExpectedElt.getZExtValue(); - - // There are two difference cases requiring to reverse input vectors. - // For example, for vector <4 x i32> we have the following cases, - // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>) - // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>) - // For both cases, we finally use mask <5, 6, 7, 0>, which requires - // to reverse two input vectors. - if (Imm < NumElts) - ReverseEXT = true; - else - Imm -= NumElts; - - return true; -} - -/// isREVMask - Check if a vector shuffle corresponds to a REV -/// instruction with the specified blocksize. (The order of the elements -/// within each block of the vector is reversed.) -static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) { - assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) && - "Only possible block sizes for REV are: 16, 32, 64"); - - unsigned EltSz = VT.getVectorElementType().getSizeInBits(); - if (EltSz == 64) - return false; - - unsigned NumElts = VT.getVectorNumElements(); - unsigned BlockElts = M[0] + 1; - // If the first shuffle index is UNDEF, be optimistic. - if (M[0] < 0) - BlockElts = BlockSize / EltSz; - - if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz) - return false; - - for (unsigned i = 0; i < NumElts; ++i) { - if (M[i] < 0) - continue; // ignore UNDEF indices - if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts)) - return false; - } - - return true; -} - -static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { - unsigned NumElts = VT.getVectorNumElements(); - WhichResult = (M[0] == 0 ? 0 : 1); - unsigned Idx = WhichResult * NumElts / 2; - for (unsigned i = 0; i != NumElts; i += 2) { - if ((M[i] >= 0 && (unsigned)M[i] != Idx) || - (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts)) - return false; - Idx += 1; - } - - return true; -} - -static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { - unsigned NumElts = VT.getVectorNumElements(); - WhichResult = (M[0] == 0 ? 0 : 1); - for (unsigned i = 0; i != NumElts; ++i) { - if (M[i] < 0) - continue; // ignore UNDEF indices - if ((unsigned)M[i] != 2 * i + WhichResult) - return false; - } - - return true; -} - -static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { - unsigned NumElts = VT.getVectorNumElements(); - WhichResult = (M[0] == 0 ? 0 : 1); - for (unsigned i = 0; i < NumElts; i += 2) { - if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) || - (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult)) - return false; - } - return true; -} - -/// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of -/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". -/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>. -static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { - unsigned NumElts = VT.getVectorNumElements(); - WhichResult = (M[0] == 0 ? 0 : 1); - unsigned Idx = WhichResult * NumElts / 2; - for (unsigned i = 0; i != NumElts; i += 2) { - if ((M[i] >= 0 && (unsigned)M[i] != Idx) || - (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx)) - return false; - Idx += 1; - } - - return true; -} - -/// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of -/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". -/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>, -static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { - unsigned Half = VT.getVectorNumElements() / 2; - WhichResult = (M[0] == 0 ? 0 : 1); - for (unsigned j = 0; j != 2; ++j) { - unsigned Idx = WhichResult; - for (unsigned i = 0; i != Half; ++i) { - int MIdx = M[i + j * Half]; - if (MIdx >= 0 && (unsigned)MIdx != Idx) - return false; - Idx += 2; - } - } - - return true; -} - -/// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of -/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". -/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>. -static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { - unsigned NumElts = VT.getVectorNumElements(); - WhichResult = (M[0] == 0 ? 0 : 1); - for (unsigned i = 0; i < NumElts; i += 2) { - if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) || - (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult)) - return false; - } - return true; -} - -static bool isINSMask(ArrayRef<int> M, int NumInputElements, - bool &DstIsLeft, int &Anomaly) { - if (M.size() != static_cast<size_t>(NumInputElements)) - return false; - - int NumLHSMatch = 0, NumRHSMatch = 0; - int LastLHSMismatch = -1, LastRHSMismatch = -1; - - for (int i = 0; i < NumInputElements; ++i) { - if (M[i] == -1) { - ++NumLHSMatch; - ++NumRHSMatch; - continue; - } - - if (M[i] == i) - ++NumLHSMatch; - else - LastLHSMismatch = i; - - if (M[i] == i + NumInputElements) - ++NumRHSMatch; - else - LastRHSMismatch = i; - } - - if (NumLHSMatch == NumInputElements - 1) { - DstIsLeft = true; - Anomaly = LastLHSMismatch; - return true; - } else if (NumRHSMatch == NumInputElements - 1) { - DstIsLeft = false; - Anomaly = LastRHSMismatch; - return true; - } - - return false; -} - -static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) { - if (VT.getSizeInBits() != 128) - return false; - - unsigned NumElts = VT.getVectorNumElements(); - - for (int I = 0, E = NumElts / 2; I != E; I++) { - if (Mask[I] != I) - return false; - } - - int Offset = NumElts / 2; - for (int I = NumElts / 2, E = NumElts; I != E; I++) { - if (Mask[I] != I + SplitLHS * Offset) - return false; - } - - return true; -} - -static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) { - SDLoc DL(Op); - EVT VT = Op.getValueType(); - SDValue V0 = Op.getOperand(0); - SDValue V1 = Op.getOperand(1); - ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask(); - - if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() || - VT.getVectorElementType() != V1.getValueType().getVectorElementType()) - return SDValue(); - - bool SplitV0 = V0.getValueType().getSizeInBits() == 128; - - if (!isConcatMask(Mask, VT, SplitV0)) - return SDValue(); - - EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), - VT.getVectorNumElements() / 2); - if (SplitV0) { - V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0, - DAG.getConstant(0, MVT::i64)); - } - if (V1.getValueType().getSizeInBits() == 128) { - V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1, - DAG.getConstant(0, MVT::i64)); - } - return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1); -} - -/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit -/// the specified operations to build the shuffle. -static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, - SDValue RHS, SelectionDAG &DAG, - SDLoc dl) { - unsigned OpNum = (PFEntry >> 26) & 0x0F; - unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1); - unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1); - - enum { - OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> - OP_VREV, - OP_VDUP0, - OP_VDUP1, - OP_VDUP2, - OP_VDUP3, - OP_VEXT1, - OP_VEXT2, - OP_VEXT3, - OP_VUZPL, // VUZP, left result - OP_VUZPR, // VUZP, right result - OP_VZIPL, // VZIP, left result - OP_VZIPR, // VZIP, right result - OP_VTRNL, // VTRN, left result - OP_VTRNR // VTRN, right result - }; - - if (OpNum == OP_COPY) { - if (LHSID == (1 * 9 + 2) * 9 + 3) - return LHS; - assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!"); - return RHS; - } - - SDValue OpLHS, OpRHS; - OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); - OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); - EVT VT = OpLHS.getValueType(); - - switch (OpNum) { - default: - llvm_unreachable("Unknown shuffle opcode!"); - case OP_VREV: - // VREV divides the vector in half and swaps within the half. - if (VT.getVectorElementType() == MVT::i32 || - VT.getVectorElementType() == MVT::f32) - return DAG.getNode(ARM64ISD::REV64, dl, VT, OpLHS); - // vrev <4 x i16> -> REV32 - if (VT.getVectorElementType() == MVT::i16) - return DAG.getNode(ARM64ISD::REV32, dl, VT, OpLHS); - // vrev <4 x i8> -> REV16 - assert(VT.getVectorElementType() == MVT::i8); - return DAG.getNode(ARM64ISD::REV16, dl, VT, OpLHS); - case OP_VDUP0: - case OP_VDUP1: - case OP_VDUP2: - case OP_VDUP3: { - EVT EltTy = VT.getVectorElementType(); - unsigned Opcode; - if (EltTy == MVT::i8) - Opcode = ARM64ISD::DUPLANE8; - else if (EltTy == MVT::i16) - Opcode = ARM64ISD::DUPLANE16; - else if (EltTy == MVT::i32 || EltTy == MVT::f32) - Opcode = ARM64ISD::DUPLANE32; - else if (EltTy == MVT::i64 || EltTy == MVT::f64) - Opcode = ARM64ISD::DUPLANE64; - else - llvm_unreachable("Invalid vector element type?"); - - if (VT.getSizeInBits() == 64) - OpLHS = WidenVector(OpLHS, DAG); - SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, MVT::i64); - return DAG.getNode(Opcode, dl, VT, OpLHS, Lane); - } - case OP_VEXT1: - case OP_VEXT2: - case OP_VEXT3: { - unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS); - return DAG.getNode(ARM64ISD::EXT, dl, VT, OpLHS, OpRHS, - DAG.getConstant(Imm, MVT::i32)); - } - case OP_VUZPL: - return DAG.getNode(ARM64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS, OpRHS); - case OP_VUZPR: - return DAG.getNode(ARM64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS, OpRHS); - case OP_VZIPL: - return DAG.getNode(ARM64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS, OpRHS); - case OP_VZIPR: - return DAG.getNode(ARM64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS, OpRHS); - case OP_VTRNL: - return DAG.getNode(ARM64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS, OpRHS); - case OP_VTRNR: - return DAG.getNode(ARM64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS, OpRHS); - } -} - -static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask, - SelectionDAG &DAG) { - // Check to see if we can use the TBL instruction. - SDValue V1 = Op.getOperand(0); - SDValue V2 = Op.getOperand(1); - SDLoc DL(Op); - - EVT EltVT = Op.getValueType().getVectorElementType(); - unsigned BytesPerElt = EltVT.getSizeInBits() / 8; - - SmallVector<SDValue, 8> TBLMask; - for (int Val : ShuffleMask) { - for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) { - unsigned Offset = Byte + Val * BytesPerElt; - TBLMask.push_back(DAG.getConstant(Offset, MVT::i32)); - } - } - - MVT IndexVT = MVT::v8i8; - unsigned IndexLen = 8; - if (Op.getValueType().getSizeInBits() == 128) { - IndexVT = MVT::v16i8; - IndexLen = 16; - } - - SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1); - SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2); - - SDValue Shuffle; - if (V2.getNode()->getOpcode() == ISD::UNDEF) { - if (IndexLen == 8) - V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst); - Shuffle = DAG.getNode( - ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, - DAG.getConstant(Intrinsic::arm64_neon_tbl1, MVT::i32), V1Cst, - DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT, - makeArrayRef(TBLMask.data(), IndexLen))); - } else { - if (IndexLen == 8) { - V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst); - Shuffle = DAG.getNode( - ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, - DAG.getConstant(Intrinsic::arm64_neon_tbl1, MVT::i32), V1Cst, - DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT, - makeArrayRef(TBLMask.data(), IndexLen))); - } else { - // FIXME: We cannot, for the moment, emit a TBL2 instruction because we - // cannot currently represent the register constraints on the input - // table registers. - // Shuffle = DAG.getNode(ARM64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst, - // DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT, - // &TBLMask[0], IndexLen)); - Shuffle = DAG.getNode( - ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, - DAG.getConstant(Intrinsic::arm64_neon_tbl2, MVT::i32), V1Cst, V2Cst, - DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT, - makeArrayRef(TBLMask.data(), IndexLen))); - } - } - return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle); -} - -static unsigned getDUPLANEOp(EVT EltType) { - if (EltType == MVT::i8) - return ARM64ISD::DUPLANE8; - if (EltType == MVT::i16) - return ARM64ISD::DUPLANE16; - if (EltType == MVT::i32 || EltType == MVT::f32) - return ARM64ISD::DUPLANE32; - if (EltType == MVT::i64 || EltType == MVT::f64) - return ARM64ISD::DUPLANE64; - - llvm_unreachable("Invalid vector element type?"); -} - -SDValue ARM64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, - SelectionDAG &DAG) const { - SDLoc dl(Op); - EVT VT = Op.getValueType(); - - ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); - - // Convert shuffles that are directly supported on NEON to target-specific - // DAG nodes, instead of keeping them as shuffles and matching them again - // during code selection. This is more efficient and avoids the possibility - // of inconsistencies between legalization and selection. - ArrayRef<int> ShuffleMask = SVN->getMask(); - - SDValue V1 = Op.getOperand(0); - SDValue V2 = Op.getOperand(1); - - if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], - V1.getValueType().getSimpleVT())) { - int Lane = SVN->getSplatIndex(); - // If this is undef splat, generate it via "just" vdup, if possible. - if (Lane == -1) - Lane = 0; - - if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) - return DAG.getNode(ARM64ISD::DUP, dl, V1.getValueType(), - V1.getOperand(0)); - // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non- - // constant. If so, we can just reference the lane's definition directly. - if (V1.getOpcode() == ISD::BUILD_VECTOR && - !isa<ConstantSDNode>(V1.getOperand(Lane))) - return DAG.getNode(ARM64ISD::DUP, dl, VT, V1.getOperand(Lane)); - - // Otherwise, duplicate from the lane of the input vector. - unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType()); - - // SelectionDAGBuilder may have "helpfully" already extracted or conatenated - // to make a vector of the same size as this SHUFFLE. We can ignore the - // extract entirely, and canonicalise the concat using WidenVector. - if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) { - Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue(); - V1 = V1.getOperand(0); - } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) { - unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2; - Lane -= Idx * VT.getVectorNumElements() / 2; - V1 = WidenVector(V1.getOperand(Idx), DAG); - } else if (VT.getSizeInBits() == 64) - V1 = WidenVector(V1, DAG); - - return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, MVT::i64)); - } - - if (isREVMask(ShuffleMask, VT, 64)) - return DAG.getNode(ARM64ISD::REV64, dl, V1.getValueType(), V1, V2); - if (isREVMask(ShuffleMask, VT, 32)) - return DAG.getNode(ARM64ISD::REV32, dl, V1.getValueType(), V1, V2); - if (isREVMask(ShuffleMask, VT, 16)) - return DAG.getNode(ARM64ISD::REV16, dl, V1.getValueType(), V1, V2); - - bool ReverseEXT = false; - unsigned Imm; - if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) { - if (ReverseEXT) - std::swap(V1, V2); - Imm *= getExtFactor(V1); - return DAG.getNode(ARM64ISD::EXT, dl, V1.getValueType(), V1, V2, - DAG.getConstant(Imm, MVT::i32)); - } else if (V2->getOpcode() == ISD::UNDEF && - isSingletonEXTMask(ShuffleMask, VT, Imm)) { - Imm *= getExtFactor(V1); - return DAG.getNode(ARM64ISD::EXT, dl, V1.getValueType(), V1, V1, - DAG.getConstant(Imm, MVT::i32)); - } - - unsigned WhichResult; - if (isZIPMask(ShuffleMask, VT, WhichResult)) { - unsigned Opc = (WhichResult == 0) ? ARM64ISD::ZIP1 : ARM64ISD::ZIP2; - return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); - } - if (isUZPMask(ShuffleMask, VT, WhichResult)) { - unsigned Opc = (WhichResult == 0) ? ARM64ISD::UZP1 : ARM64ISD::UZP2; - return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); - } - if (isTRNMask(ShuffleMask, VT, WhichResult)) { - unsigned Opc = (WhichResult == 0) ? ARM64ISD::TRN1 : ARM64ISD::TRN2; - return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); - } - - if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) { - unsigned Opc = (WhichResult == 0) ? ARM64ISD::ZIP1 : ARM64ISD::ZIP2; - return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); - } - if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) { - unsigned Opc = (WhichResult == 0) ? ARM64ISD::UZP1 : ARM64ISD::UZP2; - return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); - } - if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) { - unsigned Opc = (WhichResult == 0) ? ARM64ISD::TRN1 : ARM64ISD::TRN2; - return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); - } - - SDValue Concat = tryFormConcatFromShuffle(Op, DAG); - if (Concat.getNode()) - return Concat; - - bool DstIsLeft; - int Anomaly; - int NumInputElements = V1.getValueType().getVectorNumElements(); - if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) { - SDValue DstVec = DstIsLeft ? V1 : V2; - SDValue DstLaneV = DAG.getConstant(Anomaly, MVT::i64); - - SDValue SrcVec = V1; - int SrcLane = ShuffleMask[Anomaly]; - if (SrcLane >= NumInputElements) { - SrcVec = V2; - SrcLane -= VT.getVectorNumElements(); - } - SDValue SrcLaneV = DAG.getConstant(SrcLane, MVT::i64); - - EVT ScalarVT = VT.getVectorElementType(); - if (ScalarVT.getSizeInBits() < 32) - ScalarVT = MVT::i32; - - return DAG.getNode( - ISD::INSERT_VECTOR_ELT, dl, VT, DstVec, - DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV), - DstLaneV); - } - - // If the shuffle is not directly supported and it has 4 elements, use - // the PerfectShuffle-generated table to synthesize it from other shuffles. - unsigned NumElts = VT.getVectorNumElements(); - if (NumElts == 4) { - unsigned PFIndexes[4]; - for (unsigned i = 0; i != 4; ++i) { - if (ShuffleMask[i] < 0) - PFIndexes[i] = 8; - else - PFIndexes[i] = ShuffleMask[i]; - } - - // Compute the index in the perfect shuffle table. - unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 + - PFIndexes[2] * 9 + PFIndexes[3]; - unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; - unsigned Cost = (PFEntry >> 30); - - if (Cost <= 4) - return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); - } - - return GenerateTBL(Op, ShuffleMask, DAG); -} - -static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits, - APInt &UndefBits) { - EVT VT = BVN->getValueType(0); - APInt SplatBits, SplatUndef; - unsigned SplatBitSize; - bool HasAnyUndefs; - if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { - unsigned NumSplats = VT.getSizeInBits() / SplatBitSize; - - for (unsigned i = 0; i < NumSplats; ++i) { - CnstBits <<= SplatBitSize; - UndefBits <<= SplatBitSize; - CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits()); - UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits()); - } - - return true; - } - - return false; -} - -SDValue ARM64TargetLowering::LowerVectorAND(SDValue Op, - SelectionDAG &DAG) const { - BuildVectorSDNode *BVN = - dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode()); - SDValue LHS = Op.getOperand(0); - SDLoc dl(Op); - EVT VT = Op.getValueType(); - - if (!BVN) - return Op; - - APInt CnstBits(VT.getSizeInBits(), 0); - APInt UndefBits(VT.getSizeInBits(), 0); - if (resolveBuildVector(BVN, CnstBits, UndefBits)) { - // We only have BIC vector immediate instruction, which is and-not. - CnstBits = ~CnstBits; - - // We make use of a little bit of goto ickiness in order to avoid having to - // duplicate the immediate matching logic for the undef toggled case. - bool SecondTry = false; - AttemptModImm: - - if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) { - CnstBits = CnstBits.zextOrTrunc(64); - uint64_t CnstVal = CnstBits.getZExtValue(); - - if (ARM64_AM::isAdvSIMDModImmType1(CnstVal)) { - CnstVal = ARM64_AM::encodeAdvSIMDModImmType1(CnstVal); - MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; - SDValue Mov = DAG.getNode(ARM64ISD::BICi, dl, MovTy, LHS, - DAG.getConstant(CnstVal, MVT::i32), - DAG.getConstant(0, MVT::i32)); - return DAG.getNode(ISD::BITCAST, dl, VT, Mov); - } - - if (ARM64_AM::isAdvSIMDModImmType2(CnstVal)) { - CnstVal = ARM64_AM::encodeAdvSIMDModImmType2(CnstVal); - MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; - SDValue Mov = DAG.getNode(ARM64ISD::BICi, dl, MovTy, LHS, - DAG.getConstant(CnstVal, MVT::i32), - DAG.getConstant(8, MVT::i32)); - return DAG.getNode(ISD::BITCAST, dl, VT, Mov); - } - - if (ARM64_AM::isAdvSIMDModImmType3(CnstVal)) { - CnstVal = ARM64_AM::encodeAdvSIMDModImmType3(CnstVal); - MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; - SDValue Mov = DAG.getNode(ARM64ISD::BICi, dl, MovTy, LHS, - DAG.getConstant(CnstVal, MVT::i32), - DAG.getConstant(16, MVT::i32)); - return DAG.getNode(ISD::BITCAST, dl, VT, Mov); - } - - if (ARM64_AM::isAdvSIMDModImmType4(CnstVal)) { - CnstVal = ARM64_AM::encodeAdvSIMDModImmType4(CnstVal); - MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; - SDValue Mov = DAG.getNode(ARM64ISD::BICi, dl, MovTy, LHS, - DAG.getConstant(CnstVal, MVT::i32), - DAG.getConstant(24, MVT::i32)); - return DAG.getNode(ISD::BITCAST, dl, VT, Mov); - } - - if (ARM64_AM::isAdvSIMDModImmType5(CnstVal)) { - CnstVal = ARM64_AM::encodeAdvSIMDModImmType5(CnstVal); - MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; - SDValue Mov = DAG.getNode(ARM64ISD::BICi, dl, MovTy, LHS, - DAG.getConstant(CnstVal, MVT::i32), - DAG.getConstant(0, MVT::i32)); - return DAG.getNode(ISD::BITCAST, dl, VT, Mov); - } - - if (ARM64_AM::isAdvSIMDModImmType6(CnstVal)) { - CnstVal = ARM64_AM::encodeAdvSIMDModImmType6(CnstVal); - MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; - SDValue Mov = DAG.getNode(ARM64ISD::BICi, dl, MovTy, LHS, - DAG.getConstant(CnstVal, MVT::i32), - DAG.getConstant(8, MVT::i32)); - return DAG.getNode(ISD::BITCAST, dl, VT, Mov); - } - } - - if (SecondTry) - goto FailedModImm; - SecondTry = true; - CnstBits = ~UndefBits; - goto AttemptModImm; - } - -// We can always fall back to a non-immediate AND. -FailedModImm: - return Op; -} - -// Specialized code to quickly find if PotentialBVec is a BuildVector that -// consists of only the same constant int value, returned in reference arg -// ConstVal -static bool isAllConstantBuildVector(const SDValue &PotentialBVec, - uint64_t &ConstVal) { - BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec); - if (!Bvec) - return false; - ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0)); - if (!FirstElt) - return false; - EVT VT = Bvec->getValueType(0); - unsigned NumElts = VT.getVectorNumElements(); - for (unsigned i = 1; i < NumElts; ++i) - if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt) - return false; - ConstVal = FirstElt->getZExtValue(); - return true; -} - -static unsigned getIntrinsicID(const SDNode *N) { - unsigned Opcode = N->getOpcode(); - switch (Opcode) { - default: - return Intrinsic::not_intrinsic; - case ISD::INTRINSIC_WO_CHAIN: { - unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); - if (IID < Intrinsic::num_intrinsics) - return IID; - return Intrinsic::not_intrinsic; - } - } -} - -// Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)), -// to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a -// BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2. -// Also, logical shift right -> sri, with the same structure. -static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) { - EVT VT = N->getValueType(0); - - if (!VT.isVector()) - return SDValue(); - - SDLoc DL(N); - - // Is the first op an AND? - const SDValue And = N->getOperand(0); - if (And.getOpcode() != ISD::AND) - return SDValue(); - - // Is the second op an shl or lshr? - SDValue Shift = N->getOperand(1); - // This will have been turned into: ARM64ISD::VSHL vector, #shift - // or ARM64ISD::VLSHR vector, #shift - unsigned ShiftOpc = Shift.getOpcode(); - if ((ShiftOpc != ARM64ISD::VSHL && ShiftOpc != ARM64ISD::VLSHR)) - return SDValue(); - bool IsShiftRight = ShiftOpc == ARM64ISD::VLSHR; - - // Is the shift amount constant? - ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1)); - if (!C2node) - return SDValue(); - - // Is the and mask vector all constant? - uint64_t C1; - if (!isAllConstantBuildVector(And.getOperand(1), C1)) - return SDValue(); - - // Is C1 == ~C2, taking into account how much one can shift elements of a - // particular size? - uint64_t C2 = C2node->getZExtValue(); - unsigned ElemSizeInBits = VT.getVectorElementType().getSizeInBits(); - if (C2 > ElemSizeInBits) - return SDValue(); - unsigned ElemMask = (1 << ElemSizeInBits) - 1; - if ((C1 & ElemMask) != (~C2 & ElemMask)) - return SDValue(); - - SDValue X = And.getOperand(0); - SDValue Y = Shift.getOperand(0); - - unsigned Intrin = - IsShiftRight ? Intrinsic::arm64_neon_vsri : Intrinsic::arm64_neon_vsli; - SDValue ResultSLI = - DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, - DAG.getConstant(Intrin, MVT::i32), X, Y, Shift.getOperand(1)); - - DEBUG(dbgs() << "arm64-lower: transformed: \n"); - DEBUG(N->dump(&DAG)); - DEBUG(dbgs() << "into: \n"); - DEBUG(ResultSLI->dump(&DAG)); - - ++NumShiftInserts; - return ResultSLI; -} - -SDValue ARM64TargetLowering::LowerVectorOR(SDValue Op, - SelectionDAG &DAG) const { - // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2)) - if (EnableARM64SlrGeneration) { - SDValue Res = tryLowerToSLI(Op.getNode(), DAG); - if (Res.getNode()) - return Res; - } - - BuildVectorSDNode *BVN = - dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode()); - SDValue LHS = Op.getOperand(1); - SDLoc dl(Op); - EVT VT = Op.getValueType(); - - // OR commutes, so try swapping the operands. - if (!BVN) { - LHS = Op.getOperand(0); - BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode()); - } - if (!BVN) - return Op; - - APInt CnstBits(VT.getSizeInBits(), 0); - APInt UndefBits(VT.getSizeInBits(), 0); - if (resolveBuildVector(BVN, CnstBits, UndefBits)) { - // We make use of a little bit of goto ickiness in order to avoid having to - // duplicate the immediate matching logic for the undef toggled case. - bool SecondTry = false; - AttemptModImm: - - if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) { - CnstBits = CnstBits.zextOrTrunc(64); - uint64_t CnstVal = CnstBits.getZExtValue(); - - if (ARM64_AM::isAdvSIMDModImmType1(CnstVal)) { - CnstVal = ARM64_AM::encodeAdvSIMDModImmType1(CnstVal); - MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; - SDValue Mov = DAG.getNode(ARM64ISD::ORRi, dl, MovTy, LHS, - DAG.getConstant(CnstVal, MVT::i32), - DAG.getConstant(0, MVT::i32)); - return DAG.getNode(ISD::BITCAST, dl, VT, Mov); - } - - if (ARM64_AM::isAdvSIMDModImmType2(CnstVal)) { - CnstVal = ARM64_AM::encodeAdvSIMDModImmType2(CnstVal); - MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; - SDValue Mov = DAG.getNode(ARM64ISD::ORRi, dl, MovTy, LHS, - DAG.getConstant(CnstVal, MVT::i32), - DAG.getConstant(8, MVT::i32)); - return DAG.getNode(ISD::BITCAST, dl, VT, Mov); - } - - if (ARM64_AM::isAdvSIMDModImmType3(CnstVal)) { - CnstVal = ARM64_AM::encodeAdvSIMDModImmType3(CnstVal); - MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; - SDValue Mov = DAG.getNode(ARM64ISD::ORRi, dl, MovTy, LHS, - DAG.getConstant(CnstVal, MVT::i32), - DAG.getConstant(16, MVT::i32)); - return DAG.getNode(ISD::BITCAST, dl, VT, Mov); - } - - if (ARM64_AM::isAdvSIMDModImmType4(CnstVal)) { - CnstVal = ARM64_AM::encodeAdvSIMDModImmType4(CnstVal); - MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; - SDValue Mov = DAG.getNode(ARM64ISD::ORRi, dl, MovTy, LHS, - DAG.getConstant(CnstVal, MVT::i32), - DAG.getConstant(24, MVT::i32)); - return DAG.getNode(ISD::BITCAST, dl, VT, Mov); - } - - if (ARM64_AM::isAdvSIMDModImmType5(CnstVal)) { - CnstVal = ARM64_AM::encodeAdvSIMDModImmType5(CnstVal); - MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; - SDValue Mov = DAG.getNode(ARM64ISD::ORRi, dl, MovTy, LHS, - DAG.getConstant(CnstVal, MVT::i32), - DAG.getConstant(0, MVT::i32)); - return DAG.getNode(ISD::BITCAST, dl, VT, Mov); - } - - if (ARM64_AM::isAdvSIMDModImmType6(CnstVal)) { - CnstVal = ARM64_AM::encodeAdvSIMDModImmType6(CnstVal); - MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; - SDValue Mov = DAG.getNode(ARM64ISD::ORRi, dl, MovTy, LHS, - DAG.getConstant(CnstVal, MVT::i32), - DAG.getConstant(8, MVT::i32)); - return DAG.getNode(ISD::BITCAST, dl, VT, Mov); - } - } - - if (SecondTry) - goto FailedModImm; - SecondTry = true; - CnstBits = UndefBits; - goto AttemptModImm; - } - -// We can always fall back to a non-immediate OR. -FailedModImm: - return Op; -} - -SDValue ARM64TargetLowering::LowerBUILD_VECTOR(SDValue Op, - SelectionDAG &DAG) const { - BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode()); - SDLoc dl(Op); - EVT VT = Op.getValueType(); - - APInt CnstBits(VT.getSizeInBits(), 0); - APInt UndefBits(VT.getSizeInBits(), 0); - if (resolveBuildVector(BVN, CnstBits, UndefBits)) { - // We make use of a little bit of goto ickiness in order to avoid having to - // duplicate the immediate matching logic for the undef toggled case. - bool SecondTry = false; - AttemptModImm: - - if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) { - CnstBits = CnstBits.zextOrTrunc(64); - uint64_t CnstVal = CnstBits.getZExtValue(); - - // Certain magic vector constants (used to express things like NOT - // and NEG) are passed through unmodified. This allows codegen patterns - // for these operations to match. Special-purpose patterns will lower - // these immediates to MOVIs if it proves necessary. - if (VT.isInteger() && (CnstVal == 0 || CnstVal == ~0ULL)) - return Op; - - // The many faces of MOVI... - if (ARM64_AM::isAdvSIMDModImmType10(CnstVal)) { - CnstVal = ARM64_AM::encodeAdvSIMDModImmType10(CnstVal); - if (VT.getSizeInBits() == 128) { - SDValue Mov = DAG.getNode(ARM64ISD::MOVIedit, dl, MVT::v2i64, - DAG.getConstant(CnstVal, MVT::i32)); - return DAG.getNode(ISD::BITCAST, dl, VT, Mov); - } - - // Support the V64 version via subregister insertion. - SDValue Mov = DAG.getNode(ARM64ISD::MOVIedit, dl, MVT::f64, - DAG.getConstant(CnstVal, MVT::i32)); - return DAG.getNode(ISD::BITCAST, dl, VT, Mov); - } - - if (ARM64_AM::isAdvSIMDModImmType1(CnstVal)) { - CnstVal = ARM64_AM::encodeAdvSIMDModImmType1(CnstVal); - MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; - SDValue Mov = DAG.getNode(ARM64ISD::MOVIshift, dl, MovTy, - DAG.getConstant(CnstVal, MVT::i32), - DAG.getConstant(0, MVT::i32)); - return DAG.getNode(ISD::BITCAST, dl, VT, Mov); - } - - if (ARM64_AM::isAdvSIMDModImmType2(CnstVal)) { - CnstVal = ARM64_AM::encodeAdvSIMDModImmType2(CnstVal); - MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; - SDValue Mov = DAG.getNode(ARM64ISD::MOVIshift, dl, MovTy, - DAG.getConstant(CnstVal, MVT::i32), - DAG.getConstant(8, MVT::i32)); - return DAG.getNode(ISD::BITCAST, dl, VT, Mov); - } - - if (ARM64_AM::isAdvSIMDModImmType3(CnstVal)) { - CnstVal = ARM64_AM::encodeAdvSIMDModImmType3(CnstVal); - MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; - SDValue Mov = DAG.getNode(ARM64ISD::MOVIshift, dl, MovTy, - DAG.getConstant(CnstVal, MVT::i32), - DAG.getConstant(16, MVT::i32)); - return DAG.getNode(ISD::BITCAST, dl, VT, Mov); - } - - if (ARM64_AM::isAdvSIMDModImmType4(CnstVal)) { - CnstVal = ARM64_AM::encodeAdvSIMDModImmType4(CnstVal); - MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; - SDValue Mov = DAG.getNode(ARM64ISD::MOVIshift, dl, MovTy, - DAG.getConstant(CnstVal, MVT::i32), - DAG.getConstant(24, MVT::i32)); - return DAG.getNode(ISD::BITCAST, dl, VT, Mov); - } - - if (ARM64_AM::isAdvSIMDModImmType5(CnstVal)) { - CnstVal = ARM64_AM::encodeAdvSIMDModImmType5(CnstVal); - MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; - SDValue Mov = DAG.getNode(ARM64ISD::MOVIshift, dl, MovTy, - DAG.getConstant(CnstVal, MVT::i32), - DAG.getConstant(0, MVT::i32)); - return DAG.getNode(ISD::BITCAST, dl, VT, Mov); - } - - if (ARM64_AM::isAdvSIMDModImmType6(CnstVal)) { - CnstVal = ARM64_AM::encodeAdvSIMDModImmType6(CnstVal); - MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; - SDValue Mov = DAG.getNode(ARM64ISD::MOVIshift, dl, MovTy, - DAG.getConstant(CnstVal, MVT::i32), - DAG.getConstant(8, MVT::i32)); - return DAG.getNode(ISD::BITCAST, dl, VT, Mov); - } - - if (ARM64_AM::isAdvSIMDModImmType7(CnstVal)) { - CnstVal = ARM64_AM::encodeAdvSIMDModImmType7(CnstVal); - MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; - SDValue Mov = DAG.getNode(ARM64ISD::MOVImsl, dl, MovTy, - DAG.getConstant(CnstVal, MVT::i32), - DAG.getConstant(264, MVT::i32)); - return DAG.getNode(ISD::BITCAST, dl, VT, Mov); - } - - if (ARM64_AM::isAdvSIMDModImmType8(CnstVal)) { - CnstVal = ARM64_AM::encodeAdvSIMDModImmType8(CnstVal); - MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; - SDValue Mov = DAG.getNode(ARM64ISD::MOVImsl, dl, MovTy, - DAG.getConstant(CnstVal, MVT::i32), - DAG.getConstant(272, MVT::i32)); - return DAG.getNode(ISD::BITCAST, dl, VT, Mov); - } - - if (ARM64_AM::isAdvSIMDModImmType9(CnstVal)) { - CnstVal = ARM64_AM::encodeAdvSIMDModImmType9(CnstVal); - MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8; - SDValue Mov = DAG.getNode(ARM64ISD::MOVI, dl, MovTy, - DAG.getConstant(CnstVal, MVT::i32)); - return DAG.getNode(ISD::BITCAST, dl, VT, Mov); - } - - // The few faces of FMOV... - if (ARM64_AM::isAdvSIMDModImmType11(CnstVal)) { - CnstVal = ARM64_AM::encodeAdvSIMDModImmType11(CnstVal); - MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4f32 : MVT::v2f32; - SDValue Mov = DAG.getNode(ARM64ISD::FMOV, dl, MovTy, - DAG.getConstant(CnstVal, MVT::i32)); - return DAG.getNode(ISD::BITCAST, dl, VT, Mov); - } - - if (ARM64_AM::isAdvSIMDModImmType12(CnstVal) && - VT.getSizeInBits() == 128) { - CnstVal = ARM64_AM::encodeAdvSIMDModImmType12(CnstVal); - SDValue Mov = DAG.getNode(ARM64ISD::FMOV, dl, MVT::v2f64, - DAG.getConstant(CnstVal, MVT::i32)); - return DAG.getNode(ISD::BITCAST, dl, VT, Mov); - } - - // The many faces of MVNI... - CnstVal = ~CnstVal; - if (ARM64_AM::isAdvSIMDModImmType1(CnstVal)) { - CnstVal = ARM64_AM::encodeAdvSIMDModImmType1(CnstVal); - MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; - SDValue Mov = DAG.getNode(ARM64ISD::MVNIshift, dl, MovTy, - DAG.getConstant(CnstVal, MVT::i32), - DAG.getConstant(0, MVT::i32)); - return DAG.getNode(ISD::BITCAST, dl, VT, Mov); - } - - if (ARM64_AM::isAdvSIMDModImmType2(CnstVal)) { - CnstVal = ARM64_AM::encodeAdvSIMDModImmType2(CnstVal); - MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; - SDValue Mov = DAG.getNode(ARM64ISD::MVNIshift, dl, MovTy, - DAG.getConstant(CnstVal, MVT::i32), - DAG.getConstant(8, MVT::i32)); - return DAG.getNode(ISD::BITCAST, dl, VT, Mov); - } - - if (ARM64_AM::isAdvSIMDModImmType3(CnstVal)) { - CnstVal = ARM64_AM::encodeAdvSIMDModImmType3(CnstVal); - MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; - SDValue Mov = DAG.getNode(ARM64ISD::MVNIshift, dl, MovTy, - DAG.getConstant(CnstVal, MVT::i32), - DAG.getConstant(16, MVT::i32)); - return DAG.getNode(ISD::BITCAST, dl, VT, Mov); - } - - if (ARM64_AM::isAdvSIMDModImmType4(CnstVal)) { - CnstVal = ARM64_AM::encodeAdvSIMDModImmType4(CnstVal); - MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; - SDValue Mov = DAG.getNode(ARM64ISD::MVNIshift, dl, MovTy, - DAG.getConstant(CnstVal, MVT::i32), - DAG.getConstant(24, MVT::i32)); - return DAG.getNode(ISD::BITCAST, dl, VT, Mov); - } - - if (ARM64_AM::isAdvSIMDModImmType5(CnstVal)) { - CnstVal = ARM64_AM::encodeAdvSIMDModImmType5(CnstVal); - MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; - SDValue Mov = DAG.getNode(ARM64ISD::MVNIshift, dl, MovTy, - DAG.getConstant(CnstVal, MVT::i32), - DAG.getConstant(0, MVT::i32)); - return DAG.getNode(ISD::BITCAST, dl, VT, Mov); - } - - if (ARM64_AM::isAdvSIMDModImmType6(CnstVal)) { - CnstVal = ARM64_AM::encodeAdvSIMDModImmType6(CnstVal); - MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; - SDValue Mov = DAG.getNode(ARM64ISD::MVNIshift, dl, MovTy, - DAG.getConstant(CnstVal, MVT::i32), - DAG.getConstant(8, MVT::i32)); - return DAG.getNode(ISD::BITCAST, dl, VT, Mov); - } - - if (ARM64_AM::isAdvSIMDModImmType7(CnstVal)) { - CnstVal = ARM64_AM::encodeAdvSIMDModImmType7(CnstVal); - MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; - SDValue Mov = DAG.getNode(ARM64ISD::MVNImsl, dl, MovTy, - DAG.getConstant(CnstVal, MVT::i32), - DAG.getConstant(264, MVT::i32)); - return DAG.getNode(ISD::BITCAST, dl, VT, Mov); - } - - if (ARM64_AM::isAdvSIMDModImmType8(CnstVal)) { - CnstVal = ARM64_AM::encodeAdvSIMDModImmType8(CnstVal); - MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; - SDValue Mov = DAG.getNode(ARM64ISD::MVNImsl, dl, MovTy, - DAG.getConstant(CnstVal, MVT::i32), - DAG.getConstant(272, MVT::i32)); - return DAG.getNode(ISD::BITCAST, dl, VT, Mov); - } - } - - if (SecondTry) - goto FailedModImm; - SecondTry = true; - CnstBits = UndefBits; - goto AttemptModImm; - } -FailedModImm: - - // Scan through the operands to find some interesting properties we can - // exploit: - // 1) If only one value is used, we can use a DUP, or - // 2) if only the low element is not undef, we can just insert that, or - // 3) if only one constant value is used (w/ some non-constant lanes), - // we can splat the constant value into the whole vector then fill - // in the non-constant lanes. - // 4) FIXME: If different constant values are used, but we can intelligently - // select the values we'll be overwriting for the non-constant - // lanes such that we can directly materialize the vector - // some other way (MOVI, e.g.), we can be sneaky. - unsigned NumElts = VT.getVectorNumElements(); - bool isOnlyLowElement = true; - bool usesOnlyOneValue = true; - bool usesOnlyOneConstantValue = true; - bool isConstant = true; - unsigned NumConstantLanes = 0; - SDValue Value; - SDValue ConstantValue; - for (unsigned i = 0; i < NumElts; ++i) { - SDValue V = Op.getOperand(i); - if (V.getOpcode() == ISD::UNDEF) - continue; - if (i > 0) - isOnlyLowElement = false; - if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) - isConstant = false; - - if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) { - ++NumConstantLanes; - if (!ConstantValue.getNode()) - ConstantValue = V; - else if (ConstantValue != V) - usesOnlyOneConstantValue = false; - } - - if (!Value.getNode()) - Value = V; - else if (V != Value) - usesOnlyOneValue = false; - } - - if (!Value.getNode()) - return DAG.getUNDEF(VT); - - if (isOnlyLowElement) - return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value); - - // Use DUP for non-constant splats. For f32 constant splats, reduce to - // i32 and try again. - if (usesOnlyOneValue) { - if (!isConstant) { - if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT || - Value.getValueType() != VT) - return DAG.getNode(ARM64ISD::DUP, dl, VT, Value); - - // This is actually a DUPLANExx operation, which keeps everything vectory. - - // DUPLANE works on 128-bit vectors, widen it if necessary. - SDValue Lane = Value.getOperand(1); - Value = Value.getOperand(0); - if (Value.getValueType().getSizeInBits() == 64) - Value = WidenVector(Value, DAG); - - unsigned Opcode = getDUPLANEOp(VT.getVectorElementType()); - return DAG.getNode(Opcode, dl, VT, Value, Lane); - } - - if (VT.getVectorElementType().isFloatingPoint()) { - SmallVector<SDValue, 8> Ops; - MVT NewType = - (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; - for (unsigned i = 0; i < NumElts; ++i) - Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i))); - EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts); - SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops); - Val = LowerBUILD_VECTOR(Val, DAG); - if (Val.getNode()) - return DAG.getNode(ISD::BITCAST, dl, VT, Val); - } - } - - // If there was only one constant value used and for more than one lane, - // start by splatting that value, then replace the non-constant lanes. This - // is better than the default, which will perform a separate initialization - // for each lane. - if (NumConstantLanes > 0 && usesOnlyOneConstantValue) { - SDValue Val = DAG.getNode(ARM64ISD::DUP, dl, VT, ConstantValue); - // Now insert the non-constant lanes. - for (unsigned i = 0; i < NumElts; ++i) { - SDValue V = Op.getOperand(i); - SDValue LaneIdx = DAG.getConstant(i, MVT::i64); - if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) { - // Note that type legalization likely mucked about with the VT of the - // source operand, so we may have to convert it here before inserting. - Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx); - } - } - return Val; - } - - // If all elements are constants and the case above didn't get hit, fall back - // to the default expansion, which will generate a load from the constant - // pool. - if (isConstant) - return SDValue(); - - // Empirical tests suggest this is rarely worth it for vectors of length <= 2. - if (NumElts >= 4) { - SDValue shuffle = ReconstructShuffle(Op, DAG); - if (shuffle != SDValue()) - return shuffle; - } - - // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we - // know the default expansion would otherwise fall back on something even - // worse. For a vector with one or two non-undef values, that's - // scalar_to_vector for the elements followed by a shuffle (provided the - // shuffle is valid for the target) and materialization element by element - // on the stack followed by a load for everything else. - if (!isConstant && !usesOnlyOneValue) { - SDValue Vec = DAG.getUNDEF(VT); - SDValue Op0 = Op.getOperand(0); - unsigned ElemSize = VT.getVectorElementType().getSizeInBits(); - unsigned i = 0; - // For 32 and 64 bit types, use INSERT_SUBREG for lane zero to - // a) Avoid a RMW dependency on the full vector register, and - // b) Allow the register coalescer to fold away the copy if the - // value is already in an S or D register. - if (Op0.getOpcode() != ISD::UNDEF && (ElemSize == 32 || ElemSize == 64)) { - unsigned SubIdx = ElemSize == 32 ? ARM64::ssub : ARM64::dsub; - MachineSDNode *N = - DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VT, Vec, Op0, - DAG.getTargetConstant(SubIdx, MVT::i32)); - Vec = SDValue(N, 0); - ++i; - } - for (; i < NumElts; ++i) { - SDValue V = Op.getOperand(i); - if (V.getOpcode() == ISD::UNDEF) - continue; - SDValue LaneIdx = DAG.getConstant(i, MVT::i64); - Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx); - } - return Vec; - } - - // Just use the default expansion. We failed to find a better alternative. - return SDValue(); -} - -SDValue ARM64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, - SelectionDAG &DAG) const { - assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!"); - - // Check for non-constant lane. - if (!isa<ConstantSDNode>(Op.getOperand(2))) - return SDValue(); - - EVT VT = Op.getOperand(0).getValueType(); - - // Insertion/extraction are legal for V128 types. - if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || - VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64) - return Op; - - if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 && - VT != MVT::v1i64 && VT != MVT::v2f32) - return SDValue(); - - // For V64 types, we perform insertion by expanding the value - // to a V128 type and perform the insertion on that. - SDLoc DL(Op); - SDValue WideVec = WidenVector(Op.getOperand(0), DAG); - EVT WideTy = WideVec.getValueType(); - - SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec, - Op.getOperand(1), Op.getOperand(2)); - // Re-narrow the resultant vector. - return NarrowVector(Node, DAG); -} - -SDValue ARM64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, - SelectionDAG &DAG) const { - assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!"); - - // Check for non-constant lane. - if (!isa<ConstantSDNode>(Op.getOperand(1))) - return SDValue(); - - EVT VT = Op.getOperand(0).getValueType(); - - // Insertion/extraction are legal for V128 types. - if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || - VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64) - return Op; - - if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 && - VT != MVT::v1i64 && VT != MVT::v2f32) - return SDValue(); - - // For V64 types, we perform extraction by expanding the value - // to a V128 type and perform the extraction on that. - SDLoc DL(Op); - SDValue WideVec = WidenVector(Op.getOperand(0), DAG); - EVT WideTy = WideVec.getValueType(); - - EVT ExtrTy = WideTy.getVectorElementType(); - if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8) - ExtrTy = MVT::i32; - - // For extractions, we just return the result directly. - return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec, - Op.getOperand(1)); -} - -SDValue ARM64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, - SelectionDAG &DAG) const { - EVT VT = Op.getOperand(0).getValueType(); - SDLoc dl(Op); - // Just in case... - if (!VT.isVector()) - return SDValue(); - - ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1)); - if (!Cst) - return SDValue(); - unsigned Val = Cst->getZExtValue(); - - unsigned Size = Op.getValueType().getSizeInBits(); - if (Val == 0) { - switch (Size) { - case 8: - return DAG.getTargetExtractSubreg(ARM64::bsub, dl, Op.getValueType(), - Op.getOperand(0)); - case 16: - return DAG.getTargetExtractSubreg(ARM64::hsub, dl, Op.getValueType(), - Op.getOperand(0)); - case 32: - return DAG.getTargetExtractSubreg(ARM64::ssub, dl, Op.getValueType(), - Op.getOperand(0)); - case 64: - return DAG.getTargetExtractSubreg(ARM64::dsub, dl, Op.getValueType(), - Op.getOperand(0)); - default: - llvm_unreachable("Unexpected vector type in extract_subvector!"); - } - } - // If this is extracting the upper 64-bits of a 128-bit vector, we match - // that directly. - if (Size == 64 && Val * VT.getVectorElementType().getSizeInBits() == 64) - return Op; - - return SDValue(); -} - -bool ARM64TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M, - EVT VT) const { - if (VT.getVectorNumElements() == 4 && - (VT.is128BitVector() || VT.is64BitVector())) { - unsigned PFIndexes[4]; - for (unsigned i = 0; i != 4; ++i) { - if (M[i] < 0) - PFIndexes[i] = 8; - else - PFIndexes[i] = M[i]; - } - - // Compute the index in the perfect shuffle table. - unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 + - PFIndexes[2] * 9 + PFIndexes[3]; - unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; - unsigned Cost = (PFEntry >> 30); - - if (Cost <= 4) - return true; - } - - bool DummyBool; - int DummyInt; - unsigned DummyUnsigned; - - return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) || - isREVMask(M, VT, 32) || isREVMask(M, VT, 16) || - isEXTMask(M, VT, DummyBool, DummyUnsigned) || - // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM. - isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) || - isZIPMask(M, VT, DummyUnsigned) || - isTRN_v_undef_Mask(M, VT, DummyUnsigned) || - isUZP_v_undef_Mask(M, VT, DummyUnsigned) || - isZIP_v_undef_Mask(M, VT, DummyUnsigned) || - isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) || - isConcatMask(M, VT, VT.getSizeInBits() == 128)); -} - -/// getVShiftImm - Check if this is a valid build_vector for the immediate -/// operand of a vector shift operation, where all the elements of the -/// build_vector must have the same constant integer value. -static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) { - // Ignore bit_converts. - while (Op.getOpcode() == ISD::BITCAST) - Op = Op.getOperand(0); - BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); - APInt SplatBits, SplatUndef; - unsigned SplatBitSize; - bool HasAnyUndefs; - if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, - HasAnyUndefs, ElementBits) || - SplatBitSize > ElementBits) - return false; - Cnt = SplatBits.getSExtValue(); - return true; -} - -/// isVShiftLImm - Check if this is a valid build_vector for the immediate -/// operand of a vector shift left operation. That value must be in the range: -/// 0 <= Value < ElementBits for a left shift; or -/// 0 <= Value <= ElementBits for a long left shift. -static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) { - assert(VT.isVector() && "vector shift count is not a vector type"); - unsigned ElementBits = VT.getVectorElementType().getSizeInBits(); - if (!getVShiftImm(Op, ElementBits, Cnt)) - return false; - return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits); -} - -/// isVShiftRImm - Check if this is a valid build_vector for the immediate -/// operand of a vector shift right operation. For a shift opcode, the value -/// is positive, but for an intrinsic the value count must be negative. The -/// absolute value must be in the range: -/// 1 <= |Value| <= ElementBits for a right shift; or -/// 1 <= |Value| <= ElementBits/2 for a narrow right shift. -static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic, - int64_t &Cnt) { - assert(VT.isVector() && "vector shift count is not a vector type"); - unsigned ElementBits = VT.getVectorElementType().getSizeInBits(); - if (!getVShiftImm(Op, ElementBits, Cnt)) - return false; - if (isIntrinsic) - Cnt = -Cnt; - return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits)); -} - -SDValue ARM64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op, - SelectionDAG &DAG) const { - EVT VT = Op.getValueType(); - SDLoc DL(Op); - int64_t Cnt; - - if (!Op.getOperand(1).getValueType().isVector()) - return Op; - unsigned EltSize = VT.getVectorElementType().getSizeInBits(); - - switch (Op.getOpcode()) { - default: - llvm_unreachable("unexpected shift opcode"); - - case ISD::SHL: - if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) - return DAG.getNode(ARM64ISD::VSHL, SDLoc(Op), VT, Op.getOperand(0), - DAG.getConstant(Cnt, MVT::i32)); - return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, - DAG.getConstant(Intrinsic::arm64_neon_ushl, MVT::i32), - Op.getOperand(0), Op.getOperand(1)); - case ISD::SRA: - case ISD::SRL: - // Right shift immediate - if (isVShiftRImm(Op.getOperand(1), VT, false, false, Cnt) && - Cnt < EltSize) { - unsigned Opc = - (Op.getOpcode() == ISD::SRA) ? ARM64ISD::VASHR : ARM64ISD::VLSHR; - return DAG.getNode(Opc, SDLoc(Op), VT, Op.getOperand(0), - DAG.getConstant(Cnt, MVT::i32)); - } - - // Right shift register. Note, there is not a shift right register - // instruction, but the shift left register instruction takes a signed - // value, where negative numbers specify a right shift. - unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::arm64_neon_sshl - : Intrinsic::arm64_neon_ushl; - // negate the shift amount - SDValue NegShift = DAG.getNode(ARM64ISD::NEG, DL, VT, Op.getOperand(1)); - SDValue NegShiftLeft = - DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, - DAG.getConstant(Opc, MVT::i32), Op.getOperand(0), NegShift); - return NegShiftLeft; - } - - return SDValue(); -} - -static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS, - ARM64CC::CondCode CC, bool NoNans, EVT VT, - SDLoc dl, SelectionDAG &DAG) { - EVT SrcVT = LHS.getValueType(); - - BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); - APInt CnstBits(VT.getSizeInBits(), 0); - APInt UndefBits(VT.getSizeInBits(), 0); - bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits); - bool IsZero = IsCnst && (CnstBits == 0); - - if (SrcVT.getVectorElementType().isFloatingPoint()) { - switch (CC) { - default: - return SDValue(); - case ARM64CC::NE: { - SDValue Fcmeq; - if (IsZero) - Fcmeq = DAG.getNode(ARM64ISD::FCMEQz, dl, VT, LHS); - else - Fcmeq = DAG.getNode(ARM64ISD::FCMEQ, dl, VT, LHS, RHS); - return DAG.getNode(ARM64ISD::NOT, dl, VT, Fcmeq); - } - case ARM64CC::EQ: - if (IsZero) - return DAG.getNode(ARM64ISD::FCMEQz, dl, VT, LHS); - return DAG.getNode(ARM64ISD::FCMEQ, dl, VT, LHS, RHS); - case ARM64CC::GE: - if (IsZero) - return DAG.getNode(ARM64ISD::FCMGEz, dl, VT, LHS); - return DAG.getNode(ARM64ISD::FCMGE, dl, VT, LHS, RHS); - case ARM64CC::GT: - if (IsZero) - return DAG.getNode(ARM64ISD::FCMGTz, dl, VT, LHS); - return DAG.getNode(ARM64ISD::FCMGT, dl, VT, LHS, RHS); - case ARM64CC::LS: - if (IsZero) - return DAG.getNode(ARM64ISD::FCMLEz, dl, VT, LHS); - return DAG.getNode(ARM64ISD::FCMGE, dl, VT, RHS, LHS); - case ARM64CC::LT: - if (!NoNans) - return SDValue(); - // If we ignore NaNs then we can use to the MI implementation. - // Fallthrough. - case ARM64CC::MI: - if (IsZero) - return DAG.getNode(ARM64ISD::FCMLTz, dl, VT, LHS); - return DAG.getNode(ARM64ISD::FCMGT, dl, VT, RHS, LHS); - } - } - - switch (CC) { - default: - return SDValue(); - case ARM64CC::NE: { - SDValue Cmeq; - if (IsZero) - Cmeq = DAG.getNode(ARM64ISD::CMEQz, dl, VT, LHS); - else - Cmeq = DAG.getNode(ARM64ISD::CMEQ, dl, VT, LHS, RHS); - return DAG.getNode(ARM64ISD::NOT, dl, VT, Cmeq); - } - case ARM64CC::EQ: - if (IsZero) - return DAG.getNode(ARM64ISD::CMEQz, dl, VT, LHS); - return DAG.getNode(ARM64ISD::CMEQ, dl, VT, LHS, RHS); - case ARM64CC::GE: - if (IsZero) - return DAG.getNode(ARM64ISD::CMGEz, dl, VT, LHS); - return DAG.getNode(ARM64ISD::CMGE, dl, VT, LHS, RHS); - case ARM64CC::GT: - if (IsZero) - return DAG.getNode(ARM64ISD::CMGTz, dl, VT, LHS); - return DAG.getNode(ARM64ISD::CMGT, dl, VT, LHS, RHS); - case ARM64CC::LE: - if (IsZero) - return DAG.getNode(ARM64ISD::CMLEz, dl, VT, LHS); - return DAG.getNode(ARM64ISD::CMGE, dl, VT, RHS, LHS); - case ARM64CC::LS: - return DAG.getNode(ARM64ISD::CMHS, dl, VT, RHS, LHS); - case ARM64CC::LO: - return DAG.getNode(ARM64ISD::CMHI, dl, VT, RHS, LHS); - case ARM64CC::LT: - if (IsZero) - return DAG.getNode(ARM64ISD::CMLTz, dl, VT, LHS); - return DAG.getNode(ARM64ISD::CMGT, dl, VT, RHS, LHS); - case ARM64CC::HI: - return DAG.getNode(ARM64ISD::CMHI, dl, VT, LHS, RHS); - case ARM64CC::HS: - return DAG.getNode(ARM64ISD::CMHS, dl, VT, LHS, RHS); - } -} - -SDValue ARM64TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const { - ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); - SDValue LHS = Op.getOperand(0); - SDValue RHS = Op.getOperand(1); - SDLoc dl(Op); - - if (LHS.getValueType().getVectorElementType().isInteger()) { - assert(LHS.getValueType() == RHS.getValueType()); - ARM64CC::CondCode ARM64CC = changeIntCCToARM64CC(CC); - return EmitVectorComparison(LHS, RHS, ARM64CC, false, Op.getValueType(), dl, - DAG); - } - - assert(LHS.getValueType().getVectorElementType() == MVT::f32 || - LHS.getValueType().getVectorElementType() == MVT::f64); - - // Unfortunately, the mapping of LLVM FP CC's onto ARM64 CC's isn't totally - // clean. Some of them require two branches to implement. - ARM64CC::CondCode CC1, CC2; - bool ShouldInvert; - changeVectorFPCCToARM64CC(CC, CC1, CC2, ShouldInvert); - - bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath; - SDValue Cmp = - EmitVectorComparison(LHS, RHS, CC1, NoNaNs, Op.getValueType(), dl, DAG); - if (!Cmp.getNode()) - return SDValue(); - - if (CC2 != ARM64CC::AL) { - SDValue Cmp2 = - EmitVectorComparison(LHS, RHS, CC2, NoNaNs, Op.getValueType(), dl, DAG); - if (!Cmp2.getNode()) - return SDValue(); - - Cmp = DAG.getNode(ISD::OR, dl, Cmp.getValueType(), Cmp, Cmp2); - } - - if (ShouldInvert) - return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType()); - - return Cmp; -} - -/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as -/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment -/// specified in the intrinsic calls. -bool ARM64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, - const CallInst &I, - unsigned Intrinsic) const { - switch (Intrinsic) { - case Intrinsic::arm64_neon_ld2: - case Intrinsic::arm64_neon_ld3: - case Intrinsic::arm64_neon_ld4: - case Intrinsic::arm64_neon_ld1x2: - case Intrinsic::arm64_neon_ld1x3: - case Intrinsic::arm64_neon_ld1x4: - case Intrinsic::arm64_neon_ld2lane: - case Intrinsic::arm64_neon_ld3lane: - case Intrinsic::arm64_neon_ld4lane: - case Intrinsic::arm64_neon_ld2r: - case Intrinsic::arm64_neon_ld3r: - case Intrinsic::arm64_neon_ld4r: { - Info.opc = ISD::INTRINSIC_W_CHAIN; - // Conservatively set memVT to the entire set of vectors loaded. - uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8; - Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); - Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1); - Info.offset = 0; - Info.align = 0; - Info.vol = false; // volatile loads with NEON intrinsics not supported - Info.readMem = true; - Info.writeMem = false; - return true; - } - case Intrinsic::arm64_neon_st2: - case Intrinsic::arm64_neon_st3: - case Intrinsic::arm64_neon_st4: - case Intrinsic::arm64_neon_st1x2: - case Intrinsic::arm64_neon_st1x3: - case Intrinsic::arm64_neon_st1x4: - case Intrinsic::arm64_neon_st2lane: - case Intrinsic::arm64_neon_st3lane: - case Intrinsic::arm64_neon_st4lane: { - Info.opc = ISD::INTRINSIC_VOID; - // Conservatively set memVT to the entire set of vectors stored. - unsigned NumElts = 0; - for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) { - Type *ArgTy = I.getArgOperand(ArgI)->getType(); - if (!ArgTy->isVectorTy()) - break; - NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8; - } - Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); - Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1); - Info.offset = 0; - Info.align = 0; - Info.vol = false; // volatile stores with NEON intrinsics not supported - Info.readMem = false; - Info.writeMem = true; - return true; - } - case Intrinsic::arm64_ldaxr: - case Intrinsic::arm64_ldxr: { - PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); - Info.opc = ISD::INTRINSIC_W_CHAIN; - Info.memVT = MVT::getVT(PtrTy->getElementType()); - Info.ptrVal = I.getArgOperand(0); - Info.offset = 0; - Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType()); - Info.vol = true; - Info.readMem = true; - Info.writeMem = false; - return true; - } - case Intrinsic::arm64_stlxr: - case Intrinsic::arm64_stxr: { - PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType()); - Info.opc = ISD::INTRINSIC_W_CHAIN; - Info.memVT = MVT::getVT(PtrTy->getElementType()); - Info.ptrVal = I.getArgOperand(1); - Info.offset = 0; - Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType()); - Info.vol = true; - Info.readMem = false; - Info.writeMem = true; - return true; - } - case Intrinsic::arm64_ldaxp: - case Intrinsic::arm64_ldxp: { - Info.opc = ISD::INTRINSIC_W_CHAIN; - Info.memVT = MVT::i128; - Info.ptrVal = I.getArgOperand(0); - Info.offset = 0; - Info.align = 16; - Info.vol = true; - Info.readMem = true; - Info.writeMem = false; - return true; - } - case Intrinsic::arm64_stlxp: - case Intrinsic::arm64_stxp: { - Info.opc = ISD::INTRINSIC_W_CHAIN; - Info.memVT = MVT::i128; - Info.ptrVal = I.getArgOperand(2); - Info.offset = 0; - Info.align = 16; - Info.vol = true; - Info.readMem = false; - Info.writeMem = true; - return true; - } - default: - break; - } - - return false; -} - -// Truncations from 64-bit GPR to 32-bit GPR is free. -bool ARM64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { - if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) - return false; - unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); - unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); - if (NumBits1 <= NumBits2) - return false; - return true; -} -bool ARM64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { - if (!VT1.isInteger() || !VT2.isInteger()) - return false; - unsigned NumBits1 = VT1.getSizeInBits(); - unsigned NumBits2 = VT2.getSizeInBits(); - if (NumBits1 <= NumBits2) - return false; - return true; -} - -// All 32-bit GPR operations implicitly zero the high-half of the corresponding -// 64-bit GPR. -bool ARM64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const { - if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) - return false; - unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); - unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); - if (NumBits1 == 32 && NumBits2 == 64) - return true; - return false; -} -bool ARM64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const { - if (!VT1.isInteger() || !VT2.isInteger()) - return false; - unsigned NumBits1 = VT1.getSizeInBits(); - unsigned NumBits2 = VT2.getSizeInBits(); - if (NumBits1 == 32 && NumBits2 == 64) - return true; - return false; -} - -bool ARM64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const { - EVT VT1 = Val.getValueType(); - if (isZExtFree(VT1, VT2)) { - return true; - } - - if (Val.getOpcode() != ISD::LOAD) - return false; - - // 8-, 16-, and 32-bit integer loads all implicitly zero-extend. - return (VT1.isSimple() && VT1.isInteger() && VT2.isSimple() && - VT2.isInteger() && VT1.getSizeInBits() <= 32); -} - -bool ARM64TargetLowering::hasPairedLoad(Type *LoadedType, - unsigned &RequiredAligment) const { - if (!LoadedType->isIntegerTy() && !LoadedType->isFloatTy()) - return false; - // Cyclone supports unaligned accesses. - RequiredAligment = 0; - unsigned NumBits = LoadedType->getPrimitiveSizeInBits(); - return NumBits == 32 || NumBits == 64; -} - -bool ARM64TargetLowering::hasPairedLoad(EVT LoadedType, - unsigned &RequiredAligment) const { - if (!LoadedType.isSimple() || - (!LoadedType.isInteger() && !LoadedType.isFloatingPoint())) - return false; - // Cyclone supports unaligned accesses. - RequiredAligment = 0; - unsigned NumBits = LoadedType.getSizeInBits(); - return NumBits == 32 || NumBits == 64; -} - -static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign, - unsigned AlignCheck) { - return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) && - (DstAlign == 0 || DstAlign % AlignCheck == 0)); -} - -EVT ARM64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign, - unsigned SrcAlign, bool IsMemset, - bool ZeroMemset, bool MemcpyStrSrc, - MachineFunction &MF) const { - // Don't use AdvSIMD to implement 16-byte memset. It would have taken one - // instruction to materialize the v2i64 zero and one store (with restrictive - // addressing mode). Just do two i64 store of zero-registers. - bool Fast; - const Function *F = MF.getFunction(); - if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 && - !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, - Attribute::NoImplicitFloat) && - (memOpAlign(SrcAlign, DstAlign, 16) || - (allowsUnalignedMemoryAccesses(MVT::f128, 0, &Fast) && Fast))) - return MVT::f128; - - return Size >= 8 ? MVT::i64 : MVT::i32; -} - -// 12-bit optionally shifted immediates are legal for adds. -bool ARM64TargetLowering::isLegalAddImmediate(int64_t Immed) const { - if ((Immed >> 12) == 0 || ((Immed & 0xfff) == 0 && Immed >> 24 == 0)) - return true; - return false; -} - -// Integer comparisons are implemented with ADDS/SUBS, so the range of valid -// immediates is the same as for an add or a sub. -bool ARM64TargetLowering::isLegalICmpImmediate(int64_t Immed) const { - if (Immed < 0) - Immed *= -1; - return isLegalAddImmediate(Immed); -} - -/// isLegalAddressingMode - Return true if the addressing mode represented -/// by AM is legal for this target, for a load/store of the specified type. -bool ARM64TargetLowering::isLegalAddressingMode(const AddrMode &AM, - Type *Ty) const { - // ARM64 has five basic addressing modes: - // reg - // reg + 9-bit signed offset - // reg + SIZE_IN_BYTES * 12-bit unsigned offset - // reg1 + reg2 - // reg + SIZE_IN_BYTES * reg - - // No global is ever allowed as a base. - if (AM.BaseGV) - return false; - - // No reg+reg+imm addressing. - if (AM.HasBaseReg && AM.BaseOffs && AM.Scale) - return false; - - // check reg + imm case: - // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12 - uint64_t NumBytes = 0; - if (Ty->isSized()) { - uint64_t NumBits = getDataLayout()->getTypeSizeInBits(Ty); - NumBytes = NumBits / 8; - if (!isPowerOf2_64(NumBits)) - NumBytes = 0; - } - - if (!AM.Scale) { - int64_t Offset = AM.BaseOffs; - - // 9-bit signed offset - if (Offset >= -(1LL << 9) && Offset <= (1LL << 9) - 1) - return true; - - // 12-bit unsigned offset - unsigned shift = Log2_64(NumBytes); - if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 && - // Must be a multiple of NumBytes (NumBytes is a power of 2) - (Offset >> shift) << shift == Offset) - return true; - return false; - } - - // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2 - - if (!AM.Scale || AM.Scale == 1 || - (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes)) - return true; - return false; -} - -int ARM64TargetLowering::getScalingFactorCost(const AddrMode &AM, - Type *Ty) const { - // Scaling factors are not free at all. - // Operands | Rt Latency - // ------------------------------------------- - // Rt, [Xn, Xm] | 4 - // ------------------------------------------- - // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5 - // Rt, [Xn, Wm, <extend> #imm] | - if (isLegalAddressingMode(AM, Ty)) - // Scale represents reg2 * scale, thus account for 1 if - // it is not equal to 0 or 1. - return AM.Scale != 0 && AM.Scale != 1; - return -1; -} - -bool ARM64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { - VT = VT.getScalarType(); - - if (!VT.isSimple()) - return false; - - switch (VT.getSimpleVT().SimpleTy) { - case MVT::f32: - case MVT::f64: - return true; - default: - break; - } - - return false; -} - -const MCPhysReg * -ARM64TargetLowering::getScratchRegisters(CallingConv::ID) const { - // LR is a callee-save register, but we must treat it as clobbered by any call - // site. Hence we include LR in the scratch registers, which are in turn added - // as implicit-defs for stackmaps and patchpoints. - static const MCPhysReg ScratchRegs[] = { - ARM64::X16, ARM64::X17, ARM64::LR, 0 - }; - return ScratchRegs; -} - -bool ARM64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const { - EVT VT = N->getValueType(0); - // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine - // it with shift to let it be lowered to UBFX. - if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) && - isa<ConstantSDNode>(N->getOperand(1))) { - uint64_t TruncMask = N->getConstantOperandVal(1); - if (isMask_64(TruncMask) && - N->getOperand(0).getOpcode() == ISD::SRL && - isa<ConstantSDNode>(N->getOperand(0)->getOperand(1))) - return false; - } - return true; -} - -bool ARM64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, - Type *Ty) const { - assert(Ty->isIntegerTy()); - - unsigned BitSize = Ty->getPrimitiveSizeInBits(); - if (BitSize == 0) - return false; - - int64_t Val = Imm.getSExtValue(); - if (Val == 0 || ARM64_AM::isLogicalImmediate(Val, BitSize)) - return true; - - if ((int64_t)Val < 0) - Val = ~Val; - if (BitSize == 32) - Val &= (1LL << 32) - 1; - - unsigned LZ = countLeadingZeros((uint64_t)Val); - unsigned Shift = (63 - LZ) / 16; - // MOVZ is free so return true for one or fewer MOVK. - return (Shift < 3) ? true : false; -} - -// Generate SUBS and CSEL for integer abs. -static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) { - EVT VT = N->getValueType(0); - - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - SDLoc DL(N); - - // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1) - // and change it to SUB and CSEL. - if (VT.isInteger() && N->getOpcode() == ISD::XOR && - N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 && - N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0)) - if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1))) - if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) { - SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT), - N0.getOperand(0)); - // Generate SUBS & CSEL. - SDValue Cmp = - DAG.getNode(ARM64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32), - N0.getOperand(0), DAG.getConstant(0, VT)); - return DAG.getNode(ARM64ISD::CSEL, DL, VT, N0.getOperand(0), Neg, - DAG.getConstant(ARM64CC::PL, MVT::i32), - SDValue(Cmp.getNode(), 1)); - } - return SDValue(); -} - -// performXorCombine - Attempts to handle integer ABS. -static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG, - TargetLowering::DAGCombinerInfo &DCI, - const ARM64Subtarget *Subtarget) { - if (DCI.isBeforeLegalizeOps()) - return SDValue(); - - return performIntegerAbsCombine(N, DAG); -} - -static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG, - TargetLowering::DAGCombinerInfo &DCI, - const ARM64Subtarget *Subtarget) { - if (DCI.isBeforeLegalizeOps()) - return SDValue(); - - // Multiplication of a power of two plus/minus one can be done more - // cheaply as as shift+add/sub. For now, this is true unilaterally. If - // future CPUs have a cheaper MADD instruction, this may need to be - // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and - // 64-bit is 5 cycles, so this is always a win. - if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) { - APInt Value = C->getAPIntValue(); - EVT VT = N->getValueType(0); - APInt VP1 = Value + 1; - if (VP1.isPowerOf2()) { - // Multiplying by one less than a power of two, replace with a shift - // and a subtract. - SDValue ShiftedVal = - DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0), - DAG.getConstant(VP1.logBase2(), MVT::i64)); - return DAG.getNode(ISD::SUB, SDLoc(N), VT, ShiftedVal, N->getOperand(0)); - } - APInt VM1 = Value - 1; - if (VM1.isPowerOf2()) { - // Multiplying by one more than a power of two, replace with a shift - // and an add. - SDValue ShiftedVal = - DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0), - DAG.getConstant(VM1.logBase2(), MVT::i64)); - return DAG.getNode(ISD::ADD, SDLoc(N), VT, ShiftedVal, N->getOperand(0)); - } - } - return SDValue(); -} - -static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG) { - EVT VT = N->getValueType(0); - if (VT != MVT::f32 && VT != MVT::f64) - return SDValue(); - // Only optimize when the source and destination types have the same width. - if (VT.getSizeInBits() != N->getOperand(0).getValueType().getSizeInBits()) - return SDValue(); - - // If the result of an integer load is only used by an integer-to-float - // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead. - // This eliminates an "integer-to-vector-move UOP and improve throughput. - SDValue N0 = N->getOperand(0); - if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && - // Do not change the width of a volatile load. - !cast<LoadSDNode>(N0)->isVolatile()) { - LoadSDNode *LN0 = cast<LoadSDNode>(N0); - SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(), - LN0->getPointerInfo(), LN0->isVolatile(), - LN0->isNonTemporal(), LN0->isInvariant(), - LN0->getAlignment()); - - // Make sure successors of the original load stay after it by updating them - // to use the new Chain. - DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1)); - - unsigned Opcode = - (N->getOpcode() == ISD::SINT_TO_FP) ? ARM64ISD::SITOF : ARM64ISD::UITOF; - return DAG.getNode(Opcode, SDLoc(N), VT, Load); - } - - return SDValue(); -} - -/// An EXTR instruction is made up of two shifts, ORed together. This helper -/// searches for and classifies those shifts. -static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount, - bool &FromHi) { - if (N.getOpcode() == ISD::SHL) - FromHi = false; - else if (N.getOpcode() == ISD::SRL) - FromHi = true; - else - return false; - - if (!isa<ConstantSDNode>(N.getOperand(1))) - return false; - - ShiftAmount = N->getConstantOperandVal(1); - Src = N->getOperand(0); - return true; -} - -/// EXTR instruction extracts a contiguous chunk of bits from two existing -/// registers viewed as a high/low pair. This function looks for the pattern: -/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an -/// EXTR. Can't quite be done in TableGen because the two immediates aren't -/// independent. -static SDValue tryCombineToEXTR(SDNode *N, - TargetLowering::DAGCombinerInfo &DCI) { - SelectionDAG &DAG = DCI.DAG; - SDLoc DL(N); - EVT VT = N->getValueType(0); - - assert(N->getOpcode() == ISD::OR && "Unexpected root"); - - if (VT != MVT::i32 && VT != MVT::i64) - return SDValue(); - - SDValue LHS; - uint32_t ShiftLHS = 0; - bool LHSFromHi = 0; - if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi)) - return SDValue(); - - SDValue RHS; - uint32_t ShiftRHS = 0; - bool RHSFromHi = 0; - if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi)) - return SDValue(); - - // If they're both trying to come from the high part of the register, they're - // not really an EXTR. - if (LHSFromHi == RHSFromHi) - return SDValue(); - - if (ShiftLHS + ShiftRHS != VT.getSizeInBits()) - return SDValue(); - - if (LHSFromHi) { - std::swap(LHS, RHS); - std::swap(ShiftLHS, ShiftRHS); - } - - return DAG.getNode(ARM64ISD::EXTR, DL, VT, LHS, RHS, - DAG.getConstant(ShiftRHS, MVT::i64)); -} - -static SDValue tryCombineToBSL(SDNode *N, - TargetLowering::DAGCombinerInfo &DCI) { - EVT VT = N->getValueType(0); - SelectionDAG &DAG = DCI.DAG; - SDLoc DL(N); - - if (!VT.isVector()) - return SDValue(); - - SDValue N0 = N->getOperand(0); - if (N0.getOpcode() != ISD::AND) - return SDValue(); - - SDValue N1 = N->getOperand(1); - if (N1.getOpcode() != ISD::AND) - return SDValue(); - - // We only have to look for constant vectors here since the general, variable - // case can be handled in TableGen. - unsigned Bits = VT.getVectorElementType().getSizeInBits(); - uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1); - for (int i = 1; i >= 0; --i) - for (int j = 1; j >= 0; --j) { - BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i)); - BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j)); - if (!BVN0 || !BVN1) - continue; - - bool FoundMatch = true; - for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) { - ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k)); - ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k)); - if (!CN0 || !CN1 || - CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) { - FoundMatch = false; - break; - } - } - - if (FoundMatch) - return DAG.getNode(ARM64ISD::BSL, DL, VT, SDValue(BVN0, 0), - N0->getOperand(1 - i), N1->getOperand(1 - j)); - } - - return SDValue(); -} - -static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, - const ARM64Subtarget *Subtarget) { - // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) - if (!EnableARM64ExtrGeneration) - return SDValue(); - SelectionDAG &DAG = DCI.DAG; - EVT VT = N->getValueType(0); - - if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) - return SDValue(); - - SDValue Res = tryCombineToEXTR(N, DCI); - if (Res.getNode()) - return Res; - - Res = tryCombineToBSL(N, DCI); - if (Res.getNode()) - return Res; - - return SDValue(); -} - -static SDValue performBitcastCombine(SDNode *N, - TargetLowering::DAGCombinerInfo &DCI, - SelectionDAG &DAG) { - // Wait 'til after everything is legalized to try this. That way we have - // legal vector types and such. - if (DCI.isBeforeLegalizeOps()) - return SDValue(); - - // Remove extraneous bitcasts around an extract_subvector. - // For example, - // (v4i16 (bitconvert - // (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1))))) - // becomes - // (extract_subvector ((v8i16 ...), (i64 4))) - - // Only interested in 64-bit vectors as the ultimate result. - EVT VT = N->getValueType(0); - if (!VT.isVector()) - return SDValue(); - if (VT.getSimpleVT().getSizeInBits() != 64) - return SDValue(); - // Is the operand an extract_subvector starting at the beginning or halfway - // point of the vector? A low half may also come through as an - // EXTRACT_SUBREG, so look for that, too. - SDValue Op0 = N->getOperand(0); - if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR && - !(Op0->isMachineOpcode() && - Op0->getMachineOpcode() == ARM64::EXTRACT_SUBREG)) - return SDValue(); - uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue(); - if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) { - if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0) - return SDValue(); - } else if (Op0->getMachineOpcode() == ARM64::EXTRACT_SUBREG) { - if (idx != ARM64::dsub) - return SDValue(); - // The dsub reference is equivalent to a lane zero subvector reference. - idx = 0; - } - // Look through the bitcast of the input to the extract. - if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST) - return SDValue(); - SDValue Source = Op0->getOperand(0)->getOperand(0); - // If the source type has twice the number of elements as our destination - // type, we know this is an extract of the high or low half of the vector. - EVT SVT = Source->getValueType(0); - if (SVT.getVectorNumElements() != VT.getVectorNumElements() * 2) - return SDValue(); - - DEBUG(dbgs() << "arm64-lower: bitcast extract_subvector simplification\n"); - - // Create the simplified form to just extract the low or high half of the - // vector directly rather than bothering with the bitcasts. - SDLoc dl(N); - unsigned NumElements = VT.getVectorNumElements(); - if (idx) { - SDValue HalfIdx = DAG.getConstant(NumElements, MVT::i64); - return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx); - } else { - SDValue SubReg = DAG.getTargetConstant(ARM64::dsub, MVT::i32); - return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT, - Source, SubReg), - 0); - } -} - -static SDValue performConcatVectorsCombine(SDNode *N, - TargetLowering::DAGCombinerInfo &DCI, - SelectionDAG &DAG) { - // Wait 'til after everything is legalized to try this. That way we have - // legal vector types and such. - if (DCI.isBeforeLegalizeOps()) - return SDValue(); - - SDLoc dl(N); - EVT VT = N->getValueType(0); - - // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector - // splat. The indexed instructions are going to be expecting a DUPLANE64, so - // canonicalise to that. - if (N->getOperand(0) == N->getOperand(1) && VT.getVectorNumElements() == 2) { - assert(VT.getVectorElementType().getSizeInBits() == 64); - return DAG.getNode(ARM64ISD::DUPLANE64, dl, VT, - WidenVector(N->getOperand(0), DAG), - DAG.getConstant(0, MVT::i64)); - } - - // Canonicalise concat_vectors so that the right-hand vector has as few - // bit-casts as possible before its real operation. The primary matching - // destination for these operations will be the narrowing "2" instructions, - // which depend on the operation being performed on this right-hand vector. - // For example, - // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS)))) - // becomes - // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS)) - - SDValue Op1 = N->getOperand(1); - if (Op1->getOpcode() != ISD::BITCAST) - return SDValue(); - SDValue RHS = Op1->getOperand(0); - MVT RHSTy = RHS.getValueType().getSimpleVT(); - // If the RHS is not a vector, this is not the pattern we're looking for. - if (!RHSTy.isVector()) - return SDValue(); - - DEBUG(dbgs() << "arm64-lower: concat_vectors bitcast simplification\n"); - - MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(), - RHSTy.getVectorNumElements() * 2); - return DAG.getNode( - ISD::BITCAST, dl, VT, - DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy, - DAG.getNode(ISD::BITCAST, dl, RHSTy, N->getOperand(0)), RHS)); -} - -static SDValue tryCombineFixedPointConvert(SDNode *N, - TargetLowering::DAGCombinerInfo &DCI, - SelectionDAG &DAG) { - // Wait 'til after everything is legalized to try this. That way we have - // legal vector types and such. - if (DCI.isBeforeLegalizeOps()) - return SDValue(); - // Transform a scalar conversion of a value from a lane extract into a - // lane extract of a vector conversion. E.g., from foo1 to foo2: - // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); } - // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; } - // - // The second form interacts better with instruction selection and the - // register allocator to avoid cross-class register copies that aren't - // coalescable due to a lane reference. - - // Check the operand and see if it originates from a lane extract. - SDValue Op1 = N->getOperand(1); - if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { - // Yep, no additional predication needed. Perform the transform. - SDValue IID = N->getOperand(0); - SDValue Shift = N->getOperand(2); - SDValue Vec = Op1.getOperand(0); - SDValue Lane = Op1.getOperand(1); - EVT ResTy = N->getValueType(0); - EVT VecResTy; - SDLoc DL(N); - - // The vector width should be 128 bits by the time we get here, even - // if it started as 64 bits (the extract_vector handling will have - // done so). - assert(Vec.getValueType().getSizeInBits() == 128 && - "unexpected vector size on extract_vector_elt!"); - if (Vec.getValueType() == MVT::v4i32) - VecResTy = MVT::v4f32; - else if (Vec.getValueType() == MVT::v2i64) - VecResTy = MVT::v2f64; - else - assert(0 && "unexpected vector type!"); - - SDValue Convert = - DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift); - return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane); - } - return SDValue(); -} - -// AArch64 high-vector "long" operations are formed by performing the non-high -// version on an extract_subvector of each operand which gets the high half: -// -// (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS)) -// -// However, there are cases which don't have an extract_high explicitly, but -// have another operation that can be made compatible with one for free. For -// example: -// -// (dupv64 scalar) --> (extract_high (dup128 scalar)) -// -// This routine does the actual conversion of such DUPs, once outer routines -// have determined that everything else is in order. -static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) { - // We can handle most types of duplicate, but the lane ones have an extra - // operand saying *which* lane, so we need to know. - bool IsDUPLANE; - switch (N.getOpcode()) { - case ARM64ISD::DUP: - IsDUPLANE = false; - break; - case ARM64ISD::DUPLANE8: - case ARM64ISD::DUPLANE16: - case ARM64ISD::DUPLANE32: - case ARM64ISD::DUPLANE64: - IsDUPLANE = true; - break; - default: - return SDValue(); - } - - MVT NarrowTy = N.getSimpleValueType(); - if (!NarrowTy.is64BitVector()) - return SDValue(); - - MVT ElementTy = NarrowTy.getVectorElementType(); - unsigned NumElems = NarrowTy.getVectorNumElements(); - MVT NewDUPVT = MVT::getVectorVT(ElementTy, NumElems * 2); - - SDValue NewDUP; - if (IsDUPLANE) - NewDUP = DAG.getNode(N.getOpcode(), SDLoc(N), NewDUPVT, N.getOperand(0), - N.getOperand(1)); - else - NewDUP = DAG.getNode(ARM64ISD::DUP, SDLoc(N), NewDUPVT, N.getOperand(0)); - - return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N.getNode()), NarrowTy, - NewDUP, DAG.getConstant(NumElems, MVT::i64)); -} - -static bool isEssentiallyExtractSubvector(SDValue N) { - if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR) - return true; - - return N.getOpcode() == ISD::BITCAST && - N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR; -} - -/// \brief Helper structure to keep track of ISD::SET_CC operands. -struct GenericSetCCInfo { - const SDValue *Opnd0; - const SDValue *Opnd1; - ISD::CondCode CC; -}; - -/// \brief Helper structure to keep track of a SET_CC lowered into ARM64 code. -struct ARM64SetCCInfo { - const SDValue *Cmp; - ARM64CC::CondCode CC; -}; - -/// \brief Helper structure to keep track of SetCC information. -union SetCCInfo { - GenericSetCCInfo Generic; - ARM64SetCCInfo ARM64; -}; - -/// \brief Helper structure to be able to read SetCC information. -/// If set to true, IsARM64 field, Info is a ARM64SetCCInfo, otherwise Info is -/// a GenericSetCCInfo. -struct SetCCInfoAndKind { - SetCCInfo Info; - bool IsARM64; -}; - -/// \brief Check whether or not \p Op is a SET_CC operation, either a generic or -/// an -/// ARM64 lowered one. -/// \p SetCCInfo is filled accordingly. -/// \post SetCCInfo is meanginfull only when this function returns true. -/// \return True when Op is a kind of SET_CC operation. -static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) { - // If this is a setcc, this is straight forward. - if (Op.getOpcode() == ISD::SETCC) { - SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0); - SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1); - SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); - SetCCInfo.IsARM64 = false; - return true; - } - // Otherwise, check if this is a matching csel instruction. - // In other words: - // - csel 1, 0, cc - // - csel 0, 1, !cc - if (Op.getOpcode() != ARM64ISD::CSEL) - return false; - // Set the information about the operands. - // TODO: we want the operands of the Cmp not the csel - SetCCInfo.Info.ARM64.Cmp = &Op.getOperand(3); - SetCCInfo.IsARM64 = true; - SetCCInfo.Info.ARM64.CC = static_cast<ARM64CC::CondCode>( - cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); - - // Check that the operands matches the constraints: - // (1) Both operands must be constants. - // (2) One must be 1 and the other must be 0. - ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0)); - ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1)); - - // Check (1). - if (!TValue || !FValue) - return false; - - // Check (2). - if (!TValue->isOne()) { - // Update the comparison when we are interested in !cc. - std::swap(TValue, FValue); - SetCCInfo.Info.ARM64.CC = - ARM64CC::getInvertedCondCode(SetCCInfo.Info.ARM64.CC); - } - return TValue->isOne() && FValue->isNullValue(); -} - -// Returns true if Op is setcc or zext of setcc. -static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) { - if (isSetCC(Op, Info)) - return true; - return ((Op.getOpcode() == ISD::ZERO_EXTEND) && - isSetCC(Op->getOperand(0), Info)); -} - -// The folding we want to perform is: -// (add x, [zext] (setcc cc ...) ) -// --> -// (csel x, (add x, 1), !cc ...) -// -// The latter will get matched to a CSINC instruction. -static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) { - assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!"); - SDValue LHS = Op->getOperand(0); - SDValue RHS = Op->getOperand(1); - SetCCInfoAndKind InfoAndKind; - - // If neither operand is a SET_CC, give up. - if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) { - std::swap(LHS, RHS); - if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) - return SDValue(); - } - - // FIXME: This could be generatized to work for FP comparisons. - EVT CmpVT = InfoAndKind.IsARM64 - ? InfoAndKind.Info.ARM64.Cmp->getOperand(0).getValueType() - : InfoAndKind.Info.Generic.Opnd0->getValueType(); - if (CmpVT != MVT::i32 && CmpVT != MVT::i64) - return SDValue(); - - SDValue CCVal; - SDValue Cmp; - SDLoc dl(Op); - if (InfoAndKind.IsARM64) { - CCVal = DAG.getConstant( - ARM64CC::getInvertedCondCode(InfoAndKind.Info.ARM64.CC), MVT::i32); - Cmp = *InfoAndKind.Info.ARM64.Cmp; - } else - Cmp = getARM64Cmp(*InfoAndKind.Info.Generic.Opnd0, - *InfoAndKind.Info.Generic.Opnd1, - ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true), - CCVal, DAG, dl); - - EVT VT = Op->getValueType(0); - LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, VT)); - return DAG.getNode(ARM64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp); -} - -// The basic add/sub long vector instructions have variants with "2" on the end -// which act on the high-half of their inputs. They are normally matched by -// patterns like: -// -// (add (zeroext (extract_high LHS)), -// (zeroext (extract_high RHS))) -// -> uaddl2 vD, vN, vM -// -// However, if one of the extracts is something like a duplicate, this -// instruction can still be used profitably. This function puts the DAG into a -// more appropriate form for those patterns to trigger. -static SDValue performAddSubLongCombine(SDNode *N, - TargetLowering::DAGCombinerInfo &DCI, - SelectionDAG &DAG) { - if (DCI.isBeforeLegalizeOps()) - return SDValue(); - - MVT VT = N->getSimpleValueType(0); - if (!VT.is128BitVector()) { - if (N->getOpcode() == ISD::ADD) - return performSetccAddFolding(N, DAG); - return SDValue(); - } - - // Make sure both branches are extended in the same way. - SDValue LHS = N->getOperand(0); - SDValue RHS = N->getOperand(1); - if ((LHS.getOpcode() != ISD::ZERO_EXTEND && - LHS.getOpcode() != ISD::SIGN_EXTEND) || - LHS.getOpcode() != RHS.getOpcode()) - return SDValue(); - - unsigned ExtType = LHS.getOpcode(); - - // It's not worth doing if at least one of the inputs isn't already an - // extract, but we don't know which it'll be so we have to try both. - if (isEssentiallyExtractSubvector(LHS.getOperand(0))) { - RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG); - if (!RHS.getNode()) - return SDValue(); - - RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS); - } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) { - LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG); - if (!LHS.getNode()) - return SDValue(); - - LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS); - } - - return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS); -} - -// Massage DAGs which we can use the high-half "long" operations on into -// something isel will recognize better. E.g. -// -// (arm64_neon_umull (extract_high vec) (dupv64 scalar)) --> -// (arm64_neon_umull (extract_high (v2i64 vec))) -// (extract_high (v2i64 (dup128 scalar))))) -// -static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N, - TargetLowering::DAGCombinerInfo &DCI, - SelectionDAG &DAG) { - if (DCI.isBeforeLegalizeOps()) - return SDValue(); - - SDValue LHS = N->getOperand(1); - SDValue RHS = N->getOperand(2); - assert(LHS.getValueType().is64BitVector() && - RHS.getValueType().is64BitVector() && - "unexpected shape for long operation"); - - // Either node could be a DUP, but it's not worth doing both of them (you'd - // just as well use the non-high version) so look for a corresponding extract - // operation on the other "wing". - if (isEssentiallyExtractSubvector(LHS)) { - RHS = tryExtendDUPToExtractHigh(RHS, DAG); - if (!RHS.getNode()) - return SDValue(); - } else if (isEssentiallyExtractSubvector(RHS)) { - LHS = tryExtendDUPToExtractHigh(LHS, DAG); - if (!LHS.getNode()) - return SDValue(); - } - - return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0), - N->getOperand(0), LHS, RHS); -} - -static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) { - MVT ElemTy = N->getSimpleValueType(0).getScalarType(); - unsigned ElemBits = ElemTy.getSizeInBits(); - - int64_t ShiftAmount; - if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) { - APInt SplatValue, SplatUndef; - unsigned SplatBitSize; - bool HasAnyUndefs; - if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, - HasAnyUndefs, ElemBits) || - SplatBitSize != ElemBits) - return SDValue(); - - ShiftAmount = SplatValue.getSExtValue(); - } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) { - ShiftAmount = CVN->getSExtValue(); - } else - return SDValue(); - - unsigned Opcode; - bool IsRightShift; - switch (IID) { - default: - llvm_unreachable("Unknown shift intrinsic"); - case Intrinsic::arm64_neon_sqshl: - Opcode = ARM64ISD::SQSHL_I; - IsRightShift = false; - break; - case Intrinsic::arm64_neon_uqshl: - Opcode = ARM64ISD::UQSHL_I; - IsRightShift = false; - break; - case Intrinsic::arm64_neon_srshl: - Opcode = ARM64ISD::SRSHR_I; - IsRightShift = true; - break; - case Intrinsic::arm64_neon_urshl: - Opcode = ARM64ISD::URSHR_I; - IsRightShift = true; - break; - case Intrinsic::arm64_neon_sqshlu: - Opcode = ARM64ISD::SQSHLU_I; - IsRightShift = false; - break; - } - - if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) - return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1), - DAG.getConstant(-ShiftAmount, MVT::i32)); - else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount <= ElemBits) - return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1), - DAG.getConstant(ShiftAmount, MVT::i32)); - - return SDValue(); -} - -// The CRC32[BH] instructions ignore the high bits of their data operand. Since -// the intrinsics must be legal and take an i32, this means there's almost -// certainly going to be a zext in the DAG which we can eliminate. -static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) { - SDValue AndN = N->getOperand(2); - if (AndN.getOpcode() != ISD::AND) - return SDValue(); - - ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1)); - if (!CMask || CMask->getZExtValue() != Mask) - return SDValue(); - - return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32, - N->getOperand(0), N->getOperand(1), AndN.getOperand(0)); -} - -static SDValue performIntrinsicCombine(SDNode *N, - TargetLowering::DAGCombinerInfo &DCI, - const ARM64Subtarget *Subtarget) { - SelectionDAG &DAG = DCI.DAG; - unsigned IID = getIntrinsicID(N); - switch (IID) { - default: - break; - case Intrinsic::arm64_neon_vcvtfxs2fp: - case Intrinsic::arm64_neon_vcvtfxu2fp: - return tryCombineFixedPointConvert(N, DCI, DAG); - break; - case Intrinsic::arm64_neon_fmax: - return DAG.getNode(ARM64ISD::FMAX, SDLoc(N), N->getValueType(0), - N->getOperand(1), N->getOperand(2)); - case Intrinsic::arm64_neon_fmin: - return DAG.getNode(ARM64ISD::FMIN, SDLoc(N), N->getValueType(0), - N->getOperand(1), N->getOperand(2)); - case Intrinsic::arm64_neon_smull: - case Intrinsic::arm64_neon_umull: - case Intrinsic::arm64_neon_pmull: - case Intrinsic::arm64_neon_sqdmull: - return tryCombineLongOpWithDup(IID, N, DCI, DAG); - case Intrinsic::arm64_neon_sqshl: - case Intrinsic::arm64_neon_uqshl: - case Intrinsic::arm64_neon_sqshlu: - case Intrinsic::arm64_neon_srshl: - case Intrinsic::arm64_neon_urshl: - return tryCombineShiftImm(IID, N, DAG); - case Intrinsic::arm64_crc32b: - case Intrinsic::arm64_crc32cb: - return tryCombineCRC32(0xff, N, DAG); - case Intrinsic::arm64_crc32h: - case Intrinsic::arm64_crc32ch: - return tryCombineCRC32(0xffff, N, DAG); - } - return SDValue(); -} - -static SDValue performExtendCombine(SDNode *N, - TargetLowering::DAGCombinerInfo &DCI, - SelectionDAG &DAG) { - // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then - // we can convert that DUP into another extract_high (of a bigger DUP), which - // helps the backend to decide that an sabdl2 would be useful, saving a real - // extract_high operation. - if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND && - N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) { - SDNode *ABDNode = N->getOperand(0).getNode(); - unsigned IID = getIntrinsicID(ABDNode); - if (IID == Intrinsic::arm64_neon_sabd || - IID == Intrinsic::arm64_neon_uabd) { - SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG); - if (!NewABD.getNode()) - return SDValue(); - - return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0), - NewABD); - } - } - - // This is effectively a custom type legalization for ARM64. - // - // Type legalization will split an extend of a small, legal, type to a larger - // illegal type by first splitting the destination type, often creating - // illegal source types, which then get legalized in isel-confusing ways, - // leading to really terrible codegen. E.g., - // %result = v8i32 sext v8i8 %value - // becomes - // %losrc = extract_subreg %value, ... - // %hisrc = extract_subreg %value, ... - // %lo = v4i32 sext v4i8 %losrc - // %hi = v4i32 sext v4i8 %hisrc - // Things go rapidly downhill from there. - // - // For ARM64, the [sz]ext vector instructions can only go up one element - // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32 - // take two instructions. - // - // This implies that the most efficient way to do the extend from v8i8 - // to two v4i32 values is to first extend the v8i8 to v8i16, then do - // the normal splitting to happen for the v8i16->v8i32. - - // This is pre-legalization to catch some cases where the default - // type legalization will create ill-tempered code. - if (!DCI.isBeforeLegalizeOps()) - return SDValue(); - - // We're only interested in cleaning things up for non-legal vector types - // here. If both the source and destination are legal, things will just - // work naturally without any fiddling. - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - EVT ResVT = N->getValueType(0); - if (!ResVT.isVector() || TLI.isTypeLegal(ResVT)) - return SDValue(); - // If the vector type isn't a simple VT, it's beyond the scope of what - // we're worried about here. Let legalization do its thing and hope for - // the best. - if (!ResVT.isSimple()) - return SDValue(); - - SDValue Src = N->getOperand(0); - MVT SrcVT = Src->getValueType(0).getSimpleVT(); - // If the source VT is a 64-bit vector, we can play games and get the - // better results we want. - if (SrcVT.getSizeInBits() != 64) - return SDValue(); - - unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits(); - unsigned ElementCount = SrcVT.getVectorNumElements(); - SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount); - SDLoc DL(N); - Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src); - - // Now split the rest of the operation into two halves, each with a 64 - // bit source. - EVT LoVT, HiVT; - SDValue Lo, Hi; - unsigned NumElements = ResVT.getVectorNumElements(); - assert(!(NumElements & 1) && "Splitting vector, but not in half!"); - LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(), - ResVT.getVectorElementType(), NumElements / 2); - - EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(), - LoVT.getVectorNumElements()); - Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src, - DAG.getIntPtrConstant(0)); - Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src, - DAG.getIntPtrConstant(InNVT.getVectorNumElements())); - Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo); - Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi); - - // Now combine the parts back together so we still have a single result - // like the combiner expects. - return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi); -} - -/// Replace a splat of a scalar to a vector store by scalar stores of the scalar -/// value. The load store optimizer pass will merge them to store pair stores. -/// This has better performance than a splat of the scalar followed by a split -/// vector store. Even if the stores are not merged it is four stores vs a dup, -/// followed by an ext.b and two stores. -static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode *St) { - SDValue StVal = St->getValue(); - EVT VT = StVal.getValueType(); - - // Don't replace floating point stores, they possibly won't be transformed to - // stp because of the store pair suppress pass. - if (VT.isFloatingPoint()) - return SDValue(); - - // Check for insert vector elements. - if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT) - return SDValue(); - - // We can express a splat as store pair(s) for 2 or 4 elements. - unsigned NumVecElts = VT.getVectorNumElements(); - if (NumVecElts != 4 && NumVecElts != 2) - return SDValue(); - SDValue SplatVal = StVal.getOperand(1); - unsigned RemainInsertElts = NumVecElts - 1; - - // Check that this is a splat. - while (--RemainInsertElts) { - SDValue NextInsertElt = StVal.getOperand(0); - if (NextInsertElt.getOpcode() != ISD::INSERT_VECTOR_ELT) - return SDValue(); - if (NextInsertElt.getOperand(1) != SplatVal) - return SDValue(); - StVal = NextInsertElt; - } - unsigned OrigAlignment = St->getAlignment(); - unsigned EltOffset = NumVecElts == 4 ? 4 : 8; - unsigned Alignment = std::min(OrigAlignment, EltOffset); - - // Create scalar stores. This is at least as good as the code sequence for a - // split unaligned store wich is a dup.s, ext.b, and two stores. - // Most of the time the three stores should be replaced by store pair - // instructions (stp). - SDLoc DL(St); - SDValue BasePtr = St->getBasePtr(); - SDValue NewST1 = - DAG.getStore(St->getChain(), DL, SplatVal, BasePtr, St->getPointerInfo(), - St->isVolatile(), St->isNonTemporal(), St->getAlignment()); - - unsigned Offset = EltOffset; - while (--NumVecElts) { - SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr, - DAG.getConstant(Offset, MVT::i64)); - NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr, - St->getPointerInfo(), St->isVolatile(), - St->isNonTemporal(), Alignment); - Offset += EltOffset; - } - return NewST1; -} - -static SDValue performSTORECombine(SDNode *N, - TargetLowering::DAGCombinerInfo &DCI, - SelectionDAG &DAG, - const ARM64Subtarget *Subtarget) { - if (!DCI.isBeforeLegalize()) - return SDValue(); - - StoreSDNode *S = cast<StoreSDNode>(N); - if (S->isVolatile()) - return SDValue(); - - // Cyclone has bad performance on unaligned 16B stores when crossing line and - // page boundries. We want to split such stores. - if (!Subtarget->isCyclone()) - return SDValue(); - - // Don't split at Oz. - MachineFunction &MF = DAG.getMachineFunction(); - bool IsMinSize = MF.getFunction()->getAttributes().hasAttribute( - AttributeSet::FunctionIndex, Attribute::MinSize); - if (IsMinSize) - return SDValue(); - - SDValue StVal = S->getValue(); - EVT VT = StVal.getValueType(); - - // Don't split v2i64 vectors. Memcpy lowering produces those and splitting - // those up regresses performance on micro-benchmarks and olden/bh. - if (!VT.isVector() || VT.getVectorNumElements() < 2 || VT == MVT::v2i64) - return SDValue(); - - // Split unaligned 16B stores. They are terrible for performance. - // Don't split stores with alignment of 1 or 2. Code that uses clang vector - // extensions can use this to mark that it does not want splitting to happen - // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of - // eliminating alignment hazards is only 1 in 8 for alignment of 2. - if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 || - S->getAlignment() <= 2) - return SDValue(); - - // If we get a splat of a scalar convert this vector store to a store of - // scalars. They will be merged into store pairs thereby removing two - // instructions. - SDValue ReplacedSplat = replaceSplatVectorStore(DAG, S); - if (ReplacedSplat != SDValue()) - return ReplacedSplat; - - SDLoc DL(S); - unsigned NumElts = VT.getVectorNumElements() / 2; - // Split VT into two. - EVT HalfVT = - EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts); - SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal, - DAG.getIntPtrConstant(0)); - SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal, - DAG.getIntPtrConstant(NumElts)); - SDValue BasePtr = S->getBasePtr(); - SDValue NewST1 = - DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(), - S->isVolatile(), S->isNonTemporal(), S->getAlignment()); - SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr, - DAG.getConstant(8, MVT::i64)); - return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr, - S->getPointerInfo(), S->isVolatile(), S->isNonTemporal(), - S->getAlignment()); -} - -/// Target-specific DAG combine function for post-increment LD1 (lane) and -/// post-increment LD1R. -static SDValue performPostLD1Combine(SDNode *N, - TargetLowering::DAGCombinerInfo &DCI, - bool IsLaneOp) { - if (DCI.isBeforeLegalizeOps()) - return SDValue(); - - SelectionDAG &DAG = DCI.DAG; - EVT VT = N->getValueType(0); - - unsigned LoadIdx = IsLaneOp ? 1 : 0; - SDNode *LD = N->getOperand(LoadIdx).getNode(); - // If it is not LOAD, can not do such combine. - if (LD->getOpcode() != ISD::LOAD) - return SDValue(); - - LoadSDNode *LoadSDN = cast<LoadSDNode>(LD); - EVT MemVT = LoadSDN->getMemoryVT(); - // Check if memory operand is the same type as the vector element. - if (MemVT != VT.getVectorElementType()) - return SDValue(); - - // Check if there are other uses. If so, do not combine as it will introduce - // an extra load. - for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE; - ++UI) { - if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result. - continue; - if (*UI != N) - return SDValue(); - } - - SDValue Addr = LD->getOperand(1); - SDValue Vector = N->getOperand(0); - // Search for a use of the address operand that is an increment. - for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE = - Addr.getNode()->use_end(); UI != UE; ++UI) { - SDNode *User = *UI; - if (User->getOpcode() != ISD::ADD - || UI.getUse().getResNo() != Addr.getResNo()) - continue; - - // Check that the add is independent of the load. Otherwise, folding it - // would create a cycle. - if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User)) - continue; - // Also check that add is not used in the vector operand. This would also - // create a cycle. - if (User->isPredecessorOf(Vector.getNode())) - continue; - - // If the increment is a constant, it must match the memory ref size. - SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); - if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) { - uint32_t IncVal = CInc->getZExtValue(); - unsigned NumBytes = VT.getScalarSizeInBits() / 8; - if (IncVal != NumBytes) - continue; - Inc = DAG.getRegister(ARM64::XZR, MVT::i64); - } - - SmallVector<SDValue, 8> Ops; - Ops.push_back(LD->getOperand(0)); // Chain - if (IsLaneOp) { - Ops.push_back(Vector); // The vector to be inserted - Ops.push_back(N->getOperand(2)); // The lane to be inserted in the vector - } - Ops.push_back(Addr); - Ops.push_back(Inc); - - EVT Tys[3] = { VT, MVT::i64, MVT::Other }; - SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, 3)); - unsigned NewOp = IsLaneOp ? ARM64ISD::LD1LANEpost : ARM64ISD::LD1DUPpost; - SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops, - MemVT, - LoadSDN->getMemOperand()); - - // Update the uses. - std::vector<SDValue> NewResults; - NewResults.push_back(SDValue(LD, 0)); // The result of load - NewResults.push_back(SDValue(UpdN.getNode(), 2)); // Chain - DCI.CombineTo(LD, NewResults); - DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result - DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register - - break; - } - return SDValue(); -} - -/// Target-specific DAG combine function for NEON load/store intrinsics -/// to merge base address updates. -static SDValue performNEONPostLDSTCombine(SDNode *N, - TargetLowering::DAGCombinerInfo &DCI, - SelectionDAG &DAG) { - if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) - return SDValue(); - - unsigned AddrOpIdx = N->getNumOperands() - 1; - SDValue Addr = N->getOperand(AddrOpIdx); - - // Search for a use of the address operand that is an increment. - for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), - UE = Addr.getNode()->use_end(); UI != UE; ++UI) { - SDNode *User = *UI; - if (User->getOpcode() != ISD::ADD || - UI.getUse().getResNo() != Addr.getResNo()) - continue; - - // Check that the add is independent of the load/store. Otherwise, folding - // it would create a cycle. - if (User->isPredecessorOf(N) || N->isPredecessorOf(User)) - continue; - - // Find the new opcode for the updating load/store. - bool IsStore = false; - bool IsLaneOp = false; - bool IsDupOp = false; - unsigned NewOpc = 0; - unsigned NumVecs = 0; - unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); - switch (IntNo) { - default: llvm_unreachable("unexpected intrinsic for Neon base update"); - case Intrinsic::arm64_neon_ld2: NewOpc = ARM64ISD::LD2post; - NumVecs = 2; break; - case Intrinsic::arm64_neon_ld3: NewOpc = ARM64ISD::LD3post; - NumVecs = 3; break; - case Intrinsic::arm64_neon_ld4: NewOpc = ARM64ISD::LD4post; - NumVecs = 4; break; - case Intrinsic::arm64_neon_st2: NewOpc = ARM64ISD::ST2post; - NumVecs = 2; IsStore = true; break; - case Intrinsic::arm64_neon_st3: NewOpc = ARM64ISD::ST3post; - NumVecs = 3; IsStore = true; break; - case Intrinsic::arm64_neon_st4: NewOpc = ARM64ISD::ST4post; - NumVecs = 4; IsStore = true; break; - case Intrinsic::arm64_neon_ld1x2: NewOpc = ARM64ISD::LD1x2post; - NumVecs = 2; break; - case Intrinsic::arm64_neon_ld1x3: NewOpc = ARM64ISD::LD1x3post; - NumVecs = 3; break; - case Intrinsic::arm64_neon_ld1x4: NewOpc = ARM64ISD::LD1x4post; - NumVecs = 4; break; - case Intrinsic::arm64_neon_st1x2: NewOpc = ARM64ISD::ST1x2post; - NumVecs = 2; IsStore = true; break; - case Intrinsic::arm64_neon_st1x3: NewOpc = ARM64ISD::ST1x3post; - NumVecs = 3; IsStore = true; break; - case Intrinsic::arm64_neon_st1x4: NewOpc = ARM64ISD::ST1x4post; - NumVecs = 4; IsStore = true; break; - case Intrinsic::arm64_neon_ld2r: NewOpc = ARM64ISD::LD2DUPpost; - NumVecs = 2; IsDupOp = true; break; - case Intrinsic::arm64_neon_ld3r: NewOpc = ARM64ISD::LD3DUPpost; - NumVecs = 3; IsDupOp = true; break; - case Intrinsic::arm64_neon_ld4r: NewOpc = ARM64ISD::LD4DUPpost; - NumVecs = 4; IsDupOp = true; break; - case Intrinsic::arm64_neon_ld2lane: NewOpc = ARM64ISD::LD2LANEpost; - NumVecs = 2; IsLaneOp = true; break; - case Intrinsic::arm64_neon_ld3lane: NewOpc = ARM64ISD::LD3LANEpost; - NumVecs = 3; IsLaneOp = true; break; - case Intrinsic::arm64_neon_ld4lane: NewOpc = ARM64ISD::LD4LANEpost; - NumVecs = 4; IsLaneOp = true; break; - case Intrinsic::arm64_neon_st2lane: NewOpc = ARM64ISD::ST2LANEpost; - NumVecs = 2; IsStore = true; IsLaneOp = true; break; - case Intrinsic::arm64_neon_st3lane: NewOpc = ARM64ISD::ST3LANEpost; - NumVecs = 3; IsStore = true; IsLaneOp = true; break; - case Intrinsic::arm64_neon_st4lane: NewOpc = ARM64ISD::ST4LANEpost; - NumVecs = 4; IsStore = true; IsLaneOp = true; break; - } - - EVT VecTy; - if (IsStore) - VecTy = N->getOperand(2).getValueType(); - else - VecTy = N->getValueType(0); - - // If the increment is a constant, it must match the memory ref size. - SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); - if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) { - uint32_t IncVal = CInc->getZExtValue(); - unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8; - if (IsLaneOp || IsDupOp) - NumBytes /= VecTy.getVectorNumElements(); - if (IncVal != NumBytes) - continue; - Inc = DAG.getRegister(ARM64::XZR, MVT::i64); - } - SmallVector<SDValue, 8> Ops; - Ops.push_back(N->getOperand(0)); // Incoming chain - // Load lane and store have vector list as input. - if (IsLaneOp || IsStore) - for (unsigned i = 2; i < AddrOpIdx; ++i) - Ops.push_back(N->getOperand(i)); - Ops.push_back(Addr); // Base register - Ops.push_back(Inc); - - // Return Types. - EVT Tys[6]; - unsigned NumResultVecs = (IsStore ? 0 : NumVecs); - unsigned n; - for (n = 0; n < NumResultVecs; ++n) - Tys[n] = VecTy; - Tys[n++] = MVT::i64; // Type of write back register - Tys[n] = MVT::Other; // Type of the chain - SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, NumResultVecs + 2)); - - MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N); - SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops, - MemInt->getMemoryVT(), - MemInt->getMemOperand()); - - // Update the uses. - std::vector<SDValue> NewResults; - for (unsigned i = 0; i < NumResultVecs; ++i) { - NewResults.push_back(SDValue(UpdN.getNode(), i)); - } - NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); - DCI.CombineTo(N, NewResults); - DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs)); - - break; - } - return SDValue(); -} - -// Optimize compare with zero and branch. -static SDValue performBRCONDCombine(SDNode *N, - TargetLowering::DAGCombinerInfo &DCI, - SelectionDAG &DAG) { - SDValue Chain = N->getOperand(0); - SDValue Dest = N->getOperand(1); - SDValue CCVal = N->getOperand(2); - SDValue Cmp = N->getOperand(3); - - assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!"); - unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue(); - if (CC != ARM64CC::EQ && CC != ARM64CC::NE) - return SDValue(); - - unsigned CmpOpc = Cmp.getOpcode(); - if (CmpOpc != ARM64ISD::ADDS && CmpOpc != ARM64ISD::SUBS) - return SDValue(); - - // Only attempt folding if there is only one use of the flag and no use of the - // value. - if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1)) - return SDValue(); - - SDValue LHS = Cmp.getOperand(0); - SDValue RHS = Cmp.getOperand(1); - - assert(LHS.getValueType() == RHS.getValueType() && - "Expected the value type to be the same for both operands!"); - if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64) - return SDValue(); - - if (isa<ConstantSDNode>(LHS) && cast<ConstantSDNode>(LHS)->isNullValue()) - std::swap(LHS, RHS); - - if (!isa<ConstantSDNode>(RHS) || !cast<ConstantSDNode>(RHS)->isNullValue()) - return SDValue(); - - if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA || - LHS.getOpcode() == ISD::SRL) - return SDValue(); - - // Fold the compare into the branch instruction. - SDValue BR; - if (CC == ARM64CC::EQ) - BR = DAG.getNode(ARM64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest); - else - BR = DAG.getNode(ARM64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest); - - // Do not add new nodes to DAG combiner worklist. - DCI.CombineTo(N, BR, false); - - return SDValue(); -} - -// vselect (v1i1 setcc) -> -// vselect (v1iXX setcc) (XX is the size of the compared operand type) -// FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as -// condition. If it can legalize "VSELECT v1i1" correctly, no need to combine -// such VSELECT. -static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) { - SDValue N0 = N->getOperand(0); - EVT CCVT = N0.getValueType(); - - if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 || - CCVT.getVectorElementType() != MVT::i1) - return SDValue(); - - EVT ResVT = N->getValueType(0); - EVT CmpVT = N0.getOperand(0).getValueType(); - // Only combine when the result type is of the same size as the compared - // operands. - if (ResVT.getSizeInBits() != CmpVT.getSizeInBits()) - return SDValue(); - - SDValue IfTrue = N->getOperand(1); - SDValue IfFalse = N->getOperand(2); - SDValue SetCC = - DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(), - N0.getOperand(0), N0.getOperand(1), - cast<CondCodeSDNode>(N0.getOperand(2))->get()); - return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC, - IfTrue, IfFalse); -} - -/// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with -/// the compare-mask instructions rather than going via NZCV, even if LHS and -/// RHS are really scalar. This replaces any scalar setcc in the above pattern -/// with a vector one followed by a DUP shuffle on the result. -static SDValue performSelectCombine(SDNode *N, SelectionDAG &DAG) { - SDValue N0 = N->getOperand(0); - EVT ResVT = N->getValueType(0); - - if (!N->getOperand(1).getValueType().isVector()) - return SDValue(); - - if (N0.getOpcode() != ISD::SETCC || N0.getValueType() != MVT::i1) - return SDValue(); - - SDLoc DL(N0); - - EVT SrcVT = N0.getOperand(0).getValueType(); - SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, - ResVT.getSizeInBits() / SrcVT.getSizeInBits()); - EVT CCVT = SrcVT.changeVectorElementTypeToInteger(); - - // First perform a vector comparison, where lane 0 is the one we're interested - // in. - SDValue LHS = - DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0)); - SDValue RHS = - DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1)); - SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2)); - - // Now duplicate the comparison mask we want across all other lanes. - SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0); - SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask.data()); - Mask = DAG.getNode(ISD::BITCAST, DL, ResVT.changeVectorElementTypeToInteger(), - Mask); - - return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2)); -} - -SDValue ARM64TargetLowering::PerformDAGCombine(SDNode *N, - DAGCombinerInfo &DCI) const { - SelectionDAG &DAG = DCI.DAG; - switch (N->getOpcode()) { - default: - break; - case ISD::ADD: - case ISD::SUB: - return performAddSubLongCombine(N, DCI, DAG); - case ISD::XOR: - return performXorCombine(N, DAG, DCI, Subtarget); - case ISD::MUL: - return performMulCombine(N, DAG, DCI, Subtarget); - case ISD::SINT_TO_FP: - case ISD::UINT_TO_FP: - return performIntToFpCombine(N, DAG); - case ISD::OR: - return performORCombine(N, DCI, Subtarget); - case ISD::INTRINSIC_WO_CHAIN: - return performIntrinsicCombine(N, DCI, Subtarget); - case ISD::ANY_EXTEND: - case ISD::ZERO_EXTEND: - case ISD::SIGN_EXTEND: - return performExtendCombine(N, DCI, DAG); - case ISD::BITCAST: - return performBitcastCombine(N, DCI, DAG); - case ISD::CONCAT_VECTORS: - return performConcatVectorsCombine(N, DCI, DAG); - case ISD::SELECT: - return performSelectCombine(N, DAG); - case ISD::VSELECT: - return performVSelectCombine(N, DCI.DAG); - case ISD::STORE: - return performSTORECombine(N, DCI, DAG, Subtarget); - case ARM64ISD::BRCOND: - return performBRCONDCombine(N, DCI, DAG); - case ARM64ISD::DUP: - return performPostLD1Combine(N, DCI, false); - case ISD::INSERT_VECTOR_ELT: - return performPostLD1Combine(N, DCI, true); - case ISD::INTRINSIC_VOID: - case ISD::INTRINSIC_W_CHAIN: - switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { - case Intrinsic::arm64_neon_ld2: - case Intrinsic::arm64_neon_ld3: - case Intrinsic::arm64_neon_ld4: - case Intrinsic::arm64_neon_ld1x2: - case Intrinsic::arm64_neon_ld1x3: - case Intrinsic::arm64_neon_ld1x4: - case Intrinsic::arm64_neon_ld2lane: - case Intrinsic::arm64_neon_ld3lane: - case Intrinsic::arm64_neon_ld4lane: - case Intrinsic::arm64_neon_ld2r: - case Intrinsic::arm64_neon_ld3r: - case Intrinsic::arm64_neon_ld4r: - case Intrinsic::arm64_neon_st2: - case Intrinsic::arm64_neon_st3: - case Intrinsic::arm64_neon_st4: - case Intrinsic::arm64_neon_st1x2: - case Intrinsic::arm64_neon_st1x3: - case Intrinsic::arm64_neon_st1x4: - case Intrinsic::arm64_neon_st2lane: - case Intrinsic::arm64_neon_st3lane: - case Intrinsic::arm64_neon_st4lane: - return performNEONPostLDSTCombine(N, DCI, DAG); - default: - break; - } - } - return SDValue(); -} - -// Check if the return value is used as only a return value, as otherwise -// we can't perform a tail-call. In particular, we need to check for -// target ISD nodes that are returns and any other "odd" constructs -// that the generic analysis code won't necessarily catch. -bool ARM64TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const { - if (N->getNumValues() != 1) - return false; - if (!N->hasNUsesOfValue(1, 0)) - return false; - - SDValue TCChain = Chain; - SDNode *Copy = *N->use_begin(); - if (Copy->getOpcode() == ISD::CopyToReg) { - // If the copy has a glue operand, we conservatively assume it isn't safe to - // perform a tail call. - if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() == - MVT::Glue) - return false; - TCChain = Copy->getOperand(0); - } else if (Copy->getOpcode() != ISD::FP_EXTEND) - return false; - - bool HasRet = false; - for (SDNode *Node : Copy->uses()) { - if (Node->getOpcode() != ARM64ISD::RET_FLAG) - return false; - HasRet = true; - } - - if (!HasRet) - return false; - - Chain = TCChain; - return true; -} - -// Return whether the an instruction can potentially be optimized to a tail -// call. This will cause the optimizers to attempt to move, or duplicate, -// return instructions to help enable tail call optimizations for this -// instruction. -bool ARM64TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { - if (!CI->isTailCall()) - return false; - - return true; -} - -bool ARM64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base, - SDValue &Offset, - ISD::MemIndexedMode &AM, - bool &IsInc, - SelectionDAG &DAG) const { - if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) - return false; - - Base = Op->getOperand(0); - // All of the indexed addressing mode instructions take a signed - // 9 bit immediate offset. - if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) { - int64_t RHSC = (int64_t)RHS->getZExtValue(); - if (RHSC >= 256 || RHSC <= -256) - return false; - IsInc = (Op->getOpcode() == ISD::ADD); - Offset = Op->getOperand(1); - return true; - } - return false; -} - -bool ARM64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, - SDValue &Offset, - ISD::MemIndexedMode &AM, - SelectionDAG &DAG) const { - EVT VT; - SDValue Ptr; - if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { - VT = LD->getMemoryVT(); - Ptr = LD->getBasePtr(); - } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { - VT = ST->getMemoryVT(); - Ptr = ST->getBasePtr(); - } else - return false; - - bool IsInc; - if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG)) - return false; - AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC; - return true; -} - -bool ARM64TargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, - SDValue &Base, - SDValue &Offset, - ISD::MemIndexedMode &AM, - SelectionDAG &DAG) const { - EVT VT; - SDValue Ptr; - if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { - VT = LD->getMemoryVT(); - Ptr = LD->getBasePtr(); - } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { - VT = ST->getMemoryVT(); - Ptr = ST->getBasePtr(); - } else - return false; - - bool IsInc; - if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG)) - return false; - // Post-indexing updates the base, so it's not a valid transform - // if that's not the same as the load's pointer. - if (Ptr != Base) - return false; - AM = IsInc ? ISD::POST_INC : ISD::POST_DEC; - return true; -} - -void ARM64TargetLowering::ReplaceNodeResults(SDNode *N, - SmallVectorImpl<SDValue> &Results, - SelectionDAG &DAG) const { - switch (N->getOpcode()) { - default: - llvm_unreachable("Don't know how to custom expand this"); - case ISD::FP_TO_UINT: - case ISD::FP_TO_SINT: - assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion"); - // Let normal code take care of it by not adding anything to Results. - return; - } -} - -bool ARM64TargetLowering::shouldExpandAtomicInIR(Instruction *Inst) const { - // Loads and stores less than 128-bits are already atomic; ones above that - // are doomed anyway, so defer to the default libcall and blame the OS when - // things go wrong: - if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) - return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() == 128; - else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) - return LI->getType()->getPrimitiveSizeInBits() == 128; - - // For the real atomic operations, we have ldxr/stxr up to 128 bits. - return Inst->getType()->getPrimitiveSizeInBits() <= 128; -} - -Value *ARM64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr, - AtomicOrdering Ord) const { - Module *M = Builder.GetInsertBlock()->getParent()->getParent(); - Type *ValTy = cast<PointerType>(Addr->getType())->getElementType(); - bool IsAcquire = - Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent; - - // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd - // intrinsic must return {i64, i64} and we have to recombine them into a - // single i128 here. - if (ValTy->getPrimitiveSizeInBits() == 128) { - Intrinsic::ID Int = - IsAcquire ? Intrinsic::arm64_ldaxp : Intrinsic::arm64_ldxp; - Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int); - - Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext())); - Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi"); - - Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); - Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); - Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); - Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); - return Builder.CreateOr( - Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); - } - - Type *Tys[] = { Addr->getType() }; - Intrinsic::ID Int = - IsAcquire ? Intrinsic::arm64_ldaxr : Intrinsic::arm64_ldxr; - Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int, Tys); - - return Builder.CreateTruncOrBitCast( - Builder.CreateCall(Ldxr, Addr), - cast<PointerType>(Addr->getType())->getElementType()); -} - -Value *ARM64TargetLowering::emitStoreConditional(IRBuilder<> &Builder, - Value *Val, Value *Addr, - AtomicOrdering Ord) const { - Module *M = Builder.GetInsertBlock()->getParent()->getParent(); - bool IsRelease = - Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent; - - // Since the intrinsics must have legal type, the i128 intrinsics take two - // parameters: "i64, i64". We must marshal Val into the appropriate form - // before the call. - if (Val->getType()->getPrimitiveSizeInBits() == 128) { - Intrinsic::ID Int = - IsRelease ? Intrinsic::arm64_stlxp : Intrinsic::arm64_stxp; - Function *Stxr = Intrinsic::getDeclaration(M, Int); - Type *Int64Ty = Type::getInt64Ty(M->getContext()); - - Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo"); - Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi"); - Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext())); - return Builder.CreateCall3(Stxr, Lo, Hi, Addr); - } - - Intrinsic::ID Int = - IsRelease ? Intrinsic::arm64_stlxr : Intrinsic::arm64_stxr; - Type *Tys[] = { Addr->getType() }; - Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys); - - return Builder.CreateCall2( - Stxr, Builder.CreateZExtOrBitCast( - Val, Stxr->getFunctionType()->getParamType(0)), - Addr); -} |

