diff options
Diffstat (limited to 'llvm/lib/Target/ARM64/ARM64CollectLOH.cpp')
| -rw-r--r-- | llvm/lib/Target/ARM64/ARM64CollectLOH.cpp | 1117 |
1 files changed, 0 insertions, 1117 deletions
diff --git a/llvm/lib/Target/ARM64/ARM64CollectLOH.cpp b/llvm/lib/Target/ARM64/ARM64CollectLOH.cpp deleted file mode 100644 index 8b48f3ae9b2..00000000000 --- a/llvm/lib/Target/ARM64/ARM64CollectLOH.cpp +++ /dev/null @@ -1,1117 +0,0 @@ -//===-------------- ARM64CollectLOH.cpp - ARM64 collect LOH pass --*- C++ -*-=// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file contains a pass that collect the Linker Optimization Hint (LOH). -// This pass should be run at the very end of the compilation flow, just before -// assembly printer. -// To be useful for the linker, the LOH must be printed into the assembly file. -// -// A LOH describes a sequence of instructions that may be optimized by the -// linker. -// This same sequence cannot be optimized by the compiler because some of -// the information will be known at link time. -// For instance, consider the following sequence: -// L1: adrp xA, sym@PAGE -// L2: add xB, xA, sym@PAGEOFF -// L3: ldr xC, [xB, #imm] -// This sequence can be turned into: -// A literal load if sym@PAGE + sym@PAGEOFF + #imm - address(L3) is < 1MB: -// L3: ldr xC, sym+#imm -// It may also be turned into either the following more efficient -// code sequences: -// - If sym@PAGEOFF + #imm fits the encoding space of L3. -// L1: adrp xA, sym@PAGE -// L3: ldr xC, [xB, sym@PAGEOFF + #imm] -// - If sym@PAGE + sym@PAGEOFF - address(L1) < 1MB: -// L1: adr xA, sym -// L3: ldr xC, [xB, #imm] -// -// To be valid a LOH must meet all the requirements needed by all the related -// possible linker transformations. -// For instance, using the running example, the constraints to emit -// ".loh AdrpAddLdr" are: -// - L1, L2, and L3 instructions are of the expected type, i.e., -// respectively ADRP, ADD (immediate), and LD. -// - The result of L1 is used only by L2. -// - The register argument (xA) used in the ADD instruction is defined -// only by L1. -// - The result of L2 is used only by L3. -// - The base address (xB) in L3 is defined only L2. -// - The ADRP in L1 and the ADD in L2 must reference the same symbol using -// @PAGE/@PAGEOFF with no additional constants -// -// Currently supported LOHs are: -// * So called non-ADRP-related: -// - .loh AdrpAddLdr L1, L2, L3: -// L1: adrp xA, sym@PAGE -// L2: add xB, xA, sym@PAGEOFF -// L3: ldr xC, [xB, #imm] -// - .loh AdrpLdrGotLdr L1, L2, L3: -// L1: adrp xA, sym@GOTPAGE -// L2: ldr xB, [xA, sym@GOTPAGEOFF] -// L3: ldr xC, [xB, #imm] -// - .loh AdrpLdr L1, L3: -// L1: adrp xA, sym@PAGE -// L3: ldr xC, [xA, sym@PAGEOFF] -// - .loh AdrpAddStr L1, L2, L3: -// L1: adrp xA, sym@PAGE -// L2: add xB, xA, sym@PAGEOFF -// L3: str xC, [xB, #imm] -// - .loh AdrpLdrGotStr L1, L2, L3: -// L1: adrp xA, sym@GOTPAGE -// L2: ldr xB, [xA, sym@GOTPAGEOFF] -// L3: str xC, [xB, #imm] -// - .loh AdrpAdd L1, L2: -// L1: adrp xA, sym@PAGE -// L2: add xB, xA, sym@PAGEOFF -// For all these LOHs, L1, L2, L3 form a simple chain: -// L1 result is used only by L2 and L2 result by L3. -// L3 LOH-related argument is defined only by L2 and L2 LOH-related argument -// by L1. -// All these LOHs aim at using more efficient load/store patterns by folding -// some instructions used to compute the address directly into the load/store. -// -// * So called ADRP-related: -// - .loh AdrpAdrp L2, L1: -// L2: ADRP xA, sym1@PAGE -// L1: ADRP xA, sym2@PAGE -// L2 dominates L1 and xA is not redifined between L2 and L1 -// This LOH aims at getting rid of redundant ADRP instructions. -// -// The overall design for emitting the LOHs is: -// 1. ARM64CollectLOH (this pass) records the LOHs in the ARM64FunctionInfo. -// 2. ARM64AsmPrinter reads the LOHs from ARM64FunctionInfo and it: -// 1. Associates them a label. -// 2. Emits them in a MCStreamer (EmitLOHDirective). -// - The MCMachOStreamer records them into the MCAssembler. -// - The MCAsmStreamer prints them. -// - Other MCStreamers ignore them. -// 3. Closes the MCStreamer: -// - The MachObjectWriter gets them from the MCAssembler and writes -// them in the object file. -// - Other ObjectWriters ignore them. -//===----------------------------------------------------------------------===// - -#include "ARM64.h" -#include "ARM64InstrInfo.h" -#include "ARM64MachineFunctionInfo.h" -#include "MCTargetDesc/ARM64AddressingModes.h" -#include "llvm/ADT/BitVector.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/MapVector.h" -#include "llvm/ADT/SetVector.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/CodeGen/MachineBasicBlock.h" -#include "llvm/CodeGen/MachineDominators.h" -#include "llvm/CodeGen/MachineFunctionPass.h" -#include "llvm/CodeGen/MachineInstr.h" -#include "llvm/CodeGen/MachineInstrBuilder.h" -#include "llvm/Target/TargetInstrInfo.h" -#include "llvm/Target/TargetMachine.h" -#include "llvm/Target/TargetRegisterInfo.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/ADT/Statistic.h" -using namespace llvm; - -#define DEBUG_TYPE "arm64-collect-loh" - -static cl::opt<bool> -PreCollectRegister("arm64-collect-loh-pre-collect-register", cl::Hidden, - cl::desc("Restrict analysis to registers invovled" - " in LOHs"), - cl::init(true)); - -static cl::opt<bool> -BasicBlockScopeOnly("arm64-collect-loh-bb-only", cl::Hidden, - cl::desc("Restrict analysis at basic block scope"), - cl::init(true)); - -STATISTIC(NumADRPSimpleCandidate, - "Number of simplifiable ADRP dominate by another"); -STATISTIC(NumADRPComplexCandidate2, - "Number of simplifiable ADRP reachable by 2 defs"); -STATISTIC(NumADRPComplexCandidate3, - "Number of simplifiable ADRP reachable by 3 defs"); -STATISTIC(NumADRPComplexCandidateOther, - "Number of simplifiable ADRP reachable by 4 or more defs"); -STATISTIC(NumADDToSTRWithImm, - "Number of simplifiable STR with imm reachable by ADD"); -STATISTIC(NumLDRToSTRWithImm, - "Number of simplifiable STR with imm reachable by LDR"); -STATISTIC(NumADDToSTR, "Number of simplifiable STR reachable by ADD"); -STATISTIC(NumLDRToSTR, "Number of simplifiable STR reachable by LDR"); -STATISTIC(NumADDToLDRWithImm, - "Number of simplifiable LDR with imm reachable by ADD"); -STATISTIC(NumLDRToLDRWithImm, - "Number of simplifiable LDR with imm reachable by LDR"); -STATISTIC(NumADDToLDR, "Number of simplifiable LDR reachable by ADD"); -STATISTIC(NumLDRToLDR, "Number of simplifiable LDR reachable by LDR"); -STATISTIC(NumADRPToLDR, "Number of simplifiable LDR reachable by ADRP"); -STATISTIC(NumCplxLvl1, "Number of complex case of level 1"); -STATISTIC(NumTooCplxLvl1, "Number of too complex case of level 1"); -STATISTIC(NumCplxLvl2, "Number of complex case of level 2"); -STATISTIC(NumTooCplxLvl2, "Number of too complex case of level 2"); -STATISTIC(NumADRSimpleCandidate, "Number of simplifiable ADRP + ADD"); -STATISTIC(NumADRComplexCandidate, "Number of too complex ADRP + ADD"); - -namespace llvm { -void initializeARM64CollectLOHPass(PassRegistry &); -} - -namespace { -struct ARM64CollectLOH : public MachineFunctionPass { - static char ID; - ARM64CollectLOH() : MachineFunctionPass(ID) { - initializeARM64CollectLOHPass(*PassRegistry::getPassRegistry()); - } - - bool runOnMachineFunction(MachineFunction &MF) override; - - const char *getPassName() const override { - return "ARM64 Collect Linker Optimization Hint (LOH)"; - } - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.setPreservesAll(); - MachineFunctionPass::getAnalysisUsage(AU); - AU.addRequired<MachineDominatorTree>(); - } - -private: -}; - -/// A set of MachineInstruction. -typedef SetVector<const MachineInstr *> SetOfMachineInstr; -/// Map a basic block to a set of instructions per register. -/// This is used to represent the exposed uses of a basic block -/// per register. -typedef MapVector<const MachineBasicBlock *, SetOfMachineInstr *> -BlockToSetOfInstrsPerColor; -/// Map a basic block to an instruction per register. -/// This is used to represent the live-out definitions of a basic block -/// per register. -typedef MapVector<const MachineBasicBlock *, const MachineInstr **> -BlockToInstrPerColor; -/// Map an instruction to a set of instructions. Used to represent the -/// mapping def to reachable uses or use to definitions. -typedef MapVector<const MachineInstr *, SetOfMachineInstr> InstrToInstrs; -/// Map a basic block to a BitVector. -/// This is used to record the kill registers per basic block. -typedef MapVector<const MachineBasicBlock *, BitVector> BlockToRegSet; - -/// Map a register to a dense id. -typedef DenseMap<unsigned, unsigned> MapRegToId; -/// Map a dense id to a register. Used for debug purposes. -typedef SmallVector<unsigned, 32> MapIdToReg; -} // end anonymous namespace. - -char ARM64CollectLOH::ID = 0; - -INITIALIZE_PASS_BEGIN(ARM64CollectLOH, "arm64-collect-loh", - "ARM64 Collect Linker Optimization Hint (LOH)", false, - false) -INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) -INITIALIZE_PASS_END(ARM64CollectLOH, "arm64-collect-loh", - "ARM64 Collect Linker Optimization Hint (LOH)", false, - false) - -/// Given a couple (MBB, reg) get the corresponding set of instruction from -/// the given "sets". -/// If this couple does not reference any set, an empty set is added to "sets" -/// for this couple and returned. -/// \param nbRegs is used internally allocate some memory. It must be consistent -/// with the way sets is used. -static SetOfMachineInstr &getSet(BlockToSetOfInstrsPerColor &sets, - const MachineBasicBlock &MBB, unsigned reg, - unsigned nbRegs) { - SetOfMachineInstr *result; - BlockToSetOfInstrsPerColor::iterator it = sets.find(&MBB); - if (it != sets.end()) - result = it->second; - else - result = sets[&MBB] = new SetOfMachineInstr[nbRegs]; - - return result[reg]; -} - -/// Given a couple (reg, MI) get the corresponding set of instructions from the -/// the given "sets". -/// This is used to get the uses record in sets of a definition identified by -/// MI and reg, i.e., MI defines reg. -/// If the couple does not reference anything, an empty set is added to -/// "sets[reg]". -/// \pre set[reg] is valid. -static SetOfMachineInstr &getUses(InstrToInstrs *sets, unsigned reg, - const MachineInstr &MI) { - return sets[reg][&MI]; -} - -/// Same as getUses but does not modify the input map: sets. -/// \return NULL if the couple (reg, MI) is not in sets. -static const SetOfMachineInstr *getUses(const InstrToInstrs *sets, unsigned reg, - const MachineInstr &MI) { - InstrToInstrs::const_iterator Res = sets[reg].find(&MI); - if (Res != sets[reg].end()) - return &(Res->second); - return nullptr; -} - -/// Initialize the reaching definition algorithm: -/// For each basic block BB in MF, record: -/// - its kill set. -/// - its reachable uses (uses that are exposed to BB's predecessors). -/// - its the generated definitions. -/// \param DummyOp if not NULL, specifies a Dummy Operation to be added to -/// the list of uses of exposed defintions. -/// \param ADRPMode specifies to only consider ADRP instructions for generated -/// definition. It also consider definitions of ADRP instructions as uses and -/// ignore other uses. The ADRPMode is used to collect the information for LHO -/// that involve ADRP operation only. -static void initReachingDef(MachineFunction &MF, - InstrToInstrs *ColorOpToReachedUses, - BlockToInstrPerColor &Gen, BlockToRegSet &Kill, - BlockToSetOfInstrsPerColor &ReachableUses, - const MapRegToId &RegToId, - const MachineInstr *DummyOp, bool ADRPMode) { - const TargetMachine &TM = MF.getTarget(); - const TargetRegisterInfo *TRI = TM.getRegisterInfo(); - - unsigned NbReg = RegToId.size(); - - for (MachineBasicBlock &MBB : MF) { - const MachineInstr **&BBGen = Gen[&MBB]; - BBGen = new const MachineInstr *[NbReg]; - memset(BBGen, 0, sizeof(const MachineInstr *) * NbReg); - - BitVector &BBKillSet = Kill[&MBB]; - BBKillSet.resize(NbReg); - for (const MachineInstr &MI : MBB) { - bool IsADRP = MI.getOpcode() == ARM64::ADRP; - - // Process uses first. - if (IsADRP || !ADRPMode) - for (const MachineOperand &MO : MI.operands()) { - // Treat ADRP def as use, as the goal of the analysis is to find - // ADRP defs reached by other ADRP defs. - if (!MO.isReg() || (!ADRPMode && !MO.isUse()) || - (ADRPMode && (!IsADRP || !MO.isDef()))) - continue; - unsigned CurReg = MO.getReg(); - MapRegToId::const_iterator ItCurRegId = RegToId.find(CurReg); - if (ItCurRegId == RegToId.end()) - continue; - CurReg = ItCurRegId->second; - - // if CurReg has not been defined, this use is reachable. - if (!BBGen[CurReg] && !BBKillSet.test(CurReg)) - getSet(ReachableUses, MBB, CurReg, NbReg).insert(&MI); - // current basic block definition for this color, if any, is in Gen. - if (BBGen[CurReg]) - getUses(ColorOpToReachedUses, CurReg, *BBGen[CurReg]).insert(&MI); - } - - // Process clobbers. - for (const MachineOperand &MO : MI.operands()) { - if (!MO.isRegMask()) - continue; - // Clobbers kill the related colors. - const uint32_t *PreservedRegs = MO.getRegMask(); - - // Set generated regs. - for (const auto Entry : RegToId) { - unsigned Reg = Entry.second; - // Use the global register ID when querying APIs external to this - // pass. - if (MachineOperand::clobbersPhysReg(PreservedRegs, Entry.first)) { - // Do not register clobbered definition for no ADRP. - // This definition is not used anyway (otherwise register - // allocation is wrong). - BBGen[Reg] = ADRPMode ? &MI : nullptr; - BBKillSet.set(Reg); - } - } - } - - // Process register defs. - for (const MachineOperand &MO : MI.operands()) { - if (!MO.isReg() || !MO.isDef()) - continue; - unsigned CurReg = MO.getReg(); - MapRegToId::const_iterator ItCurRegId = RegToId.find(CurReg); - if (ItCurRegId == RegToId.end()) - continue; - - for (MCRegAliasIterator AI(CurReg, TRI, true); AI.isValid(); ++AI) { - MapRegToId::const_iterator ItRegId = RegToId.find(*AI); - assert(ItRegId != RegToId.end() && - "Sub-register of an " - "involved register, not recorded as involved!"); - BBKillSet.set(ItRegId->second); - BBGen[ItRegId->second] = &MI; - } - BBGen[ItCurRegId->second] = &MI; - } - } - - // If we restrict our analysis to basic block scope, conservatively add a - // dummy - // use for each generated value. - if (!ADRPMode && DummyOp && !MBB.succ_empty()) - for (unsigned CurReg = 0; CurReg < NbReg; ++CurReg) - if (BBGen[CurReg]) - getUses(ColorOpToReachedUses, CurReg, *BBGen[CurReg]).insert(DummyOp); - } -} - -/// Reaching def core algorithm: -/// while an Out has changed -/// for each bb -/// for each color -/// In[bb][color] = U Out[bb.predecessors][color] -/// insert reachableUses[bb][color] in each in[bb][color] -/// op.reachedUses -/// -/// Out[bb] = Gen[bb] U (In[bb] - Kill[bb]) -static void reachingDefAlgorithm(MachineFunction &MF, - InstrToInstrs *ColorOpToReachedUses, - BlockToSetOfInstrsPerColor &In, - BlockToSetOfInstrsPerColor &Out, - BlockToInstrPerColor &Gen, BlockToRegSet &Kill, - BlockToSetOfInstrsPerColor &ReachableUses, - unsigned NbReg) { - bool HasChanged; - do { - HasChanged = false; - for (MachineBasicBlock &MBB : MF) { - unsigned CurReg; - for (CurReg = 0; CurReg < NbReg; ++CurReg) { - SetOfMachineInstr &BBInSet = getSet(In, MBB, CurReg, NbReg); - SetOfMachineInstr &BBReachableUses = - getSet(ReachableUses, MBB, CurReg, NbReg); - SetOfMachineInstr &BBOutSet = getSet(Out, MBB, CurReg, NbReg); - unsigned Size = BBOutSet.size(); - // In[bb][color] = U Out[bb.predecessors][color] - for (MachineBasicBlock *PredMBB : MBB.predecessors()) { - SetOfMachineInstr &PredOutSet = getSet(Out, *PredMBB, CurReg, NbReg); - BBInSet.insert(PredOutSet.begin(), PredOutSet.end()); - } - // insert reachableUses[bb][color] in each in[bb][color] op.reachedses - for (const MachineInstr *MI : BBInSet) { - SetOfMachineInstr &OpReachedUses = - getUses(ColorOpToReachedUses, CurReg, *MI); - OpReachedUses.insert(BBReachableUses.begin(), BBReachableUses.end()); - } - // Out[bb] = Gen[bb] U (In[bb] - Kill[bb]) - if (!Kill[&MBB].test(CurReg)) - BBOutSet.insert(BBInSet.begin(), BBInSet.end()); - if (Gen[&MBB][CurReg]) - BBOutSet.insert(Gen[&MBB][CurReg]); - HasChanged |= BBOutSet.size() != Size; - } - } - } while (HasChanged); -} - -/// Release all memory dynamically allocated during the reaching -/// definition algorithm. -static void finitReachingDef(BlockToSetOfInstrsPerColor &In, - BlockToSetOfInstrsPerColor &Out, - BlockToInstrPerColor &Gen, - BlockToSetOfInstrsPerColor &ReachableUses) { - for (auto &IT : Out) - delete[] IT.second; - for (auto &IT : In) - delete[] IT.second; - for (auto &IT : ReachableUses) - delete[] IT.second; - for (auto &IT : Gen) - delete[] IT.second; -} - -/// Reaching definition algorithm. -/// \param MF function on which the algorithm will operate. -/// \param[out] ColorOpToReachedUses will contain the result of the reaching -/// def algorithm. -/// \param ADRPMode specify whether the reaching def algorithm should be tuned -/// for ADRP optimization. \see initReachingDef for more details. -/// \param DummyOp if not NULL, the algorithm will work at -/// basic block scope and will set for every exposed definition a use to -/// @p DummyOp. -/// \pre ColorOpToReachedUses is an array of at least number of registers of -/// InstrToInstrs. -static void reachingDef(MachineFunction &MF, - InstrToInstrs *ColorOpToReachedUses, - const MapRegToId &RegToId, bool ADRPMode = false, - const MachineInstr *DummyOp = nullptr) { - // structures: - // For each basic block. - // Out: a set per color of definitions that reach the - // out boundary of this block. - // In: Same as Out but for in boundary. - // Gen: generated color in this block (one operation per color). - // Kill: register set of killed color in this block. - // ReachableUses: a set per color of uses (operation) reachable - // for "In" definitions. - BlockToSetOfInstrsPerColor Out, In, ReachableUses; - BlockToInstrPerColor Gen; - BlockToRegSet Kill; - - // Initialize Gen, kill and reachableUses. - initReachingDef(MF, ColorOpToReachedUses, Gen, Kill, ReachableUses, RegToId, - DummyOp, ADRPMode); - - // Algo. - if (!DummyOp) - reachingDefAlgorithm(MF, ColorOpToReachedUses, In, Out, Gen, Kill, - ReachableUses, RegToId.size()); - - // finit. - finitReachingDef(In, Out, Gen, ReachableUses); -} - -#ifndef NDEBUG -/// print the result of the reaching definition algorithm. -static void printReachingDef(const InstrToInstrs *ColorOpToReachedUses, - unsigned NbReg, const TargetRegisterInfo *TRI, - const MapIdToReg &IdToReg) { - unsigned CurReg; - for (CurReg = 0; CurReg < NbReg; ++CurReg) { - if (ColorOpToReachedUses[CurReg].empty()) - continue; - DEBUG(dbgs() << "*** Reg " << PrintReg(IdToReg[CurReg], TRI) << " ***\n"); - - for (const auto &DefsIt : ColorOpToReachedUses[CurReg]) { - DEBUG(dbgs() << "Def:\n"); - DEBUG(DefsIt.first->print(dbgs())); - DEBUG(dbgs() << "Reachable uses:\n"); - for (const MachineInstr *MI : DefsIt.second) { - DEBUG(MI->print(dbgs())); - } - } - } -} -#endif // NDEBUG - -/// Answer the following question: Can Def be one of the definition -/// involved in a part of a LOH? -static bool canDefBePartOfLOH(const MachineInstr *Def) { - unsigned Opc = Def->getOpcode(); - // Accept ADRP, ADDLow and LOADGot. - switch (Opc) { - default: - return false; - case ARM64::ADRP: - return true; - case ARM64::ADDXri: - // Check immediate to see if the immediate is an address. - switch (Def->getOperand(2).getType()) { - default: - return false; - case MachineOperand::MO_GlobalAddress: - case MachineOperand::MO_JumpTableIndex: - case MachineOperand::MO_ConstantPoolIndex: - case MachineOperand::MO_BlockAddress: - return true; - } - case ARM64::LDRXui: - // Check immediate to see if the immediate is an address. - switch (Def->getOperand(2).getType()) { - default: - return false; - case MachineOperand::MO_GlobalAddress: - return true; - } - } - // Unreachable. - return false; -} - -/// Check whether the given instruction can the end of a LOH chain involving a -/// store. -static bool isCandidateStore(const MachineInstr *Instr) { - switch (Instr->getOpcode()) { - default: - return false; - case ARM64::STRBui: - case ARM64::STRHui: - case ARM64::STRWui: - case ARM64::STRXui: - case ARM64::STRSui: - case ARM64::STRDui: - case ARM64::STRQui: - // In case we have str xA, [xA, #imm], this is two different uses - // of xA and we cannot fold, otherwise the xA stored may be wrong, - // even if #imm == 0. - if (Instr->getOperand(0).getReg() != Instr->getOperand(1).getReg()) - return true; - } - return false; -} - -/// Given the result of a reaching definition algorithm in ColorOpToReachedUses, -/// Build the Use to Defs information and filter out obvious non-LOH candidates. -/// In ADRPMode, non-LOH candidates are "uses" with non-ADRP definitions. -/// In non-ADRPMode, non-LOH candidates are "uses" with several definition, -/// i.e., no simple chain. -/// \param ADRPMode -- \see initReachingDef. -static void reachedUsesToDefs(InstrToInstrs &UseToReachingDefs, - const InstrToInstrs *ColorOpToReachedUses, - const MapRegToId &RegToId, - bool ADRPMode = false) { - - SetOfMachineInstr NotCandidate; - unsigned NbReg = RegToId.size(); - MapRegToId::const_iterator EndIt = RegToId.end(); - for (unsigned CurReg = 0; CurReg < NbReg; ++CurReg) { - // If this color is never defined, continue. - if (ColorOpToReachedUses[CurReg].empty()) - continue; - - for (const auto &DefsIt : ColorOpToReachedUses[CurReg]) { - for (const MachineInstr *MI : DefsIt.second) { - const MachineInstr *Def = DefsIt.first; - MapRegToId::const_iterator It; - // if all the reaching defs are not adrp, this use will not be - // simplifiable. - if ((ADRPMode && Def->getOpcode() != ARM64::ADRP) || - (!ADRPMode && !canDefBePartOfLOH(Def)) || - (!ADRPMode && isCandidateStore(MI) && - // store are LOH candidate iff the end of the chain is used as - // base. - ((It = RegToId.find((MI)->getOperand(1).getReg())) == EndIt || - It->second != CurReg))) { - NotCandidate.insert(MI); - continue; - } - // Do not consider self reaching as a simplifiable case for ADRP. - if (!ADRPMode || MI != DefsIt.first) { - UseToReachingDefs[MI].insert(DefsIt.first); - // If UsesIt has several reaching definitions, it is not - // candidate for simplificaton in non-ADRPMode. - if (!ADRPMode && UseToReachingDefs[MI].size() > 1) - NotCandidate.insert(MI); - } - } - } - } - for (const MachineInstr *Elem : NotCandidate) { - DEBUG(dbgs() << "Too many reaching defs: " << *Elem << "\n"); - // It would have been better if we could just remove the entry - // from the map. Because of that, we have to filter the garbage - // (second.empty) in the subsequence analysis. - UseToReachingDefs[Elem].clear(); - } -} - -/// Based on the use to defs information (in ADRPMode), compute the -/// opportunities of LOH ADRP-related. -static void computeADRP(const InstrToInstrs &UseToDefs, - ARM64FunctionInfo &ARM64FI, - const MachineDominatorTree *MDT) { - DEBUG(dbgs() << "*** Compute LOH for ADRP\n"); - for (const auto &Entry : UseToDefs) { - unsigned Size = Entry.second.size(); - if (Size == 0) - continue; - if (Size == 1) { - const MachineInstr *L2 = *Entry.second.begin(); - const MachineInstr *L1 = Entry.first; - if (!MDT->dominates(L2, L1)) { - DEBUG(dbgs() << "Dominance check failed:\n" << *L2 << '\n' << *L1 - << '\n'); - continue; - } - DEBUG(dbgs() << "Record AdrpAdrp:\n" << *L2 << '\n' << *L1 << '\n'); - SmallVector<const MachineInstr *, 2> Args; - Args.push_back(L2); - Args.push_back(L1); - ARM64FI.addLOHDirective(MCLOH_AdrpAdrp, Args); - ++NumADRPSimpleCandidate; - } -#ifdef DEBUG - else if (Size == 2) - ++NumADRPComplexCandidate2; - else if (Size == 3) - ++NumADRPComplexCandidate3; - else - ++NumADRPComplexCandidateOther; -#endif - // if Size < 1, the use should have been removed from the candidates - assert(Size >= 1 && "No reaching defs for that use!"); - } -} - -/// Check whether the given instruction can be the end of a LOH chain -/// involving a load. -static bool isCandidateLoad(const MachineInstr *Instr) { - switch (Instr->getOpcode()) { - default: - return false; - case ARM64::LDRSBWui: - case ARM64::LDRSBXui: - case ARM64::LDRSHWui: - case ARM64::LDRSHXui: - case ARM64::LDRSWui: - case ARM64::LDRBui: - case ARM64::LDRHui: - case ARM64::LDRWui: - case ARM64::LDRXui: - case ARM64::LDRSui: - case ARM64::LDRDui: - case ARM64::LDRQui: - if (Instr->getOperand(2).getTargetFlags() & ARM64II::MO_GOT) - return false; - return true; - } - // Unreachable. - return false; -} - -/// Check whether the given instruction can load a litteral. -static bool supportLoadFromLiteral(const MachineInstr *Instr) { - switch (Instr->getOpcode()) { - default: - return false; - case ARM64::LDRSWui: - case ARM64::LDRWui: - case ARM64::LDRXui: - case ARM64::LDRSui: - case ARM64::LDRDui: - case ARM64::LDRQui: - return true; - } - // Unreachable. - return false; -} - -/// Check whether the given instruction is a LOH candidate. -/// \param UseToDefs is used to check that Instr is at the end of LOH supported -/// chain. -/// \pre UseToDefs contains only on def per use, i.e., obvious non candidate are -/// already been filtered out. -static bool isCandidate(const MachineInstr *Instr, - const InstrToInstrs &UseToDefs, - const MachineDominatorTree *MDT) { - if (!isCandidateLoad(Instr) && !isCandidateStore(Instr)) - return false; - - const MachineInstr *Def = *UseToDefs.find(Instr)->second.begin(); - if (Def->getOpcode() != ARM64::ADRP) { - // At this point, Def is ADDXri or LDRXui of the right type of - // symbol, because we filtered out the uses that were not defined - // by these kind of instructions (+ ADRP). - - // Check if this forms a simple chain: each intermediate node must - // dominates the next one. - if (!MDT->dominates(Def, Instr)) - return false; - // Move one node up in the simple chain. - if (UseToDefs.find(Def) == - UseToDefs.end() - // The map may contain garbage we have to ignore. - || - UseToDefs.find(Def)->second.empty()) - return false; - Instr = Def; - Def = *UseToDefs.find(Def)->second.begin(); - } - // Check if we reached the top of the simple chain: - // - top is ADRP. - // - check the simple chain property: each intermediate node must - // dominates the next one. - if (Def->getOpcode() == ARM64::ADRP) - return MDT->dominates(Def, Instr); - return false; -} - -static bool registerADRCandidate(const MachineInstr &Use, - const InstrToInstrs &UseToDefs, - const InstrToInstrs *DefsPerColorToUses, - ARM64FunctionInfo &ARM64FI, - SetOfMachineInstr *InvolvedInLOHs, - const MapRegToId &RegToId) { - // Look for opportunities to turn ADRP -> ADD or - // ADRP -> LDR GOTPAGEOFF into ADR. - // If ADRP has more than one use. Give up. - if (Use.getOpcode() != ARM64::ADDXri && - (Use.getOpcode() != ARM64::LDRXui || - !(Use.getOperand(2).getTargetFlags() & ARM64II::MO_GOT))) - return false; - InstrToInstrs::const_iterator It = UseToDefs.find(&Use); - // The map may contain garbage that we need to ignore. - if (It == UseToDefs.end() || It->second.empty()) - return false; - const MachineInstr &Def = **It->second.begin(); - if (Def.getOpcode() != ARM64::ADRP) - return false; - // Check the number of users of ADRP. - const SetOfMachineInstr *Users = - getUses(DefsPerColorToUses, - RegToId.find(Def.getOperand(0).getReg())->second, Def); - if (Users->size() > 1) { - ++NumADRComplexCandidate; - return false; - } - ++NumADRSimpleCandidate; - assert((!InvolvedInLOHs || InvolvedInLOHs->insert(&Def)) && - "ADRP already involved in LOH."); - assert((!InvolvedInLOHs || InvolvedInLOHs->insert(&Use)) && - "ADD already involved in LOH."); - DEBUG(dbgs() << "Record AdrpAdd\n" << Def << '\n' << Use << '\n'); - - SmallVector<const MachineInstr *, 2> Args; - Args.push_back(&Def); - Args.push_back(&Use); - - ARM64FI.addLOHDirective(Use.getOpcode() == ARM64::ADDXri ? MCLOH_AdrpAdd - : MCLOH_AdrpLdrGot, - Args); - return true; -} - -/// Based on the use to defs information (in non-ADRPMode), compute the -/// opportunities of LOH non-ADRP-related -static void computeOthers(const InstrToInstrs &UseToDefs, - const InstrToInstrs *DefsPerColorToUses, - ARM64FunctionInfo &ARM64FI, const MapRegToId &RegToId, - const MachineDominatorTree *MDT) { - SetOfMachineInstr *InvolvedInLOHs = nullptr; -#ifdef DEBUG - SetOfMachineInstr InvolvedInLOHsStorage; - InvolvedInLOHs = &InvolvedInLOHsStorage; -#endif // DEBUG - DEBUG(dbgs() << "*** Compute LOH for Others\n"); - // ADRP -> ADD/LDR -> LDR/STR pattern. - // Fall back to ADRP -> ADD pattern if we fail to catch the bigger pattern. - - // FIXME: When the statistics are not important, - // This initial filtering loop can be merged into the next loop. - // Currently, we didn't do it to have the same code for both DEBUG and - // NDEBUG builds. Indeed, the iterator of the second loop would need - // to be changed. - SetOfMachineInstr PotentialCandidates; - SetOfMachineInstr PotentialADROpportunities; - for (auto &Use : UseToDefs) { - // If no definition is available, this is a non candidate. - if (Use.second.empty()) - continue; - // Keep only instructions that are load or store and at the end of - // a ADRP -> ADD/LDR/Nothing chain. - // We already filtered out the no-chain cases. - if (!isCandidate(Use.first, UseToDefs, MDT)) { - PotentialADROpportunities.insert(Use.first); - continue; - } - PotentialCandidates.insert(Use.first); - } - - // Make the following distinctions for statistics as the linker does - // know how to decode instructions: - // - ADD/LDR/Nothing make there different patterns. - // - LDR/STR make two different patterns. - // Hence, 6 - 1 base patterns. - // (because ADRP-> Nothing -> STR is not simplifiable) - - // The linker is only able to have a simple semantic, i.e., if pattern A - // do B. - // However, we want to see the opportunity we may miss if we were able to - // catch more complex cases. - - // PotentialCandidates are result of a chain ADRP -> ADD/LDR -> - // A potential candidate becomes a candidate, if its current immediate - // operand is zero and all nodes of the chain have respectively only one user -#ifdef DEBUG - SetOfMachineInstr DefsOfPotentialCandidates; -#endif - for (const MachineInstr *Candidate : PotentialCandidates) { - // Get the definition of the candidate i.e., ADD or LDR. - const MachineInstr *Def = *UseToDefs.find(Candidate)->second.begin(); - // Record the elements of the chain. - const MachineInstr *L1 = Def; - const MachineInstr *L2 = nullptr; - unsigned ImmediateDefOpc = Def->getOpcode(); - if (Def->getOpcode() != ARM64::ADRP) { - // Check the number of users of this node. - const SetOfMachineInstr *Users = - getUses(DefsPerColorToUses, - RegToId.find(Def->getOperand(0).getReg())->second, *Def); - if (Users->size() > 1) { -#ifdef DEBUG - // if all the uses of this def are in potential candidate, this is - // a complex candidate of level 2. - bool IsLevel2 = true; - for (const MachineInstr *MI : *Users) { - if (!PotentialCandidates.count(MI)) { - ++NumTooCplxLvl2; - IsLevel2 = false; - break; - } - } - if (IsLevel2) - ++NumCplxLvl2; -#endif // DEBUG - PotentialADROpportunities.insert(Def); - continue; - } - L2 = Def; - Def = *UseToDefs.find(Def)->second.begin(); - L1 = Def; - } // else the element in the middle of the chain is nothing, thus - // Def already contains the first element of the chain. - - // Check the number of users of the first node in the chain, i.e., ADRP - const SetOfMachineInstr *Users = - getUses(DefsPerColorToUses, - RegToId.find(Def->getOperand(0).getReg())->second, *Def); - if (Users->size() > 1) { -#ifdef DEBUG - // if all the uses of this def are in the defs of the potential candidate, - // this is a complex candidate of level 1 - if (DefsOfPotentialCandidates.empty()) { - // lazy init - DefsOfPotentialCandidates = PotentialCandidates; - for (const MachineInstr *Candidate : PotentialCandidates) { - if (!UseToDefs.find(Candidate)->second.empty()) - DefsOfPotentialCandidates.insert( - *UseToDefs.find(Candidate)->second.begin()); - } - } - bool Found = false; - for (auto &Use : *Users) { - if (!DefsOfPotentialCandidates.count(Use)) { - ++NumTooCplxLvl1; - Found = true; - break; - } - } - if (!Found) - ++NumCplxLvl1; -#endif // DEBUG - continue; - } - - bool IsL2Add = (ImmediateDefOpc == ARM64::ADDXri); - // If the chain is three instructions long and ldr is the second element, - // then this ldr must load form GOT, otherwise this is not a correct chain. - if (L2 && !IsL2Add && L2->getOperand(2).getTargetFlags() != ARM64II::MO_GOT) - continue; - SmallVector<const MachineInstr *, 3> Args; - MCLOHType Kind; - if (isCandidateLoad(Candidate)) { - if (!L2) { - // At this point, the candidate LOH indicates that the ldr instruction - // may use a direct access to the symbol. There is not such encoding - // for loads of byte and half. - if (!supportLoadFromLiteral(Candidate)) - continue; - - DEBUG(dbgs() << "Record AdrpLdr:\n" << *L1 << '\n' << *Candidate - << '\n'); - Kind = MCLOH_AdrpLdr; - Args.push_back(L1); - Args.push_back(Candidate); - assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L1)) && - "L1 already involved in LOH."); - assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Candidate)) && - "Candidate already involved in LOH."); - ++NumADRPToLDR; - } else { - DEBUG(dbgs() << "Record Adrp" << (IsL2Add ? "Add" : "LdrGot") - << "Ldr:\n" << *L1 << '\n' << *L2 << '\n' << *Candidate - << '\n'); - - Kind = IsL2Add ? MCLOH_AdrpAddLdr : MCLOH_AdrpLdrGotLdr; - Args.push_back(L1); - Args.push_back(L2); - Args.push_back(Candidate); - - PotentialADROpportunities.remove(L2); - assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L1)) && - "L1 already involved in LOH."); - assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L2)) && - "L2 already involved in LOH."); - assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Candidate)) && - "Candidate already involved in LOH."); -#ifdef DEBUG - // get the immediate of the load - if (Candidate->getOperand(2).getImm() == 0) - if (ImmediateDefOpc == ARM64::ADDXri) - ++NumADDToLDR; - else - ++NumLDRToLDR; - else if (ImmediateDefOpc == ARM64::ADDXri) - ++NumADDToLDRWithImm; - else - ++NumLDRToLDRWithImm; -#endif // DEBUG - } - } else { - if (ImmediateDefOpc == ARM64::ADRP) - continue; - else { - - DEBUG(dbgs() << "Record Adrp" << (IsL2Add ? "Add" : "LdrGot") - << "Str:\n" << *L1 << '\n' << *L2 << '\n' << *Candidate - << '\n'); - - Kind = IsL2Add ? MCLOH_AdrpAddStr : MCLOH_AdrpLdrGotStr; - Args.push_back(L1); - Args.push_back(L2); - Args.push_back(Candidate); - - PotentialADROpportunities.remove(L2); - assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L1)) && - "L1 already involved in LOH."); - assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L2)) && - "L2 already involved in LOH."); - assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Candidate)) && - "Candidate already involved in LOH."); -#ifdef DEBUG - // get the immediate of the store - if (Candidate->getOperand(2).getImm() == 0) - if (ImmediateDefOpc == ARM64::ADDXri) - ++NumADDToSTR; - else - ++NumLDRToSTR; - else if (ImmediateDefOpc == ARM64::ADDXri) - ++NumADDToSTRWithImm; - else - ++NumLDRToSTRWithImm; -#endif // DEBUG - } - } - ARM64FI.addLOHDirective(Kind, Args); - } - - // Now, we grabbed all the big patterns, check ADR opportunities. - for (const MachineInstr *Candidate : PotentialADROpportunities) - registerADRCandidate(*Candidate, UseToDefs, DefsPerColorToUses, ARM64FI, - InvolvedInLOHs, RegToId); -} - -/// Look for every register defined by potential LOHs candidates. -/// Map these registers with dense id in @p RegToId and vice-versa in -/// @p IdToReg. @p IdToReg is populated only in DEBUG mode. -static void collectInvolvedReg(MachineFunction &MF, MapRegToId &RegToId, - MapIdToReg &IdToReg, - const TargetRegisterInfo *TRI) { - unsigned CurRegId = 0; - if (!PreCollectRegister) { - unsigned NbReg = TRI->getNumRegs(); - for (; CurRegId < NbReg; ++CurRegId) { - RegToId[CurRegId] = CurRegId; - DEBUG(IdToReg.push_back(CurRegId)); - DEBUG(assert(IdToReg[CurRegId] == CurRegId && "Reg index mismatches")); - } - return; - } - - DEBUG(dbgs() << "** Collect Involved Register\n"); - for (const auto &MBB : MF) { - for (const MachineInstr &MI : MBB) { - if (!canDefBePartOfLOH(&MI)) - continue; - - // Process defs - for (MachineInstr::const_mop_iterator IO = MI.operands_begin(), - IOEnd = MI.operands_end(); - IO != IOEnd; ++IO) { - if (!IO->isReg() || !IO->isDef()) - continue; - unsigned CurReg = IO->getReg(); - for (MCRegAliasIterator AI(CurReg, TRI, true); AI.isValid(); ++AI) - if (RegToId.find(*AI) == RegToId.end()) { - DEBUG(IdToReg.push_back(*AI); - assert(IdToReg[CurRegId] == *AI && - "Reg index mismatches insertion index.")); - RegToId[*AI] = CurRegId++; - DEBUG(dbgs() << "Register: " << PrintReg(*AI, TRI) << '\n'); - } - } - } - } -} - -bool ARM64CollectLOH::runOnMachineFunction(MachineFunction &MF) { - const TargetMachine &TM = MF.getTarget(); - const TargetRegisterInfo *TRI = TM.getRegisterInfo(); - const MachineDominatorTree *MDT = &getAnalysis<MachineDominatorTree>(); - - MapRegToId RegToId; - MapIdToReg IdToReg; - ARM64FunctionInfo *ARM64FI = MF.getInfo<ARM64FunctionInfo>(); - assert(ARM64FI && "No MachineFunctionInfo for this function!"); - - DEBUG(dbgs() << "Looking for LOH in " << MF.getName() << '\n'); - - collectInvolvedReg(MF, RegToId, IdToReg, TRI); - if (RegToId.empty()) - return false; - - MachineInstr *DummyOp = nullptr; - if (BasicBlockScopeOnly) { - const ARM64InstrInfo *TII = - static_cast<const ARM64InstrInfo *>(TM.getInstrInfo()); - // For local analysis, create a dummy operation to record uses that are not - // local. - DummyOp = MF.CreateMachineInstr(TII->get(ARM64::COPY), DebugLoc()); - } - - unsigned NbReg = RegToId.size(); - bool Modified = false; - - // Start with ADRP. - InstrToInstrs *ColorOpToReachedUses = new InstrToInstrs[NbReg]; - - // Compute the reaching def in ADRP mode, meaning ADRP definitions - // are first considered as uses. - reachingDef(MF, ColorOpToReachedUses, RegToId, true, DummyOp); - DEBUG(dbgs() << "ADRP reaching defs\n"); - DEBUG(printReachingDef(ColorOpToReachedUses, NbReg, TRI, IdToReg)); - - // Translate the definition to uses map into a use to definitions map to ease - // statistic computation. - InstrToInstrs ADRPToReachingDefs; - reachedUsesToDefs(ADRPToReachingDefs, ColorOpToReachedUses, RegToId, true); - - // Compute LOH for ADRP. - computeADRP(ADRPToReachingDefs, *ARM64FI, MDT); - delete[] ColorOpToReachedUses; - - // Continue with general ADRP -> ADD/LDR -> LDR/STR pattern. - ColorOpToReachedUses = new InstrToInstrs[NbReg]; - - // first perform a regular reaching def analysis. - reachingDef(MF, ColorOpToReachedUses, RegToId, false, DummyOp); - DEBUG(dbgs() << "All reaching defs\n"); - DEBUG(printReachingDef(ColorOpToReachedUses, NbReg, TRI, IdToReg)); - - // Turn that into a use to defs to ease statistic computation. - InstrToInstrs UsesToReachingDefs; - reachedUsesToDefs(UsesToReachingDefs, ColorOpToReachedUses, RegToId, false); - - // Compute other than AdrpAdrp LOH. - computeOthers(UsesToReachingDefs, ColorOpToReachedUses, *ARM64FI, RegToId, - MDT); - delete[] ColorOpToReachedUses; - - if (BasicBlockScopeOnly) - MF.DeleteMachineInstr(DummyOp); - - return Modified; -} - -/// createARM64CollectLOHPass - returns an instance of the Statistic for -/// linker optimization pass. -FunctionPass *llvm::createARM64CollectLOHPass() { - return new ARM64CollectLOH(); -} |

