diff options
Diffstat (limited to 'llvm/lib/Target/ARM/ARMParallelDSP.cpp')
-rw-r--r-- | llvm/lib/Target/ARM/ARMParallelDSP.cpp | 613 |
1 files changed, 613 insertions, 0 deletions
diff --git a/llvm/lib/Target/ARM/ARMParallelDSP.cpp b/llvm/lib/Target/ARM/ARMParallelDSP.cpp new file mode 100644 index 00000000000..1e0c1cb7571 --- /dev/null +++ b/llvm/lib/Target/ARM/ARMParallelDSP.cpp @@ -0,0 +1,613 @@ +//===- ParallelDSP.cpp - Parallel DSP Pass --------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +/// \file +/// Armv6 introduced instructions to perform 32-bit SIMD operations. The +/// purpose of this pass is do some IR pattern matching to create ACLE +/// DSP intrinsics, which map on these 32-bit SIMD operations. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/LoopAccessAnalysis.h" +#include "llvm/Analysis/LoopPass.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/NoFolder.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/LoopUtils.h" +#include "llvm/Pass.h" +#include "llvm/PassRegistry.h" +#include "llvm/PassSupport.h" +#include "llvm/Support/Debug.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/CodeGen/TargetPassConfig.h" +#include "ARM.h" +#include "ARMSubtarget.h" + +using namespace llvm; +using namespace PatternMatch; + +#define DEBUG_TYPE "parallel-dsp" + +namespace { + struct ParallelMAC; + struct Reduction; + + using ParallelMACList = SmallVector<ParallelMAC, 8>; + using ReductionList = SmallVector<Reduction, 8>; + using ValueList = SmallVector<Value*, 8>; + using LoadInstList = SmallVector<LoadInst*, 8>; + using PMACPair = std::pair<ParallelMAC*,ParallelMAC*>; + using PMACPairList = SmallVector<PMACPair, 8>; + using Instructions = SmallVector<Instruction*,16>; + using MemLocList = SmallVector<MemoryLocation, 4>; + + // 'ParallelMAC' and 'Reduction' are just some bookkeeping data structures. + // 'Reduction' contains the phi-node and accumulator statement from where we + // start pattern matching, and 'ParallelMAC' the multiplication + // instructions that are candidates for parallel execution. + struct ParallelMAC { + Instruction *Mul; + ValueList VL; // List of all (narrow) operands of this Mul + LoadInstList VecLd; // List of all load instructions of this Mul + MemLocList MemLocs; // All memory locations read by this Mul + + ParallelMAC(Instruction *I, ValueList &V) : Mul(I), VL(V) {}; + }; + + struct Reduction { + PHINode *Phi; // The Phi-node from where we start + // pattern matching. + Instruction *AccIntAdd; // The accumulating integer add statement, + // i.e, the reduction statement. + + Reduction (PHINode *P, Instruction *Acc) : Phi(P), AccIntAdd(Acc) { }; + }; + + class ARMParallelDSP : public LoopPass { + ScalarEvolution *SE; + AliasAnalysis *AA; + TargetLibraryInfo *TLI; + DominatorTree *DT; + LoopInfo *LI; + Loop *L; + const DataLayout *DL; + Module *M; + + bool InsertParallelMACs(Reduction &Reduction, PMACPairList &PMACPairs); + bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, LoadInstList &VecLd); + PMACPairList CreateParallelMACPairs(ParallelMACList &Candidates); + Instruction *CreateSMLADCall(LoadInst *VecLd0, LoadInst *VecLd1, + Instruction *Acc, Instruction *InsertAfter); + + /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate + /// Dual performs two signed 16x16-bit multiplications. It adds the + /// products to a 32-bit accumulate operand. Optionally, the instruction can + /// exchange the halfwords of the second operand before performing the + /// arithmetic. + bool MatchSMLAD(Function &F); + + public: + static char ID; + + ARMParallelDSP() : LoopPass(ID) { } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + LoopPass::getAnalysisUsage(AU); + AU.addRequired<AssumptionCacheTracker>(); + AU.addRequired<ScalarEvolutionWrapperPass>(); + AU.addRequired<AAResultsWrapperPass>(); + AU.addRequired<TargetLibraryInfoWrapperPass>(); + AU.addRequired<LoopInfoWrapperPass>(); + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addRequired<TargetPassConfig>(); + AU.addPreserved<LoopInfoWrapperPass>(); + AU.setPreservesCFG(); + } + + bool runOnLoop(Loop *TheLoop, LPPassManager &) override { + L = TheLoop; + SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); + AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); + TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); + DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); + auto &TPC = getAnalysis<TargetPassConfig>(); + + BasicBlock *Header = TheLoop->getHeader(); + if (!Header) + return false; + + // TODO: We assume the loop header and latch to be the same block. + // This is not a fundamental restriction, but lifting this would just + // require more work to do the transformation and then patch up the CFG. + if (Header != TheLoop->getLoopLatch()) { + LLVM_DEBUG(dbgs() << "The loop header is not the loop latch: not " + "running pass ARMParallelDSP\n"); + return false; + } + + Function &F = *Header->getParent(); + M = F.getParent(); + DL = &M->getDataLayout(); + + auto &TM = TPC.getTM<TargetMachine>(); + auto *ST = &TM.getSubtarget<ARMSubtarget>(F); + + if (!ST->allowsUnalignedMem()) { + LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not " + "running pass ARMParallelDSP\n"); + return false; + } + + if (!ST->hasDSP()) { + LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass " + "ARMParallelDSP\n"); + return false; + } + + LoopAccessInfo LAI(L, SE, TLI, AA, DT, LI); + bool Changes = false; + + LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n\n"); + Changes = MatchSMLAD(F); + return Changes; + } + }; +} + +template<unsigned BitWidth> +static bool IsNarrowSequence(Value *V, ValueList &VL) { + LLVM_DEBUG(dbgs() << "Is narrow sequence: "; V->dump()); + ConstantInt *CInt; + + if (match(V, m_ConstantInt(CInt))) { + // TODO: if a constant is used, it needs to fit within the bit width. + return false; + } + + auto *I = dyn_cast<Instruction>(V); + if (!I) + return false; + + Value *Val, *LHS, *RHS; + bool isNarrow = false; + + if (match(V, m_Trunc(m_Value(Val)))) { + if (cast<TruncInst>(I)->getDestTy()->getIntegerBitWidth() == BitWidth) + isNarrow = IsNarrowSequence<BitWidth>(Val, VL); + } else if (match(V, m_Add(m_Value(LHS), m_Value(RHS)))) { + // TODO: we need to implement sadd16/sadd8 for this, which enables to + // also do the rewrite for smlad8.ll, but it is unsupported for now. + isNarrow = false; + } else if (match(V, m_ZExtOrSExt(m_Value(Val)))) { + if (cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() == BitWidth) + isNarrow = true; + else + LLVM_DEBUG(dbgs() << "Wrong SrcTy size of CastInst: " << + cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth()); + + if (match(Val, m_Load(m_Value(Val)))) { + auto *Ld = dyn_cast<LoadInst>(I->getOperand(0)); + LLVM_DEBUG(dbgs() << "Found narrow Load:\t"; Ld->dump()); + VL.push_back(Ld); + isNarrow = true; + } else if (!isa<Instruction>(I->getOperand(0))) + VL.push_back(I->getOperand(0)); + } + + if (isNarrow) { + LLVM_DEBUG(dbgs() << "Found narrow Op:\t"; I->dump()); + VL.push_back(I); + } else + LLVM_DEBUG(dbgs() << "Found unsupported Op:\t"; I->dump()); + + return isNarrow; +} + +// Element-by-element comparison of Value lists returning true if they are +// instructions with the same opcode or constants with the same value. +static bool AreSymmetrical(const ValueList &VL0, + const ValueList &VL1) { + if (VL0.size() != VL1.size()) { + LLVM_DEBUG(dbgs() << "Muls are mismatching operand list lengths: " + << VL0.size() << " != " << VL1.size() << "\n"); + return false; + } + + const unsigned Pairs = VL0.size(); + LLVM_DEBUG(dbgs() << "Number of operand pairs: " << Pairs << "\n"); + + for (unsigned i = 0; i < Pairs; ++i) { + const Value *V0 = VL0[i]; + const Value *V1 = VL1[i]; + const auto *Inst0 = dyn_cast<Instruction>(V0); + const auto *Inst1 = dyn_cast<Instruction>(V1); + + LLVM_DEBUG(dbgs() << "Pair " << i << ":\n"; + dbgs() << "mul1: "; V0->dump(); + dbgs() << "mul2: "; V1->dump()); + + if (!Inst0 || !Inst1) + return false; + + if (Inst0->isSameOperationAs(Inst1)) { + LLVM_DEBUG(dbgs() << "OK: same operation found!\n"); + continue; + } + + const APInt *C0, *C1; + if (!(match(V0, m_APInt(C0)) && match(V1, m_APInt(C1)) && C0 == C1)) + return false; + } + + LLVM_DEBUG(dbgs() << "OK: found symmetrical operand lists.\n"); + return true; +} + +bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, + LoadInstList &VecLd) { + if (!Ld0 || !Ld1) + return false; + + LLVM_DEBUG(dbgs() << "Are consecutive loads:\n"; + dbgs() << "Ld0:"; Ld0->dump(); + dbgs() << "Ld1:"; Ld1->dump(); + ); + + if (!Ld0->isSimple() || !Ld1->isSimple()) { + LLVM_DEBUG(dbgs() << "No, not touching volatile loads\n"); + return false; + } + if (!Ld0->hasOneUse() || !Ld1->hasOneUse()) { + LLVM_DEBUG(dbgs() << "No, load has more than one use.\n"); + return false; + } + if (isConsecutiveAccess(Ld0, Ld1, *DL, *SE)) { + VecLd.push_back(Ld0); + VecLd.push_back(Ld1); + LLVM_DEBUG(dbgs() << "OK: loads are consecutive.\n"); + return true; + } + LLVM_DEBUG(dbgs() << "No, Ld0 and Ld1 aren't consecutive.\n"); + return false; +} + +PMACPairList +ARMParallelDSP::CreateParallelMACPairs(ParallelMACList &Candidates) { + const unsigned Elems = Candidates.size(); + PMACPairList PMACPairs; + + if (Elems < 2) + return PMACPairs; + + // TODO: for now we simply try to match consecutive pairs i and i+1. + // We can compare all elements, but then we need to compare and evaluate + // different solutions. + for(unsigned i=0; i<Elems-1; i+=2) { + ParallelMAC &PMul0 = Candidates[i]; + ParallelMAC &PMul1 = Candidates[i+1]; + const Instruction *Mul0 = PMul0.Mul; + const Instruction *Mul1 = PMul1.Mul; + + if (Mul0 == Mul1) + continue; + + LLVM_DEBUG(dbgs() << "\nCheck parallel muls:\n"; + dbgs() << "- "; Mul0->dump(); + dbgs() << "- "; Mul1->dump()); + + const ValueList &VL0 = PMul0.VL; + const ValueList &VL1 = PMul1.VL; + + if (!AreSymmetrical(VL0, VL1)) + continue; + + LLVM_DEBUG(dbgs() << "OK: mul operands list match:\n"); + // The first elements of each vector should be loads with sexts. If we find + // that its two pairs of consecutive loads, then these can be transformed + // into two wider loads and the users can be replaced with DSP + // intrinsics. + for (unsigned x = 0; x < VL0.size(); x += 4) { + auto *Ld0 = dyn_cast<LoadInst>(VL0[x]); + auto *Ld1 = dyn_cast<LoadInst>(VL1[x]); + auto *Ld2 = dyn_cast<LoadInst>(VL0[x+2]); + auto *Ld3 = dyn_cast<LoadInst>(VL1[x+2]); + + LLVM_DEBUG(dbgs() << "Looking at operands " << x << ":\n"; + dbgs() << "\t mul1: "; VL0[x]->dump(); + dbgs() << "\t mul2: "; VL1[x]->dump(); + dbgs() << "and operands " << x + 2 << ":\n"; + dbgs() << "\t mul1: "; VL0[x+2]->dump(); + dbgs() << "\t mul2: "; VL1[x+2]->dump()); + + if (AreSequentialLoads(Ld0, Ld1, Candidates[i].VecLd) && + AreSequentialLoads(Ld2, Ld3, Candidates[i+1].VecLd)) { + LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); + PMACPairs.push_back(std::make_pair(&PMul0, &PMul1)); + } + } + } + return PMACPairs; +} + +bool ARMParallelDSP::InsertParallelMACs(Reduction &Reduction, + PMACPairList &PMACPairs) { + Instruction *Acc = Reduction.Phi; + Instruction *InsertAfter = Reduction.AccIntAdd; + + for (auto &Pair : PMACPairs) { + LLVM_DEBUG(dbgs() << "Found parallel MACs!!\n"; + dbgs() << "- "; Pair.first->Mul->dump(); + dbgs() << "- "; Pair.second->Mul->dump()); + Acc = CreateSMLADCall(Pair.first->VecLd[0], Pair.second->VecLd[0], Acc, + InsertAfter); + InsertAfter = Acc; + } + + if (Acc != Reduction.Phi) { + LLVM_DEBUG(dbgs() << "Replace Accumulate: "; Acc->dump()); + Reduction.AccIntAdd->replaceAllUsesWith(Acc); + return true; + } + return false; +} + +static ReductionList MatchReductions(Function &F, Loop *TheLoop, + BasicBlock *Header) { + ReductionList Reductions; + RecurrenceDescriptor RecDesc; + const bool HasFnNoNaNAttr = + F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; + const BasicBlock *Latch = TheLoop->getLoopLatch(); + + // We need a preheader as getIncomingValueForBlock assumes there is one. + if (!TheLoop->getLoopPreheader()) + return Reductions; + + for (PHINode &Phi : Header->phis()) { + const auto *Ty = Phi.getType(); + if (!Ty->isIntegerTy(32)) + continue; + + const bool IsReduction = + RecurrenceDescriptor::AddReductionVar(&Phi, + RecurrenceDescriptor::RK_IntegerAdd, + TheLoop, HasFnNoNaNAttr, RecDesc); + if (!IsReduction) + continue; + + Instruction *Acc = dyn_cast<Instruction>(Phi.getIncomingValueForBlock(Latch)); + if (!Acc) + continue; + + Reductions.push_back(Reduction(&Phi, Acc)); + } + + LLVM_DEBUG( + dbgs() << "\nAccumulating integer additions (reductions) found:\n"; + for (auto R : Reductions) { + dbgs() << "- "; R.Phi->dump(); + dbgs() << "-> "; R.AccIntAdd->dump(); + } + ); + return Reductions; +} + +static void AddCandidateMAC(ParallelMACList &Candidates, const Instruction *Acc, + Value *MulOp0, Value *MulOp1, int MulOpNum) { + Instruction *Mul = dyn_cast<Instruction>(Acc->getOperand(MulOpNum)); + LLVM_DEBUG(dbgs() << "OK, found acc mul:\t"; Mul->dump()); + ValueList VL; + if (IsNarrowSequence<16>(MulOp0, VL) && + IsNarrowSequence<16>(MulOp1, VL)) { + LLVM_DEBUG(dbgs() << "OK, found narrow mul: "; Mul->dump()); + Candidates.push_back(ParallelMAC(Mul, VL)); + } +} + +static ParallelMACList MatchParallelMACs(Reduction &R) { + ParallelMACList Candidates; + const Instruction *Acc = R.AccIntAdd; + Value *A, *MulOp0, *MulOp1; + LLVM_DEBUG(dbgs() << "\n- Analysing:\t"; Acc->dump()); + + // Pattern 1: the accumulator is the RHS of the mul. + while(match(Acc, m_Add(m_Mul(m_Value(MulOp0), m_Value(MulOp1)), + m_Value(A)))){ + AddCandidateMAC(Candidates, Acc, MulOp0, MulOp1, 0); + Acc = dyn_cast<Instruction>(A); + } + // Pattern 2: the accumulator is the LHS of the mul. + while(match(Acc, m_Add(m_Value(A), + m_Mul(m_Value(MulOp0), m_Value(MulOp1))))) { + AddCandidateMAC(Candidates, Acc, MulOp0, MulOp1, 1); + Acc = dyn_cast<Instruction>(A); + } + + // The last mul in the chain has a slightly different pattern: + // the mul is the first operand + if (match(Acc, m_Add(m_Mul(m_Value(MulOp0), m_Value(MulOp1)), m_Value(A)))) + AddCandidateMAC(Candidates, Acc, MulOp0, MulOp1, 0); + + // Because we start at the bottom of the chain, and we work our way up, + // the muls are added in reverse program order to the list. + std::reverse(Candidates.begin(), Candidates.end()); + return Candidates; +} + +// Collects all instructions that are not part of the MAC chains, which is the +// set of instructions that can potentially alias with the MAC operands. +static Instructions AliasCandidates(BasicBlock *Header, + ParallelMACList &MACCandidates) { + Instructions Aliases; + auto IsMACCandidate = [] (Instruction *I, ParallelMACList &MACCandidates) { + for (auto &MAC : MACCandidates) + for (auto *Val : MAC.VL) + if (I == MAC.Mul || Val == I) + return true; + return false; + }; + + std::for_each(Header->begin(), Header->end(), + [&Aliases, &MACCandidates, &IsMACCandidate] (Instruction &I) { + if (I.mayReadOrWriteMemory() && + !IsMACCandidate(&I, MACCandidates)) + Aliases.push_back(&I); }); + return Aliases; +} + +// This compares all instructions from the "alias candidates" set, i.e., all +// instructions that are not part of the MAC-chain, with all instructions in +// the MAC candidate set, to see if instructions are aliased. +static bool AreAliased(AliasAnalysis *AA, Instructions AliasCandidates, + ParallelMACList &MACCandidates) { + LLVM_DEBUG(dbgs() << "Alias checks:\n"); + for (auto *I : AliasCandidates) { + LLVM_DEBUG(dbgs() << "- "; I->dump()); + for (auto &MAC : MACCandidates) { + LLVM_DEBUG(dbgs() << "mul: "; MAC.Mul->dump()); + assert(MAC.MemLocs.size() >= 2 && "expecting at least 2 memlocs"); + for (auto &MemLoc : MAC.MemLocs) { + if (isModOrRefSet(intersectModRef(AA->getModRefInfo(I, MemLoc), + ModRefInfo::ModRef))) { + LLVM_DEBUG(dbgs() << "Yes, aliases found\n"); + return true; + } + } + } + } + LLVM_DEBUG(dbgs() << "OK: no aliases found!\n"); + return false; +} + +static bool SetMemoryLocations(ParallelMACList &Candidates) { + const auto Size = MemoryLocation::UnknownSize; + for (auto &C : Candidates) { + // A mul has 2 operands, and a narrow op consist of sext and a load; thus + // we expect at least 4 items in this operand value list. + if (C.VL.size() < 4) { + LLVM_DEBUG(dbgs() << "Operand list too short.\n"); + return false; + } + + for (unsigned i = 0; i < C.VL.size(); i += 4) { + auto *LdOp0 = dyn_cast<LoadInst>(C.VL[i]); + auto *LdOp1 = dyn_cast<LoadInst>(C.VL[i+2]); + if (!LdOp0 || !LdOp1) + return false; + + C.MemLocs.push_back(MemoryLocation(LdOp0->getPointerOperand(), Size)); + C.MemLocs.push_back(MemoryLocation(LdOp1->getPointerOperand(), Size)); + } + } + return true; +} + +// Loop Pass that needs to identify integer add/sub reductions of 16-bit vector +// multiplications. +// To use SMLAD: +// 1) we first need to find integer add reduction PHIs, +// 2) then from the PHI, look for this pattern: +// +// acc0 = phi i32 [0, %entry], [%acc1, %loop.body] +// ld0 = load i16 +// sext0 = sext i16 %ld0 to i32 +// ld1 = load i16 +// sext1 = sext i16 %ld1 to i32 +// mul0 = mul %sext0, %sext1 +// ld2 = load i16 +// sext2 = sext i16 %ld2 to i32 +// ld3 = load i16 +// sext3 = sext i16 %ld3 to i32 +// mul1 = mul i32 %sext2, %sext3 +// add0 = add i32 %mul0, %acc0 +// acc1 = add i32 %add0, %mul1 +// +// Which can be selected to: +// +// ldr.h r0 +// ldr.h r1 +// smlad r2, r0, r1, r2 +// +// If constants are used instead of loads, these will need to be hoisted +// out and into a register. +// +// If loop invariants are used instead of loads, these need to be packed +// before the loop begins. +// +// Can only be enabled for cores which support unaligned accesses. +// +bool ARMParallelDSP::MatchSMLAD(Function &F) { + BasicBlock *Header = L->getHeader(); + LLVM_DEBUG(dbgs() << "= Matching SMLAD =\n"; + dbgs() << "Header block:\n"; Header->dump(); + dbgs() << "Loop info:\n\n"; L->dump()); + + bool Changed = false; + ReductionList Reductions = MatchReductions(F, L, Header); + + for (auto &R : Reductions) { + ParallelMACList MACCandidates = MatchParallelMACs(R); + if (!SetMemoryLocations(MACCandidates)) + continue; + Instructions Aliases = AliasCandidates(Header, MACCandidates); + if (AreAliased(AA, Aliases, MACCandidates)) + continue; + PMACPairList PMACPairs = CreateParallelMACPairs(MACCandidates); + Changed = InsertParallelMACs(R, PMACPairs) || Changed; + } + + LLVM_DEBUG(if (Changed) dbgs() << "Header block:\n"; Header->dump();); + return Changed; +} + +static void CreateLoadIns(IRBuilder<NoFolder> &IRB, Instruction *Acc, + LoadInst **VecLd) { + const Type *AccTy = Acc->getType(); + const unsigned AddrSpace = (*VecLd)->getPointerAddressSpace(); + + Value *VecPtr = IRB.CreateBitCast((*VecLd)->getPointerOperand(), + AccTy->getPointerTo(AddrSpace)); + *VecLd = IRB.CreateAlignedLoad(VecPtr, (*VecLd)->getAlignment()); +} + +Instruction *ARMParallelDSP::CreateSMLADCall(LoadInst *VecLd0, LoadInst *VecLd1, + Instruction *Acc, + Instruction *InsertAfter) { + LLVM_DEBUG(dbgs() << "Create SMLAD intrinsic using:\n"; + dbgs() << "- "; VecLd0->dump(); + dbgs() << "- "; VecLd1->dump(); + dbgs() << "- "; Acc->dump()); + + IRBuilder<NoFolder> Builder(InsertAfter->getParent(), + ++BasicBlock::iterator(InsertAfter)); + + // Replace the reduction chain with an intrinsic call + CreateLoadIns(Builder, Acc, &VecLd0); + CreateLoadIns(Builder, Acc, &VecLd1); + Value* Args[] = { VecLd0, VecLd1, Acc }; + Function *SMLAD = Intrinsic::getDeclaration(M, Intrinsic::arm_smlad); + CallInst *Call = Builder.CreateCall(SMLAD, Args); + return Call; +} + +Pass *llvm::createARMParallelDSPPass() { + return new ARMParallelDSP(); +} + +char ARMParallelDSP::ID = 0; + +INITIALIZE_PASS_BEGIN(ARMParallelDSP, "parallel-dsp", + "Transform loops to use DSP intrinsics", false, false); +INITIALIZE_PASS_END(ARMParallelDSP, "parallel-dsp", + "Transform loops to use DSP intrinsics", false, false); |