diff options
Diffstat (limited to 'llvm/lib/Target/AMDGPU/SIWholeQuadMode.cpp')
-rw-r--r-- | llvm/lib/Target/AMDGPU/SIWholeQuadMode.cpp | 465 |
1 files changed, 465 insertions, 0 deletions
diff --git a/llvm/lib/Target/AMDGPU/SIWholeQuadMode.cpp b/llvm/lib/Target/AMDGPU/SIWholeQuadMode.cpp new file mode 100644 index 00000000000..31080e66435 --- /dev/null +++ b/llvm/lib/Target/AMDGPU/SIWholeQuadMode.cpp @@ -0,0 +1,465 @@ +//===-- SIWholeQuadMode.cpp - enter and suspend whole quad mode -----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +/// \file +/// \brief This pass adds instructions to enable whole quad mode for pixel +/// shaders. +/// +/// Whole quad mode is required for derivative computations, but it interferes +/// with shader side effects (stores and atomics). This pass is run on the +/// scheduled machine IR but before register coalescing, so that machine SSA is +/// available for analysis. It ensures that WQM is enabled when necessary, but +/// disabled around stores and atomics. +/// +/// When necessary, this pass creates a function prolog +/// +/// S_MOV_B64 LiveMask, EXEC +/// S_WQM_B64 EXEC, EXEC +/// +/// to enter WQM at the top of the function and surrounds blocks of Exact +/// instructions by +/// +/// S_AND_SAVEEXEC_B64 Tmp, LiveMask +/// ... +/// S_MOV_B64 EXEC, Tmp +/// +/// In order to avoid excessive switching during sequences of Exact +/// instructions, the pass first analyzes which instructions must be run in WQM +/// (aka which instructions produce values that lead to derivative +/// computations). +/// +/// Basic blocks are always exited in WQM as long as some successor needs WQM. +/// +/// There is room for improvement given better control flow analysis: +/// +/// (1) at the top level (outside of control flow statements, and as long as +/// kill hasn't been used), one SGPR can be saved by recovering WQM from +/// the LiveMask (this is implemented for the entry block). +/// +/// (2) when entire regions (e.g. if-else blocks or entire loops) only +/// consist of exact and don't-care instructions, the switch only has to +/// be done at the entry and exit points rather than potentially in each +/// block of the region. +/// +//===----------------------------------------------------------------------===// + +#include "AMDGPU.h" +#include "AMDGPUSubtarget.h" +#include "SIInstrInfo.h" +#include "SIMachineFunctionInfo.h" +#include "llvm/CodeGen/MachineDominanceFrontier.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/IR/Constants.h" + +using namespace llvm; + +#define DEBUG_TYPE "si-wqm" + +namespace { + +enum { + StateWQM = 0x1, + StateExact = 0x2, +}; + +struct InstrInfo { + char Needs = 0; + char OutNeeds = 0; +}; + +struct BlockInfo { + char Needs = 0; + char InNeeds = 0; + char OutNeeds = 0; +}; + +struct WorkItem { + const MachineBasicBlock *MBB = nullptr; + const MachineInstr *MI = nullptr; + + WorkItem() {} + WorkItem(const MachineBasicBlock *MBB) : MBB(MBB) {} + WorkItem(const MachineInstr *MI) : MI(MI) {} +}; + +class SIWholeQuadMode : public MachineFunctionPass { +private: + const SIInstrInfo *TII; + const SIRegisterInfo *TRI; + MachineRegisterInfo *MRI; + + DenseMap<const MachineInstr *, InstrInfo> Instructions; + DenseMap<const MachineBasicBlock *, BlockInfo> Blocks; + SmallVector<const MachineInstr *, 2> ExecExports; + + char scanInstructions(const MachineFunction &MF, std::vector<WorkItem>& Worklist); + void propagateInstruction(const MachineInstr &MI, std::vector<WorkItem>& Worklist); + void propagateBlock(const MachineBasicBlock &MBB, std::vector<WorkItem>& Worklist); + char analyzeFunction(const MachineFunction &MF); + + void toExact(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, + unsigned SaveWQM, unsigned LiveMaskReg); + void toWQM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, + unsigned SavedWQM); + void processBlock(MachineBasicBlock &MBB, unsigned LiveMaskReg, bool isEntry); + +public: + static char ID; + + SIWholeQuadMode() : + MachineFunctionPass(ID) { } + + bool runOnMachineFunction(MachineFunction &MF) override; + + const char *getPassName() const override { + return "SI Whole Quad Mode"; + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesCFG(); + MachineFunctionPass::getAnalysisUsage(AU); + } +}; + +} // End anonymous namespace + +char SIWholeQuadMode::ID = 0; + +INITIALIZE_PASS_BEGIN(SIWholeQuadMode, DEBUG_TYPE, + "SI Whole Quad Mode", false, false) +INITIALIZE_PASS_END(SIWholeQuadMode, DEBUG_TYPE, + "SI Whole Quad Mode", false, false) + +char &llvm::SIWholeQuadModeID = SIWholeQuadMode::ID; + +FunctionPass *llvm::createSIWholeQuadModePass() { + return new SIWholeQuadMode; +} + +// Scan instructions to determine which ones require an Exact execmask and +// which ones seed WQM requirements. +char SIWholeQuadMode::scanInstructions(const MachineFunction &MF, + std::vector<WorkItem> &Worklist) { + char GlobalFlags = 0; + + for (auto BI = MF.begin(), BE = MF.end(); BI != BE; ++BI) { + const MachineBasicBlock &MBB = *BI; + + for (auto II = MBB.begin(), IE = MBB.end(); II != IE; ++II) { + const MachineInstr &MI = *II; + unsigned Opcode = MI.getOpcode(); + char Flags; + + if (TII->isWQM(Opcode) || TII->isDS(Opcode)) { + Flags = StateWQM; + } else if (TII->get(Opcode).mayStore() && + (MI.getDesc().TSFlags & SIInstrFlags::VM_CNT)) { + Flags = StateExact; + } else { + // Handle export instructions with the exec mask valid flag set + if (Opcode == AMDGPU::EXP && MI.getOperand(4).getImm() != 0) + ExecExports.push_back(&MI); + continue; + } + + Instructions[&MI].Needs = Flags; + Worklist.push_back(&MI); + GlobalFlags |= Flags; + } + } + + return GlobalFlags; +} + +void SIWholeQuadMode::propagateInstruction(const MachineInstr &MI, + std::vector<WorkItem>& Worklist) { + const MachineBasicBlock &MBB = *MI.getParent(); + InstrInfo &II = Instructions[&MI]; + BlockInfo &BI = Blocks[&MBB]; + + // Control flow-type instructions that are followed by WQM computations + // must themselves be in WQM. + if ((II.OutNeeds & StateWQM) && !(II.Needs & StateWQM) && + (MI.isBranch() || MI.isTerminator() || MI.getOpcode() == AMDGPU::SI_KILL)) + II.Needs = StateWQM; + + // Propagate to block level + BI.Needs |= II.Needs; + if ((BI.InNeeds | II.Needs) != BI.InNeeds) { + BI.InNeeds |= II.Needs; + Worklist.push_back(&MBB); + } + + // Propagate backwards within block + if (const MachineInstr *PrevMI = MI.getPrevNode()) { + char InNeeds = II.Needs | II.OutNeeds; + if (!PrevMI->isPHI()) { + InstrInfo &PrevII = Instructions[PrevMI]; + if ((PrevII.OutNeeds | InNeeds) != PrevII.OutNeeds) { + PrevII.OutNeeds |= InNeeds; + Worklist.push_back(PrevMI); + } + } + } + + // Propagate WQM flag to instruction inputs + assert(II.Needs != (StateWQM | StateExact)); + if (II.Needs != StateWQM) + return; + + for (const MachineOperand &Use : MI.uses()) { + if (!Use.isReg() || !Use.isUse()) + continue; + + // At this point, physical registers appear as inputs or outputs + // and following them makes no sense (and would in fact be incorrect + // when the same VGPR is used as both an output and an input that leads + // to a NeedsWQM instruction). + // + // Note: VCC appears e.g. in 64-bit addition with carry - theoretically we + // have to trace this, in practice it happens for 64-bit computations like + // pointers where both dwords are followed already anyway. + if (!TargetRegisterInfo::isVirtualRegister(Use.getReg())) + continue; + + for (const MachineOperand &Def : MRI->def_operands(Use.getReg())) { + const MachineInstr *DefMI = Def.getParent(); + InstrInfo &DefII = Instructions[DefMI]; + + // Obviously skip if DefMI is already flagged as NeedWQM. + // + // The instruction might also be flagged as NeedExact. This happens when + // the result of an atomic is used in a WQM computation. In this case, + // the atomic must not run for helper pixels and the WQM result is + // undefined. + if (DefII.Needs != 0) + continue; + + DefII.Needs = StateWQM; + Worklist.push_back(DefMI); + } + } +} + +void SIWholeQuadMode::propagateBlock(const MachineBasicBlock &MBB, + std::vector<WorkItem>& Worklist) { + BlockInfo &BI = Blocks[&MBB]; + + // Propagate through instructions + if (!MBB.empty()) { + const MachineInstr *LastMI = &*MBB.rbegin(); + InstrInfo &LastII = Instructions[LastMI]; + if ((LastII.OutNeeds | BI.OutNeeds) != LastII.OutNeeds) { + LastII.OutNeeds |= BI.OutNeeds; + Worklist.push_back(LastMI); + } + } + + // Predecessor blocks must provide for our WQM/Exact needs. + for (const MachineBasicBlock *Pred : MBB.predecessors()) { + BlockInfo &PredBI = Blocks[Pred]; + if ((PredBI.OutNeeds | BI.InNeeds) == PredBI.OutNeeds) + continue; + + PredBI.OutNeeds |= BI.InNeeds; + PredBI.InNeeds |= BI.InNeeds; + Worklist.push_back(Pred); + } + + // All successors must be prepared to accept the same set of WQM/Exact + // data. + for (const MachineBasicBlock *Succ : MBB.successors()) { + BlockInfo &SuccBI = Blocks[Succ]; + if ((SuccBI.InNeeds | BI.OutNeeds) == SuccBI.InNeeds) + continue; + + SuccBI.InNeeds |= BI.OutNeeds; + Worklist.push_back(Succ); + } +} + +char SIWholeQuadMode::analyzeFunction(const MachineFunction &MF) { + std::vector<WorkItem> Worklist; + char GlobalFlags = scanInstructions(MF, Worklist); + + while (!Worklist.empty()) { + WorkItem WI = Worklist.back(); + Worklist.pop_back(); + + if (WI.MI) + propagateInstruction(*WI.MI, Worklist); + else + propagateBlock(*WI.MBB, Worklist); + } + + return GlobalFlags; +} + +void SIWholeQuadMode::toExact(MachineBasicBlock &MBB, + MachineBasicBlock::iterator Before, + unsigned SaveWQM, unsigned LiveMaskReg) +{ + if (SaveWQM) { + BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::S_AND_SAVEEXEC_B64), + SaveWQM) + .addReg(LiveMaskReg); + } else { + BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::S_AND_B64), + AMDGPU::EXEC) + .addReg(AMDGPU::EXEC) + .addReg(LiveMaskReg); + } +} + +void SIWholeQuadMode::toWQM(MachineBasicBlock &MBB, + MachineBasicBlock::iterator Before, + unsigned SavedWQM) +{ + if (SavedWQM) { + BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), AMDGPU::EXEC) + .addReg(SavedWQM); + } else { + BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::S_WQM_B64), + AMDGPU::EXEC) + .addReg(AMDGPU::EXEC); + } +} + +void SIWholeQuadMode::processBlock(MachineBasicBlock &MBB, unsigned LiveMaskReg, + bool isEntry) { + auto BII = Blocks.find(&MBB); + if (BII == Blocks.end()) + return; + + const BlockInfo &BI = BII->second; + + if (!(BI.InNeeds & StateWQM)) + return; + + // This is a non-entry block that is WQM throughout, so no need to do + // anything. + if (!isEntry && !(BI.Needs & StateExact) && BI.OutNeeds != StateExact) + return; + + unsigned SavedWQMReg = 0; + bool WQMFromExec = isEntry; + char State = isEntry ? StateExact : StateWQM; + + auto II = MBB.getFirstNonPHI(), IE = MBB.end(); + while (II != IE) { + MachineInstr &MI = *II; + ++II; + + // Skip instructions that are not affected by EXEC + if (MI.getDesc().TSFlags & (SIInstrFlags::SALU | SIInstrFlags::SMRD) && + !MI.isBranch() && !MI.isTerminator()) + continue; + + // Generic instructions such as COPY will either disappear by register + // coalescing or be lowered to SALU or VALU instructions. + if (TargetInstrInfo::isGenericOpcode(MI.getOpcode())) { + if (MI.getNumExplicitOperands() >= 1) { + const MachineOperand &Op = MI.getOperand(0); + if (Op.isReg()) { + if (TRI->isSGPRReg(*MRI, Op.getReg())) { + // SGPR instructions are not affected by EXEC + continue; + } + } + } + } + + char Needs = 0; + char OutNeeds = 0; + auto InstrInfoIt = Instructions.find(&MI); + if (InstrInfoIt != Instructions.end()) { + Needs = InstrInfoIt->second.Needs; + OutNeeds = InstrInfoIt->second.OutNeeds; + + // Make sure to switch to Exact mode before the end of the block when + // Exact and only Exact is needed further downstream. + if (OutNeeds == StateExact && (MI.isBranch() || MI.isTerminator())) { + assert(Needs == 0); + Needs = StateExact; + } + } + + // State switching + if (Needs && State != Needs) { + if (Needs == StateExact) { + assert(!SavedWQMReg); + + if (!WQMFromExec && (OutNeeds & StateWQM)) + SavedWQMReg = MRI->createVirtualRegister(&AMDGPU::SReg_64RegClass); + + toExact(MBB, &MI, SavedWQMReg, LiveMaskReg); + } else { + assert(WQMFromExec == (SavedWQMReg == 0)); + toWQM(MBB, &MI, SavedWQMReg); + SavedWQMReg = 0; + } + + State = Needs; + } + + if (MI.getOpcode() == AMDGPU::SI_KILL) + WQMFromExec = false; + } + + if ((BI.OutNeeds & StateWQM) && State != StateWQM) { + assert(WQMFromExec == (SavedWQMReg == 0)); + toWQM(MBB, MBB.end(), SavedWQMReg); + } else if (BI.OutNeeds == StateExact && State != StateExact) { + toExact(MBB, MBB.end(), 0, LiveMaskReg); + } +} + +bool SIWholeQuadMode::runOnMachineFunction(MachineFunction &MF) { + SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); + + if (MFI->getShaderType() != ShaderType::PIXEL) + return false; + + Instructions.clear(); + Blocks.clear(); + ExecExports.clear(); + + TII = static_cast<const SIInstrInfo *>(MF.getSubtarget().getInstrInfo()); + TRI = static_cast<const SIRegisterInfo *>(MF.getSubtarget().getRegisterInfo()); + MRI = &MF.getRegInfo(); + + char GlobalFlags = analyzeFunction(MF); + if (!(GlobalFlags & StateWQM)) + return false; + + MachineBasicBlock &Entry = MF.front(); + MachineInstr *EntryMI = Entry.getFirstNonPHI(); + + if (GlobalFlags == StateWQM) { + // For a shader that needs only WQM, we can just set it once. + BuildMI(Entry, EntryMI, DebugLoc(), TII->get(AMDGPU::S_WQM_B64), + AMDGPU::EXEC).addReg(AMDGPU::EXEC); + return true; + } + + // Handle the general case + unsigned LiveMaskReg = MRI->createVirtualRegister(&AMDGPU::SReg_64RegClass); + BuildMI(Entry, EntryMI, DebugLoc(), TII->get(AMDGPU::COPY), LiveMaskReg) + .addReg(AMDGPU::EXEC); + + for (const auto &BII : Blocks) + processBlock(const_cast<MachineBasicBlock &>(*BII.first), LiveMaskReg, + BII.first == &*MF.begin()); + + return true; +} |