diff options
Diffstat (limited to 'llvm/lib/Target/AArch64/AArch64ISelLowering.cpp')
-rw-r--r-- | llvm/lib/Target/AArch64/AArch64ISelLowering.cpp | 5564 |
1 files changed, 0 insertions, 5564 deletions
diff --git a/llvm/lib/Target/AArch64/AArch64ISelLowering.cpp b/llvm/lib/Target/AArch64/AArch64ISelLowering.cpp deleted file mode 100644 index d02a03ccb2a..00000000000 --- a/llvm/lib/Target/AArch64/AArch64ISelLowering.cpp +++ /dev/null @@ -1,5564 +0,0 @@ -//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation -----===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file defines the interfaces that AArch64 uses to lower LLVM code into a -// selection DAG. -// -//===----------------------------------------------------------------------===// - -#include "AArch64.h" -#include "AArch64ISelLowering.h" -#include "AArch64MachineFunctionInfo.h" -#include "AArch64Subtarget.h" -#include "AArch64TargetMachine.h" -#include "AArch64TargetObjectFile.h" -#include "Utils/AArch64BaseInfo.h" -#include "llvm/CodeGen/Analysis.h" -#include "llvm/CodeGen/CallingConvLower.h" -#include "llvm/CodeGen/MachineFrameInfo.h" -#include "llvm/CodeGen/MachineInstrBuilder.h" -#include "llvm/CodeGen/MachineRegisterInfo.h" -#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" -#include "llvm/IR/CallingConv.h" -#include "llvm/Support/MathExtras.h" - -using namespace llvm; - -#define DEBUG_TYPE "aarch64-isel" - -static TargetLoweringObjectFile *createTLOF(AArch64TargetMachine &TM) { - assert (TM.getSubtarget<AArch64Subtarget>().isTargetELF() && - "unknown subtarget type"); - return new AArch64ElfTargetObjectFile(); -} - -AArch64TargetLowering::AArch64TargetLowering(AArch64TargetMachine &TM) - : TargetLowering(TM, createTLOF(TM)), Itins(TM.getInstrItineraryData()) { - - const AArch64Subtarget *Subtarget = &TM.getSubtarget<AArch64Subtarget>(); - - // SIMD compares set the entire lane's bits to 1 - setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); - - // Scalar register <-> type mapping - addRegisterClass(MVT::i32, &AArch64::GPR32RegClass); - addRegisterClass(MVT::i64, &AArch64::GPR64RegClass); - - if (Subtarget->hasFPARMv8()) { - addRegisterClass(MVT::f16, &AArch64::FPR16RegClass); - addRegisterClass(MVT::f32, &AArch64::FPR32RegClass); - addRegisterClass(MVT::f64, &AArch64::FPR64RegClass); - addRegisterClass(MVT::f128, &AArch64::FPR128RegClass); - } - - if (Subtarget->hasNEON()) { - // And the vectors - addRegisterClass(MVT::v1i8, &AArch64::FPR8RegClass); - addRegisterClass(MVT::v1i16, &AArch64::FPR16RegClass); - addRegisterClass(MVT::v1i32, &AArch64::FPR32RegClass); - addRegisterClass(MVT::v1i64, &AArch64::FPR64RegClass); - addRegisterClass(MVT::v1f64, &AArch64::FPR64RegClass); - addRegisterClass(MVT::v8i8, &AArch64::FPR64RegClass); - addRegisterClass(MVT::v4i16, &AArch64::FPR64RegClass); - addRegisterClass(MVT::v2i32, &AArch64::FPR64RegClass); - addRegisterClass(MVT::v1i64, &AArch64::FPR64RegClass); - addRegisterClass(MVT::v2f32, &AArch64::FPR64RegClass); - addRegisterClass(MVT::v16i8, &AArch64::FPR128RegClass); - addRegisterClass(MVT::v8i16, &AArch64::FPR128RegClass); - addRegisterClass(MVT::v4i32, &AArch64::FPR128RegClass); - addRegisterClass(MVT::v2i64, &AArch64::FPR128RegClass); - addRegisterClass(MVT::v4f32, &AArch64::FPR128RegClass); - addRegisterClass(MVT::v2f64, &AArch64::FPR128RegClass); - } - - computeRegisterProperties(); - - // We combine OR nodes for bitfield and NEON BSL operations. - setTargetDAGCombine(ISD::OR); - - setTargetDAGCombine(ISD::AND); - setTargetDAGCombine(ISD::SRA); - setTargetDAGCombine(ISD::SRL); - setTargetDAGCombine(ISD::SHL); - - setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); - setTargetDAGCombine(ISD::INTRINSIC_VOID); - setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); - - // AArch64 does not have i1 loads, or much of anything for i1 really. - setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); - setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote); - setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote); - - setStackPointerRegisterToSaveRestore(AArch64::XSP); - setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); - setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); - setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); - - // We'll lower globals to wrappers for selection. - setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); - setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); - - // A64 instructions have the comparison predicate attached to the user of the - // result, but having a separate comparison is valuable for matching. - setOperationAction(ISD::BR_CC, MVT::i32, Custom); - setOperationAction(ISD::BR_CC, MVT::i64, Custom); - setOperationAction(ISD::BR_CC, MVT::f32, Custom); - setOperationAction(ISD::BR_CC, MVT::f64, Custom); - - setOperationAction(ISD::SELECT, MVT::i32, Custom); - setOperationAction(ISD::SELECT, MVT::i64, Custom); - setOperationAction(ISD::SELECT, MVT::f32, Custom); - setOperationAction(ISD::SELECT, MVT::f64, Custom); - - setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); - setOperationAction(ISD::SELECT_CC, MVT::i64, Custom); - setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); - setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); - - setOperationAction(ISD::BRCOND, MVT::Other, Custom); - - setOperationAction(ISD::SETCC, MVT::i32, Custom); - setOperationAction(ISD::SETCC, MVT::i64, Custom); - setOperationAction(ISD::SETCC, MVT::f32, Custom); - setOperationAction(ISD::SETCC, MVT::f64, Custom); - - setOperationAction(ISD::BR_JT, MVT::Other, Expand); - setOperationAction(ISD::JumpTable, MVT::i32, Custom); - setOperationAction(ISD::JumpTable, MVT::i64, Custom); - - setOperationAction(ISD::VASTART, MVT::Other, Custom); - setOperationAction(ISD::VACOPY, MVT::Other, Custom); - setOperationAction(ISD::VAEND, MVT::Other, Expand); - setOperationAction(ISD::VAARG, MVT::Other, Expand); - - setOperationAction(ISD::BlockAddress, MVT::i64, Custom); - setOperationAction(ISD::ConstantPool, MVT::i64, Custom); - - setOperationAction(ISD::ROTL, MVT::i32, Expand); - setOperationAction(ISD::ROTL, MVT::i64, Expand); - - setOperationAction(ISD::UREM, MVT::i32, Expand); - setOperationAction(ISD::UREM, MVT::i64, Expand); - setOperationAction(ISD::UDIVREM, MVT::i32, Expand); - setOperationAction(ISD::UDIVREM, MVT::i64, Expand); - - setOperationAction(ISD::SREM, MVT::i32, Expand); - setOperationAction(ISD::SREM, MVT::i64, Expand); - setOperationAction(ISD::SDIVREM, MVT::i32, Expand); - setOperationAction(ISD::SDIVREM, MVT::i64, Expand); - - setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); - setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); - setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); - setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); - - setOperationAction(ISD::CTPOP, MVT::i32, Expand); - setOperationAction(ISD::CTPOP, MVT::i64, Expand); - - // Legal floating-point operations. - setOperationAction(ISD::FABS, MVT::f32, Legal); - setOperationAction(ISD::FABS, MVT::f64, Legal); - - setOperationAction(ISD::FCEIL, MVT::f32, Legal); - setOperationAction(ISD::FCEIL, MVT::f64, Legal); - - setOperationAction(ISD::FFLOOR, MVT::f32, Legal); - setOperationAction(ISD::FFLOOR, MVT::f64, Legal); - - setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); - setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); - - setOperationAction(ISD::FNEG, MVT::f32, Legal); - setOperationAction(ISD::FNEG, MVT::f64, Legal); - - setOperationAction(ISD::FRINT, MVT::f32, Legal); - setOperationAction(ISD::FRINT, MVT::f64, Legal); - - setOperationAction(ISD::FSQRT, MVT::f32, Legal); - setOperationAction(ISD::FSQRT, MVT::f64, Legal); - - setOperationAction(ISD::FTRUNC, MVT::f32, Legal); - setOperationAction(ISD::FTRUNC, MVT::f64, Legal); - - setOperationAction(ISD::ConstantFP, MVT::f32, Legal); - setOperationAction(ISD::ConstantFP, MVT::f64, Legal); - setOperationAction(ISD::ConstantFP, MVT::f128, Legal); - - // Illegal floating-point operations. - setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); - setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); - - setOperationAction(ISD::FCOS, MVT::f32, Expand); - setOperationAction(ISD::FCOS, MVT::f64, Expand); - - setOperationAction(ISD::FEXP, MVT::f32, Expand); - setOperationAction(ISD::FEXP, MVT::f64, Expand); - - setOperationAction(ISD::FEXP2, MVT::f32, Expand); - setOperationAction(ISD::FEXP2, MVT::f64, Expand); - - setOperationAction(ISD::FLOG, MVT::f32, Expand); - setOperationAction(ISD::FLOG, MVT::f64, Expand); - - setOperationAction(ISD::FLOG2, MVT::f32, Expand); - setOperationAction(ISD::FLOG2, MVT::f64, Expand); - - setOperationAction(ISD::FLOG10, MVT::f32, Expand); - setOperationAction(ISD::FLOG10, MVT::f64, Expand); - - setOperationAction(ISD::FPOW, MVT::f32, Expand); - setOperationAction(ISD::FPOW, MVT::f64, Expand); - - setOperationAction(ISD::FPOWI, MVT::f32, Expand); - setOperationAction(ISD::FPOWI, MVT::f64, Expand); - - setOperationAction(ISD::FREM, MVT::f32, Expand); - setOperationAction(ISD::FREM, MVT::f64, Expand); - - setOperationAction(ISD::FSIN, MVT::f32, Expand); - setOperationAction(ISD::FSIN, MVT::f64, Expand); - - setOperationAction(ISD::FSINCOS, MVT::f32, Expand); - setOperationAction(ISD::FSINCOS, MVT::f64, Expand); - - // Virtually no operation on f128 is legal, but LLVM can't expand them when - // there's a valid register class, so we need custom operations in most cases. - setOperationAction(ISD::FABS, MVT::f128, Expand); - setOperationAction(ISD::FADD, MVT::f128, Custom); - setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); - setOperationAction(ISD::FCOS, MVT::f128, Expand); - setOperationAction(ISD::FDIV, MVT::f128, Custom); - setOperationAction(ISD::FMA, MVT::f128, Expand); - setOperationAction(ISD::FMUL, MVT::f128, Custom); - setOperationAction(ISD::FNEG, MVT::f128, Expand); - setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand); - setOperationAction(ISD::FP_ROUND, MVT::f128, Expand); - setOperationAction(ISD::FPOW, MVT::f128, Expand); - setOperationAction(ISD::FREM, MVT::f128, Expand); - setOperationAction(ISD::FRINT, MVT::f128, Expand); - setOperationAction(ISD::FSIN, MVT::f128, Expand); - setOperationAction(ISD::FSINCOS, MVT::f128, Expand); - setOperationAction(ISD::FSQRT, MVT::f128, Expand); - setOperationAction(ISD::FSUB, MVT::f128, Custom); - setOperationAction(ISD::FTRUNC, MVT::f128, Expand); - setOperationAction(ISD::SETCC, MVT::f128, Custom); - setOperationAction(ISD::BR_CC, MVT::f128, Custom); - setOperationAction(ISD::SELECT, MVT::f128, Expand); - setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); - setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom); - - // Lowering for many of the conversions is actually specified by the non-f128 - // type. The LowerXXX function will be trivial when f128 isn't involved. - setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); - setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); - setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom); - setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); - setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); - setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom); - setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); - setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); - setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom); - setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); - setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); - setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom); - setOperationAction(ISD::FP_ROUND, MVT::f32, Custom); - setOperationAction(ISD::FP_ROUND, MVT::f64, Custom); - - // i128 shift operation support - setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); - setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); - setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); - - // This prevents LLVM trying to compress double constants into a floating - // constant-pool entry and trying to load from there. It's of doubtful benefit - // for A64: we'd need LDR followed by FCVT, I believe. - setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand); - setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand); - setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand); - - setTruncStoreAction(MVT::f128, MVT::f64, Expand); - setTruncStoreAction(MVT::f128, MVT::f32, Expand); - setTruncStoreAction(MVT::f128, MVT::f16, Expand); - setTruncStoreAction(MVT::f64, MVT::f32, Expand); - setTruncStoreAction(MVT::f64, MVT::f16, Expand); - setTruncStoreAction(MVT::f32, MVT::f16, Expand); - - setExceptionPointerRegister(AArch64::X0); - setExceptionSelectorRegister(AArch64::X1); - - if (Subtarget->hasNEON()) { - setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i8, Expand); - setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Expand); - setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Expand); - setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v1i64, Expand); - setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v16i8, Expand); - setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i16, Expand); - setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Expand); - setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Expand); - - setOperationAction(ISD::BUILD_VECTOR, MVT::v1i8, Custom); - setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom); - setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); - setOperationAction(ISD::BUILD_VECTOR, MVT::v1i16, Custom); - setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom); - setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); - setOperationAction(ISD::BUILD_VECTOR, MVT::v1i32, Custom); - setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom); - setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); - setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom); - setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); - setOperationAction(ISD::BUILD_VECTOR, MVT::v2f32, Custom); - setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); - setOperationAction(ISD::BUILD_VECTOR, MVT::v1f64, Custom); - setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); - - setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom); - setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); - setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom); - setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i16, Custom); - setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom); - setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i32, Custom); - setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom); - setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom); - setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f32, Custom); - setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom); - setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1f64, Custom); - setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom); - - setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i32, Legal); - setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i8, Legal); - setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i16, Legal); - setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Legal); - setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i64, Legal); - setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Legal); - setOperationAction(ISD::CONCAT_VECTORS, MVT::v2f64, Legal); - - setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i8, Custom); - setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i16, Custom); - setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i8, Custom); - setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i16, Custom); - setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); - - setOperationAction(ISD::SETCC, MVT::v8i8, Custom); - setOperationAction(ISD::SETCC, MVT::v16i8, Custom); - setOperationAction(ISD::SETCC, MVT::v4i16, Custom); - setOperationAction(ISD::SETCC, MVT::v8i16, Custom); - setOperationAction(ISD::SETCC, MVT::v2i32, Custom); - setOperationAction(ISD::SETCC, MVT::v4i32, Custom); - setOperationAction(ISD::SETCC, MVT::v1i64, Custom); - setOperationAction(ISD::SETCC, MVT::v2i64, Custom); - setOperationAction(ISD::SETCC, MVT::v2f32, Custom); - setOperationAction(ISD::SETCC, MVT::v4f32, Custom); - setOperationAction(ISD::SETCC, MVT::v1f64, Custom); - setOperationAction(ISD::SETCC, MVT::v2f64, Custom); - - setOperationAction(ISD::FFLOOR, MVT::v2f32, Legal); - setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); - setOperationAction(ISD::FFLOOR, MVT::v1f64, Legal); - setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); - - setOperationAction(ISD::FCEIL, MVT::v2f32, Legal); - setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); - setOperationAction(ISD::FCEIL, MVT::v1f64, Legal); - setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); - - setOperationAction(ISD::FTRUNC, MVT::v2f32, Legal); - setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); - setOperationAction(ISD::FTRUNC, MVT::v1f64, Legal); - setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); - - setOperationAction(ISD::FRINT, MVT::v2f32, Legal); - setOperationAction(ISD::FRINT, MVT::v4f32, Legal); - setOperationAction(ISD::FRINT, MVT::v1f64, Legal); - setOperationAction(ISD::FRINT, MVT::v2f64, Legal); - - setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Legal); - setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); - setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Legal); - setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); - - setOperationAction(ISD::FROUND, MVT::v2f32, Legal); - setOperationAction(ISD::FROUND, MVT::v4f32, Legal); - setOperationAction(ISD::FROUND, MVT::v1f64, Legal); - setOperationAction(ISD::FROUND, MVT::v2f64, Legal); - - setOperationAction(ISD::SINT_TO_FP, MVT::v1i8, Custom); - setOperationAction(ISD::SINT_TO_FP, MVT::v1i16, Custom); - setOperationAction(ISD::SINT_TO_FP, MVT::v1i32, Custom); - setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); - setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom); - setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom); - - setOperationAction(ISD::UINT_TO_FP, MVT::v1i8, Custom); - setOperationAction(ISD::UINT_TO_FP, MVT::v1i16, Custom); - setOperationAction(ISD::UINT_TO_FP, MVT::v1i32, Custom); - setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); - setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom); - setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom); - - setOperationAction(ISD::FP_TO_SINT, MVT::v1i8, Custom); - setOperationAction(ISD::FP_TO_SINT, MVT::v1i16, Custom); - setOperationAction(ISD::FP_TO_SINT, MVT::v1i32, Custom); - setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom); - setOperationAction(ISD::FP_TO_SINT, MVT::v2i32, Custom); - setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Custom); - - setOperationAction(ISD::FP_TO_UINT, MVT::v1i8, Custom); - setOperationAction(ISD::FP_TO_UINT, MVT::v1i16, Custom); - setOperationAction(ISD::FP_TO_UINT, MVT::v1i32, Custom); - setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom); - setOperationAction(ISD::FP_TO_UINT, MVT::v2i32, Custom); - setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Custom); - - // Neon does not support vector divide/remainder operations except - // floating-point divide. - setOperationAction(ISD::SDIV, MVT::v1i8, Expand); - setOperationAction(ISD::SDIV, MVT::v8i8, Expand); - setOperationAction(ISD::SDIV, MVT::v16i8, Expand); - setOperationAction(ISD::SDIV, MVT::v1i16, Expand); - setOperationAction(ISD::SDIV, MVT::v4i16, Expand); - setOperationAction(ISD::SDIV, MVT::v8i16, Expand); - setOperationAction(ISD::SDIV, MVT::v1i32, Expand); - setOperationAction(ISD::SDIV, MVT::v2i32, Expand); - setOperationAction(ISD::SDIV, MVT::v4i32, Expand); - setOperationAction(ISD::SDIV, MVT::v1i64, Expand); - setOperationAction(ISD::SDIV, MVT::v2i64, Expand); - - setOperationAction(ISD::UDIV, MVT::v1i8, Expand); - setOperationAction(ISD::UDIV, MVT::v8i8, Expand); - setOperationAction(ISD::UDIV, MVT::v16i8, Expand); - setOperationAction(ISD::UDIV, MVT::v1i16, Expand); - setOperationAction(ISD::UDIV, MVT::v4i16, Expand); - setOperationAction(ISD::UDIV, MVT::v8i16, Expand); - setOperationAction(ISD::UDIV, MVT::v1i32, Expand); - setOperationAction(ISD::UDIV, MVT::v2i32, Expand); - setOperationAction(ISD::UDIV, MVT::v4i32, Expand); - setOperationAction(ISD::UDIV, MVT::v1i64, Expand); - setOperationAction(ISD::UDIV, MVT::v2i64, Expand); - - setOperationAction(ISD::SREM, MVT::v1i8, Expand); - setOperationAction(ISD::SREM, MVT::v8i8, Expand); - setOperationAction(ISD::SREM, MVT::v16i8, Expand); - setOperationAction(ISD::SREM, MVT::v1i16, Expand); - setOperationAction(ISD::SREM, MVT::v4i16, Expand); - setOperationAction(ISD::SREM, MVT::v8i16, Expand); - setOperationAction(ISD::SREM, MVT::v1i32, Expand); - setOperationAction(ISD::SREM, MVT::v2i32, Expand); - setOperationAction(ISD::SREM, MVT::v4i32, Expand); - setOperationAction(ISD::SREM, MVT::v1i64, Expand); - setOperationAction(ISD::SREM, MVT::v2i64, Expand); - - setOperationAction(ISD::UREM, MVT::v1i8, Expand); - setOperationAction(ISD::UREM, MVT::v8i8, Expand); - setOperationAction(ISD::UREM, MVT::v16i8, Expand); - setOperationAction(ISD::UREM, MVT::v1i16, Expand); - setOperationAction(ISD::UREM, MVT::v4i16, Expand); - setOperationAction(ISD::UREM, MVT::v8i16, Expand); - setOperationAction(ISD::UREM, MVT::v1i32, Expand); - setOperationAction(ISD::UREM, MVT::v2i32, Expand); - setOperationAction(ISD::UREM, MVT::v4i32, Expand); - setOperationAction(ISD::UREM, MVT::v1i64, Expand); - setOperationAction(ISD::UREM, MVT::v2i64, Expand); - - setOperationAction(ISD::FREM, MVT::v2f32, Expand); - setOperationAction(ISD::FREM, MVT::v4f32, Expand); - setOperationAction(ISD::FREM, MVT::v1f64, Expand); - setOperationAction(ISD::FREM, MVT::v2f64, Expand); - - setOperationAction(ISD::SELECT, MVT::v8i8, Expand); - setOperationAction(ISD::SELECT, MVT::v16i8, Expand); - setOperationAction(ISD::SELECT, MVT::v4i16, Expand); - setOperationAction(ISD::SELECT, MVT::v8i16, Expand); - setOperationAction(ISD::SELECT, MVT::v2i32, Expand); - setOperationAction(ISD::SELECT, MVT::v4i32, Expand); - setOperationAction(ISD::SELECT, MVT::v1i64, Expand); - setOperationAction(ISD::SELECT, MVT::v2i64, Expand); - setOperationAction(ISD::SELECT, MVT::v2f32, Expand); - setOperationAction(ISD::SELECT, MVT::v4f32, Expand); - setOperationAction(ISD::SELECT, MVT::v1f64, Expand); - setOperationAction(ISD::SELECT, MVT::v2f64, Expand); - - setOperationAction(ISD::SELECT_CC, MVT::v8i8, Custom); - setOperationAction(ISD::SELECT_CC, MVT::v16i8, Custom); - setOperationAction(ISD::SELECT_CC, MVT::v4i16, Custom); - setOperationAction(ISD::SELECT_CC, MVT::v8i16, Custom); - setOperationAction(ISD::SELECT_CC, MVT::v2i32, Custom); - setOperationAction(ISD::SELECT_CC, MVT::v4i32, Custom); - setOperationAction(ISD::SELECT_CC, MVT::v1i64, Custom); - setOperationAction(ISD::SELECT_CC, MVT::v2i64, Custom); - setOperationAction(ISD::SELECT_CC, MVT::v2f32, Custom); - setOperationAction(ISD::SELECT_CC, MVT::v4f32, Custom); - setOperationAction(ISD::SELECT_CC, MVT::v1f64, Custom); - setOperationAction(ISD::SELECT_CC, MVT::v2f64, Custom); - - // Vector ExtLoad and TruncStore are expanded. - for (unsigned I = MVT::FIRST_VECTOR_VALUETYPE; - I <= MVT::LAST_VECTOR_VALUETYPE; ++I) { - MVT VT = (MVT::SimpleValueType) I; - setLoadExtAction(ISD::SEXTLOAD, VT, Expand); - setLoadExtAction(ISD::ZEXTLOAD, VT, Expand); - setLoadExtAction(ISD::EXTLOAD, VT, Expand); - for (unsigned II = MVT::FIRST_VECTOR_VALUETYPE; - II <= MVT::LAST_VECTOR_VALUETYPE; ++II) { - MVT VT1 = (MVT::SimpleValueType) II; - // A TruncStore has two vector types of the same number of elements - // and different element sizes. - if (VT.getVectorNumElements() == VT1.getVectorNumElements() && - VT.getVectorElementType().getSizeInBits() - > VT1.getVectorElementType().getSizeInBits()) - setTruncStoreAction(VT, VT1, Expand); - } - - setOperationAction(ISD::MULHS, VT, Expand); - setOperationAction(ISD::SMUL_LOHI, VT, Expand); - setOperationAction(ISD::MULHU, VT, Expand); - setOperationAction(ISD::UMUL_LOHI, VT, Expand); - - setOperationAction(ISD::BSWAP, VT, Expand); - } - - // There is no v1i64/v2i64 multiply, expand v1i64/v2i64 to GPR i64 multiply. - // FIXME: For a v2i64 multiply, we copy VPR to GPR and do 2 i64 multiplies, - // and then copy back to VPR. This solution may be optimized by Following 3 - // NEON instructions: - // pmull v2.1q, v0.1d, v1.1d - // pmull2 v3.1q, v0.2d, v1.2d - // ins v2.d[1], v3.d[0] - // As currently we can't verify the correctness of such assumption, we can - // do such optimization in the future. - setOperationAction(ISD::MUL, MVT::v1i64, Expand); - setOperationAction(ISD::MUL, MVT::v2i64, Expand); - - setOperationAction(ISD::FCOS, MVT::v2f64, Expand); - setOperationAction(ISD::FCOS, MVT::v4f32, Expand); - setOperationAction(ISD::FCOS, MVT::v2f32, Expand); - setOperationAction(ISD::FSIN, MVT::v2f64, Expand); - setOperationAction(ISD::FSIN, MVT::v4f32, Expand); - setOperationAction(ISD::FSIN, MVT::v2f32, Expand); - setOperationAction(ISD::FPOW, MVT::v2f64, Expand); - setOperationAction(ISD::FPOW, MVT::v4f32, Expand); - setOperationAction(ISD::FPOW, MVT::v2f32, Expand); - } - - setTargetDAGCombine(ISD::SIGN_EXTEND); - setTargetDAGCombine(ISD::VSELECT); - - MaskAndBranchFoldingIsLegal = true; -} - -EVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const { - // It's reasonably important that this value matches the "natural" legal - // promotion from i1 for scalar types. Otherwise LegalizeTypes can get itself - // in a twist (e.g. inserting an any_extend which then becomes i64 -> i64). - if (!VT.isVector()) return MVT::i32; - return VT.changeVectorElementTypeToInteger(); -} - -static void getExclusiveOperation(unsigned Size, AtomicOrdering Ord, - unsigned &LdrOpc, - unsigned &StrOpc) { - static const unsigned LoadBares[] = {AArch64::LDXR_byte, AArch64::LDXR_hword, - AArch64::LDXR_word, AArch64::LDXR_dword}; - static const unsigned LoadAcqs[] = {AArch64::LDAXR_byte, AArch64::LDAXR_hword, - AArch64::LDAXR_word, AArch64::LDAXR_dword}; - static const unsigned StoreBares[] = {AArch64::STXR_byte, AArch64::STXR_hword, - AArch64::STXR_word, AArch64::STXR_dword}; - static const unsigned StoreRels[] = {AArch64::STLXR_byte,AArch64::STLXR_hword, - AArch64::STLXR_word, AArch64::STLXR_dword}; - - const unsigned *LoadOps, *StoreOps; - if (Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent) - LoadOps = LoadAcqs; - else - LoadOps = LoadBares; - - if (Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent) - StoreOps = StoreRels; - else - StoreOps = StoreBares; - - assert(isPowerOf2_32(Size) && Size <= 8 && - "unsupported size for atomic binary op!"); - - LdrOpc = LoadOps[Log2_32(Size)]; - StrOpc = StoreOps[Log2_32(Size)]; -} - -// FIXME: AArch64::DTripleRegClass and AArch64::QTripleRegClass don't really -// have value type mapped, and they are both being defined as MVT::untyped. -// Without knowing the MVT type, MachineLICM::getRegisterClassIDAndCost -// would fail to figure out the register pressure correctly. -std::pair<const TargetRegisterClass*, uint8_t> -AArch64TargetLowering::findRepresentativeClass(MVT VT) const{ - const TargetRegisterClass *RRC = nullptr; - uint8_t Cost = 1; - switch (VT.SimpleTy) { - default: - return TargetLowering::findRepresentativeClass(VT); - case MVT::v4i64: - RRC = &AArch64::QPairRegClass; - Cost = 2; - break; - case MVT::v8i64: - RRC = &AArch64::QQuadRegClass; - Cost = 4; - break; - } - return std::make_pair(RRC, Cost); -} - -MachineBasicBlock * -AArch64TargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, - unsigned Size, - unsigned BinOpcode) const { - // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. - const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); - - const BasicBlock *LLVM_BB = BB->getBasicBlock(); - MachineFunction *MF = BB->getParent(); - MachineFunction::iterator It = BB; - ++It; - - unsigned dest = MI->getOperand(0).getReg(); - unsigned ptr = MI->getOperand(1).getReg(); - unsigned incr = MI->getOperand(2).getReg(); - AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(3).getImm()); - DebugLoc dl = MI->getDebugLoc(); - - MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); - - unsigned ldrOpc, strOpc; - getExclusiveOperation(Size, Ord, ldrOpc, strOpc); - - MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); - MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); - MF->insert(It, loopMBB); - MF->insert(It, exitMBB); - - // Transfer the remainder of BB and its successor edges to exitMBB. - exitMBB->splice(exitMBB->begin(), BB, - std::next(MachineBasicBlock::iterator(MI)), BB->end()); - exitMBB->transferSuccessorsAndUpdatePHIs(BB); - - const TargetRegisterClass *TRC - = Size == 8 ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass; - unsigned scratch = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC); - - // thisMBB: - // ... - // fallthrough --> loopMBB - BB->addSuccessor(loopMBB); - - // loopMBB: - // ldxr dest, ptr - // <binop> scratch, dest, incr - // stxr stxr_status, scratch, ptr - // cbnz stxr_status, loopMBB - // fallthrough --> exitMBB - BB = loopMBB; - BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr); - if (BinOpcode) { - // All arithmetic operations we'll be creating are designed to take an extra - // shift or extend operand, which we can conveniently set to zero. - - // Operand order needs to go the other way for NAND. - if (BinOpcode == AArch64::BICwww_lsl || BinOpcode == AArch64::BICxxx_lsl) - BuildMI(BB, dl, TII->get(BinOpcode), scratch) - .addReg(incr).addReg(dest).addImm(0); - else - BuildMI(BB, dl, TII->get(BinOpcode), scratch) - .addReg(dest).addReg(incr).addImm(0); - } - - // From the stxr, the register is GPR32; from the cmp it's GPR32wsp - unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass); - MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass); - - BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(scratch).addReg(ptr); - BuildMI(BB, dl, TII->get(AArch64::CBNZw)) - .addReg(stxr_status).addMBB(loopMBB); - - BB->addSuccessor(loopMBB); - BB->addSuccessor(exitMBB); - - // exitMBB: - // ... - BB = exitMBB; - - MI->eraseFromParent(); // The instruction is gone now. - - return BB; -} - -MachineBasicBlock * -AArch64TargetLowering::emitAtomicBinaryMinMax(MachineInstr *MI, - MachineBasicBlock *BB, - unsigned Size, - unsigned CmpOp, - A64CC::CondCodes Cond) const { - const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); - - const BasicBlock *LLVM_BB = BB->getBasicBlock(); - MachineFunction *MF = BB->getParent(); - MachineFunction::iterator It = BB; - ++It; - - unsigned dest = MI->getOperand(0).getReg(); - unsigned ptr = MI->getOperand(1).getReg(); - unsigned incr = MI->getOperand(2).getReg(); - AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(3).getImm()); - - unsigned oldval = dest; - DebugLoc dl = MI->getDebugLoc(); - - MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); - const TargetRegisterClass *TRC, *TRCsp; - if (Size == 8) { - TRC = &AArch64::GPR64RegClass; - TRCsp = &AArch64::GPR64xspRegClass; - } else { - TRC = &AArch64::GPR32RegClass; - TRCsp = &AArch64::GPR32wspRegClass; - } - - unsigned ldrOpc, strOpc; - getExclusiveOperation(Size, Ord, ldrOpc, strOpc); - - MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); - MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); - MF->insert(It, loopMBB); - MF->insert(It, exitMBB); - - // Transfer the remainder of BB and its successor edges to exitMBB. - exitMBB->splice(exitMBB->begin(), BB, - std::next(MachineBasicBlock::iterator(MI)), BB->end()); - exitMBB->transferSuccessorsAndUpdatePHIs(BB); - - unsigned scratch = MRI.createVirtualRegister(TRC); - MRI.constrainRegClass(scratch, TRCsp); - - // thisMBB: - // ... - // fallthrough --> loopMBB - BB->addSuccessor(loopMBB); - - // loopMBB: - // ldxr dest, ptr - // cmp incr, dest (, sign extend if necessary) - // csel scratch, dest, incr, cond - // stxr stxr_status, scratch, ptr - // cbnz stxr_status, loopMBB - // fallthrough --> exitMBB - BB = loopMBB; - BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr); - - // Build compare and cmov instructions. - MRI.constrainRegClass(incr, TRCsp); - BuildMI(BB, dl, TII->get(CmpOp)) - .addReg(incr).addReg(oldval).addImm(0); - - BuildMI(BB, dl, TII->get(Size == 8 ? AArch64::CSELxxxc : AArch64::CSELwwwc), - scratch) - .addReg(oldval).addReg(incr).addImm(Cond); - - unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass); - MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass); - - BuildMI(BB, dl, TII->get(strOpc), stxr_status) - .addReg(scratch).addReg(ptr); - BuildMI(BB, dl, TII->get(AArch64::CBNZw)) - .addReg(stxr_status).addMBB(loopMBB); - - BB->addSuccessor(loopMBB); - BB->addSuccessor(exitMBB); - - // exitMBB: - // ... - BB = exitMBB; - - MI->eraseFromParent(); // The instruction is gone now. - - return BB; -} - -MachineBasicBlock * -AArch64TargetLowering::emitAtomicCmpSwap(MachineInstr *MI, - MachineBasicBlock *BB, - unsigned Size) const { - unsigned dest = MI->getOperand(0).getReg(); - unsigned ptr = MI->getOperand(1).getReg(); - unsigned oldval = MI->getOperand(2).getReg(); - unsigned newval = MI->getOperand(3).getReg(); - AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(4).getImm()); - const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); - DebugLoc dl = MI->getDebugLoc(); - - MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); - const TargetRegisterClass *TRCsp; - TRCsp = Size == 8 ? &AArch64::GPR64xspRegClass : &AArch64::GPR32wspRegClass; - - unsigned ldrOpc, strOpc; - getExclusiveOperation(Size, Ord, ldrOpc, strOpc); - - MachineFunction *MF = BB->getParent(); - const BasicBlock *LLVM_BB = BB->getBasicBlock(); - MachineFunction::iterator It = BB; - ++It; // insert the new blocks after the current block - - MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB); - MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB); - MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); - MF->insert(It, loop1MBB); - MF->insert(It, loop2MBB); - MF->insert(It, exitMBB); - - // Transfer the remainder of BB and its successor edges to exitMBB. - exitMBB->splice(exitMBB->begin(), BB, - std::next(MachineBasicBlock::iterator(MI)), BB->end()); - exitMBB->transferSuccessorsAndUpdatePHIs(BB); - - // thisMBB: - // ... - // fallthrough --> loop1MBB - BB->addSuccessor(loop1MBB); - - // loop1MBB: - // ldxr dest, [ptr] - // cmp dest, oldval - // b.ne exitMBB - BB = loop1MBB; - BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr); - - unsigned CmpOp = Size == 8 ? AArch64::CMPxx_lsl : AArch64::CMPww_lsl; - MRI.constrainRegClass(dest, TRCsp); - BuildMI(BB, dl, TII->get(CmpOp)) - .addReg(dest).addReg(oldval).addImm(0); - BuildMI(BB, dl, TII->get(AArch64::Bcc)) - .addImm(A64CC::NE).addMBB(exitMBB); - BB->addSuccessor(loop2MBB); - BB->addSuccessor(exitMBB); - - // loop2MBB: - // strex stxr_status, newval, [ptr] - // cbnz stxr_status, loop1MBB - BB = loop2MBB; - unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass); - MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass); - - BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(newval).addReg(ptr); - BuildMI(BB, dl, TII->get(AArch64::CBNZw)) - .addReg(stxr_status).addMBB(loop1MBB); - BB->addSuccessor(loop1MBB); - BB->addSuccessor(exitMBB); - - // exitMBB: - // ... - BB = exitMBB; - - MI->eraseFromParent(); // The instruction is gone now. - - return BB; -} - -MachineBasicBlock * -AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI, - MachineBasicBlock *MBB) const { - // We materialise the F128CSEL pseudo-instruction using conditional branches - // and loads, giving an instruciton sequence like: - // str q0, [sp] - // b.ne IfTrue - // b Finish - // IfTrue: - // str q1, [sp] - // Finish: - // ldr q0, [sp] - // - // Using virtual registers would probably not be beneficial since COPY - // instructions are expensive for f128 (there's no actual instruction to - // implement them). - // - // An alternative would be to do an integer-CSEL on some address. E.g.: - // mov x0, sp - // add x1, sp, #16 - // str q0, [x0] - // str q1, [x1] - // csel x0, x0, x1, ne - // ldr q0, [x0] - // - // It's unclear which approach is actually optimal. - const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); - MachineFunction *MF = MBB->getParent(); - const BasicBlock *LLVM_BB = MBB->getBasicBlock(); - DebugLoc DL = MI->getDebugLoc(); - MachineFunction::iterator It = MBB; - ++It; - - unsigned DestReg = MI->getOperand(0).getReg(); - unsigned IfTrueReg = MI->getOperand(1).getReg(); - unsigned IfFalseReg = MI->getOperand(2).getReg(); - unsigned CondCode = MI->getOperand(3).getImm(); - bool NZCVKilled = MI->getOperand(4).isKill(); - - MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB); - MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB); - MF->insert(It, TrueBB); - MF->insert(It, EndBB); - - // Transfer rest of current basic-block to EndBB - EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)), - MBB->end()); - EndBB->transferSuccessorsAndUpdatePHIs(MBB); - - // We need somewhere to store the f128 value needed. - int ScratchFI = MF->getFrameInfo()->CreateSpillStackObject(16, 16); - - // [... start of incoming MBB ...] - // str qIFFALSE, [sp] - // b.cc IfTrue - // b Done - BuildMI(MBB, DL, TII->get(AArch64::LSFP128_STR)) - .addReg(IfFalseReg) - .addFrameIndex(ScratchFI) - .addImm(0); - BuildMI(MBB, DL, TII->get(AArch64::Bcc)) - .addImm(CondCode) - .addMBB(TrueBB); - BuildMI(MBB, DL, TII->get(AArch64::Bimm)) - .addMBB(EndBB); - MBB->addSuccessor(TrueBB); - MBB->addSuccessor(EndBB); - - if (!NZCVKilled) { - // NZCV is live-through TrueBB. - TrueBB->addLiveIn(AArch64::NZCV); - EndBB->addLiveIn(AArch64::NZCV); - } - - // IfTrue: - // str qIFTRUE, [sp] - BuildMI(TrueBB, DL, TII->get(AArch64::LSFP128_STR)) - .addReg(IfTrueReg) - .addFrameIndex(ScratchFI) - .addImm(0); - - // Note: fallthrough. We can rely on LLVM adding a branch if it reorders the - // blocks. - TrueBB->addSuccessor(EndBB); - - // Done: - // ldr qDEST, [sp] - // [... rest of incoming MBB ...] - MachineInstr *StartOfEnd = EndBB->begin(); - BuildMI(*EndBB, StartOfEnd, DL, TII->get(AArch64::LSFP128_LDR), DestReg) - .addFrameIndex(ScratchFI) - .addImm(0); - - MI->eraseFromParent(); - return EndBB; -} - -MachineBasicBlock * -AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, - MachineBasicBlock *MBB) const { - switch (MI->getOpcode()) { - default: llvm_unreachable("Unhandled instruction with custom inserter"); - case AArch64::F128CSEL: - return EmitF128CSEL(MI, MBB); - case AArch64::ATOMIC_LOAD_ADD_I8: - return emitAtomicBinary(MI, MBB, 1, AArch64::ADDwww_lsl); - case AArch64::ATOMIC_LOAD_ADD_I16: - return emitAtomicBinary(MI, MBB, 2, AArch64::ADDwww_lsl); - case AArch64::ATOMIC_LOAD_ADD_I32: - return emitAtomicBinary(MI, MBB, 4, AArch64::ADDwww_lsl); - case AArch64::ATOMIC_LOAD_ADD_I64: - return emitAtomicBinary(MI, MBB, 8, AArch64::ADDxxx_lsl); - - case AArch64::ATOMIC_LOAD_SUB_I8: - return emitAtomicBinary(MI, MBB, 1, AArch64::SUBwww_lsl); - case AArch64::ATOMIC_LOAD_SUB_I16: - return emitAtomicBinary(MI, MBB, 2, AArch64::SUBwww_lsl); - case AArch64::ATOMIC_LOAD_SUB_I32: - return emitAtomicBinary(MI, MBB, 4, AArch64::SUBwww_lsl); - case AArch64::ATOMIC_LOAD_SUB_I64: - return emitAtomicBinary(MI, MBB, 8, AArch64::SUBxxx_lsl); - - case AArch64::ATOMIC_LOAD_AND_I8: - return emitAtomicBinary(MI, MBB, 1, AArch64::ANDwww_lsl); - case AArch64::ATOMIC_LOAD_AND_I16: - return emitAtomicBinary(MI, MBB, 2, AArch64::ANDwww_lsl); - case AArch64::ATOMIC_LOAD_AND_I32: - return emitAtomicBinary(MI, MBB, 4, AArch64::ANDwww_lsl); - case AArch64::ATOMIC_LOAD_AND_I64: - return emitAtomicBinary(MI, MBB, 8, AArch64::ANDxxx_lsl); - - case AArch64::ATOMIC_LOAD_OR_I8: - return emitAtomicBinary(MI, MBB, 1, AArch64::ORRwww_lsl); - case AArch64::ATOMIC_LOAD_OR_I16: - return emitAtomicBinary(MI, MBB, 2, AArch64::ORRwww_lsl); - case AArch64::ATOMIC_LOAD_OR_I32: - return emitAtomicBinary(MI, MBB, 4, AArch64::ORRwww_lsl); - case AArch64::ATOMIC_LOAD_OR_I64: - return emitAtomicBinary(MI, MBB, 8, AArch64::ORRxxx_lsl); - - case AArch64::ATOMIC_LOAD_XOR_I8: - return emitAtomicBinary(MI, MBB, 1, AArch64::EORwww_lsl); - case AArch64::ATOMIC_LOAD_XOR_I16: - return emitAtomicBinary(MI, MBB, 2, AArch64::EORwww_lsl); - case AArch64::ATOMIC_LOAD_XOR_I32: - return emitAtomicBinary(MI, MBB, 4, AArch64::EORwww_lsl); - case AArch64::ATOMIC_LOAD_XOR_I64: - return emitAtomicBinary(MI, MBB, 8, AArch64::EORxxx_lsl); - - case AArch64::ATOMIC_LOAD_NAND_I8: - return emitAtomicBinary(MI, MBB, 1, AArch64::BICwww_lsl); - case AArch64::ATOMIC_LOAD_NAND_I16: - return emitAtomicBinary(MI, MBB, 2, AArch64::BICwww_lsl); - case AArch64::ATOMIC_LOAD_NAND_I32: - return emitAtomicBinary(MI, MBB, 4, AArch64::BICwww_lsl); - case AArch64::ATOMIC_LOAD_NAND_I64: - return emitAtomicBinary(MI, MBB, 8, AArch64::BICxxx_lsl); - - case AArch64::ATOMIC_LOAD_MIN_I8: - return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::GT); - case AArch64::ATOMIC_LOAD_MIN_I16: - return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::GT); - case AArch64::ATOMIC_LOAD_MIN_I32: - return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::GT); - case AArch64::ATOMIC_LOAD_MIN_I64: - return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::GT); - - case AArch64::ATOMIC_LOAD_MAX_I8: - return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::LT); - case AArch64::ATOMIC_LOAD_MAX_I16: - return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::LT); - case AArch64::ATOMIC_LOAD_MAX_I32: - return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LT); - case AArch64::ATOMIC_LOAD_MAX_I64: - return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LT); - - case AArch64::ATOMIC_LOAD_UMIN_I8: - return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::HI); - case AArch64::ATOMIC_LOAD_UMIN_I16: - return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::HI); - case AArch64::ATOMIC_LOAD_UMIN_I32: - return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::HI); - case AArch64::ATOMIC_LOAD_UMIN_I64: - return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::HI); - - case AArch64::ATOMIC_LOAD_UMAX_I8: - return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::LO); - case AArch64::ATOMIC_LOAD_UMAX_I16: - return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::LO); - case AArch64::ATOMIC_LOAD_UMAX_I32: - return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LO); - case AArch64::ATOMIC_LOAD_UMAX_I64: - return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LO); - - case AArch64::ATOMIC_SWAP_I8: - return emitAtomicBinary(MI, MBB, 1, 0); - case AArch64::ATOMIC_SWAP_I16: - return emitAtomicBinary(MI, MBB, 2, 0); - case AArch64::ATOMIC_SWAP_I32: - return emitAtomicBinary(MI, MBB, 4, 0); - case AArch64::ATOMIC_SWAP_I64: - return emitAtomicBinary(MI, MBB, 8, 0); - - case AArch64::ATOMIC_CMP_SWAP_I8: - return emitAtomicCmpSwap(MI, MBB, 1); - case AArch64::ATOMIC_CMP_SWAP_I16: - return emitAtomicCmpSwap(MI, MBB, 2); - case AArch64::ATOMIC_CMP_SWAP_I32: - return emitAtomicCmpSwap(MI, MBB, 4); - case AArch64::ATOMIC_CMP_SWAP_I64: - return emitAtomicCmpSwap(MI, MBB, 8); - } -} - - -const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const { - switch (Opcode) { - case AArch64ISD::BR_CC: return "AArch64ISD::BR_CC"; - case AArch64ISD::Call: return "AArch64ISD::Call"; - case AArch64ISD::FPMOV: return "AArch64ISD::FPMOV"; - case AArch64ISD::GOTLoad: return "AArch64ISD::GOTLoad"; - case AArch64ISD::BFI: return "AArch64ISD::BFI"; - case AArch64ISD::EXTR: return "AArch64ISD::EXTR"; - case AArch64ISD::Ret: return "AArch64ISD::Ret"; - case AArch64ISD::SBFX: return "AArch64ISD::SBFX"; - case AArch64ISD::SELECT_CC: return "AArch64ISD::SELECT_CC"; - case AArch64ISD::SETCC: return "AArch64ISD::SETCC"; - case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN"; - case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER"; - case AArch64ISD::TLSDESCCALL: return "AArch64ISD::TLSDESCCALL"; - case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge"; - case AArch64ISD::WrapperSmall: return "AArch64ISD::WrapperSmall"; - - case AArch64ISD::NEON_MOVIMM: - return "AArch64ISD::NEON_MOVIMM"; - case AArch64ISD::NEON_MVNIMM: - return "AArch64ISD::NEON_MVNIMM"; - case AArch64ISD::NEON_FMOVIMM: - return "AArch64ISD::NEON_FMOVIMM"; - case AArch64ISD::NEON_CMP: - return "AArch64ISD::NEON_CMP"; - case AArch64ISD::NEON_CMPZ: - return "AArch64ISD::NEON_CMPZ"; - case AArch64ISD::NEON_TST: - return "AArch64ISD::NEON_TST"; - case AArch64ISD::NEON_QSHLs: - return "AArch64ISD::NEON_QSHLs"; - case AArch64ISD::NEON_QSHLu: - return "AArch64ISD::NEON_QSHLu"; - case AArch64ISD::NEON_VDUP: - return "AArch64ISD::NEON_VDUP"; - case AArch64ISD::NEON_VDUPLANE: - return "AArch64ISD::NEON_VDUPLANE"; - case AArch64ISD::NEON_REV16: - return "AArch64ISD::NEON_REV16"; - case AArch64ISD::NEON_REV32: - return "AArch64ISD::NEON_REV32"; - case AArch64ISD::NEON_REV64: - return "AArch64ISD::NEON_REV64"; - case AArch64ISD::NEON_UZP1: - return "AArch64ISD::NEON_UZP1"; - case AArch64ISD::NEON_UZP2: - return "AArch64ISD::NEON_UZP2"; - case AArch64ISD::NEON_ZIP1: - return "AArch64ISD::NEON_ZIP1"; - case AArch64ISD::NEON_ZIP2: - return "AArch64ISD::NEON_ZIP2"; - case AArch64ISD::NEON_TRN1: - return "AArch64ISD::NEON_TRN1"; - case AArch64ISD::NEON_TRN2: - return "AArch64ISD::NEON_TRN2"; - case AArch64ISD::NEON_LD1_UPD: - return "AArch64ISD::NEON_LD1_UPD"; - case AArch64ISD::NEON_LD2_UPD: - return "AArch64ISD::NEON_LD2_UPD"; - case AArch64ISD::NEON_LD3_UPD: - return "AArch64ISD::NEON_LD3_UPD"; - case AArch64ISD::NEON_LD4_UPD: - return "AArch64ISD::NEON_LD4_UPD"; - case AArch64ISD::NEON_ST1_UPD: - return "AArch64ISD::NEON_ST1_UPD"; - case AArch64ISD::NEON_ST2_UPD: - return "AArch64ISD::NEON_ST2_UPD"; - case AArch64ISD::NEON_ST3_UPD: - return "AArch64ISD::NEON_ST3_UPD"; - case AArch64ISD::NEON_ST4_UPD: - return "AArch64ISD::NEON_ST4_UPD"; - case AArch64ISD::NEON_LD1x2_UPD: - return "AArch64ISD::NEON_LD1x2_UPD"; - case AArch64ISD::NEON_LD1x3_UPD: - return "AArch64ISD::NEON_LD1x3_UPD"; - case AArch64ISD::NEON_LD1x4_UPD: - return "AArch64ISD::NEON_LD1x4_UPD"; - case AArch64ISD::NEON_ST1x2_UPD: - return "AArch64ISD::NEON_ST1x2_UPD"; - case AArch64ISD::NEON_ST1x3_UPD: - return "AArch64ISD::NEON_ST1x3_UPD"; - case AArch64ISD::NEON_ST1x4_UPD: - return "AArch64ISD::NEON_ST1x4_UPD"; - case AArch64ISD::NEON_LD2DUP: - return "AArch64ISD::NEON_LD2DUP"; - case AArch64ISD::NEON_LD3DUP: - return "AArch64ISD::NEON_LD3DUP"; - case AArch64ISD::NEON_LD4DUP: - return "AArch64ISD::NEON_LD4DUP"; - case AArch64ISD::NEON_LD2DUP_UPD: - return "AArch64ISD::NEON_LD2DUP_UPD"; - case AArch64ISD::NEON_LD3DUP_UPD: - return "AArch64ISD::NEON_LD3DUP_UPD"; - case AArch64ISD::NEON_LD4DUP_UPD: - return "AArch64ISD::NEON_LD4DUP_UPD"; - case AArch64ISD::NEON_LD2LN_UPD: - return "AArch64ISD::NEON_LD2LN_UPD"; - case AArch64ISD::NEON_LD3LN_UPD: - return "AArch64ISD::NEON_LD3LN_UPD"; - case AArch64ISD::NEON_LD4LN_UPD: - return "AArch64ISD::NEON_LD4LN_UPD"; - case AArch64ISD::NEON_ST2LN_UPD: - return "AArch64ISD::NEON_ST2LN_UPD"; - case AArch64ISD::NEON_ST3LN_UPD: - return "AArch64ISD::NEON_ST3LN_UPD"; - case AArch64ISD::NEON_ST4LN_UPD: - return "AArch64ISD::NEON_ST4LN_UPD"; - case AArch64ISD::NEON_VEXTRACT: - return "AArch64ISD::NEON_VEXTRACT"; - default: - return nullptr; - } -} - -static const MCPhysReg AArch64FPRArgRegs[] = { - AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3, - AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7 -}; -static const unsigned NumFPRArgRegs = llvm::array_lengthof(AArch64FPRArgRegs); - -static const MCPhysReg AArch64ArgRegs[] = { - AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3, - AArch64::X4, AArch64::X5, AArch64::X6, AArch64::X7 -}; -static const unsigned NumArgRegs = llvm::array_lengthof(AArch64ArgRegs); - -static bool CC_AArch64NoMoreRegs(unsigned ValNo, MVT ValVT, MVT LocVT, - CCValAssign::LocInfo LocInfo, - ISD::ArgFlagsTy ArgFlags, CCState &State) { - // Mark all remaining general purpose registers as allocated. We don't - // backtrack: if (for example) an i128 gets put on the stack, no subsequent - // i64 will go in registers (C.11). - for (unsigned i = 0; i < NumArgRegs; ++i) - State.AllocateReg(AArch64ArgRegs[i]); - - return false; -} - -#include "AArch64GenCallingConv.inc" - -CCAssignFn *AArch64TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const { - - switch(CC) { - default: llvm_unreachable("Unsupported calling convention"); - case CallingConv::Fast: - case CallingConv::C: - return CC_A64_APCS; - } -} - -void -AArch64TargetLowering::SaveVarArgRegisters(CCState &CCInfo, SelectionDAG &DAG, - SDLoc DL, SDValue &Chain) const { - MachineFunction &MF = DAG.getMachineFunction(); - MachineFrameInfo *MFI = MF.getFrameInfo(); - AArch64MachineFunctionInfo *FuncInfo - = MF.getInfo<AArch64MachineFunctionInfo>(); - - SmallVector<SDValue, 8> MemOps; - - unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(AArch64ArgRegs, - NumArgRegs); - unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(AArch64FPRArgRegs, - NumFPRArgRegs); - - unsigned GPRSaveSize = 8 * (NumArgRegs - FirstVariadicGPR); - int GPRIdx = 0; - if (GPRSaveSize != 0) { - GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false); - - SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy()); - - for (unsigned i = FirstVariadicGPR; i < NumArgRegs; ++i) { - unsigned VReg = MF.addLiveIn(AArch64ArgRegs[i], &AArch64::GPR64RegClass); - SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64); - SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN, - MachinePointerInfo::getStack(i * 8), - false, false, 0); - MemOps.push_back(Store); - FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN, - DAG.getConstant(8, getPointerTy())); - } - } - - if (getSubtarget()->hasFPARMv8()) { - unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR); - int FPRIdx = 0; - // According to the AArch64 Procedure Call Standard, section B.1/B.3, we - // can omit a register save area if we know we'll never use registers of - // that class. - if (FPRSaveSize != 0) { - FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false); - - SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy()); - - for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) { - unsigned VReg = MF.addLiveIn(AArch64FPRArgRegs[i], - &AArch64::FPR128RegClass); - SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128); - SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN, - MachinePointerInfo::getStack(i * 16), - false, false, 0); - MemOps.push_back(Store); - FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN, - DAG.getConstant(16, getPointerTy())); - } - } - FuncInfo->setVariadicFPRIdx(FPRIdx); - FuncInfo->setVariadicFPRSize(FPRSaveSize); - } - - unsigned StackOffset = RoundUpToAlignment(CCInfo.getNextStackOffset(), 8); - int StackIdx = MFI->CreateFixedObject(8, StackOffset, true); - - FuncInfo->setVariadicStackIdx(StackIdx); - FuncInfo->setVariadicGPRIdx(GPRIdx); - FuncInfo->setVariadicGPRSize(GPRSaveSize); - - if (!MemOps.empty()) { - Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); - } -} - - -SDValue -AArch64TargetLowering::LowerFormalArguments(SDValue Chain, - CallingConv::ID CallConv, bool isVarArg, - const SmallVectorImpl<ISD::InputArg> &Ins, - SDLoc dl, SelectionDAG &DAG, - SmallVectorImpl<SDValue> &InVals) const { - MachineFunction &MF = DAG.getMachineFunction(); - AArch64MachineFunctionInfo *FuncInfo - = MF.getInfo<AArch64MachineFunctionInfo>(); - MachineFrameInfo *MFI = MF.getFrameInfo(); - bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; - - SmallVector<CCValAssign, 16> ArgLocs; - CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), - getTargetMachine(), ArgLocs, *DAG.getContext()); - CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv)); - - SmallVector<SDValue, 16> ArgValues; - - SDValue ArgValue; - for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { - CCValAssign &VA = ArgLocs[i]; - ISD::ArgFlagsTy Flags = Ins[i].Flags; - - if (Flags.isByVal()) { - // Byval is used for small structs and HFAs in the PCS, but the system - // should work in a non-compliant manner for larger structs. - EVT PtrTy = getPointerTy(); - int Size = Flags.getByValSize(); - unsigned NumRegs = (Size + 7) / 8; - - uint32_t BEAlign = 0; - if (Size < 8 && !getSubtarget()->isLittle()) - BEAlign = 8-Size; - unsigned FrameIdx = MFI->CreateFixedObject(8 * NumRegs, - VA.getLocMemOffset() + BEAlign, - false); - SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy); - InVals.push_back(FrameIdxN); - - continue; - } else if (VA.isRegLoc()) { - MVT RegVT = VA.getLocVT(); - const TargetRegisterClass *RC = getRegClassFor(RegVT); - unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); - - ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); - } else { // VA.isRegLoc() - assert(VA.isMemLoc()); - - int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8, - VA.getLocMemOffset(), true); - - SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); - ArgValue = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN, - MachinePointerInfo::getFixedStack(FI), - false, false, false, 0); - - - } - - switch (VA.getLocInfo()) { - default: llvm_unreachable("Unknown loc info!"); - case CCValAssign::Full: break; - case CCValAssign::BCvt: - ArgValue = DAG.getNode(ISD::BITCAST,dl, VA.getValVT(), ArgValue); - break; - case CCValAssign::SExt: - case CCValAssign::ZExt: - case CCValAssign::AExt: - case CCValAssign::FPExt: { - unsigned DestSize = VA.getValVT().getSizeInBits(); - unsigned DestSubReg; - - switch (DestSize) { - case 8: DestSubReg = AArch64::sub_8; break; - case 16: DestSubReg = AArch64::sub_16; break; - case 32: DestSubReg = AArch64::sub_32; break; - case 64: DestSubReg = AArch64::sub_64; break; - default: llvm_unreachable("Unexpected argument promotion"); - } - - ArgValue = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, - VA.getValVT(), ArgValue, - DAG.getTargetConstant(DestSubReg, MVT::i32)), - 0); - break; - } - } - - InVals.push_back(ArgValue); - } - - if (isVarArg) - SaveVarArgRegisters(CCInfo, DAG, dl, Chain); - - unsigned StackArgSize = CCInfo.getNextStackOffset(); - if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) { - // This is a non-standard ABI so by fiat I say we're allowed to make full - // use of the stack area to be popped, which must be aligned to 16 bytes in - // any case: - StackArgSize = RoundUpToAlignment(StackArgSize, 16); - - // If we're expected to restore the stack (e.g. fastcc) then we'll be adding - // a multiple of 16. - FuncInfo->setArgumentStackToRestore(StackArgSize); - - // This realignment carries over to the available bytes below. Our own - // callers will guarantee the space is free by giving an aligned value to - // CALLSEQ_START. - } - // Even if we're not expected to free up the space, it's useful to know how - // much is there while considering tail calls (because we can reuse it). - FuncInfo->setBytesInStackArgArea(StackArgSize); - - return Chain; -} - -SDValue -AArch64TargetLowering::LowerReturn(SDValue Chain, - CallingConv::ID CallConv, bool isVarArg, - const SmallVectorImpl<ISD::OutputArg> &Outs, - const SmallVectorImpl<SDValue> &OutVals, - SDLoc dl, SelectionDAG &DAG) const { - // CCValAssign - represent the assignment of the return value to a location. - SmallVector<CCValAssign, 16> RVLocs; - - // CCState - Info about the registers and stack slots. - CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), - getTargetMachine(), RVLocs, *DAG.getContext()); - - // Analyze outgoing return values. - CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv)); - - SDValue Flag; - SmallVector<SDValue, 4> RetOps(1, Chain); - - for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { - // PCS: "If the type, T, of the result of a function is such that - // void func(T arg) would require that arg be passed as a value in a - // register (or set of registers) according to the rules in 5.4, then the - // result is returned in the same registers as would be used for such an - // argument. - // - // Otherwise, the caller shall reserve a block of memory of sufficient - // size and alignment to hold the result. The address of the memory block - // shall be passed as an additional argument to the function in x8." - // - // This is implemented in two places. The register-return values are dealt - // with here, more complex returns are passed as an sret parameter, which - // means we don't have to worry about it during actual return. - CCValAssign &VA = RVLocs[i]; - assert(VA.isRegLoc() && "Only register-returns should be created by PCS"); - - - SDValue Arg = OutVals[i]; - - // There's no convenient note in the ABI about this as there is for normal - // arguments, but it says return values are passed in the same registers as - // an argument would be. I believe that includes the comments about - // unspecified higher bits, putting the burden of widening on the *caller* - // for return values. - switch (VA.getLocInfo()) { - default: llvm_unreachable("Unknown loc info"); - case CCValAssign::Full: break; - case CCValAssign::SExt: - case CCValAssign::ZExt: - case CCValAssign::AExt: - // Floating-point values should only be extended when they're going into - // memory, which can't happen here so an integer extend is acceptable. - Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); - break; - case CCValAssign::BCvt: - Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); - break; - } - - Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); - Flag = Chain.getValue(1); - RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); - } - - RetOps[0] = Chain; // Update chain. - - // Add the flag if we have it. - if (Flag.getNode()) - RetOps.push_back(Flag); - - return DAG.getNode(AArch64ISD::Ret, dl, MVT::Other, RetOps); -} - -unsigned AArch64TargetLowering::getByValTypeAlignment(Type *Ty) const { - // This is a new backend. For anything more precise than this a FE should - // set an explicit alignment. - return 4; -} - -SDValue -AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI, - SmallVectorImpl<SDValue> &InVals) const { - SelectionDAG &DAG = CLI.DAG; - SDLoc &dl = CLI.DL; - SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; - SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; - SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; - SDValue Chain = CLI.Chain; - SDValue Callee = CLI.Callee; - bool &IsTailCall = CLI.IsTailCall; - CallingConv::ID CallConv = CLI.CallConv; - bool IsVarArg = CLI.IsVarArg; - - MachineFunction &MF = DAG.getMachineFunction(); - AArch64MachineFunctionInfo *FuncInfo - = MF.getInfo<AArch64MachineFunctionInfo>(); - bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; - bool IsStructRet = !Outs.empty() && Outs[0].Flags.isSRet(); - bool IsSibCall = false; - - if (IsTailCall) { - IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, - IsVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(), - Outs, OutVals, Ins, DAG); - - if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall()) - report_fatal_error("failed to perform tail call elimination on a call " - "site marked musttail"); - - // A sibling call is one where we're under the usual C ABI and not planning - // to change that but can still do a tail call: - if (!TailCallOpt && IsTailCall) - IsSibCall = true; - } - - SmallVector<CCValAssign, 16> ArgLocs; - CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), - getTargetMachine(), ArgLocs, *DAG.getContext()); - CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv)); - - // On AArch64 (and all other architectures I'm aware of) the most this has to - // do is adjust the stack pointer. - unsigned NumBytes = RoundUpToAlignment(CCInfo.getNextStackOffset(), 16); - if (IsSibCall) { - // Since we're not changing the ABI to make this a tail call, the memory - // operands are already available in the caller's incoming argument space. - NumBytes = 0; - } - - // FPDiff is the byte offset of the call's argument area from the callee's. - // Stores to callee stack arguments will be placed in FixedStackSlots offset - // by this amount for a tail call. In a sibling call it must be 0 because the - // caller will deallocate the entire stack and the callee still expects its - // arguments to begin at SP+0. Completely unused for non-tail calls. - int FPDiff = 0; - - if (IsTailCall && !IsSibCall) { - unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea(); - - // FPDiff will be negative if this tail call requires more space than we - // would automatically have in our incoming argument space. Positive if we - // can actually shrink the stack. - FPDiff = NumReusableBytes - NumBytes; - - // The stack pointer must be 16-byte aligned at all times it's used for a - // memory operation, which in practice means at *all* times and in - // particular across call boundaries. Therefore our own arguments started at - // a 16-byte aligned SP and the delta applied for the tail call should - // satisfy the same constraint. - assert(FPDiff % 16 == 0 && "unaligned stack on tail call"); - } - - if (!IsSibCall) - Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), - dl); - - SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, AArch64::XSP, - getPointerTy()); - - SmallVector<SDValue, 8> MemOpChains; - SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; - - for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { - CCValAssign &VA = ArgLocs[i]; - ISD::ArgFlagsTy Flags = Outs[i].Flags; - SDValue Arg = OutVals[i]; - - // Callee does the actual widening, so all extensions just use an implicit - // definition of the rest of the Loc. Aesthetically, this would be nicer as - // an ANY_EXTEND, but that isn't valid for floating-point types and this - // alternative works on integer types too. - switch (VA.getLocInfo()) { - default: llvm_unreachable("Unknown loc info!"); - case CCValAssign::Full: break; - case CCValAssign::SExt: - case CCValAssign::ZExt: - case CCValAssign::AExt: - case CCValAssign::FPExt: { - unsigned SrcSize = VA.getValVT().getSizeInBits(); - unsigned SrcSubReg; - - switch (SrcSize) { - case 8: SrcSubReg = AArch64::sub_8; break; - case 16: SrcSubReg = AArch64::sub_16; break; - case 32: SrcSubReg = AArch64::sub_32; break; - case 64: SrcSubReg = AArch64::sub_64; break; - default: llvm_unreachable("Unexpected argument promotion"); - } - - Arg = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, - VA.getLocVT(), - DAG.getUNDEF(VA.getLocVT()), - Arg, - DAG.getTargetConstant(SrcSubReg, MVT::i32)), - 0); - - break; - } - case CCValAssign::BCvt: - Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); - break; - } - - if (VA.isRegLoc()) { - // A normal register (sub-) argument. For now we just note it down because - // we want to copy things into registers as late as possible to avoid - // register-pressure (and possibly worse). - RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); - continue; - } - - assert(VA.isMemLoc() && "unexpected argument location"); - - SDValue DstAddr; - MachinePointerInfo DstInfo; - if (IsTailCall) { - uint32_t OpSize = Flags.isByVal() ? Flags.getByValSize() : - VA.getLocVT().getSizeInBits(); - OpSize = (OpSize + 7) / 8; - int32_t Offset = VA.getLocMemOffset() + FPDiff; - int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); - - DstAddr = DAG.getFrameIndex(FI, getPointerTy()); - DstInfo = MachinePointerInfo::getFixedStack(FI); - - // Make sure any stack arguments overlapping with where we're storing are - // loaded before this eventual operation. Otherwise they'll be clobbered. - Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI); - } else { - uint32_t OpSize = Flags.isByVal() ? Flags.getByValSize()*8 : - VA.getLocVT().getSizeInBits(); - OpSize = (OpSize + 7) / 8; - uint32_t BEAlign = 0; - if (OpSize < 8 && !getSubtarget()->isLittle()) - BEAlign = 8-OpSize; - SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + BEAlign); - - DstAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); - DstInfo = MachinePointerInfo::getStack(VA.getLocMemOffset()); - } - - if (Flags.isByVal()) { - SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i64); - SDValue Cpy = DAG.getMemcpy(Chain, dl, DstAddr, Arg, SizeNode, - Flags.getByValAlign(), - /*isVolatile = */ false, - /*alwaysInline = */ false, - DstInfo, MachinePointerInfo()); - MemOpChains.push_back(Cpy); - } else { - // Normal stack argument, put it where it's needed. - SDValue Store = DAG.getStore(Chain, dl, Arg, DstAddr, DstInfo, - false, false, 0); - MemOpChains.push_back(Store); - } - } - - // The loads and stores generated above shouldn't clash with each - // other. Combining them with this TokenFactor notes that fact for the rest of - // the backend. - if (!MemOpChains.empty()) - Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); - - // Most of the rest of the instructions need to be glued together; we don't - // want assignments to actual registers used by a call to be rearranged by a - // well-meaning scheduler. - SDValue InFlag; - - for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { - Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, - RegsToPass[i].second, InFlag); - InFlag = Chain.getValue(1); - } - - // The linker is responsible for inserting veneers when necessary to put a - // function call destination in range, so we don't need to bother with a - // wrapper here. - if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { - const GlobalValue *GV = G->getGlobal(); - Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy()); - } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { - const char *Sym = S->getSymbol(); - Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy()); - } - - // We don't usually want to end the call-sequence here because we would tidy - // the frame up *after* the call, however in the ABI-changing tail-call case - // we've carefully laid out the parameters so that when sp is reset they'll be - // in the correct location. - if (IsTailCall && !IsSibCall) { - Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), - DAG.getIntPtrConstant(0, true), InFlag, dl); - InFlag = Chain.getValue(1); - } - - // We produce the following DAG scheme for the actual call instruction: - // (AArch64Call Chain, Callee, reg1, ..., regn, preserveMask, inflag? - // - // Most arguments aren't going to be used and just keep the values live as - // far as LLVM is concerned. It's expected to be selected as simply "bl - // callee" (for a direct, non-tail call). - std::vector<SDValue> Ops; - Ops.push_back(Chain); - Ops.push_back(Callee); - - if (IsTailCall) { - // Each tail call may have to adjust the stack by a different amount, so - // this information must travel along with the operation for eventual - // consumption by emitEpilogue. - Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32)); - } - - for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) - Ops.push_back(DAG.getRegister(RegsToPass[i].first, - RegsToPass[i].second.getValueType())); - - - // Add a register mask operand representing the call-preserved registers. This - // is used later in codegen to constrain register-allocation. - const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); - const uint32_t *Mask = TRI->getCallPreservedMask(CallConv); - assert(Mask && "Missing call preserved mask for calling convention"); - Ops.push_back(DAG.getRegisterMask(Mask)); - - // If we needed glue, put it in as the last argument. - if (InFlag.getNode()) - Ops.push_back(InFlag); - - SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); - - if (IsTailCall) { - return DAG.getNode(AArch64ISD::TC_RETURN, dl, NodeTys, Ops); - } - - Chain = DAG.getNode(AArch64ISD::Call, dl, NodeTys, Ops); - InFlag = Chain.getValue(1); - - // Now we can reclaim the stack, just as well do it before working out where - // our return value is. - if (!IsSibCall) { - uint64_t CalleePopBytes - = DoesCalleeRestoreStack(CallConv, TailCallOpt) ? NumBytes : 0; - - Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), - DAG.getIntPtrConstant(CalleePopBytes, true), - InFlag, dl); - InFlag = Chain.getValue(1); - } - - return LowerCallResult(Chain, InFlag, CallConv, - IsVarArg, Ins, dl, DAG, InVals); -} - -SDValue -AArch64TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, - CallingConv::ID CallConv, bool IsVarArg, - const SmallVectorImpl<ISD::InputArg> &Ins, - SDLoc dl, SelectionDAG &DAG, - SmallVectorImpl<SDValue> &InVals) const { - // Assign locations to each value returned by this call. - SmallVector<CCValAssign, 16> RVLocs; - CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), - getTargetMachine(), RVLocs, *DAG.getContext()); - CCInfo.AnalyzeCallResult(Ins, CCAssignFnForNode(CallConv)); - - for (unsigned i = 0; i != RVLocs.size(); ++i) { - CCValAssign VA = RVLocs[i]; - - // Return values that are too big to fit into registers should use an sret - // pointer, so this can be a lot simpler than the main argument code. - assert(VA.isRegLoc() && "Memory locations not expected for call return"); - - SDValue Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(), - InFlag); - Chain = Val.getValue(1); - InFlag = Val.getValue(2); - - switch (VA.getLocInfo()) { - default: llvm_unreachable("Unknown loc info!"); - case CCValAssign::Full: break; - case CCValAssign::BCvt: - Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val); - break; - case CCValAssign::ZExt: - case CCValAssign::SExt: - case CCValAssign::AExt: - // Floating-point arguments only get extended/truncated if they're going - // in memory, so using the integer operation is acceptable here. - Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); - break; - } - - InVals.push_back(Val); - } - - return Chain; -} - -bool -AArch64TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, - CallingConv::ID CalleeCC, - bool IsVarArg, - bool IsCalleeStructRet, - bool IsCallerStructRet, - const SmallVectorImpl<ISD::OutputArg> &Outs, - const SmallVectorImpl<SDValue> &OutVals, - const SmallVectorImpl<ISD::InputArg> &Ins, - SelectionDAG& DAG) const { - - // For CallingConv::C this function knows whether the ABI needs - // changing. That's not true for other conventions so they will have to opt in - // manually. - if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C) - return false; - - const MachineFunction &MF = DAG.getMachineFunction(); - const Function *CallerF = MF.getFunction(); - CallingConv::ID CallerCC = CallerF->getCallingConv(); - bool CCMatch = CallerCC == CalleeCC; - - // Byval parameters hand the function a pointer directly into the stack area - // we want to reuse during a tail call. Working around this *is* possible (see - // X86) but less efficient and uglier in LowerCall. - for (Function::const_arg_iterator i = CallerF->arg_begin(), - e = CallerF->arg_end(); i != e; ++i) - if (i->hasByValAttr()) - return false; - - if (getTargetMachine().Options.GuaranteedTailCallOpt) { - if (IsTailCallConvention(CalleeCC) && CCMatch) - return true; - return false; - } - - // Now we search for cases where we can use a tail call without changing the - // ABI. Sibcall is used in some places (particularly gcc) to refer to this - // concept. - - // I want anyone implementing a new calling convention to think long and hard - // about this assert. - assert((!IsVarArg || CalleeCC == CallingConv::C) - && "Unexpected variadic calling convention"); - - if (IsVarArg && !Outs.empty()) { - // At least two cases here: if caller is fastcc then we can't have any - // memory arguments (we'd be expected to clean up the stack afterwards). If - // caller is C then we could potentially use its argument area. - - // FIXME: for now we take the most conservative of these in both cases: - // disallow all variadic memory operands. - SmallVector<CCValAssign, 16> ArgLocs; - CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(), - getTargetMachine(), ArgLocs, *DAG.getContext()); - - CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC)); - for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) - if (!ArgLocs[i].isRegLoc()) - return false; - } - - // If the calling conventions do not match, then we'd better make sure the - // results are returned in the same way as what the caller expects. - if (!CCMatch) { - SmallVector<CCValAssign, 16> RVLocs1; - CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), - getTargetMachine(), RVLocs1, *DAG.getContext()); - CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC)); - - SmallVector<CCValAssign, 16> RVLocs2; - CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), - getTargetMachine(), RVLocs2, *DAG.getContext()); - CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC)); - - if (RVLocs1.size() != RVLocs2.size()) - return false; - for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) { - if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc()) - return false; - if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo()) - return false; - if (RVLocs1[i].isRegLoc()) { - if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg()) - return false; - } else { - if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset()) - return false; - } - } - } - - // Nothing more to check if the callee is taking no arguments - if (Outs.empty()) - return true; - - SmallVector<CCValAssign, 16> ArgLocs; - CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(), - getTargetMachine(), ArgLocs, *DAG.getContext()); - - CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC)); - - const AArch64MachineFunctionInfo *FuncInfo - = MF.getInfo<AArch64MachineFunctionInfo>(); - - // If the stack arguments for this call would fit into our own save area then - // the call can be made tail. - return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea(); -} - -bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC, - bool TailCallOpt) const { - return CallCC == CallingConv::Fast && TailCallOpt; -} - -bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const { - return CallCC == CallingConv::Fast; -} - -SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain, - SelectionDAG &DAG, - MachineFrameInfo *MFI, - int ClobberedFI) const { - SmallVector<SDValue, 8> ArgChains; - int64_t FirstByte = MFI->getObjectOffset(ClobberedFI); - int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1; - - // Include the original chain at the beginning of the list. When this is - // used by target LowerCall hooks, this helps legalize find the - // CALLSEQ_BEGIN node. - ArgChains.push_back(Chain); - - // Add a chain value for each stack argument corresponding - for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), - UE = DAG.getEntryNode().getNode()->use_end(); U != UE; ++U) - if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) - if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) - if (FI->getIndex() < 0) { - int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex()); - int64_t InLastByte = InFirstByte; - InLastByte += MFI->getObjectSize(FI->getIndex()) - 1; - - if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || - (FirstByte <= InFirstByte && InFirstByte <= LastByte)) - ArgChains.push_back(SDValue(L, 1)); - } - - // Build a tokenfactor for all the chains. - return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); -} - -static A64CC::CondCodes IntCCToA64CC(ISD::CondCode CC) { - switch (CC) { - case ISD::SETEQ: return A64CC::EQ; - case ISD::SETGT: return A64CC::GT; - case ISD::SETGE: return A64CC::GE; - case ISD::SETLT: return A64CC::LT; - case ISD::SETLE: return A64CC::LE; - case ISD::SETNE: return A64CC::NE; - case ISD::SETUGT: return A64CC::HI; - case ISD::SETUGE: return A64CC::HS; - case ISD::SETULT: return A64CC::LO; - case ISD::SETULE: return A64CC::LS; - default: llvm_unreachable("Unexpected condition code"); - } -} - -bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Val) const { - // icmp is implemented using adds/subs immediate, which take an unsigned - // 12-bit immediate, optionally shifted left by 12 bits. - - // Symmetric by using adds/subs - if (Val < 0) - Val = -Val; - - return (Val & ~0xfff) == 0 || (Val & ~0xfff000) == 0; -} - -SDValue AArch64TargetLowering::getSelectableIntSetCC(SDValue LHS, SDValue RHS, - ISD::CondCode CC, SDValue &A64cc, - SelectionDAG &DAG, SDLoc &dl) const { - if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) { - int64_t C = 0; - EVT VT = RHSC->getValueType(0); - bool knownInvalid = false; - - // I'm not convinced the rest of LLVM handles these edge cases properly, but - // we can at least get it right. - if (isSignedIntSetCC(CC)) { - C = RHSC->getSExtValue(); - } else if (RHSC->getZExtValue() > INT64_MAX) { - // A 64-bit constant not representable by a signed 64-bit integer is far - // too big to fit into a SUBS immediate anyway. - knownInvalid = true; - } else { - C = RHSC->getZExtValue(); - } - - if (!knownInvalid && !isLegalICmpImmediate(C)) { - // Constant does not fit, try adjusting it by one? - switch (CC) { - default: break; - case ISD::SETLT: - case ISD::SETGE: - if (isLegalICmpImmediate(C-1)) { - CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT; - RHS = DAG.getConstant(C-1, VT); - } - break; - case ISD::SETULT: - case ISD::SETUGE: - if (isLegalICmpImmediate(C-1)) { - CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT; - RHS = DAG.getConstant(C-1, VT); - } - break; - case ISD::SETLE: - case ISD::SETGT: - if (isLegalICmpImmediate(C+1)) { - CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE; - RHS = DAG.getConstant(C+1, VT); - } - break; - case ISD::SETULE: - case ISD::SETUGT: - if (isLegalICmpImmediate(C+1)) { - CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; - RHS = DAG.getConstant(C+1, VT); - } - break; - } - } - } - - A64CC::CondCodes CondCode = IntCCToA64CC(CC); - A64cc = DAG.getConstant(CondCode, MVT::i32); - return DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS, - DAG.getCondCode(CC)); -} - -static A64CC::CondCodes FPCCToA64CC(ISD::CondCode CC, - A64CC::CondCodes &Alternative) { - A64CC::CondCodes CondCode = A64CC::Invalid; - Alternative = A64CC::Invalid; - - switch (CC) { - default: llvm_unreachable("Unknown FP condition!"); - case ISD::SETEQ: - case ISD::SETOEQ: CondCode = A64CC::EQ; break; - case ISD::SETGT: - case ISD::SETOGT: CondCode = A64CC::GT; break; - case ISD::SETGE: - case ISD::SETOGE: CondCode = A64CC::GE; break; - case ISD::SETOLT: CondCode = A64CC::MI; break; - case ISD::SETOLE: CondCode = A64CC::LS; break; - case ISD::SETONE: CondCode = A64CC::MI; Alternative = A64CC::GT; break; - case ISD::SETO: CondCode = A64CC::VC; break; - case ISD::SETUO: CondCode = A64CC::VS; break; - case ISD::SETUEQ: CondCode = A64CC::EQ; Alternative = A64CC::VS; break; - case ISD::SETUGT: CondCode = A64CC::HI; break; - case ISD::SETUGE: CondCode = A64CC::PL; break; - case ISD::SETLT: - case ISD::SETULT: CondCode = A64CC::LT; break; - case ISD::SETLE: - case ISD::SETULE: CondCode = A64CC::LE; break; - case ISD::SETNE: - case ISD::SETUNE: CondCode = A64CC::NE; break; - } - return CondCode; -} - -SDValue -AArch64TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { - SDLoc DL(Op); - EVT PtrVT = getPointerTy(); - const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); - - switch(getTargetMachine().getCodeModel()) { - case CodeModel::Small: - // The most efficient code is PC-relative anyway for the small memory model, - // so we don't need to worry about relocation model. - return DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT, - DAG.getTargetBlockAddress(BA, PtrVT, 0, - AArch64II::MO_NO_FLAG), - DAG.getTargetBlockAddress(BA, PtrVT, 0, - AArch64II::MO_LO12), - DAG.getConstant(/*Alignment=*/ 4, MVT::i32)); - case CodeModel::Large: - return DAG.getNode( - AArch64ISD::WrapperLarge, DL, PtrVT, - DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G3), - DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G2_NC), - DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G1_NC), - DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G0_NC)); - default: - llvm_unreachable("Only small and large code models supported now"); - } -} - - -// (BRCOND chain, val, dest) -SDValue -AArch64TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const { - SDLoc dl(Op); - SDValue Chain = Op.getOperand(0); - SDValue TheBit = Op.getOperand(1); - SDValue DestBB = Op.getOperand(2); - - // AArch64 BooleanContents is the default UndefinedBooleanContent, which means - // that as the consumer we are responsible for ignoring rubbish in higher - // bits. - TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit, - DAG.getConstant(1, MVT::i32)); - - SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit, - DAG.getConstant(0, TheBit.getValueType()), - DAG.getCondCode(ISD::SETNE)); - - return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other, Chain, - A64CMP, DAG.getConstant(A64CC::NE, MVT::i32), - DestBB); -} - -// (BR_CC chain, condcode, lhs, rhs, dest) -SDValue -AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { - SDLoc dl(Op); - SDValue Chain = Op.getOperand(0); - ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); - SDValue LHS = Op.getOperand(2); - SDValue RHS = Op.getOperand(3); - SDValue DestBB = Op.getOperand(4); - - if (LHS.getValueType() == MVT::f128) { - // f128 comparisons are lowered to runtime calls by a routine which sets - // LHS, RHS and CC appropriately for the rest of this function to continue. - softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl); - - // If softenSetCCOperands returned a scalar, we need to compare the result - // against zero to select between true and false values. - if (!RHS.getNode()) { - RHS = DAG.getConstant(0, LHS.getValueType()); - CC = ISD::SETNE; - } - } - - if (LHS.getValueType().isInteger()) { - SDValue A64cc; - - // Integers are handled in a separate function because the combinations of - // immediates and tests can get hairy and we may want to fiddle things. - SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl); - - return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other, - Chain, CmpOp, A64cc, DestBB); - } - - // Note that some LLVM floating-point CondCodes can't be lowered to a single - // conditional branch, hence FPCCToA64CC can set a second test, where either - // passing is sufficient. - A64CC::CondCodes CondCode, Alternative = A64CC::Invalid; - CondCode = FPCCToA64CC(CC, Alternative); - SDValue A64cc = DAG.getConstant(CondCode, MVT::i32); - SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS, - DAG.getCondCode(CC)); - SDValue A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other, - Chain, SetCC, A64cc, DestBB); - - if (Alternative != A64CC::Invalid) { - A64cc = DAG.getConstant(Alternative, MVT::i32); - A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other, - A64BR_CC, SetCC, A64cc, DestBB); - - } - - return A64BR_CC; -} - -SDValue -AArch64TargetLowering::LowerF128ToCall(SDValue Op, SelectionDAG &DAG, - RTLIB::Libcall Call) const { - ArgListTy Args; - ArgListEntry Entry; - for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) { - EVT ArgVT = Op.getOperand(i).getValueType(); - Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); - Entry.Node = Op.getOperand(i); Entry.Ty = ArgTy; - Entry.isSExt = false; - Entry.isZExt = false; - Args.push_back(Entry); - } - SDValue Callee = DAG.getExternalSymbol(getLibcallName(Call), getPointerTy()); - - Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext()); - - // By default, the input chain to this libcall is the entry node of the - // function. If the libcall is going to be emitted as a tail call then - // isUsedByReturnOnly will change it to the right chain if the return - // node which is being folded has a non-entry input chain. - SDValue InChain = DAG.getEntryNode(); - - // isTailCall may be true since the callee does not reference caller stack - // frame. Check if it's in the right position. - SDValue TCChain = InChain; - bool isTailCall = isInTailCallPosition(DAG, Op.getNode(), TCChain); - if (isTailCall) - InChain = TCChain; - - TargetLowering::CallLoweringInfo CLI(DAG); - CLI.setDebugLoc(SDLoc(Op)).setChain(InChain) - .setCallee(getLibcallCallingConv(Call), RetTy, Callee, &Args, 0) - .setTailCall(isTailCall); - - std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); - - if (!CallInfo.second.getNode()) - // It's a tailcall, return the chain (which is the DAG root). - return DAG.getRoot(); - - return CallInfo.first; -} - -SDValue -AArch64TargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { - if (Op.getOperand(0).getValueType() != MVT::f128) { - // It's legal except when f128 is involved - return Op; - } - - RTLIB::Libcall LC; - LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType()); - - SDValue SrcVal = Op.getOperand(0); - return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1, - /*isSigned*/ false, SDLoc(Op)).first; -} - -SDValue -AArch64TargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { - assert(Op.getValueType() == MVT::f128 && "Unexpected lowering"); - - RTLIB::Libcall LC; - LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType()); - - return LowerF128ToCall(Op, DAG, LC); -} - -static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG, - bool IsSigned) { - SDLoc dl(Op); - EVT VT = Op.getValueType(); - SDValue Vec = Op.getOperand(0); - EVT OpVT = Vec.getValueType(); - unsigned Opc = IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; - - if (VT.getVectorNumElements() == 1) { - assert(OpVT == MVT::v1f64 && "Unexpected vector type!"); - if (VT.getSizeInBits() == OpVT.getSizeInBits()) - return Op; - return DAG.UnrollVectorOp(Op.getNode()); - } - - if (VT.getSizeInBits() > OpVT.getSizeInBits()) { - assert(Vec.getValueType() == MVT::v2f32 && VT == MVT::v2i64 && - "Unexpected vector type!"); - Vec = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v2f64, Vec); - return DAG.getNode(Opc, dl, VT, Vec); - } else if (VT.getSizeInBits() < OpVT.getSizeInBits()) { - EVT CastVT = EVT::getIntegerVT(*DAG.getContext(), - OpVT.getVectorElementType().getSizeInBits()); - CastVT = - EVT::getVectorVT(*DAG.getContext(), CastVT, VT.getVectorNumElements()); - Vec = DAG.getNode(Opc, dl, CastVT, Vec); - return DAG.getNode(ISD::TRUNCATE, dl, VT, Vec); - } - return DAG.getNode(Opc, dl, VT, Vec); -} - -static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) { - // We custom lower concat_vectors with 4, 8, or 16 operands that are all the - // same operand and of type v1* using the DUP instruction. - unsigned NumOps = Op->getNumOperands(); - if (NumOps == 2) { - assert(Op.getValueType().getSizeInBits() == 128 && "unexpected concat"); - return Op; - } - - if (NumOps != 4 && NumOps != 8 && NumOps != 16) - return SDValue(); - - // Must be a single value for VDUP. - SDValue Op0 = Op.getOperand(0); - for (unsigned i = 1; i < NumOps; ++i) { - SDValue OpN = Op.getOperand(i); - if (Op0 != OpN) - return SDValue(); - } - - // Verify the value type. - EVT EltVT = Op0.getValueType(); - switch (NumOps) { - default: llvm_unreachable("Unexpected number of operands"); - case 4: - if (EltVT != MVT::v1i16 && EltVT != MVT::v1i32) - return SDValue(); - break; - case 8: - if (EltVT != MVT::v1i8 && EltVT != MVT::v1i16) - return SDValue(); - break; - case 16: - if (EltVT != MVT::v1i8) - return SDValue(); - break; - } - - SDLoc DL(Op); - EVT VT = Op.getValueType(); - // VDUP produces better code for constants. - if (Op0->getOpcode() == ISD::BUILD_VECTOR) - return DAG.getNode(AArch64ISD::NEON_VDUP, DL, VT, Op0->getOperand(0)); - return DAG.getNode(AArch64ISD::NEON_VDUPLANE, DL, VT, Op0, - DAG.getConstant(0, MVT::i64)); -} - -SDValue -AArch64TargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, - bool IsSigned) const { - if (Op.getValueType().isVector()) - return LowerVectorFP_TO_INT(Op, DAG, IsSigned); - if (Op.getOperand(0).getValueType() != MVT::f128) { - // It's legal except when f128 is involved - return Op; - } - - RTLIB::Libcall LC; - if (IsSigned) - LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType()); - else - LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType()); - - return LowerF128ToCall(Op, DAG, LC); -} - -SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{ - MachineFunction &MF = DAG.getMachineFunction(); - MachineFrameInfo *MFI = MF.getFrameInfo(); - MFI->setReturnAddressIsTaken(true); - - if (verifyReturnAddressArgumentIsConstant(Op, DAG)) - return SDValue(); - - EVT VT = Op.getValueType(); - SDLoc dl(Op); - unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); - if (Depth) { - SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); - SDValue Offset = DAG.getConstant(8, MVT::i64); - return DAG.getLoad(VT, dl, DAG.getEntryNode(), - DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset), - MachinePointerInfo(), false, false, false, 0); - } - - // Return X30, which contains the return address. Mark it an implicit live-in. - unsigned Reg = MF.addLiveIn(AArch64::X30, getRegClassFor(MVT::i64)); - return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, MVT::i64); -} - - -SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) - const { - MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); - MFI->setFrameAddressIsTaken(true); - - EVT VT = Op.getValueType(); - SDLoc dl(Op); - unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); - unsigned FrameReg = AArch64::X29; - SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT); - while (Depth--) - FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, - MachinePointerInfo(), - false, false, false, 0); - return FrameAddr; -} - -// FIXME? Maybe this could be a TableGen attribute on some registers and -// this table could be generated automatically from RegInfo. -unsigned AArch64TargetLowering::getRegisterByName(const char* RegName, - EVT VT) const { - unsigned Reg = StringSwitch<unsigned>(RegName) - .Case("sp", AArch64::XSP) - .Default(0); - if (Reg) - return Reg; - report_fatal_error("Invalid register name global variable"); -} - -SDValue -AArch64TargetLowering::LowerGlobalAddressELFLarge(SDValue Op, - SelectionDAG &DAG) const { - assert(getTargetMachine().getCodeModel() == CodeModel::Large); - assert(getTargetMachine().getRelocationModel() == Reloc::Static); - - EVT PtrVT = getPointerTy(); - SDLoc dl(Op); - const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op); - const GlobalValue *GV = GN->getGlobal(); - - SDValue GlobalAddr = DAG.getNode( - AArch64ISD::WrapperLarge, dl, PtrVT, - DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G3), - DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G2_NC), - DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G1_NC), - DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G0_NC)); - - if (GN->getOffset() != 0) - return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalAddr, - DAG.getConstant(GN->getOffset(), PtrVT)); - - return GlobalAddr; -} - -SDValue -AArch64TargetLowering::LowerGlobalAddressELFSmall(SDValue Op, - SelectionDAG &DAG) const { - assert(getTargetMachine().getCodeModel() == CodeModel::Small); - - EVT PtrVT = getPointerTy(); - SDLoc dl(Op); - const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op); - const GlobalValue *GV = GN->getGlobal(); - unsigned Alignment = GV->getAlignment(); - Reloc::Model RelocM = getTargetMachine().getRelocationModel(); - if (GV->isWeakForLinker() && GV->isDeclaration() && RelocM == Reloc::Static) { - // Weak undefined symbols can't use ADRP/ADD pair since they should evaluate - // to zero when they remain undefined. In PIC mode the GOT can take care of - // this, but in absolute mode we use a constant pool load. - SDValue PoolAddr; - PoolAddr = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT, - DAG.getTargetConstantPool(GV, PtrVT, 0, 0, - AArch64II::MO_NO_FLAG), - DAG.getTargetConstantPool(GV, PtrVT, 0, 0, - AArch64II::MO_LO12), - DAG.getConstant(8, MVT::i32)); - SDValue GlobalAddr = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), PoolAddr, - MachinePointerInfo::getConstantPool(), - /*isVolatile=*/ false, - /*isNonTemporal=*/ true, - /*isInvariant=*/ true, 8); - if (GN->getOffset() != 0) - return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalAddr, - DAG.getConstant(GN->getOffset(), PtrVT)); - - return GlobalAddr; - } - - if (Alignment == 0) { - const PointerType *GVPtrTy = cast<PointerType>(GV->getType()); - if (GVPtrTy->getElementType()->isSized()) { - Alignment - = getDataLayout()->getABITypeAlignment(GVPtrTy->getElementType()); - } else { - // Be conservative if we can't guess, not that it really matters: - // functions and labels aren't valid for loads, and the methods used to - // actually calculate an address work with any alignment. - Alignment = 1; - } - } - - unsigned char HiFixup, LoFixup; - bool UseGOT = getSubtarget()->GVIsIndirectSymbol(GV, RelocM); - - if (UseGOT) { - HiFixup = AArch64II::MO_GOT; - LoFixup = AArch64II::MO_GOT_LO12; - Alignment = 8; - } else { - HiFixup = AArch64II::MO_NO_FLAG; - LoFixup = AArch64II::MO_LO12; - } - - // AArch64's small model demands the following sequence: - // ADRP x0, somewhere - // ADD x0, x0, #:lo12:somewhere ; (or LDR directly). - SDValue GlobalRef = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT, - DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, - HiFixup), - DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, - LoFixup), - DAG.getConstant(Alignment, MVT::i32)); - - if (UseGOT) { - GlobalRef = DAG.getNode(AArch64ISD::GOTLoad, dl, PtrVT, DAG.getEntryNode(), - GlobalRef); - } - - if (GN->getOffset() != 0) - return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalRef, - DAG.getConstant(GN->getOffset(), PtrVT)); - - return GlobalRef; -} - -SDValue -AArch64TargetLowering::LowerGlobalAddressELF(SDValue Op, - SelectionDAG &DAG) const { - // TableGen doesn't have easy access to the CodeModel or RelocationModel, so - // we make those distinctions here. - - switch (getTargetMachine().getCodeModel()) { - case CodeModel::Small: - return LowerGlobalAddressELFSmall(Op, DAG); - case CodeModel::Large: - return LowerGlobalAddressELFLarge(Op, DAG); - default: - llvm_unreachable("Only small and large code models supported now"); - } -} - -SDValue -AArch64TargetLowering::LowerConstantPool(SDValue Op, - SelectionDAG &DAG) const { - SDLoc DL(Op); - EVT PtrVT = getPointerTy(); - ConstantPoolSDNode *CN = cast<ConstantPoolSDNode>(Op); - const Constant *C = CN->getConstVal(); - - switch(getTargetMachine().getCodeModel()) { - case CodeModel::Small: - // The most efficient code is PC-relative anyway for the small memory model, - // so we don't need to worry about relocation model. - return DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT, - DAG.getTargetConstantPool(C, PtrVT, 0, 0, - AArch64II::MO_NO_FLAG), - DAG.getTargetConstantPool(C, PtrVT, 0, 0, - AArch64II::MO_LO12), - DAG.getConstant(CN->getAlignment(), MVT::i32)); - case CodeModel::Large: - return DAG.getNode( - AArch64ISD::WrapperLarge, DL, PtrVT, - DAG.getTargetConstantPool(C, PtrVT, 0, 0, AArch64II::MO_ABS_G3), - DAG.getTargetConstantPool(C, PtrVT, 0, 0, AArch64II::MO_ABS_G2_NC), - DAG.getTargetConstantPool(C, PtrVT, 0, 0, AArch64II::MO_ABS_G1_NC), - DAG.getTargetConstantPool(C, PtrVT, 0, 0, AArch64II::MO_ABS_G0_NC)); - default: - llvm_unreachable("Only small and large code models supported now"); - } -} - -SDValue AArch64TargetLowering::LowerTLSDescCall(SDValue SymAddr, - SDValue DescAddr, - SDLoc DL, - SelectionDAG &DAG) const { - EVT PtrVT = getPointerTy(); - - // The function we need to call is simply the first entry in the GOT for this - // descriptor, load it in preparation. - SDValue Func, Chain; - Func = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(), - DescAddr); - - // The function takes only one argument: the address of the descriptor itself - // in X0. - SDValue Glue; - Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue); - Glue = Chain.getValue(1); - - // Finally, there's a special calling-convention which means that the lookup - // must preserve all registers (except X0, obviously). - const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); - const AArch64RegisterInfo *A64RI - = static_cast<const AArch64RegisterInfo *>(TRI); - const uint32_t *Mask = A64RI->getTLSDescCallPreservedMask(); - - // We're now ready to populate the argument list, as with a normal call: - std::vector<SDValue> Ops; - Ops.push_back(Chain); - Ops.push_back(Func); - Ops.push_back(SymAddr); - Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT)); - Ops.push_back(DAG.getRegisterMask(Mask)); - Ops.push_back(Glue); - - SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); - Chain = DAG.getNode(AArch64ISD::TLSDESCCALL, DL, NodeTys, Ops); - Glue = Chain.getValue(1); - - // After the call, the offset from TPIDR_EL0 is in X0, copy it out and pass it - // back to the generic handling code. - return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue); -} - -SDValue -AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op, - SelectionDAG &DAG) const { - assert(getSubtarget()->isTargetELF() && - "TLS not implemented for non-ELF targets"); - assert(getTargetMachine().getCodeModel() == CodeModel::Small - && "TLS only supported in small memory model"); - const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); - - TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal()); - - SDValue TPOff; - EVT PtrVT = getPointerTy(); - SDLoc DL(Op); - const GlobalValue *GV = GA->getGlobal(); - - SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT); - - if (Model == TLSModel::InitialExec) { - TPOff = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT, - DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, - AArch64II::MO_GOTTPREL), - DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, - AArch64II::MO_GOTTPREL_LO12), - DAG.getConstant(8, MVT::i32)); - TPOff = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(), - TPOff); - } else if (Model == TLSModel::LocalExec) { - SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0, - AArch64II::MO_TPREL_G1); - SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0, - AArch64II::MO_TPREL_G0_NC); - - TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar, - DAG.getTargetConstant(1, MVT::i32)), 0); - TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT, - TPOff, LoVar, - DAG.getTargetConstant(0, MVT::i32)), 0); - } else if (Model == TLSModel::GeneralDynamic) { - // Accesses used in this sequence go via the TLS descriptor which lives in - // the GOT. Prepare an address we can use to handle this. - SDValue HiDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, - AArch64II::MO_TLSDESC); - SDValue LoDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, - AArch64II::MO_TLSDESC_LO12); - SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT, - HiDesc, LoDesc, - DAG.getConstant(8, MVT::i32)); - SDValue SymAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0); - - TPOff = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG); - } else if (Model == TLSModel::LocalDynamic) { - // Local-dynamic accesses proceed in two phases. A general-dynamic TLS - // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate - // the beginning of the module's TLS region, followed by a DTPREL offset - // calculation. - - // These accesses will need deduplicating if there's more than one. - AArch64MachineFunctionInfo* MFI = DAG.getMachineFunction() - .getInfo<AArch64MachineFunctionInfo>(); - MFI->incNumLocalDynamicTLSAccesses(); - - - // Get the location of _TLS_MODULE_BASE_: - SDValue HiDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT, - AArch64II::MO_TLSDESC); - SDValue LoDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT, - AArch64II::MO_TLSDESC_LO12); - SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT, - HiDesc, LoDesc, - DAG.getConstant(8, MVT::i32)); - SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT); - - ThreadBase = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG); - - // Get the variable's offset from _TLS_MODULE_BASE_ - SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0, - AArch64II::MO_DTPREL_G1); - SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0, - AArch64II::MO_DTPREL_G0_NC); - - TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar, - DAG.getTargetConstant(0, MVT::i32)), 0); - TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT, - TPOff, LoVar, - DAG.getTargetConstant(0, MVT::i32)), 0); - } else - llvm_unreachable("Unsupported TLS access model"); - - - return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff); -} - -static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG, - bool IsSigned) { - SDLoc dl(Op); - EVT VT = Op.getValueType(); - SDValue Vec = Op.getOperand(0); - unsigned Opc = IsSigned ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; - - if (VT.getVectorNumElements() == 1) { - assert(VT == MVT::v1f64 && "Unexpected vector type!"); - if (VT.getSizeInBits() == Vec.getValueSizeInBits()) - return Op; - return DAG.UnrollVectorOp(Op.getNode()); - } - - if (VT.getSizeInBits() < Vec.getValueSizeInBits()) { - assert(Vec.getValueType() == MVT::v2i64 && VT == MVT::v2f32 && - "Unexpected vector type!"); - Vec = DAG.getNode(Opc, dl, MVT::v2f64, Vec); - return DAG.getNode(ISD::FP_ROUND, dl, VT, Vec, DAG.getIntPtrConstant(0)); - } else if (VT.getSizeInBits() > Vec.getValueSizeInBits()) { - unsigned CastOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; - EVT CastVT = EVT::getIntegerVT(*DAG.getContext(), - VT.getVectorElementType().getSizeInBits()); - CastVT = - EVT::getVectorVT(*DAG.getContext(), CastVT, VT.getVectorNumElements()); - Vec = DAG.getNode(CastOpc, dl, CastVT, Vec); - } - - return DAG.getNode(Opc, dl, VT, Vec); -} - -SDValue -AArch64TargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG, - bool IsSigned) const { - if (Op.getValueType().isVector()) - return LowerVectorINT_TO_FP(Op, DAG, IsSigned); - if (Op.getValueType() != MVT::f128) { - // Legal for everything except f128. - return Op; - } - - RTLIB::Libcall LC; - if (IsSigned) - LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType()); - else - LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType()); - - return LowerF128ToCall(Op, DAG, LC); -} - - -SDValue -AArch64TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { - JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); - SDLoc dl(JT); - EVT PtrVT = getPointerTy(); - - // When compiling PIC, jump tables get put in the code section so a static - // relocation-style is acceptable for both cases. - switch (getTargetMachine().getCodeModel()) { - case CodeModel::Small: - return DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT, - DAG.getTargetJumpTable(JT->getIndex(), PtrVT), - DAG.getTargetJumpTable(JT->getIndex(), PtrVT, - AArch64II::MO_LO12), - DAG.getConstant(1, MVT::i32)); - case CodeModel::Large: - return DAG.getNode( - AArch64ISD::WrapperLarge, dl, PtrVT, - DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G3), - DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G2_NC), - DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G1_NC), - DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G0_NC)); - default: - llvm_unreachable("Only small and large code models supported now"); - } -} - -// (SELECT testbit, iftrue, iffalse) -SDValue -AArch64TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { - SDLoc dl(Op); - SDValue TheBit = Op.getOperand(0); - SDValue IfTrue = Op.getOperand(1); - SDValue IfFalse = Op.getOperand(2); - - // AArch64 BooleanContents is the default UndefinedBooleanContent, which means - // that as the consumer we are responsible for ignoring rubbish in higher - // bits. - TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit, - DAG.getConstant(1, MVT::i32)); - SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit, - DAG.getConstant(0, TheBit.getValueType()), - DAG.getCondCode(ISD::SETNE)); - - return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(), - A64CMP, IfTrue, IfFalse, - DAG.getConstant(A64CC::NE, MVT::i32)); -} - -static SDValue LowerVectorSETCC(SDValue Op, SelectionDAG &DAG) { - SDLoc DL(Op); - SDValue LHS = Op.getOperand(0); - SDValue RHS = Op.getOperand(1); - ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); - EVT VT = Op.getValueType(); - bool Invert = false; - SDValue Op0, Op1; - unsigned Opcode; - - if (LHS.getValueType().isInteger()) { - - // Attempt to use Vector Integer Compare Mask Test instruction. - // TST = icmp ne (and (op0, op1), zero). - if (CC == ISD::SETNE) { - if (((LHS.getOpcode() == ISD::AND) && - ISD::isBuildVectorAllZeros(RHS.getNode())) || - ((RHS.getOpcode() == ISD::AND) && - ISD::isBuildVectorAllZeros(LHS.getNode()))) { - - SDValue AndOp = (LHS.getOpcode() == ISD::AND) ? LHS : RHS; - SDValue NewLHS = DAG.getNode(ISD::BITCAST, DL, VT, AndOp.getOperand(0)); - SDValue NewRHS = DAG.getNode(ISD::BITCAST, DL, VT, AndOp.getOperand(1)); - return DAG.getNode(AArch64ISD::NEON_TST, DL, VT, NewLHS, NewRHS); - } - } - - // Attempt to use Vector Integer Compare Mask against Zero instr (Signed). - // Note: Compare against Zero does not support unsigned predicates. - if ((ISD::isBuildVectorAllZeros(RHS.getNode()) || - ISD::isBuildVectorAllZeros(LHS.getNode())) && - !isUnsignedIntSetCC(CC)) { - - // If LHS is the zero value, swap operands and CondCode. - if (ISD::isBuildVectorAllZeros(LHS.getNode())) { - CC = getSetCCSwappedOperands(CC); - Op0 = RHS; - } else - Op0 = LHS; - - // Ensure valid CondCode for Compare Mask against Zero instruction: - // EQ, GE, GT, LE, LT. - if (ISD::SETNE == CC) { - Invert = true; - CC = ISD::SETEQ; - } - - // Using constant type to differentiate integer and FP compares with zero. - Op1 = DAG.getConstant(0, MVT::i32); - Opcode = AArch64ISD::NEON_CMPZ; - - } else { - // Attempt to use Vector Integer Compare Mask instr (Signed/Unsigned). - // Ensure valid CondCode for Compare Mask instr: EQ, GE, GT, UGE, UGT. - bool Swap = false; - switch (CC) { - default: - llvm_unreachable("Illegal integer comparison."); - case ISD::SETEQ: - case ISD::SETGT: - case ISD::SETGE: - case ISD::SETUGT: - case ISD::SETUGE: - break; - case ISD::SETNE: - Invert = true; - CC = ISD::SETEQ; - break; - case ISD::SETULT: - case ISD::SETULE: - case ISD::SETLT: - case ISD::SETLE: - Swap = true; - CC = getSetCCSwappedOperands(CC); - } - - if (Swap) - std::swap(LHS, RHS); - - Opcode = AArch64ISD::NEON_CMP; - Op0 = LHS; - Op1 = RHS; - } - - // Generate Compare Mask instr or Compare Mask against Zero instr. - SDValue NeonCmp = - DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(CC)); - - if (Invert) - NeonCmp = DAG.getNOT(DL, NeonCmp, VT); - - return NeonCmp; - } - - // Now handle Floating Point cases. - // Attempt to use Vector Floating Point Compare Mask against Zero instruction. - if (ISD::isBuildVectorAllZeros(RHS.getNode()) || - ISD::isBuildVectorAllZeros(LHS.getNode())) { - - // If LHS is the zero value, swap operands and CondCode. - if (ISD::isBuildVectorAllZeros(LHS.getNode())) { - CC = getSetCCSwappedOperands(CC); - Op0 = RHS; - } else - Op0 = LHS; - - // Using constant type to differentiate integer and FP compares with zero. - Op1 = DAG.getConstantFP(0, MVT::f32); - Opcode = AArch64ISD::NEON_CMPZ; - } else { - // Attempt to use Vector Floating Point Compare Mask instruction. - Op0 = LHS; - Op1 = RHS; - Opcode = AArch64ISD::NEON_CMP; - } - - SDValue NeonCmpAlt; - // Some register compares have to be implemented with swapped CC and operands, - // e.g.: OLT implemented as OGT with swapped operands. - bool SwapIfRegArgs = false; - - // Ensure valid CondCode for FP Compare Mask against Zero instruction: - // EQ, GE, GT, LE, LT. - // And ensure valid CondCode for FP Compare Mask instruction: EQ, GE, GT. - switch (CC) { - default: - llvm_unreachable("Illegal FP comparison"); - case ISD::SETUNE: - case ISD::SETNE: - Invert = true; // Fallthrough - case ISD::SETOEQ: - case ISD::SETEQ: - CC = ISD::SETEQ; - break; - case ISD::SETOLT: - case ISD::SETLT: - CC = ISD::SETLT; - SwapIfRegArgs = true; - break; - case ISD::SETOGT: - case ISD::SETGT: - CC = ISD::SETGT; - break; - case ISD::SETOLE: - case ISD::SETLE: - CC = ISD::SETLE; - SwapIfRegArgs = true; - break; - case ISD::SETOGE: - case ISD::SETGE: - CC = ISD::SETGE; - break; - case ISD::SETUGE: - Invert = true; - CC = ISD::SETLT; - SwapIfRegArgs = true; - break; - case ISD::SETULE: - Invert = true; - CC = ISD::SETGT; - break; - case ISD::SETUGT: - Invert = true; - CC = ISD::SETLE; - SwapIfRegArgs = true; - break; - case ISD::SETULT: - Invert = true; - CC = ISD::SETGE; - break; - case ISD::SETUEQ: - Invert = true; // Fallthrough - case ISD::SETONE: - // Expand this to (OGT |OLT). - NeonCmpAlt = - DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(ISD::SETGT)); - CC = ISD::SETLT; - SwapIfRegArgs = true; - break; - case ISD::SETUO: - Invert = true; // Fallthrough - case ISD::SETO: - // Expand this to (OGE | OLT). - NeonCmpAlt = - DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(ISD::SETGE)); - CC = ISD::SETLT; - SwapIfRegArgs = true; - break; - } - - if (Opcode == AArch64ISD::NEON_CMP && SwapIfRegArgs) { - CC = getSetCCSwappedOperands(CC); - std::swap(Op0, Op1); - } - - // Generate FP Compare Mask instr or FP Compare Mask against Zero instr - SDValue NeonCmp = DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(CC)); - - if (NeonCmpAlt.getNode()) - NeonCmp = DAG.getNode(ISD::OR, DL, VT, NeonCmp, NeonCmpAlt); - - if (Invert) - NeonCmp = DAG.getNOT(DL, NeonCmp, VT); - - return NeonCmp; -} - -// (SETCC lhs, rhs, condcode) -SDValue -AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { - SDLoc dl(Op); - SDValue LHS = Op.getOperand(0); - SDValue RHS = Op.getOperand(1); - ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); - EVT VT = Op.getValueType(); - - if (VT.isVector()) - return LowerVectorSETCC(Op, DAG); - - if (LHS.getValueType() == MVT::f128) { - // f128 comparisons will be lowered to libcalls giving a valid LHS and RHS - // for the rest of the function (some i32 or i64 values). - softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl); - - // If softenSetCCOperands returned a scalar, use it. - if (!RHS.getNode()) { - assert(LHS.getValueType() == Op.getValueType() && - "Unexpected setcc expansion!"); - return LHS; - } - } - - if (LHS.getValueType().isInteger()) { - SDValue A64cc; - - // Integers are handled in a separate function because the combinations of - // immediates and tests can get hairy and we may want to fiddle things. - SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl); - - return DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, - CmpOp, DAG.getConstant(1, VT), DAG.getConstant(0, VT), - A64cc); - } - - // Note that some LLVM floating-point CondCodes can't be lowered to a single - // conditional branch, hence FPCCToA64CC can set a second test, where either - // passing is sufficient. - A64CC::CondCodes CondCode, Alternative = A64CC::Invalid; - CondCode = FPCCToA64CC(CC, Alternative); - SDValue A64cc = DAG.getConstant(CondCode, MVT::i32); - SDValue CmpOp = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS, - DAG.getCondCode(CC)); - SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, - CmpOp, DAG.getConstant(1, VT), - DAG.getConstant(0, VT), A64cc); - - if (Alternative != A64CC::Invalid) { - A64cc = DAG.getConstant(Alternative, MVT::i32); - A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp, - DAG.getConstant(1, VT), A64SELECT_CC, A64cc); - } - - return A64SELECT_CC; -} - -static SDValue LowerVectorSELECT_CC(SDValue Op, SelectionDAG &DAG) { - SDLoc dl(Op); - SDValue LHS = Op.getOperand(0); - SDValue RHS = Op.getOperand(1); - SDValue IfTrue = Op.getOperand(2); - SDValue IfFalse = Op.getOperand(3); - EVT IfTrueVT = IfTrue.getValueType(); - EVT CondVT = IfTrueVT.changeVectorElementTypeToInteger(); - ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); - - // If LHS & RHS are floating point and IfTrue & IfFalse are vectors, we will - // use NEON compare. - if ((LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64)) { - EVT EltVT = LHS.getValueType(); - unsigned EltNum = 128 / EltVT.getSizeInBits(); - EVT VT = EVT::getVectorVT(*DAG.getContext(), EltVT, EltNum); - unsigned SubConstant = - (LHS.getValueType() == MVT::f32) ? AArch64::sub_32 :AArch64::sub_64; - EVT CEltT = (LHS.getValueType() == MVT::f32) ? MVT::i32 : MVT::i64; - EVT CVT = EVT::getVectorVT(*DAG.getContext(), CEltT, EltNum); - - LHS - = SDValue(DAG.getMachineNode(TargetOpcode::SUBREG_TO_REG, dl, - VT, DAG.getTargetConstant(0, MVT::i32), LHS, - DAG.getTargetConstant(SubConstant, MVT::i32)), 0); - RHS - = SDValue(DAG.getMachineNode(TargetOpcode::SUBREG_TO_REG, dl, - VT, DAG.getTargetConstant(0, MVT::i32), RHS, - DAG.getTargetConstant(SubConstant, MVT::i32)), 0); - - SDValue VSetCC = DAG.getSetCC(dl, CVT, LHS, RHS, CC); - SDValue ResCC = LowerVectorSETCC(VSetCC, DAG); - if (CEltT.getSizeInBits() < IfTrueVT.getSizeInBits()) { - EVT DUPVT = - EVT::getVectorVT(*DAG.getContext(), CEltT, - IfTrueVT.getSizeInBits() / CEltT.getSizeInBits()); - ResCC = DAG.getNode(AArch64ISD::NEON_VDUPLANE, dl, DUPVT, ResCC, - DAG.getConstant(0, MVT::i64, false)); - - ResCC = DAG.getNode(ISD::BITCAST, dl, CondVT, ResCC); - } else { - // FIXME: If IfTrue & IfFalse hold v1i8, v1i16 or v1i32, this function - // can't handle them and will hit this assert. - assert(CEltT.getSizeInBits() == IfTrueVT.getSizeInBits() && - "Vector of IfTrue & IfFalse is too small."); - - unsigned ExEltNum = - EltNum * IfTrueVT.getSizeInBits() / ResCC.getValueSizeInBits(); - EVT ExVT = EVT::getVectorVT(*DAG.getContext(), CEltT, ExEltNum); - ResCC = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ExVT, ResCC, - DAG.getConstant(0, MVT::i64, false)); - ResCC = DAG.getNode(ISD::BITCAST, dl, CondVT, ResCC); - } - SDValue VSelect = DAG.getNode(ISD::VSELECT, dl, IfTrue.getValueType(), - ResCC, IfTrue, IfFalse); - return VSelect; - } - - // Here we handle the case that LHS & RHS are integer and IfTrue & IfFalse are - // vectors. - A64CC::CondCodes CondCode, Alternative = A64CC::Invalid; - CondCode = FPCCToA64CC(CC, Alternative); - SDValue A64cc = DAG.getConstant(CondCode, MVT::i32); - SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS, - DAG.getCondCode(CC)); - EVT SEVT = MVT::i32; - if (IfTrue.getValueType().getVectorElementType().getSizeInBits() > 32) - SEVT = MVT::i64; - SDValue AllOne = DAG.getConstant(-1, SEVT); - SDValue AllZero = DAG.getConstant(0, SEVT); - SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, SEVT, SetCC, - AllOne, AllZero, A64cc); - - if (Alternative != A64CC::Invalid) { - A64cc = DAG.getConstant(Alternative, MVT::i32); - A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(), - SetCC, AllOne, A64SELECT_CC, A64cc); - } - SDValue VDup; - if (IfTrue.getValueType().getVectorNumElements() == 1) - VDup = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, CondVT, A64SELECT_CC); - else - VDup = DAG.getNode(AArch64ISD::NEON_VDUP, dl, CondVT, A64SELECT_CC); - SDValue VSelect = DAG.getNode(ISD::VSELECT, dl, IfTrue.getValueType(), - VDup, IfTrue, IfFalse); - return VSelect; -} - -// (SELECT_CC lhs, rhs, iftrue, iffalse, condcode) -SDValue -AArch64TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { - SDLoc dl(Op); - SDValue LHS = Op.getOperand(0); - SDValue RHS = Op.getOperand(1); - SDValue IfTrue = Op.getOperand(2); - SDValue IfFalse = Op.getOperand(3); - ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); - - if (IfTrue.getValueType().isVector()) - return LowerVectorSELECT_CC(Op, DAG); - - if (LHS.getValueType() == MVT::f128) { - // f128 comparisons are lowered to libcalls, but slot in nicely here - // afterwards. - softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl); - - // If softenSetCCOperands returned a scalar, we need to compare the result - // against zero to select between true and false values. - if (!RHS.getNode()) { - RHS = DAG.getConstant(0, LHS.getValueType()); - CC = ISD::SETNE; - } - } - - if (LHS.getValueType().isInteger()) { - SDValue A64cc; - - // Integers are handled in a separate function because the combinations of - // immediates and tests can get hairy and we may want to fiddle things. - SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl); - - return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(), CmpOp, - IfTrue, IfFalse, A64cc); - } - - // Note that some LLVM floating-point CondCodes can't be lowered to a single - // conditional branch, hence FPCCToA64CC can set a second test, where either - // passing is sufficient. - A64CC::CondCodes CondCode, Alternative = A64CC::Invalid; - CondCode = FPCCToA64CC(CC, Alternative); - SDValue A64cc = DAG.getConstant(CondCode, MVT::i32); - SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS, - DAG.getCondCode(CC)); - SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, - Op.getValueType(), - SetCC, IfTrue, IfFalse, A64cc); - - if (Alternative != A64CC::Invalid) { - A64cc = DAG.getConstant(Alternative, MVT::i32); - A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(), - SetCC, IfTrue, A64SELECT_CC, A64cc); - - } - - return A64SELECT_CC; -} - -SDValue -AArch64TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { - const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); - const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); - - // We have to make sure we copy the entire structure: 8+8+8+4+4 = 32 bytes - // rather than just 8. - return DAG.getMemcpy(Op.getOperand(0), SDLoc(Op), - Op.getOperand(1), Op.getOperand(2), - DAG.getConstant(32, MVT::i32), 8, false, false, - MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV)); -} - -SDValue -AArch64TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { - // The layout of the va_list struct is specified in the AArch64 Procedure Call - // Standard, section B.3. - MachineFunction &MF = DAG.getMachineFunction(); - AArch64MachineFunctionInfo *FuncInfo - = MF.getInfo<AArch64MachineFunctionInfo>(); - SDLoc DL(Op); - - SDValue Chain = Op.getOperand(0); - SDValue VAList = Op.getOperand(1); - const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); - SmallVector<SDValue, 4> MemOps; - - // void *__stack at offset 0 - SDValue Stack = DAG.getFrameIndex(FuncInfo->getVariadicStackIdx(), - getPointerTy()); - MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList, - MachinePointerInfo(SV), false, false, 0)); - - // void *__gr_top at offset 8 - int GPRSize = FuncInfo->getVariadicGPRSize(); - if (GPRSize > 0) { - SDValue GRTop, GRTopAddr; - - GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, - DAG.getConstant(8, getPointerTy())); - - GRTop = DAG.getFrameIndex(FuncInfo->getVariadicGPRIdx(), getPointerTy()); - GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop, - DAG.getConstant(GPRSize, getPointerTy())); - - MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr, - MachinePointerInfo(SV, 8), - false, false, 0)); - } - - // void *__vr_top at offset 16 - int FPRSize = FuncInfo->getVariadicFPRSize(); - if (FPRSize > 0) { - SDValue VRTop, VRTopAddr; - VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, - DAG.getConstant(16, getPointerTy())); - - VRTop = DAG.getFrameIndex(FuncInfo->getVariadicFPRIdx(), getPointerTy()); - VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop, - DAG.getConstant(FPRSize, getPointerTy())); - - MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr, - MachinePointerInfo(SV, 16), - false, false, 0)); - } - - // int __gr_offs at offset 24 - SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, - DAG.getConstant(24, getPointerTy())); - MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32), - GROffsAddr, MachinePointerInfo(SV, 24), - false, false, 0)); - - // int __vr_offs at offset 28 - SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, - DAG.getConstant(28, getPointerTy())); - MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32), - VROffsAddr, MachinePointerInfo(SV, 28), - false, false, 0)); - - return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); -} - -SDValue -AArch64TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { - switch (Op.getOpcode()) { - default: llvm_unreachable("Don't know how to custom lower this!"); - case ISD::FADD: return LowerF128ToCall(Op, DAG, RTLIB::ADD_F128); - case ISD::FSUB: return LowerF128ToCall(Op, DAG, RTLIB::SUB_F128); - case ISD::FMUL: return LowerF128ToCall(Op, DAG, RTLIB::MUL_F128); - case ISD::FDIV: return LowerF128ToCall(Op, DAG, RTLIB::DIV_F128); - case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, true); - case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG, false); - case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG, true); - case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG, false); - case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG); - case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); - case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); - case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); - - case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG); - case ISD::SRL_PARTS: - case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG); - - case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); - case ISD::BRCOND: return LowerBRCOND(Op, DAG); - case ISD::BR_CC: return LowerBR_CC(Op, DAG); - case ISD::GlobalAddress: return LowerGlobalAddressELF(Op, DAG); - case ISD::ConstantPool: return LowerConstantPool(Op, DAG); - case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); - case ISD::JumpTable: return LowerJumpTable(Op, DAG); - case ISD::SELECT: return LowerSELECT(Op, DAG); - case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); - case ISD::SETCC: return LowerSETCC(Op, DAG); - case ISD::VACOPY: return LowerVACOPY(Op, DAG); - case ISD::VASTART: return LowerVASTART(Op, DAG); - case ISD::BUILD_VECTOR: - return LowerBUILD_VECTOR(Op, DAG, getSubtarget()); - case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); - case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); - } - - return SDValue(); -} - -/// Check if the specified splat value corresponds to a valid vector constant -/// for a Neon instruction with a "modified immediate" operand (e.g., MOVI). If -/// so, return the encoded 8-bit immediate and the OpCmode instruction fields -/// values. -static bool isNeonModifiedImm(uint64_t SplatBits, uint64_t SplatUndef, - unsigned SplatBitSize, SelectionDAG &DAG, - bool is128Bits, NeonModImmType type, EVT &VT, - unsigned &Imm, unsigned &OpCmode) { - switch (SplatBitSize) { - default: - llvm_unreachable("unexpected size for isNeonModifiedImm"); - case 8: { - if (type != Neon_Mov_Imm) - return false; - assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big"); - // Neon movi per byte: Op=0, Cmode=1110. - OpCmode = 0xe; - Imm = SplatBits; - VT = is128Bits ? MVT::v16i8 : MVT::v8i8; - break; - } - case 16: { - // Neon move inst per halfword - VT = is128Bits ? MVT::v8i16 : MVT::v4i16; - if ((SplatBits & ~0xff) == 0) { - // Value = 0x00nn is 0x00nn LSL 0 - // movi: Op=0, Cmode=1000; mvni: Op=1, Cmode=1000 - // bic: Op=1, Cmode=1001; orr: Op=0, Cmode=1001 - // Op=x, Cmode=100y - Imm = SplatBits; - OpCmode = 0x8; - break; - } - if ((SplatBits & ~0xff00) == 0) { - // Value = 0xnn00 is 0x00nn LSL 8 - // movi: Op=0, Cmode=1010; mvni: Op=1, Cmode=1010 - // bic: Op=1, Cmode=1011; orr: Op=0, Cmode=1011 - // Op=x, Cmode=101x - Imm = SplatBits >> 8; - OpCmode = 0xa; - break; - } - // can't handle any other - return false; - } - - case 32: { - // First the LSL variants (MSL is unusable by some interested instructions). - - // Neon move instr per word, shift zeros - VT = is128Bits ? MVT::v4i32 : MVT::v2i32; - if ((SplatBits & ~0xff) == 0) { - // Value = 0x000000nn is 0x000000nn LSL 0 - // movi: Op=0, Cmode= 0000; mvni: Op=1, Cmode= 0000 - // bic: Op=1, Cmode= 0001; orr: Op=0, Cmode= 0001 - // Op=x, Cmode=000x - Imm = SplatBits; - OpCmode = 0; - break; - } - if ((SplatBits & ~0xff00) == 0) { - // Value = 0x0000nn00 is 0x000000nn LSL 8 - // movi: Op=0, Cmode= 0010; mvni: Op=1, Cmode= 0010 - // bic: Op=1, Cmode= 0011; orr : Op=0, Cmode= 0011 - // Op=x, Cmode=001x - Imm = SplatBits >> 8; - OpCmode = 0x2; - break; - } - if ((SplatBits & ~0xff0000) == 0) { - // Value = 0x00nn0000 is 0x000000nn LSL 16 - // movi: Op=0, Cmode= 0100; mvni: Op=1, Cmode= 0100 - // bic: Op=1, Cmode= 0101; orr: Op=0, Cmode= 0101 - // Op=x, Cmode=010x - Imm = SplatBits >> 16; - OpCmode = 0x4; - break; - } - if ((SplatBits & ~0xff000000) == 0) { - // Value = 0xnn000000 is 0x000000nn LSL 24 - // movi: Op=0, Cmode= 0110; mvni: Op=1, Cmode= 0110 - // bic: Op=1, Cmode= 0111; orr: Op=0, Cmode= 0111 - // Op=x, Cmode=011x - Imm = SplatBits >> 24; - OpCmode = 0x6; - break; - } - - // Now the MSL immediates. - - // Neon move instr per word, shift ones - if ((SplatBits & ~0xffff) == 0 && - ((SplatBits | SplatUndef) & 0xff) == 0xff) { - // Value = 0x0000nnff is 0x000000nn MSL 8 - // movi: Op=0, Cmode= 1100; mvni: Op=1, Cmode= 1100 - // Op=x, Cmode=1100 - Imm = SplatBits >> 8; - OpCmode = 0xc; - break; - } - if ((SplatBits & ~0xffffff) == 0 && - ((SplatBits | SplatUndef) & 0xffff) == 0xffff) { - // Value = 0x00nnffff is 0x000000nn MSL 16 - // movi: Op=1, Cmode= 1101; mvni: Op=1, Cmode= 1101 - // Op=x, Cmode=1101 - Imm = SplatBits >> 16; - OpCmode = 0xd; - break; - } - // can't handle any other - return false; - } - - case 64: { - if (type != Neon_Mov_Imm) - return false; - // Neon move instr bytemask, where each byte is either 0x00 or 0xff. - // movi Op=1, Cmode=1110. - OpCmode = 0x1e; - uint64_t BitMask = 0xff; - uint64_t Val = 0; - unsigned ImmMask = 1; - Imm = 0; - for (int ByteNum = 0; ByteNum < 8; ++ByteNum) { - if (((SplatBits | SplatUndef) & BitMask) == BitMask) { - Val |= BitMask; - Imm |= ImmMask; - } else if ((SplatBits & BitMask) != 0) { - return false; - } - BitMask <<= 8; - ImmMask <<= 1; - } - SplatBits = Val; - VT = is128Bits ? MVT::v2i64 : MVT::v1i64; - break; - } - } - - return true; -} - -static SDValue PerformANDCombine(SDNode *N, - TargetLowering::DAGCombinerInfo &DCI) { - - SelectionDAG &DAG = DCI.DAG; - SDLoc DL(N); - EVT VT = N->getValueType(0); - - // We're looking for an SRA/SHL pair which form an SBFX. - - if (VT != MVT::i32 && VT != MVT::i64) - return SDValue(); - - if (!isa<ConstantSDNode>(N->getOperand(1))) - return SDValue(); - - uint64_t TruncMask = N->getConstantOperandVal(1); - if (!isMask_64(TruncMask)) - return SDValue(); - - uint64_t Width = CountPopulation_64(TruncMask); - SDValue Shift = N->getOperand(0); - - if (Shift.getOpcode() != ISD::SRL) - return SDValue(); - - if (!isa<ConstantSDNode>(Shift->getOperand(1))) - return SDValue(); - uint64_t LSB = Shift->getConstantOperandVal(1); - - if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits()) - return SDValue(); - - return DAG.getNode(AArch64ISD::UBFX, DL, VT, Shift.getOperand(0), - DAG.getConstant(LSB, MVT::i64), - DAG.getConstant(LSB + Width - 1, MVT::i64)); -} - -/// For a true bitfield insert, the bits getting into that contiguous mask -/// should come from the low part of an existing value: they must be formed from -/// a compatible SHL operation (unless they're already low). This function -/// checks that condition and returns the least-significant bit that's -/// intended. If the operation not a field preparation, -1 is returned. -static int32_t getLSBForBFI(SelectionDAG &DAG, SDLoc DL, EVT VT, - SDValue &MaskedVal, uint64_t Mask) { - if (!isShiftedMask_64(Mask)) - return -1; - - // Now we need to alter MaskedVal so that it is an appropriate input for a BFI - // instruction. BFI will do a left-shift by LSB before applying the mask we've - // spotted, so in general we should pre-emptively "undo" that by making sure - // the incoming bits have had a right-shift applied to them. - // - // This right shift, however, will combine with existing left/right shifts. In - // the simplest case of a completely straight bitfield operation, it will be - // expected to completely cancel out with an existing SHL. More complicated - // cases (e.g. bitfield to bitfield copy) may still need a real shift before - // the BFI. - - uint64_t LSB = countTrailingZeros(Mask); - int64_t ShiftRightRequired = LSB; - if (MaskedVal.getOpcode() == ISD::SHL && - isa<ConstantSDNode>(MaskedVal.getOperand(1))) { - ShiftRightRequired -= MaskedVal.getConstantOperandVal(1); - MaskedVal = MaskedVal.getOperand(0); - } else if (MaskedVal.getOpcode() == ISD::SRL && - isa<ConstantSDNode>(MaskedVal.getOperand(1))) { - ShiftRightRequired += MaskedVal.getConstantOperandVal(1); - MaskedVal = MaskedVal.getOperand(0); - } - - if (ShiftRightRequired > 0) - MaskedVal = DAG.getNode(ISD::SRL, DL, VT, MaskedVal, - DAG.getConstant(ShiftRightRequired, MVT::i64)); - else if (ShiftRightRequired < 0) { - // We could actually end up with a residual left shift, for example with - // "struc.bitfield = val << 1". - MaskedVal = DAG.getNode(ISD::SHL, DL, VT, MaskedVal, - DAG.getConstant(-ShiftRightRequired, MVT::i64)); - } - - return LSB; -} - -/// Searches from N for an existing AArch64ISD::BFI node, possibly surrounded by -/// a mask and an extension. Returns true if a BFI was found and provides -/// information on its surroundings. -static bool findMaskedBFI(SDValue N, SDValue &BFI, uint64_t &Mask, - bool &Extended) { - Extended = false; - if (N.getOpcode() == ISD::ZERO_EXTEND) { - Extended = true; - N = N.getOperand(0); - } - - if (N.getOpcode() == ISD::AND && isa<ConstantSDNode>(N.getOperand(1))) { - Mask = N->getConstantOperandVal(1); - N = N.getOperand(0); - } else { - // Mask is the whole width. - Mask = -1ULL >> (64 - N.getValueType().getSizeInBits()); - } - - if (N.getOpcode() == AArch64ISD::BFI) { - BFI = N; - return true; - } - - return false; -} - -/// Try to combine a subtree (rooted at an OR) into a "masked BFI" node, which -/// is roughly equivalent to (and (BFI ...), mask). This form is used because it -/// can often be further combined with a larger mask. Ultimately, we want mask -/// to be 2^32-1 or 2^64-1 so the AND can be skipped. -static SDValue tryCombineToBFI(SDNode *N, - TargetLowering::DAGCombinerInfo &DCI, - const AArch64Subtarget *Subtarget) { - SelectionDAG &DAG = DCI.DAG; - SDLoc DL(N); - EVT VT = N->getValueType(0); - - assert(N->getOpcode() == ISD::OR && "Unexpected root"); - - // We need the LHS to be (and SOMETHING, MASK). Find out what that mask is or - // abandon the effort. - SDValue LHS = N->getOperand(0); - if (LHS.getOpcode() != ISD::AND) - return SDValue(); - - uint64_t LHSMask; - if (isa<ConstantSDNode>(LHS.getOperand(1))) - LHSMask = LHS->getConstantOperandVal(1); - else - return SDValue(); - - // We also need the RHS to be (and SOMETHING, MASK). Find out what that mask - // is or abandon the effort. - SDValue RHS = N->getOperand(1); - if (RHS.getOpcode() != ISD::AND) - return SDValue(); - - uint64_t RHSMask; - if (isa<ConstantSDNode>(RHS.getOperand(1))) - RHSMask = RHS->getConstantOperandVal(1); - else - return SDValue(); - - // Can't do anything if the masks are incompatible. - if (LHSMask & RHSMask) - return SDValue(); - - // Now we need one of the masks to be a contiguous field. Without loss of - // generality that should be the RHS one. - SDValue Bitfield = LHS.getOperand(0); - if (getLSBForBFI(DAG, DL, VT, Bitfield, LHSMask) != -1) { - // We know that LHS is a candidate new value, and RHS isn't already a better - // one. - std::swap(LHS, RHS); - std::swap(LHSMask, RHSMask); - } - - // We've done our best to put the right operands in the right places, all we - // can do now is check whether a BFI exists. - Bitfield = RHS.getOperand(0); - int32_t LSB = getLSBForBFI(DAG, DL, VT, Bitfield, RHSMask); - if (LSB == -1) - return SDValue(); - - uint32_t Width = CountPopulation_64(RHSMask); - assert(Width && "Expected non-zero bitfield width"); - - SDValue BFI = DAG.getNode(AArch64ISD::BFI, DL, VT, - LHS.getOperand(0), Bitfield, - DAG.getConstant(LSB, MVT::i64), - DAG.getConstant(Width, MVT::i64)); - - // Mask is trivial - if ((LHSMask | RHSMask) == (-1ULL >> (64 - VT.getSizeInBits()))) - return BFI; - - return DAG.getNode(ISD::AND, DL, VT, BFI, - DAG.getConstant(LHSMask | RHSMask, VT)); -} - -/// Search for the bitwise combining (with careful masks) of a MaskedBFI and its -/// original input. This is surprisingly common because SROA splits things up -/// into i8 chunks, so the originally detected MaskedBFI may actually only act -/// on the low (say) byte of a word. This is then orred into the rest of the -/// word afterwards. -/// -/// Basic input: (or (and OLDFIELD, MASK1), (MaskedBFI MASK2, OLDFIELD, ...)). -/// -/// If MASK1 and MASK2 are compatible, we can fold the whole thing into the -/// MaskedBFI. We can also deal with a certain amount of extend/truncate being -/// involved. -static SDValue tryCombineToLargerBFI(SDNode *N, - TargetLowering::DAGCombinerInfo &DCI, - const AArch64Subtarget *Subtarget) { - SelectionDAG &DAG = DCI.DAG; - SDLoc DL(N); - EVT VT = N->getValueType(0); - - // First job is to hunt for a MaskedBFI on either the left or right. Swap - // operands if it's actually on the right. - SDValue BFI; - SDValue PossExtraMask; - uint64_t ExistingMask = 0; - bool Extended = false; - if (findMaskedBFI(N->getOperand(0), BFI, ExistingMask, Extended)) - PossExtraMask = N->getOperand(1); - else if (findMaskedBFI(N->getOperand(1), BFI, ExistingMask, Extended)) - PossExtraMask = N->getOperand(0); - else - return SDValue(); - - // We can only combine a BFI with another compatible mask. - if (PossExtraMask.getOpcode() != ISD::AND || - !isa<ConstantSDNode>(PossExtraMask.getOperand(1))) - return SDValue(); - - uint64_t ExtraMask = PossExtraMask->getConstantOperandVal(1); - - // Masks must be compatible. - if (ExtraMask & ExistingMask) - return SDValue(); - - SDValue OldBFIVal = BFI.getOperand(0); - SDValue NewBFIVal = BFI.getOperand(1); - if (Extended) { - // We skipped a ZERO_EXTEND above, so the input to the MaskedBFIs should be - // 32-bit and we'll be forming a 64-bit MaskedBFI. The MaskedBFI arguments - // need to be made compatible. - assert(VT == MVT::i64 && BFI.getValueType() == MVT::i32 - && "Invalid types for BFI"); - OldBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, OldBFIVal); - NewBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, NewBFIVal); - } - - // We need the MaskedBFI to be combined with a mask of the *same* value. - if (PossExtraMask.getOperand(0) != OldBFIVal) - return SDValue(); - - BFI = DAG.getNode(AArch64ISD::BFI, DL, VT, - OldBFIVal, NewBFIVal, - BFI.getOperand(2), BFI.getOperand(3)); - - // If the masking is trivial, we don't need to create it. - if ((ExtraMask | ExistingMask) == (-1ULL >> (64 - VT.getSizeInBits()))) - return BFI; - - return DAG.getNode(ISD::AND, DL, VT, BFI, - DAG.getConstant(ExtraMask | ExistingMask, VT)); -} - -/// An EXTR instruction is made up of two shifts, ORed together. This helper -/// searches for and classifies those shifts. -static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount, - bool &FromHi) { - if (N.getOpcode() == ISD::SHL) - FromHi = false; - else if (N.getOpcode() == ISD::SRL) - FromHi = true; - else - return false; - - if (!isa<ConstantSDNode>(N.getOperand(1))) - return false; - - ShiftAmount = N->getConstantOperandVal(1); - Src = N->getOperand(0); - return true; -} - -/// EXTR instruction extracts a contiguous chunk of bits from two existing -/// registers viewed as a high/low pair. This function looks for the pattern: -/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an -/// EXTR. Can't quite be done in TableGen because the two immediates aren't -/// independent. -static SDValue tryCombineToEXTR(SDNode *N, - TargetLowering::DAGCombinerInfo &DCI) { - SelectionDAG &DAG = DCI.DAG; - SDLoc DL(N); - EVT VT = N->getValueType(0); - - assert(N->getOpcode() == ISD::OR && "Unexpected root"); - - if (VT != MVT::i32 && VT != MVT::i64) - return SDValue(); - - SDValue LHS; - uint32_t ShiftLHS = 0; - bool LHSFromHi = 0; - if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi)) - return SDValue(); - - SDValue RHS; - uint32_t ShiftRHS = 0; - bool RHSFromHi = 0; - if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi)) - return SDValue(); - - // If they're both trying to come from the high part of the register, they're - // not really an EXTR. - if (LHSFromHi == RHSFromHi) - return SDValue(); - - if (ShiftLHS + ShiftRHS != VT.getSizeInBits()) - return SDValue(); - - if (LHSFromHi) { - std::swap(LHS, RHS); - std::swap(ShiftLHS, ShiftRHS); - } - - return DAG.getNode(AArch64ISD::EXTR, DL, VT, - LHS, RHS, - DAG.getConstant(ShiftRHS, MVT::i64)); -} - -/// Target-specific dag combine xforms for ISD::OR -static SDValue PerformORCombine(SDNode *N, - TargetLowering::DAGCombinerInfo &DCI, - const AArch64Subtarget *Subtarget) { - - SelectionDAG &DAG = DCI.DAG; - SDLoc DL(N); - EVT VT = N->getValueType(0); - - if(!DAG.getTargetLoweringInfo().isTypeLegal(VT)) - return SDValue(); - - // Attempt to recognise bitfield-insert operations. - SDValue Res = tryCombineToBFI(N, DCI, Subtarget); - if (Res.getNode()) - return Res; - - // Attempt to combine an existing MaskedBFI operation into one with a larger - // mask. - Res = tryCombineToLargerBFI(N, DCI, Subtarget); - if (Res.getNode()) - return Res; - - Res = tryCombineToEXTR(N, DCI); - if (Res.getNode()) - return Res; - - if (!Subtarget->hasNEON()) - return SDValue(); - - // Attempt to use vector immediate-form BSL - // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant. - - SDValue N0 = N->getOperand(0); - if (N0.getOpcode() != ISD::AND) - return SDValue(); - - SDValue N1 = N->getOperand(1); - if (N1.getOpcode() != ISD::AND) - return SDValue(); - - if (VT.isVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT)) { - APInt SplatUndef; - unsigned SplatBitSize; - bool HasAnyUndefs; - BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1)); - APInt SplatBits0; - if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize, - HasAnyUndefs) && - !HasAnyUndefs) { - BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1)); - APInt SplatBits1; - if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize, - HasAnyUndefs) && !HasAnyUndefs && - SplatBits0.getBitWidth() == SplatBits1.getBitWidth() && - SplatBits0 == ~SplatBits1) { - - return DAG.getNode(ISD::VSELECT, DL, VT, N0->getOperand(1), - N0->getOperand(0), N1->getOperand(0)); - } - } - } - - return SDValue(); -} - -/// Target-specific dag combine xforms for ISD::SRA -static SDValue PerformSRACombine(SDNode *N, - TargetLowering::DAGCombinerInfo &DCI) { - - SelectionDAG &DAG = DCI.DAG; - SDLoc DL(N); - EVT VT = N->getValueType(0); - - // We're looking for an SRA/SHL pair which form an SBFX. - - if (VT != MVT::i32 && VT != MVT::i64) - return SDValue(); - - if (!isa<ConstantSDNode>(N->getOperand(1))) - return SDValue(); - - uint64_t ExtraSignBits = N->getConstantOperandVal(1); - SDValue Shift = N->getOperand(0); - - if (Shift.getOpcode() != ISD::SHL) - return SDValue(); - - if (!isa<ConstantSDNode>(Shift->getOperand(1))) - return SDValue(); - - uint64_t BitsOnLeft = Shift->getConstantOperandVal(1); - uint64_t Width = VT.getSizeInBits() - ExtraSignBits; - uint64_t LSB = VT.getSizeInBits() - Width - BitsOnLeft; - - if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits()) - return SDValue(); - - return DAG.getNode(AArch64ISD::SBFX, DL, VT, Shift.getOperand(0), - DAG.getConstant(LSB, MVT::i64), - DAG.getConstant(LSB + Width - 1, MVT::i64)); -} - -/// Check if this is a valid build_vector for the immediate operand of -/// a vector shift operation, where all the elements of the build_vector -/// must have the same constant integer value. -static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) { - // Ignore bit_converts. - while (Op.getOpcode() == ISD::BITCAST) - Op = Op.getOperand(0); - BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); - APInt SplatBits, SplatUndef; - unsigned SplatBitSize; - bool HasAnyUndefs; - if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, - HasAnyUndefs, ElementBits) || - SplatBitSize > ElementBits) - return false; - Cnt = SplatBits.getSExtValue(); - return true; -} - -/// Check if this is a valid build_vector for the immediate operand of -/// a vector shift left operation. That value must be in the range: -/// 0 <= Value < ElementBits -static bool isVShiftLImm(SDValue Op, EVT VT, int64_t &Cnt) { - assert(VT.isVector() && "vector shift count is not a vector type"); - unsigned ElementBits = VT.getVectorElementType().getSizeInBits(); - if (!getVShiftImm(Op, ElementBits, Cnt)) - return false; - return (Cnt >= 0 && Cnt < ElementBits); -} - -/// Check if this is a valid build_vector for the immediate operand of a -/// vector shift right operation. The value must be in the range: -/// 1 <= Value <= ElementBits -static bool isVShiftRImm(SDValue Op, EVT VT, int64_t &Cnt) { - assert(VT.isVector() && "vector shift count is not a vector type"); - unsigned ElementBits = VT.getVectorElementType().getSizeInBits(); - if (!getVShiftImm(Op, ElementBits, Cnt)) - return false; - return (Cnt >= 1 && Cnt <= ElementBits); -} - -static SDValue GenForSextInreg(SDNode *N, - TargetLowering::DAGCombinerInfo &DCI, - EVT SrcVT, EVT DestVT, EVT SubRegVT, - const int *Mask, SDValue Src) { - SelectionDAG &DAG = DCI.DAG; - SDValue Bitcast - = DAG.getNode(ISD::BITCAST, SDLoc(N), SrcVT, Src); - SDValue Sext - = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), DestVT, Bitcast); - SDValue ShuffleVec - = DAG.getVectorShuffle(DestVT, SDLoc(N), Sext, DAG.getUNDEF(DestVT), Mask); - SDValue ExtractSubreg - = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, SDLoc(N), - SubRegVT, ShuffleVec, - DAG.getTargetConstant(AArch64::sub_64, MVT::i32)), 0); - return ExtractSubreg; -} - -/// Checks for vector shifts and lowers them. -static SDValue PerformShiftCombine(SDNode *N, - TargetLowering::DAGCombinerInfo &DCI, - const AArch64Subtarget *ST) { - SelectionDAG &DAG = DCI.DAG; - EVT VT = N->getValueType(0); - if (N->getOpcode() == ISD::SRA && (VT == MVT::i32 || VT == MVT::i64)) - return PerformSRACombine(N, DCI); - - // We're looking for an SRA/SHL pair to help generating instruction - // sshll v0.8h, v0.8b, #0 - // The instruction STXL is also the alias of this instruction. - // - // For example, for DAG like below, - // v2i32 = sra (v2i32 (shl v2i32, 16)), 16 - // we can transform it into - // v2i32 = EXTRACT_SUBREG - // (v4i32 (suffle_vector - // (v4i32 (sext (v4i16 (bitcast v2i32))), - // undef, (0, 2, u, u)), - // sub_64 - // - // With this transformation we expect to generate "SSHLL + UZIP1" - // Sometimes UZIP1 can be optimized away by combining with other context. - int64_t ShrCnt, ShlCnt; - if (N->getOpcode() == ISD::SRA - && (VT == MVT::v2i32 || VT == MVT::v4i16) - && isVShiftRImm(N->getOperand(1), VT, ShrCnt) - && N->getOperand(0).getOpcode() == ISD::SHL - && isVShiftRImm(N->getOperand(0).getOperand(1), VT, ShlCnt)) { - SDValue Src = N->getOperand(0).getOperand(0); - if (VT == MVT::v2i32 && ShrCnt == 16 && ShlCnt == 16) { - // sext_inreg(v2i32, v2i16) - // We essentially only care the Mask {0, 2, u, u} - int Mask[4] = {0, 2, 4, 6}; - return GenForSextInreg(N, DCI, MVT::v4i16, MVT::v4i32, MVT::v2i32, - Mask, Src); - } - else if (VT == MVT::v2i32 && ShrCnt == 24 && ShlCnt == 24) { - // sext_inreg(v2i16, v2i8) - // We essentially only care the Mask {0, u, 4, u, u, u, u, u, u, u, u, u} - int Mask[8] = {0, 2, 4, 6, 8, 10, 12, 14}; - return GenForSextInreg(N, DCI, MVT::v8i8, MVT::v8i16, MVT::v2i32, - Mask, Src); - } - else if (VT == MVT::v4i16 && ShrCnt == 8 && ShlCnt == 8) { - // sext_inreg(v4i16, v4i8) - // We essentially only care the Mask {0, 2, 4, 6, u, u, u, u, u, u, u, u} - int Mask[8] = {0, 2, 4, 6, 8, 10, 12, 14}; - return GenForSextInreg(N, DCI, MVT::v8i8, MVT::v8i16, MVT::v4i16, - Mask, Src); - } - } - - // Nothing to be done for scalar shifts. - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - if (!VT.isVector() || !TLI.isTypeLegal(VT)) - return SDValue(); - - assert(ST->hasNEON() && "unexpected vector shift"); - int64_t Cnt; - - switch (N->getOpcode()) { - default: - llvm_unreachable("unexpected shift opcode"); - - case ISD::SHL: - if (isVShiftLImm(N->getOperand(1), VT, Cnt)) { - SDValue RHS = - DAG.getNode(AArch64ISD::NEON_VDUP, SDLoc(N->getOperand(1)), VT, - DAG.getConstant(Cnt, MVT::i32)); - return DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0), RHS); - } - break; - - case ISD::SRA: - case ISD::SRL: - if (isVShiftRImm(N->getOperand(1), VT, Cnt)) { - SDValue RHS = - DAG.getNode(AArch64ISD::NEON_VDUP, SDLoc(N->getOperand(1)), VT, - DAG.getConstant(Cnt, MVT::i32)); - return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N->getOperand(0), RHS); - } - break; - } - - return SDValue(); -} - -/// ARM-specific DAG combining for intrinsics. -static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) { - unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); - - switch (IntNo) { - default: - // Don't do anything for most intrinsics. - break; - - case Intrinsic::arm_neon_vqshifts: - case Intrinsic::arm_neon_vqshiftu: - EVT VT = N->getOperand(1).getValueType(); - int64_t Cnt; - if (!isVShiftLImm(N->getOperand(2), VT, Cnt)) - break; - unsigned VShiftOpc = (IntNo == Intrinsic::arm_neon_vqshifts) - ? AArch64ISD::NEON_QSHLs - : AArch64ISD::NEON_QSHLu; - return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0), - N->getOperand(1), DAG.getConstant(Cnt, MVT::i32)); - } - - return SDValue(); -} - -/// Target-specific DAG combine function for NEON load/store intrinsics -/// to merge base address updates. -static SDValue CombineBaseUpdate(SDNode *N, - TargetLowering::DAGCombinerInfo &DCI) { - if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) - return SDValue(); - - SelectionDAG &DAG = DCI.DAG; - bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID || - N->getOpcode() == ISD::INTRINSIC_W_CHAIN); - unsigned AddrOpIdx = (isIntrinsic ? 2 : 1); - SDValue Addr = N->getOperand(AddrOpIdx); - - // Search for a use of the address operand that is an increment. - for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), - UE = Addr.getNode()->use_end(); UI != UE; ++UI) { - SDNode *User = *UI; - if (User->getOpcode() != ISD::ADD || - UI.getUse().getResNo() != Addr.getResNo()) - continue; - - // Check that the add is independent of the load/store. Otherwise, folding - // it would create a cycle. - if (User->isPredecessorOf(N) || N->isPredecessorOf(User)) - continue; - - // Find the new opcode for the updating load/store. - bool isLoad = true; - bool isLaneOp = false; - unsigned NewOpc = 0; - unsigned NumVecs = 0; - if (isIntrinsic) { - unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); - switch (IntNo) { - default: llvm_unreachable("unexpected intrinsic for Neon base update"); - case Intrinsic::arm_neon_vld1: NewOpc = AArch64ISD::NEON_LD1_UPD; - NumVecs = 1; break; - case Intrinsic::arm_neon_vld2: NewOpc = AArch64ISD::NEON_LD2_UPD; - NumVecs = 2; break; - case Intrinsic::arm_neon_vld3: NewOpc = AArch64ISD::NEON_LD3_UPD; - NumVecs = 3; break; - case Intrinsic::arm_neon_vld4: NewOpc = AArch64ISD::NEON_LD4_UPD; - NumVecs = 4; break; - case Intrinsic::arm_neon_vst1: NewOpc = AArch64ISD::NEON_ST1_UPD; - NumVecs = 1; isLoad = false; break; - case Intrinsic::arm_neon_vst2: NewOpc = AArch64ISD::NEON_ST2_UPD; - NumVecs = 2; isLoad = false; break; - case Intrinsic::arm_neon_vst3: NewOpc = AArch64ISD::NEON_ST3_UPD; - NumVecs = 3; isLoad = false; break; - case Intrinsic::arm_neon_vst4: NewOpc = AArch64ISD::NEON_ST4_UPD; - NumVecs = 4; isLoad = false; break; - case Intrinsic::aarch64_neon_vld1x2: NewOpc = AArch64ISD::NEON_LD1x2_UPD; - NumVecs = 2; break; - case Intrinsic::aarch64_neon_vld1x3: NewOpc = AArch64ISD::NEON_LD1x3_UPD; - NumVecs = 3; break; - case Intrinsic::aarch64_neon_vld1x4: NewOpc = AArch64ISD::NEON_LD1x4_UPD; - NumVecs = 4; break; - case Intrinsic::aarch64_neon_vst1x2: NewOpc = AArch64ISD::NEON_ST1x2_UPD; - NumVecs = 2; isLoad = false; break; - case Intrinsic::aarch64_neon_vst1x3: NewOpc = AArch64ISD::NEON_ST1x3_UPD; - NumVecs = 3; isLoad = false; break; - case Intrinsic::aarch64_neon_vst1x4: NewOpc = AArch64ISD::NEON_ST1x4_UPD; - NumVecs = 4; isLoad = false; break; - case Intrinsic::arm_neon_vld2lane: NewOpc = AArch64ISD::NEON_LD2LN_UPD; - NumVecs = 2; isLaneOp = true; break; - case Intrinsic::arm_neon_vld3lane: NewOpc = AArch64ISD::NEON_LD3LN_UPD; - NumVecs = 3; isLaneOp = true; break; - case Intrinsic::arm_neon_vld4lane: NewOpc = AArch64ISD::NEON_LD4LN_UPD; - NumVecs = 4; isLaneOp = true; break; - case Intrinsic::arm_neon_vst2lane: NewOpc = AArch64ISD::NEON_ST2LN_UPD; - NumVecs = 2; isLoad = false; isLaneOp = true; break; - case Intrinsic::arm_neon_vst3lane: NewOpc = AArch64ISD::NEON_ST3LN_UPD; - NumVecs = 3; isLoad = false; isLaneOp = true; break; - case Intrinsic::arm_neon_vst4lane: NewOpc = AArch64ISD::NEON_ST4LN_UPD; - NumVecs = 4; isLoad = false; isLaneOp = true; break; - } - } else { - isLaneOp = true; - switch (N->getOpcode()) { - default: llvm_unreachable("unexpected opcode for Neon base update"); - case AArch64ISD::NEON_LD2DUP: NewOpc = AArch64ISD::NEON_LD2DUP_UPD; - NumVecs = 2; break; - case AArch64ISD::NEON_LD3DUP: NewOpc = AArch64ISD::NEON_LD3DUP_UPD; - NumVecs = 3; break; - case AArch64ISD::NEON_LD4DUP: NewOpc = AArch64ISD::NEON_LD4DUP_UPD; - NumVecs = 4; break; - } - } - - // Find the size of memory referenced by the load/store. - EVT VecTy; - if (isLoad) - VecTy = N->getValueType(0); - else - VecTy = N->getOperand(AddrOpIdx + 1).getValueType(); - unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8; - if (isLaneOp) - NumBytes /= VecTy.getVectorNumElements(); - - // If the increment is a constant, it must match the memory ref size. - SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); - if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) { - uint32_t IncVal = CInc->getZExtValue(); - if (IncVal != NumBytes) - continue; - Inc = DAG.getTargetConstant(IncVal, MVT::i32); - } - - // Create the new updating load/store node. - EVT Tys[6]; - unsigned NumResultVecs = (isLoad ? NumVecs : 0); - unsigned n; - for (n = 0; n < NumResultVecs; ++n) - Tys[n] = VecTy; - Tys[n++] = MVT::i64; - Tys[n] = MVT::Other; - SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, NumResultVecs + 2)); - SmallVector<SDValue, 8> Ops; - Ops.push_back(N->getOperand(0)); // incoming chain - Ops.push_back(N->getOperand(AddrOpIdx)); - Ops.push_back(Inc); - for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) { - Ops.push_back(N->getOperand(i)); - } - MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N); - SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, - Ops, MemInt->getMemoryVT(), - MemInt->getMemOperand()); - - // Update the uses. - std::vector<SDValue> NewResults; - for (unsigned i = 0; i < NumResultVecs; ++i) { - NewResults.push_back(SDValue(UpdN.getNode(), i)); - } - NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); // chain - DCI.CombineTo(N, NewResults); - DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs)); - - break; - } - return SDValue(); -} - -/// For a VDUPLANE node N, check if its source operand is a vldN-lane (N > 1) -/// intrinsic, and if all the other uses of that intrinsic are also VDUPLANEs. -/// If so, combine them to a vldN-dup operation and return true. -static SDValue CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { - SelectionDAG &DAG = DCI.DAG; - EVT VT = N->getValueType(0); - - // Check if the VDUPLANE operand is a vldN-dup intrinsic. - SDNode *VLD = N->getOperand(0).getNode(); - if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN) - return SDValue(); - unsigned NumVecs = 0; - unsigned NewOpc = 0; - unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue(); - if (IntNo == Intrinsic::arm_neon_vld2lane) { - NumVecs = 2; - NewOpc = AArch64ISD::NEON_LD2DUP; - } else if (IntNo == Intrinsic::arm_neon_vld3lane) { - NumVecs = 3; - NewOpc = AArch64ISD::NEON_LD3DUP; - } else if (IntNo == Intrinsic::arm_neon_vld4lane) { - NumVecs = 4; - NewOpc = AArch64ISD::NEON_LD4DUP; - } else { - return SDValue(); - } - - // First check that all the vldN-lane uses are VDUPLANEs and that the lane - // numbers match the load. - unsigned VLDLaneNo = - cast<ConstantSDNode>(VLD->getOperand(NumVecs + 3))->getZExtValue(); - for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end(); - UI != UE; ++UI) { - // Ignore uses of the chain result. - if (UI.getUse().getResNo() == NumVecs) - continue; - SDNode *User = *UI; - if (User->getOpcode() != AArch64ISD::NEON_VDUPLANE || - VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue()) - return SDValue(); - } - - // Create the vldN-dup node. - EVT Tys[5]; - unsigned n; - for (n = 0; n < NumVecs; ++n) - Tys[n] = VT; - Tys[n] = MVT::Other; - SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, NumVecs + 1)); - SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) }; - MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD); - SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys, Ops, - VLDMemInt->getMemoryVT(), - VLDMemInt->getMemOperand()); - - // Update the uses. - for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end(); - UI != UE; ++UI) { - unsigned ResNo = UI.getUse().getResNo(); - // Ignore uses of the chain result. - if (ResNo == NumVecs) - continue; - SDNode *User = *UI; - DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo)); - } - - // Now the vldN-lane intrinsic is dead except for its chain result. - // Update uses of the chain. - std::vector<SDValue> VLDDupResults; - for (unsigned n = 0; n < NumVecs; ++n) - VLDDupResults.push_back(SDValue(VLDDup.getNode(), n)); - VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs)); - DCI.CombineTo(VLD, VLDDupResults); - - return SDValue(N, 0); -} - -// vselect (v1i1 setcc) -> -// vselect (v1iXX setcc) (XX is the size of the compared operand type) -// FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as -// condition. If it can legalize "VSELECT v1i1" correctly, no need to combine -// such VSELECT. -static SDValue PerformVSelectCombine(SDNode *N, SelectionDAG &DAG) { - SDValue N0 = N->getOperand(0); - EVT CCVT = N0.getValueType(); - - if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 || - CCVT.getVectorElementType() != MVT::i1) - return SDValue(); - - EVT ResVT = N->getValueType(0); - EVT CmpVT = N0.getOperand(0).getValueType(); - // Only combine when the result type is of the same size as the compared - // operands. - if (ResVT.getSizeInBits() != CmpVT.getSizeInBits()) - return SDValue(); - - SDValue IfTrue = N->getOperand(1); - SDValue IfFalse = N->getOperand(2); - SDValue SetCC = - DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(), - N0.getOperand(0), N0.getOperand(1), - cast<CondCodeSDNode>(N0.getOperand(2))->get()); - return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC, - IfTrue, IfFalse); -} - -// sign_extend (extract_vector_elt (v1i1 setcc)) -> -// extract_vector_elt (v1iXX setcc) -// (XX is the size of the compared operand type) -static SDValue PerformSignExtendCombine(SDNode *N, SelectionDAG &DAG) { - SDValue N0 = N->getOperand(0); - SDValue Vec = N0.getOperand(0); - - if (N0.getOpcode() != ISD::EXTRACT_VECTOR_ELT || - Vec.getOpcode() != ISD::SETCC) - return SDValue(); - - EVT ResVT = N->getValueType(0); - EVT CmpVT = Vec.getOperand(0).getValueType(); - // Only optimize when the result type is of the same size as the element - // type of the compared operand. - if (ResVT.getSizeInBits() != CmpVT.getVectorElementType().getSizeInBits()) - return SDValue(); - - SDValue Lane = N0.getOperand(1); - SDValue SetCC = - DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(), - Vec.getOperand(0), Vec.getOperand(1), - cast<CondCodeSDNode>(Vec.getOperand(2))->get()); - return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), ResVT, - SetCC, Lane); -} - -SDValue -AArch64TargetLowering::PerformDAGCombine(SDNode *N, - DAGCombinerInfo &DCI) const { - switch (N->getOpcode()) { - default: break; - case ISD::AND: return PerformANDCombine(N, DCI); - case ISD::OR: return PerformORCombine(N, DCI, getSubtarget()); - case ISD::SHL: - case ISD::SRA: - case ISD::SRL: - return PerformShiftCombine(N, DCI, getSubtarget()); - case ISD::VSELECT: return PerformVSelectCombine(N, DCI.DAG); - case ISD::SIGN_EXTEND: return PerformSignExtendCombine(N, DCI.DAG); - case ISD::INTRINSIC_WO_CHAIN: - return PerformIntrinsicCombine(N, DCI.DAG); - case AArch64ISD::NEON_VDUPLANE: - return CombineVLDDUP(N, DCI); - case AArch64ISD::NEON_LD2DUP: - case AArch64ISD::NEON_LD3DUP: - case AArch64ISD::NEON_LD4DUP: - return CombineBaseUpdate(N, DCI); - case ISD::INTRINSIC_VOID: - case ISD::INTRINSIC_W_CHAIN: - switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { - case Intrinsic::arm_neon_vld1: - case Intrinsic::arm_neon_vld2: - case Intrinsic::arm_neon_vld3: - case Intrinsic::arm_neon_vld4: - case Intrinsic::arm_neon_vst1: - case Intrinsic::arm_neon_vst2: - case Intrinsic::arm_neon_vst3: - case Intrinsic::arm_neon_vst4: - case Intrinsic::arm_neon_vld2lane: - case Intrinsic::arm_neon_vld3lane: - case Intrinsic::arm_neon_vld4lane: - case Intrinsic::aarch64_neon_vld1x2: - case Intrinsic::aarch64_neon_vld1x3: - case Intrinsic::aarch64_neon_vld1x4: - case Intrinsic::aarch64_neon_vst1x2: - case Intrinsic::aarch64_neon_vst1x3: - case Intrinsic::aarch64_neon_vst1x4: - case Intrinsic::arm_neon_vst2lane: - case Intrinsic::arm_neon_vst3lane: - case Intrinsic::arm_neon_vst4lane: - return CombineBaseUpdate(N, DCI); - default: - break; - } - } - return SDValue(); -} - -bool -AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { - VT = VT.getScalarType(); - - if (!VT.isSimple()) - return false; - - switch (VT.getSimpleVT().SimpleTy) { - case MVT::f16: - case MVT::f32: - case MVT::f64: - return true; - case MVT::f128: - return false; - default: - break; - } - - return false; -} - -bool AArch64TargetLowering::allowsUnalignedMemoryAccesses(EVT VT, - unsigned AddrSpace, - bool *Fast) const { - const AArch64Subtarget *Subtarget = getSubtarget(); - // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus - bool AllowsUnaligned = Subtarget->allowsUnalignedMem(); - - switch (VT.getSimpleVT().SimpleTy) { - default: - return false; - // Scalar types - case MVT::i8: case MVT::i16: - case MVT::i32: case MVT::i64: - case MVT::f32: case MVT::f64: { - // Unaligned access can use (for example) LRDB, LRDH, LDRW - if (AllowsUnaligned) { - if (Fast) - *Fast = true; - return true; - } - return false; - } - // 64-bit vector types - case MVT::v8i8: case MVT::v4i16: - case MVT::v2i32: case MVT::v1i64: - case MVT::v2f32: case MVT::v1f64: - // 128-bit vector types - case MVT::v16i8: case MVT::v8i16: - case MVT::v4i32: case MVT::v2i64: - case MVT::v4f32: case MVT::v2f64: { - // For any little-endian targets with neon, we can support unaligned - // load/store of V registers using ld1/st1. - // A big-endian target may also explicitly support unaligned accesses - if (Subtarget->hasNEON() && (AllowsUnaligned || isLittleEndian())) { - if (Fast) - *Fast = true; - return true; - } - return false; - } - } -} - -// Check whether a shuffle_vector could be presented as concat_vector. -bool AArch64TargetLowering::isConcatVector(SDValue Op, SelectionDAG &DAG, - SDValue V0, SDValue V1, - const int *Mask, - SDValue &Res) const { - SDLoc DL(Op); - EVT VT = Op.getValueType(); - if (VT.getSizeInBits() != 128) - return false; - if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() || - VT.getVectorElementType() != V1.getValueType().getVectorElementType()) - return false; - - unsigned NumElts = VT.getVectorNumElements(); - bool isContactVector = true; - bool splitV0 = false; - if (V0.getValueType().getSizeInBits() == 128) - splitV0 = true; - - for (int I = 0, E = NumElts / 2; I != E; I++) { - if (Mask[I] != I) { - isContactVector = false; - break; - } - } - - if (isContactVector) { - int offset = NumElts / 2; - for (int I = NumElts / 2, E = NumElts; I != E; I++) { - if (Mask[I] != I + splitV0 * offset) { - isContactVector = false; - break; - } - } - } - - if (isContactVector) { - EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), - NumElts / 2); - if (splitV0) { - V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0, - DAG.getConstant(0, MVT::i64)); - } - if (V1.getValueType().getSizeInBits() == 128) { - V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1, - DAG.getConstant(0, MVT::i64)); - } - Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1); - return true; - } - return false; -} - -// Check whether a Build Vector could be presented as Shuffle Vector. -// This Shuffle Vector maybe not legalized, so the length of its operand and -// the length of result may not equal. -bool AArch64TargetLowering::isKnownShuffleVector(SDValue Op, SelectionDAG &DAG, - SDValue &V0, SDValue &V1, - int *Mask) const { - SDLoc DL(Op); - EVT VT = Op.getValueType(); - unsigned NumElts = VT.getVectorNumElements(); - unsigned V0NumElts = 0; - - // Check if all elements are extracted from less than 3 vectors. - for (unsigned i = 0; i < NumElts; ++i) { - SDValue Elt = Op.getOperand(i); - if (Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT || - Elt.getOperand(0).getValueType().getVectorElementType() != - VT.getVectorElementType()) - return false; - - if (!V0.getNode()) { - V0 = Elt.getOperand(0); - V0NumElts = V0.getValueType().getVectorNumElements(); - } - if (Elt.getOperand(0) == V0) { - Mask[i] = (cast<ConstantSDNode>(Elt->getOperand(1))->getZExtValue()); - continue; - } else if (!V1.getNode()) { - V1 = Elt.getOperand(0); - } - if (Elt.getOperand(0) == V1) { - unsigned Lane = cast<ConstantSDNode>(Elt->getOperand(1))->getZExtValue(); - Mask[i] = (Lane + V0NumElts); - continue; - } else { - return false; - } - } - return true; -} - -// LowerShiftRightParts - Lower SRL_PARTS and SRA_PARTS, which returns two -/// i64 values and take a 2 x i64 value to shift plus a shift amount. -SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op, - SelectionDAG &DAG) const { - assert(Op.getNumOperands() == 3 && "Not a quad-shift!"); - EVT VT = Op.getValueType(); - unsigned VTBits = VT.getSizeInBits(); - SDLoc dl(Op); - SDValue ShOpLo = Op.getOperand(0); - SDValue ShOpHi = Op.getOperand(1); - SDValue ShAmt = Op.getOperand(2); - unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL; - - assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS); - SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, - DAG.getConstant(VTBits, MVT::i64), ShAmt); - SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt); - SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt, - DAG.getConstant(VTBits, MVT::i64)); - SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt); - SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); - SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt); - SDValue Tmp3 = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt); - - SDValue A64cc; - SDValue CmpOp = getSelectableIntSetCC(ExtraShAmt, - DAG.getConstant(0, MVT::i64), - ISD::SETGE, A64cc, - DAG, dl); - - SDValue Hi = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp, - DAG.getConstant(0, Tmp3.getValueType()), Tmp3, - A64cc); - SDValue Lo = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp, - TrueVal, FalseVal, A64cc); - - SDValue Ops[2] = { Lo, Hi }; - return DAG.getMergeValues(Ops, dl); -} - -/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two -/// i64 values and take a 2 x i64 value to shift plus a shift amount. -SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op, - SelectionDAG &DAG) const { - assert(Op.getNumOperands() == 3 && "Not a quad-shift!"); - EVT VT = Op.getValueType(); - unsigned VTBits = VT.getSizeInBits(); - SDLoc dl(Op); - SDValue ShOpLo = Op.getOperand(0); - SDValue ShOpHi = Op.getOperand(1); - SDValue ShAmt = Op.getOperand(2); - - assert(Op.getOpcode() == ISD::SHL_PARTS); - SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, - DAG.getConstant(VTBits, MVT::i64), ShAmt); - SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); - SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt, - DAG.getConstant(VTBits, MVT::i64)); - SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); - SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); - SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); - SDValue Tmp4 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); - - SDValue A64cc; - SDValue CmpOp = getSelectableIntSetCC(ExtraShAmt, - DAG.getConstant(0, MVT::i64), - ISD::SETGE, A64cc, - DAG, dl); - - SDValue Lo = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp, - DAG.getConstant(0, Tmp4.getValueType()), Tmp4, - A64cc); - SDValue Hi = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp, - Tmp3, FalseVal, A64cc); - - SDValue Ops[2] = { Lo, Hi }; - return DAG.getMergeValues(Ops, dl); -} - -// If this is a case we can't handle, return null and let the default -// expansion code take care of it. -SDValue -AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, - const AArch64Subtarget *ST) const { - - BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode()); - SDLoc DL(Op); - EVT VT = Op.getValueType(); - - APInt SplatBits, SplatUndef; - unsigned SplatBitSize; - bool HasAnyUndefs; - - unsigned UseNeonMov = VT.getSizeInBits() >= 64; - - // Note we favor lowering MOVI over MVNI. - // This has implications on the definition of patterns in TableGen to select - // BIC immediate instructions but not ORR immediate instructions. - // If this lowering order is changed, TableGen patterns for BIC immediate and - // ORR immediate instructions have to be updated. - if (UseNeonMov && - BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { - if (SplatBitSize <= 64) { - // First attempt to use vector immediate-form MOVI - EVT NeonMovVT; - unsigned Imm = 0; - unsigned OpCmode = 0; - - if (isNeonModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(), - SplatBitSize, DAG, VT.is128BitVector(), - Neon_Mov_Imm, NeonMovVT, Imm, OpCmode)) { - SDValue ImmVal = DAG.getTargetConstant(Imm, MVT::i32); - SDValue OpCmodeVal = DAG.getConstant(OpCmode, MVT::i32); - - if (ImmVal.getNode() && OpCmodeVal.getNode()) { - SDValue NeonMov = DAG.getNode(AArch64ISD::NEON_MOVIMM, DL, NeonMovVT, - ImmVal, OpCmodeVal); - return DAG.getNode(ISD::BITCAST, DL, VT, NeonMov); - } - } - - // Then attempt to use vector immediate-form MVNI - uint64_t NegatedImm = (~SplatBits).getZExtValue(); - if (isNeonModifiedImm(NegatedImm, SplatUndef.getZExtValue(), SplatBitSize, - DAG, VT.is128BitVector(), Neon_Mvn_Imm, NeonMovVT, - Imm, OpCmode)) { - SDValue ImmVal = DAG.getTargetConstant(Imm, MVT::i32); - SDValue OpCmodeVal = DAG.getConstant(OpCmode, MVT::i32); - if (ImmVal.getNode() && OpCmodeVal.getNode()) { - SDValue NeonMov = DAG.getNode(AArch64ISD::NEON_MVNIMM, DL, NeonMovVT, - ImmVal, OpCmodeVal); - return DAG.getNode(ISD::BITCAST, DL, VT, NeonMov); - } - } - - // Attempt to use vector immediate-form FMOV - if (((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) || - (VT == MVT::v2f64 && SplatBitSize == 64)) { - APFloat RealVal( - SplatBitSize == 32 ? APFloat::IEEEsingle : APFloat::IEEEdouble, - SplatBits); - uint32_t ImmVal; - if (A64Imms::isFPImm(RealVal, ImmVal)) { - SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32); - return DAG.getNode(AArch64ISD::NEON_FMOVIMM, DL, VT, Val); - } - } - } - } - - unsigned NumElts = VT.getVectorNumElements(); - bool isOnlyLowElement = true; - bool usesOnlyOneValue = true; - bool hasDominantValue = false; - bool isConstant = true; - - // Map of the number of times a particular SDValue appears in the - // element list. - DenseMap<SDValue, unsigned> ValueCounts; - SDValue Value; - for (unsigned i = 0; i < NumElts; ++i) { - SDValue V = Op.getOperand(i); - if (V.getOpcode() == ISD::UNDEF) - continue; - if (i > 0) - isOnlyLowElement = false; - if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) - isConstant = false; - - ValueCounts.insert(std::make_pair(V, 0)); - unsigned &Count = ValueCounts[V]; - - // Is this value dominant? (takes up more than half of the lanes) - if (++Count > (NumElts / 2)) { - hasDominantValue = true; - Value = V; - } - } - if (ValueCounts.size() != 1) - usesOnlyOneValue = false; - if (!Value.getNode() && ValueCounts.size() > 0) - Value = ValueCounts.begin()->first; - - if (ValueCounts.size() == 0) - return DAG.getUNDEF(VT); - - if (isOnlyLowElement) - return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); - - unsigned EltSize = VT.getVectorElementType().getSizeInBits(); - if (hasDominantValue && EltSize <= 64) { - // Use VDUP for non-constant splats. - if (!isConstant) { - SDValue N; - - // If we are DUPing a value that comes directly from a vector, we could - // just use DUPLANE. We can only do this if the lane being extracted - // is at a constant index, as the DUP from lane instructions only have - // constant-index forms. - // - // If there is a TRUNCATE between EXTRACT_VECTOR_ELT and DUP, we can - // remove TRUNCATE for DUPLANE by apdating the source vector to - // appropriate vector type and lane index. - // - // FIXME: for now we have v1i8, v1i16, v1i32 legal vector types, if they - // are not legal any more, no need to check the type size in bits should - // be large than 64. - SDValue V = Value; - if (Value->getOpcode() == ISD::TRUNCATE) - V = Value->getOperand(0); - if (V->getOpcode() == ISD::EXTRACT_VECTOR_ELT && - isa<ConstantSDNode>(V->getOperand(1)) && - V->getOperand(0).getValueType().getSizeInBits() >= 64) { - - // If the element size of source vector is larger than DUPLANE - // element size, we can do transformation by, - // 1) bitcasting source register to smaller element vector - // 2) mutiplying the lane index by SrcEltSize/ResEltSize - // For example, we can lower - // "v8i16 vdup_lane(v4i32, 1)" - // to be - // "v8i16 vdup_lane(v8i16 bitcast(v4i32), 2)". - SDValue SrcVec = V->getOperand(0); - unsigned SrcEltSize = - SrcVec.getValueType().getVectorElementType().getSizeInBits(); - unsigned ResEltSize = VT.getVectorElementType().getSizeInBits(); - if (SrcEltSize > ResEltSize) { - assert((SrcEltSize % ResEltSize == 0) && "Invalid element size"); - SDValue BitCast; - unsigned SrcSize = SrcVec.getValueType().getSizeInBits(); - unsigned ResSize = VT.getSizeInBits(); - - if (SrcSize > ResSize) { - assert((SrcSize % ResSize == 0) && "Invalid vector size"); - EVT CastVT = - EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), - SrcSize / ResEltSize); - BitCast = DAG.getNode(ISD::BITCAST, DL, CastVT, SrcVec); - } else { - assert((SrcSize == ResSize) && "Invalid vector size of source vec"); - BitCast = DAG.getNode(ISD::BITCAST, DL, VT, SrcVec); - } - - unsigned LaneIdx = V->getConstantOperandVal(1); - SDValue Lane = - DAG.getConstant((SrcEltSize / ResEltSize) * LaneIdx, MVT::i64); - N = DAG.getNode(AArch64ISD::NEON_VDUPLANE, DL, VT, BitCast, Lane); - } else { - assert((SrcEltSize == ResEltSize) && - "Invalid element size of source vec"); - N = DAG.getNode(AArch64ISD::NEON_VDUPLANE, DL, VT, V->getOperand(0), - V->getOperand(1)); - } - } else - N = DAG.getNode(AArch64ISD::NEON_VDUP, DL, VT, Value); - - if (!usesOnlyOneValue) { - // The dominant value was splatted as 'N', but we now have to insert - // all differing elements. - for (unsigned I = 0; I < NumElts; ++I) { - if (Op.getOperand(I) == Value) - continue; - SmallVector<SDValue, 3> Ops; - Ops.push_back(N); - Ops.push_back(Op.getOperand(I)); - Ops.push_back(DAG.getConstant(I, MVT::i64)); - N = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Ops); - } - } - return N; - } - if (usesOnlyOneValue && isConstant) { - return DAG.getNode(AArch64ISD::NEON_VDUP, DL, VT, Value); - } - } - // If all elements are constants and the case above didn't get hit, fall back - // to the default expansion, which will generate a load from the constant - // pool. - if (isConstant) - return SDValue(); - - // Try to lower this in lowering ShuffleVector way. - SDValue V0, V1; - int Mask[16]; - if (isKnownShuffleVector(Op, DAG, V0, V1, Mask)) { - unsigned V0NumElts = V0.getValueType().getVectorNumElements(); - if (!V1.getNode() && V0NumElts == NumElts * 2) { - V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V0, - DAG.getConstant(NumElts, MVT::i64)); - V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V0, - DAG.getConstant(0, MVT::i64)); - V0NumElts = V0.getValueType().getVectorNumElements(); - } - - if (V1.getNode() && NumElts == V0NumElts && - V0NumElts == V1.getValueType().getVectorNumElements()) { - SDValue Shuffle = DAG.getVectorShuffle(VT, DL, V0, V1, Mask); - if (Shuffle.getOpcode() != ISD::VECTOR_SHUFFLE) - return Shuffle; - else - return LowerVECTOR_SHUFFLE(Shuffle, DAG); - } else { - SDValue Res; - if (isConcatVector(Op, DAG, V0, V1, Mask, Res)) - return Res; - } - } - - // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we - // know the default expansion would otherwise fall back on something even - // worse. For a vector with one or two non-undef values, that's - // scalar_to_vector for the elements followed by a shuffle (provided the - // shuffle is valid for the target) and materialization element by element - // on the stack followed by a load for everything else. - if (!isConstant && !usesOnlyOneValue) { - SDValue Vec = DAG.getUNDEF(VT); - for (unsigned i = 0 ; i < NumElts; ++i) { - SDValue V = Op.getOperand(i); - if (V.getOpcode() == ISD::UNDEF) - continue; - SDValue LaneIdx = DAG.getConstant(i, MVT::i64); - Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, LaneIdx); - } - return Vec; - } - return SDValue(); -} - -/// isREVMask - Check if a vector shuffle corresponds to a REV -/// instruction with the specified blocksize. (The order of the elements -/// within each block of the vector is reversed.) -static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) { - assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) && - "Only possible block sizes for REV are: 16, 32, 64"); - - unsigned EltSz = VT.getVectorElementType().getSizeInBits(); - if (EltSz == 64) - return false; - - unsigned NumElts = VT.getVectorNumElements(); - unsigned BlockElts = M[0] + 1; - // If the first shuffle index is UNDEF, be optimistic. - if (M[0] < 0) - BlockElts = BlockSize / EltSz; - - if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz) - return false; - - for (unsigned i = 0; i < NumElts; ++i) { - if (M[i] < 0) - continue; // ignore UNDEF indices - if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts)) - return false; - } - - return true; -} - -// isPermuteMask - Check whether the vector shuffle matches to UZP, ZIP and -// TRN instruction. -static unsigned isPermuteMask(ArrayRef<int> M, EVT VT, bool isV2undef) { - unsigned NumElts = VT.getVectorNumElements(); - if (NumElts < 4) - return 0; - - bool ismatch = true; - - // Check UZP1 - for (unsigned i = 0; i < NumElts; ++i) { - unsigned answer = i * 2; - if (isV2undef && answer >= NumElts) - answer -= NumElts; - if (M[i] != -1 && (unsigned)M[i] != answer) { - ismatch = false; - break; - } - } - if (ismatch) - return AArch64ISD::NEON_UZP1; - - // Check UZP2 - ismatch = true; - for (unsigned i = 0; i < NumElts; ++i) { - unsigned answer = i * 2 + 1; - if (isV2undef && answer >= NumElts) - answer -= NumElts; - if (M[i] != -1 && (unsigned)M[i] != answer) { - ismatch = false; - break; - } - } - if (ismatch) - return AArch64ISD::NEON_UZP2; - - // Check ZIP1 - ismatch = true; - for (unsigned i = 0; i < NumElts; ++i) { - unsigned answer = i / 2 + NumElts * (i % 2); - if (isV2undef && answer >= NumElts) - answer -= NumElts; - if (M[i] != -1 && (unsigned)M[i] != answer) { - ismatch = false; - break; - } - } - if (ismatch) - return AArch64ISD::NEON_ZIP1; - - // Check ZIP2 - ismatch = true; - for (unsigned i = 0; i < NumElts; ++i) { - unsigned answer = (NumElts + i) / 2 + NumElts * (i % 2); - if (isV2undef && answer >= NumElts) - answer -= NumElts; - if (M[i] != -1 && (unsigned)M[i] != answer) { - ismatch = false; - break; - } - } - if (ismatch) - return AArch64ISD::NEON_ZIP2; - - // Check TRN1 - ismatch = true; - for (unsigned i = 0; i < NumElts; ++i) { - unsigned answer = i + (NumElts - 1) * (i % 2); - if (isV2undef && answer >= NumElts) - answer -= NumElts; - if (M[i] != -1 && (unsigned)M[i] != answer) { - ismatch = false; - break; - } - } - if (ismatch) - return AArch64ISD::NEON_TRN1; - - // Check TRN2 - ismatch = true; - for (unsigned i = 0; i < NumElts; ++i) { - unsigned answer = 1 + i + (NumElts - 1) * (i % 2); - if (isV2undef && answer >= NumElts) - answer -= NumElts; - if (M[i] != -1 && (unsigned)M[i] != answer) { - ismatch = false; - break; - } - } - if (ismatch) - return AArch64ISD::NEON_TRN2; - - return 0; -} - -SDValue -AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, - SelectionDAG &DAG) const { - SDValue V1 = Op.getOperand(0); - SDValue V2 = Op.getOperand(1); - SDLoc dl(Op); - EVT VT = Op.getValueType(); - ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); - - // Convert shuffles that are directly supported on NEON to target-specific - // DAG nodes, instead of keeping them as shuffles and matching them again - // during code selection. This is more efficient and avoids the possibility - // of inconsistencies between legalization and selection. - ArrayRef<int> ShuffleMask = SVN->getMask(); - - unsigned EltSize = VT.getVectorElementType().getSizeInBits(); - if (EltSize > 64) - return SDValue(); - - if (isREVMask(ShuffleMask, VT, 64)) - return DAG.getNode(AArch64ISD::NEON_REV64, dl, VT, V1); - if (isREVMask(ShuffleMask, VT, 32)) - return DAG.getNode(AArch64ISD::NEON_REV32, dl, VT, V1); - if (isREVMask(ShuffleMask, VT, 16)) - return DAG.getNode(AArch64ISD::NEON_REV16, dl, VT, V1); - - unsigned ISDNo; - if (V2.getOpcode() == ISD::UNDEF) - ISDNo = isPermuteMask(ShuffleMask, VT, true); - else - ISDNo = isPermuteMask(ShuffleMask, VT, false); - - if (ISDNo) { - if (V2.getOpcode() == ISD::UNDEF) - return DAG.getNode(ISDNo, dl, VT, V1, V1); - else - return DAG.getNode(ISDNo, dl, VT, V1, V2); - } - - SDValue Res; - if (isConcatVector(Op, DAG, V1, V2, &ShuffleMask[0], Res)) - return Res; - - // If the element of shuffle mask are all the same constant, we can - // transform it into either NEON_VDUP or NEON_VDUPLANE - if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) { - int Lane = SVN->getSplatIndex(); - // If this is undef splat, generate it via "just" vdup, if possible. - if (Lane == -1) Lane = 0; - - // Test if V1 is a SCALAR_TO_VECTOR. - if (V1.getOpcode() == ISD::SCALAR_TO_VECTOR) { - return DAG.getNode(AArch64ISD::NEON_VDUP, dl, VT, V1.getOperand(0)); - } - // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR. - if (V1.getOpcode() == ISD::BUILD_VECTOR) { - bool IsScalarToVector = true; - for (unsigned i = 0, e = V1.getNumOperands(); i != e; ++i) - if (V1.getOperand(i).getOpcode() != ISD::UNDEF && - i != (unsigned)Lane) { - IsScalarToVector = false; - break; - } - if (IsScalarToVector) - return DAG.getNode(AArch64ISD::NEON_VDUP, dl, VT, - V1.getOperand(Lane)); - } - - // Test if V1 is a EXTRACT_SUBVECTOR. - if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) { - int ExtLane = cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue(); - return DAG.getNode(AArch64ISD::NEON_VDUPLANE, dl, VT, V1.getOperand(0), - DAG.getConstant(Lane + ExtLane, MVT::i64)); - } - // Test if V1 is a CONCAT_VECTORS. - if (V1.getOpcode() == ISD::CONCAT_VECTORS && - V1.getOperand(1).getOpcode() == ISD::UNDEF) { - SDValue Op0 = V1.getOperand(0); - assert((unsigned)Lane < Op0.getValueType().getVectorNumElements() && - "Invalid vector lane access"); - return DAG.getNode(AArch64ISD::NEON_VDUPLANE, dl, VT, Op0, - DAG.getConstant(Lane, MVT::i64)); - } - - return DAG.getNode(AArch64ISD::NEON_VDUPLANE, dl, VT, V1, - DAG.getConstant(Lane, MVT::i64)); - } - - int Length = ShuffleMask.size(); - int V1EltNum = V1.getValueType().getVectorNumElements(); - - // If the number of v1 elements is the same as the number of shuffle mask - // element and the shuffle masks are sequential values, we can transform - // it into NEON_VEXTRACT. - if (V1EltNum == Length) { - // Check if the shuffle mask is sequential. - int SkipUndef = 0; - while (ShuffleMask[SkipUndef] == -1) { - SkipUndef++; - } - int CurMask = ShuffleMask[SkipUndef]; - if (CurMask >= SkipUndef) { - bool IsSequential = true; - for (int I = SkipUndef; I < Length; ++I) { - if (ShuffleMask[I] != -1 && ShuffleMask[I] != CurMask) { - IsSequential = false; - break; - } - CurMask++; - } - if (IsSequential) { - assert((EltSize % 8 == 0) && "Bitsize of vector element is incorrect"); - unsigned VecSize = EltSize * V1EltNum; - unsigned Index = (EltSize / 8) * (ShuffleMask[SkipUndef] - SkipUndef); - if (VecSize == 64 || VecSize == 128) - return DAG.getNode(AArch64ISD::NEON_VEXTRACT, dl, VT, V1, V2, - DAG.getConstant(Index, MVT::i64)); - } - } - } - - // For shuffle mask like "0, 1, 2, 3, 4, 5, 13, 7", try to generate insert - // by element from V2 to V1 . - // If shuffle mask is like "0, 1, 10, 11, 12, 13, 14, 15", V2 would be a - // better choice to be inserted than V1 as less insert needed, so we count - // element to be inserted for both V1 and V2, and select less one as insert - // target. - - // Collect elements need to be inserted and their index. - SmallVector<int, 8> NV1Elt; - SmallVector<int, 8> N1Index; - SmallVector<int, 8> NV2Elt; - SmallVector<int, 8> N2Index; - for (int I = 0; I != Length; ++I) { - if (ShuffleMask[I] != I) { - NV1Elt.push_back(ShuffleMask[I]); - N1Index.push_back(I); - } - } - for (int I = 0; I != Length; ++I) { - if (ShuffleMask[I] != (I + V1EltNum)) { - NV2Elt.push_back(ShuffleMask[I]); - N2Index.push_back(I); - } - } - - // Decide which to be inserted. If all lanes mismatch, neither V1 nor V2 - // will be inserted. - SDValue InsV = V1; - SmallVector<int, 8> InsMasks = NV1Elt; - SmallVector<int, 8> InsIndex = N1Index; - if ((int)NV1Elt.size() != Length || (int)NV2Elt.size() != Length) { - if (NV1Elt.size() > NV2Elt.size()) { - InsV = V2; - InsMasks = NV2Elt; - InsIndex = N2Index; - } - } else { - InsV = DAG.getNode(ISD::UNDEF, dl, VT); - } - - for (int I = 0, E = InsMasks.size(); I != E; ++I) { - SDValue ExtV = V1; - int Mask = InsMasks[I]; - if (Mask >= V1EltNum) { - ExtV = V2; - Mask -= V1EltNum; - } - // Any value type smaller than i32 is illegal in AArch64, and this lower - // function is called after legalize pass, so we need to legalize - // the result here. - EVT EltVT; - if (VT.getVectorElementType().isFloatingPoint()) - EltVT = (EltSize == 64) ? MVT::f64 : MVT::f32; - else - EltVT = (EltSize == 64) ? MVT::i64 : MVT::i32; - - if (Mask >= 0) { - ExtV = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, ExtV, - DAG.getConstant(Mask, MVT::i64)); - InsV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, InsV, ExtV, - DAG.getConstant(InsIndex[I], MVT::i64)); - } - } - return InsV; -} - -AArch64TargetLowering::ConstraintType -AArch64TargetLowering::getConstraintType(const std::string &Constraint) const { - if (Constraint.size() == 1) { - switch (Constraint[0]) { - default: break; - case 'w': // An FP/SIMD vector register - return C_RegisterClass; - case 'I': // Constant that can be used with an ADD instruction - case 'J': // Constant that can be used with a SUB instruction - case 'K': // Constant that can be used with a 32-bit logical instruction - case 'L': // Constant that can be used with a 64-bit logical instruction - case 'M': // Constant that can be used as a 32-bit MOV immediate - case 'N': // Constant that can be used as a 64-bit MOV immediate - case 'Y': // Floating point constant zero - case 'Z': // Integer constant zero - return C_Other; - case 'Q': // A memory reference with base register and no offset - return C_Memory; - case 'S': // A symbolic address - return C_Other; - } - } - - // FIXME: Ump, Utf, Usa, Ush - // Ump: A memory address suitable for ldp/stp in SI, DI, SF and DF modes, - // whatever they may be - // Utf: A memory address suitable for ldp/stp in TF mode, whatever it may be - // Usa: An absolute symbolic address - // Ush: The high part (bits 32:12) of a pc-relative symbolic address - assert(Constraint != "Ump" && Constraint != "Utf" && Constraint != "Usa" - && Constraint != "Ush" && "Unimplemented constraints"); - - return TargetLowering::getConstraintType(Constraint); -} - -TargetLowering::ConstraintWeight -AArch64TargetLowering::getSingleConstraintMatchWeight(AsmOperandInfo &Info, - const char *Constraint) const { - - llvm_unreachable("Constraint weight unimplemented"); -} - -void -AArch64TargetLowering::LowerAsmOperandForConstraint(SDValue Op, - std::string &Constraint, - std::vector<SDValue> &Ops, - SelectionDAG &DAG) const { - SDValue Result; - - // Only length 1 constraints are C_Other. - if (Constraint.size() != 1) return; - - // Only C_Other constraints get lowered like this. That means constants for us - // so return early if there's no hope the constraint can be lowered. - - switch(Constraint[0]) { - default: break; - case 'I': case 'J': case 'K': case 'L': - case 'M': case 'N': case 'Z': { - ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); - if (!C) - return; - - uint64_t CVal = C->getZExtValue(); - uint32_t Bits; - - switch (Constraint[0]) { - default: - // FIXME: 'M' and 'N' are MOV pseudo-insts -- unsupported in assembly. 'J' - // is a peculiarly useless SUB constraint. - llvm_unreachable("Unimplemented C_Other constraint"); - case 'I': - if (CVal <= 0xfff) - break; - return; - case 'K': - if (A64Imms::isLogicalImm(32, CVal, Bits)) - break; - return; - case 'L': - if (A64Imms::isLogicalImm(64, CVal, Bits)) - break; - return; - case 'Z': - if (CVal == 0) - break; - return; - } - - Result = DAG.getTargetConstant(CVal, Op.getValueType()); - break; - } - case 'S': { - // An absolute symbolic address or label reference. - if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) { - Result = DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), - GA->getValueType(0)); - } else if (const BlockAddressSDNode *BA - = dyn_cast<BlockAddressSDNode>(Op)) { - Result = DAG.getTargetBlockAddress(BA->getBlockAddress(), - BA->getValueType(0)); - } else if (const ExternalSymbolSDNode *ES - = dyn_cast<ExternalSymbolSDNode>(Op)) { - Result = DAG.getTargetExternalSymbol(ES->getSymbol(), - ES->getValueType(0)); - } else - return; - break; - } - case 'Y': - if (const ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) { - if (CFP->isExactlyValue(0.0)) { - Result = DAG.getTargetConstantFP(0.0, CFP->getValueType(0)); - break; - } - } - return; - } - - if (Result.getNode()) { - Ops.push_back(Result); - return; - } - - // It's an unknown constraint for us. Let generic code have a go. - TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); -} - -std::pair<unsigned, const TargetRegisterClass*> -AArch64TargetLowering::getRegForInlineAsmConstraint( - const std::string &Constraint, - MVT VT) const { - if (Constraint.size() == 1) { - switch (Constraint[0]) { - case 'r': - if (VT.getSizeInBits() <= 32) - return std::make_pair(0U, &AArch64::GPR32RegClass); - else if (VT == MVT::i64) - return std::make_pair(0U, &AArch64::GPR64RegClass); - break; - case 'w': - if (VT == MVT::f16) - return std::make_pair(0U, &AArch64::FPR16RegClass); - else if (VT == MVT::f32) - return std::make_pair(0U, &AArch64::FPR32RegClass); - else if (VT.getSizeInBits() == 64) - return std::make_pair(0U, &AArch64::FPR64RegClass); - else if (VT.getSizeInBits() == 128) - return std::make_pair(0U, &AArch64::FPR128RegClass); - break; - } - } - - // Use the default implementation in TargetLowering to convert the register - // constraint into a member of a register class. - return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); -} - -/// Represent NEON load and store intrinsics as MemIntrinsicNodes. -/// The associated MachineMemOperands record the alignment specified -/// in the intrinsic calls. -bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, - const CallInst &I, - unsigned Intrinsic) const { - switch (Intrinsic) { - case Intrinsic::arm_neon_vld1: - case Intrinsic::arm_neon_vld2: - case Intrinsic::arm_neon_vld3: - case Intrinsic::arm_neon_vld4: - case Intrinsic::aarch64_neon_vld1x2: - case Intrinsic::aarch64_neon_vld1x3: - case Intrinsic::aarch64_neon_vld1x4: - case Intrinsic::arm_neon_vld2lane: - case Intrinsic::arm_neon_vld3lane: - case Intrinsic::arm_neon_vld4lane: { - Info.opc = ISD::INTRINSIC_W_CHAIN; - // Conservatively set memVT to the entire set of vectors loaded. - uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8; - Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); - Info.ptrVal = I.getArgOperand(0); - Info.offset = 0; - Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1); - Info.align = cast<ConstantInt>(AlignArg)->getZExtValue(); - Info.vol = false; // volatile loads with NEON intrinsics not supported - Info.readMem = true; - Info.writeMem = false; - return true; - } - case Intrinsic::arm_neon_vst1: - case Intrinsic::arm_neon_vst2: - case Intrinsic::arm_neon_vst3: - case Intrinsic::arm_neon_vst4: - case Intrinsic::aarch64_neon_vst1x2: - case Intrinsic::aarch64_neon_vst1x3: - case Intrinsic::aarch64_neon_vst1x4: - case Intrinsic::arm_neon_vst2lane: - case Intrinsic::arm_neon_vst3lane: - case Intrinsic::arm_neon_vst4lane: { - Info.opc = ISD::INTRINSIC_VOID; - // Conservatively set memVT to the entire set of vectors stored. - unsigned NumElts = 0; - for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) { - Type *ArgTy = I.getArgOperand(ArgI)->getType(); - if (!ArgTy->isVectorTy()) - break; - NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8; - } - Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); - Info.ptrVal = I.getArgOperand(0); - Info.offset = 0; - Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1); - Info.align = cast<ConstantInt>(AlignArg)->getZExtValue(); - Info.vol = false; // volatile stores with NEON intrinsics not supported - Info.readMem = false; - Info.writeMem = true; - return true; - } - default: - break; - } - - return false; -} - -// Truncations from 64-bit GPR to 32-bit GPR is free. -bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { - if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) - return false; - unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); - unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); - if (NumBits1 <= NumBits2) - return false; - return true; -} - -bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { - if (!VT1.isInteger() || !VT2.isInteger()) - return false; - unsigned NumBits1 = VT1.getSizeInBits(); - unsigned NumBits2 = VT2.getSizeInBits(); - if (NumBits1 <= NumBits2) - return false; - return true; -} - -// All 32-bit GPR operations implicitly zero the high-half of the corresponding -// 64-bit GPR. -bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const { - if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) - return false; - unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); - unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); - if (NumBits1 == 32 && NumBits2 == 64) - return true; - return false; -} - -bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const { - if (!VT1.isInteger() || !VT2.isInteger()) - return false; - unsigned NumBits1 = VT1.getSizeInBits(); - unsigned NumBits2 = VT2.getSizeInBits(); - if (NumBits1 == 32 && NumBits2 == 64) - return true; - return false; -} - -bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const { - EVT VT1 = Val.getValueType(); - if (isZExtFree(VT1, VT2)) { - return true; - } - - if (Val.getOpcode() != ISD::LOAD) - return false; - - // 8-, 16-, and 32-bit integer loads all implicitly zero-extend. - return (VT1.isSimple() && VT1.isInteger() && VT2.isSimple() && - VT2.isInteger() && VT1.getSizeInBits() <= 32); -} - -// isLegalAddressingMode - Return true if the addressing mode represented -/// by AM is legal for this target, for a load/store of the specified type. -bool AArch64TargetLowering::isLegalAddressingMode(const AddrMode &AM, - Type *Ty) const { - // AArch64 has five basic addressing modes: - // reg - // reg + 9-bit signed offset - // reg + SIZE_IN_BYTES * 12-bit unsigned offset - // reg1 + reg2 - // reg + SIZE_IN_BYTES * reg - - // No global is ever allowed as a base. - if (AM.BaseGV) - return false; - - // No reg+reg+imm addressing. - if (AM.HasBaseReg && AM.BaseOffs && AM.Scale) - return false; - - // check reg + imm case: - // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12 - uint64_t NumBytes = 0; - if (Ty->isSized()) { - uint64_t NumBits = getDataLayout()->getTypeSizeInBits(Ty); - NumBytes = NumBits / 8; - if (!isPowerOf2_64(NumBits)) - NumBytes = 0; - } - - if (!AM.Scale) { - int64_t Offset = AM.BaseOffs; - - // 9-bit signed offset - if (Offset >= -(1LL << 9) && Offset <= (1LL << 9) - 1) - return true; - - // 12-bit unsigned offset - unsigned shift = Log2_64(NumBytes); - if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 && - // Must be a multiple of NumBytes (NumBytes is a power of 2) - (Offset >> shift) << shift == Offset) - return true; - return false; - } - if (!AM.Scale || AM.Scale == 1 || - (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes)) - return true; - return false; -} - -int AArch64TargetLowering::getScalingFactorCost(const AddrMode &AM, - Type *Ty) const { - // Scaling factors are not free at all. - // Operands | Rt Latency - // ------------------------------------------- - // Rt, [Xn, Xm] | 4 - // ------------------------------------------- - // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5 - // Rt, [Xn, Wm, <extend> #imm] | - if (isLegalAddressingMode(AM, Ty)) - // Scale represents reg2 * scale, thus account for 1 if - // it is not equal to 0 or 1. - return AM.Scale != 0 && AM.Scale != 1; - return -1; -} - -/// getMaximalGlobalOffset - Returns the maximal possible offset which can -/// be used for loads / stores from the global. -unsigned AArch64TargetLowering::getMaximalGlobalOffset() const { - return 4095; -} - |