summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target/AArch64/AArch64ISelLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Target/AArch64/AArch64ISelLowering.cpp')
-rw-r--r--llvm/lib/Target/AArch64/AArch64ISelLowering.cpp5564
1 files changed, 0 insertions, 5564 deletions
diff --git a/llvm/lib/Target/AArch64/AArch64ISelLowering.cpp b/llvm/lib/Target/AArch64/AArch64ISelLowering.cpp
deleted file mode 100644
index d02a03ccb2a..00000000000
--- a/llvm/lib/Target/AArch64/AArch64ISelLowering.cpp
+++ /dev/null
@@ -1,5564 +0,0 @@
-//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation -----===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines the interfaces that AArch64 uses to lower LLVM code into a
-// selection DAG.
-//
-//===----------------------------------------------------------------------===//
-
-#include "AArch64.h"
-#include "AArch64ISelLowering.h"
-#include "AArch64MachineFunctionInfo.h"
-#include "AArch64Subtarget.h"
-#include "AArch64TargetMachine.h"
-#include "AArch64TargetObjectFile.h"
-#include "Utils/AArch64BaseInfo.h"
-#include "llvm/CodeGen/Analysis.h"
-#include "llvm/CodeGen/CallingConvLower.h"
-#include "llvm/CodeGen/MachineFrameInfo.h"
-#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
-#include "llvm/IR/CallingConv.h"
-#include "llvm/Support/MathExtras.h"
-
-using namespace llvm;
-
-#define DEBUG_TYPE "aarch64-isel"
-
-static TargetLoweringObjectFile *createTLOF(AArch64TargetMachine &TM) {
- assert (TM.getSubtarget<AArch64Subtarget>().isTargetELF() &&
- "unknown subtarget type");
- return new AArch64ElfTargetObjectFile();
-}
-
-AArch64TargetLowering::AArch64TargetLowering(AArch64TargetMachine &TM)
- : TargetLowering(TM, createTLOF(TM)), Itins(TM.getInstrItineraryData()) {
-
- const AArch64Subtarget *Subtarget = &TM.getSubtarget<AArch64Subtarget>();
-
- // SIMD compares set the entire lane's bits to 1
- setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
-
- // Scalar register <-> type mapping
- addRegisterClass(MVT::i32, &AArch64::GPR32RegClass);
- addRegisterClass(MVT::i64, &AArch64::GPR64RegClass);
-
- if (Subtarget->hasFPARMv8()) {
- addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
- addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
- addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
- addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
- }
-
- if (Subtarget->hasNEON()) {
- // And the vectors
- addRegisterClass(MVT::v1i8, &AArch64::FPR8RegClass);
- addRegisterClass(MVT::v1i16, &AArch64::FPR16RegClass);
- addRegisterClass(MVT::v1i32, &AArch64::FPR32RegClass);
- addRegisterClass(MVT::v1i64, &AArch64::FPR64RegClass);
- addRegisterClass(MVT::v1f64, &AArch64::FPR64RegClass);
- addRegisterClass(MVT::v8i8, &AArch64::FPR64RegClass);
- addRegisterClass(MVT::v4i16, &AArch64::FPR64RegClass);
- addRegisterClass(MVT::v2i32, &AArch64::FPR64RegClass);
- addRegisterClass(MVT::v1i64, &AArch64::FPR64RegClass);
- addRegisterClass(MVT::v2f32, &AArch64::FPR64RegClass);
- addRegisterClass(MVT::v16i8, &AArch64::FPR128RegClass);
- addRegisterClass(MVT::v8i16, &AArch64::FPR128RegClass);
- addRegisterClass(MVT::v4i32, &AArch64::FPR128RegClass);
- addRegisterClass(MVT::v2i64, &AArch64::FPR128RegClass);
- addRegisterClass(MVT::v4f32, &AArch64::FPR128RegClass);
- addRegisterClass(MVT::v2f64, &AArch64::FPR128RegClass);
- }
-
- computeRegisterProperties();
-
- // We combine OR nodes for bitfield and NEON BSL operations.
- setTargetDAGCombine(ISD::OR);
-
- setTargetDAGCombine(ISD::AND);
- setTargetDAGCombine(ISD::SRA);
- setTargetDAGCombine(ISD::SRL);
- setTargetDAGCombine(ISD::SHL);
-
- setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
- setTargetDAGCombine(ISD::INTRINSIC_VOID);
- setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
-
- // AArch64 does not have i1 loads, or much of anything for i1 really.
- setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
- setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
- setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
-
- setStackPointerRegisterToSaveRestore(AArch64::XSP);
- setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
- setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
- setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
-
- // We'll lower globals to wrappers for selection.
- setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
- setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
-
- // A64 instructions have the comparison predicate attached to the user of the
- // result, but having a separate comparison is valuable for matching.
- setOperationAction(ISD::BR_CC, MVT::i32, Custom);
- setOperationAction(ISD::BR_CC, MVT::i64, Custom);
- setOperationAction(ISD::BR_CC, MVT::f32, Custom);
- setOperationAction(ISD::BR_CC, MVT::f64, Custom);
-
- setOperationAction(ISD::SELECT, MVT::i32, Custom);
- setOperationAction(ISD::SELECT, MVT::i64, Custom);
- setOperationAction(ISD::SELECT, MVT::f32, Custom);
- setOperationAction(ISD::SELECT, MVT::f64, Custom);
-
- setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
- setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
- setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
- setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
-
- setOperationAction(ISD::BRCOND, MVT::Other, Custom);
-
- setOperationAction(ISD::SETCC, MVT::i32, Custom);
- setOperationAction(ISD::SETCC, MVT::i64, Custom);
- setOperationAction(ISD::SETCC, MVT::f32, Custom);
- setOperationAction(ISD::SETCC, MVT::f64, Custom);
-
- setOperationAction(ISD::BR_JT, MVT::Other, Expand);
- setOperationAction(ISD::JumpTable, MVT::i32, Custom);
- setOperationAction(ISD::JumpTable, MVT::i64, Custom);
-
- setOperationAction(ISD::VASTART, MVT::Other, Custom);
- setOperationAction(ISD::VACOPY, MVT::Other, Custom);
- setOperationAction(ISD::VAEND, MVT::Other, Expand);
- setOperationAction(ISD::VAARG, MVT::Other, Expand);
-
- setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
- setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
-
- setOperationAction(ISD::ROTL, MVT::i32, Expand);
- setOperationAction(ISD::ROTL, MVT::i64, Expand);
-
- setOperationAction(ISD::UREM, MVT::i32, Expand);
- setOperationAction(ISD::UREM, MVT::i64, Expand);
- setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
- setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
-
- setOperationAction(ISD::SREM, MVT::i32, Expand);
- setOperationAction(ISD::SREM, MVT::i64, Expand);
- setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
- setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
-
- setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
- setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
- setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
- setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
-
- setOperationAction(ISD::CTPOP, MVT::i32, Expand);
- setOperationAction(ISD::CTPOP, MVT::i64, Expand);
-
- // Legal floating-point operations.
- setOperationAction(ISD::FABS, MVT::f32, Legal);
- setOperationAction(ISD::FABS, MVT::f64, Legal);
-
- setOperationAction(ISD::FCEIL, MVT::f32, Legal);
- setOperationAction(ISD::FCEIL, MVT::f64, Legal);
-
- setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
- setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
-
- setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
- setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
-
- setOperationAction(ISD::FNEG, MVT::f32, Legal);
- setOperationAction(ISD::FNEG, MVT::f64, Legal);
-
- setOperationAction(ISD::FRINT, MVT::f32, Legal);
- setOperationAction(ISD::FRINT, MVT::f64, Legal);
-
- setOperationAction(ISD::FSQRT, MVT::f32, Legal);
- setOperationAction(ISD::FSQRT, MVT::f64, Legal);
-
- setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
- setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
-
- setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
- setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
- setOperationAction(ISD::ConstantFP, MVT::f128, Legal);
-
- // Illegal floating-point operations.
- setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
- setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
-
- setOperationAction(ISD::FCOS, MVT::f32, Expand);
- setOperationAction(ISD::FCOS, MVT::f64, Expand);
-
- setOperationAction(ISD::FEXP, MVT::f32, Expand);
- setOperationAction(ISD::FEXP, MVT::f64, Expand);
-
- setOperationAction(ISD::FEXP2, MVT::f32, Expand);
- setOperationAction(ISD::FEXP2, MVT::f64, Expand);
-
- setOperationAction(ISD::FLOG, MVT::f32, Expand);
- setOperationAction(ISD::FLOG, MVT::f64, Expand);
-
- setOperationAction(ISD::FLOG2, MVT::f32, Expand);
- setOperationAction(ISD::FLOG2, MVT::f64, Expand);
-
- setOperationAction(ISD::FLOG10, MVT::f32, Expand);
- setOperationAction(ISD::FLOG10, MVT::f64, Expand);
-
- setOperationAction(ISD::FPOW, MVT::f32, Expand);
- setOperationAction(ISD::FPOW, MVT::f64, Expand);
-
- setOperationAction(ISD::FPOWI, MVT::f32, Expand);
- setOperationAction(ISD::FPOWI, MVT::f64, Expand);
-
- setOperationAction(ISD::FREM, MVT::f32, Expand);
- setOperationAction(ISD::FREM, MVT::f64, Expand);
-
- setOperationAction(ISD::FSIN, MVT::f32, Expand);
- setOperationAction(ISD::FSIN, MVT::f64, Expand);
-
- setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
- setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
-
- // Virtually no operation on f128 is legal, but LLVM can't expand them when
- // there's a valid register class, so we need custom operations in most cases.
- setOperationAction(ISD::FABS, MVT::f128, Expand);
- setOperationAction(ISD::FADD, MVT::f128, Custom);
- setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
- setOperationAction(ISD::FCOS, MVT::f128, Expand);
- setOperationAction(ISD::FDIV, MVT::f128, Custom);
- setOperationAction(ISD::FMA, MVT::f128, Expand);
- setOperationAction(ISD::FMUL, MVT::f128, Custom);
- setOperationAction(ISD::FNEG, MVT::f128, Expand);
- setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand);
- setOperationAction(ISD::FP_ROUND, MVT::f128, Expand);
- setOperationAction(ISD::FPOW, MVT::f128, Expand);
- setOperationAction(ISD::FREM, MVT::f128, Expand);
- setOperationAction(ISD::FRINT, MVT::f128, Expand);
- setOperationAction(ISD::FSIN, MVT::f128, Expand);
- setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
- setOperationAction(ISD::FSQRT, MVT::f128, Expand);
- setOperationAction(ISD::FSUB, MVT::f128, Custom);
- setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
- setOperationAction(ISD::SETCC, MVT::f128, Custom);
- setOperationAction(ISD::BR_CC, MVT::f128, Custom);
- setOperationAction(ISD::SELECT, MVT::f128, Expand);
- setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
- setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
-
- // Lowering for many of the conversions is actually specified by the non-f128
- // type. The LowerXXX function will be trivial when f128 isn't involved.
- setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
- setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
- setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
- setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
- setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
- setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
- setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
- setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
- setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
- setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
- setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
- setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
- setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
- setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
-
- // i128 shift operation support
- setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
- setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
- setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
-
- // This prevents LLVM trying to compress double constants into a floating
- // constant-pool entry and trying to load from there. It's of doubtful benefit
- // for A64: we'd need LDR followed by FCVT, I believe.
- setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
- setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
- setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand);
-
- setTruncStoreAction(MVT::f128, MVT::f64, Expand);
- setTruncStoreAction(MVT::f128, MVT::f32, Expand);
- setTruncStoreAction(MVT::f128, MVT::f16, Expand);
- setTruncStoreAction(MVT::f64, MVT::f32, Expand);
- setTruncStoreAction(MVT::f64, MVT::f16, Expand);
- setTruncStoreAction(MVT::f32, MVT::f16, Expand);
-
- setExceptionPointerRegister(AArch64::X0);
- setExceptionSelectorRegister(AArch64::X1);
-
- if (Subtarget->hasNEON()) {
- setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i8, Expand);
- setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Expand);
- setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Expand);
- setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v1i64, Expand);
- setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v16i8, Expand);
- setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i16, Expand);
- setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Expand);
- setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Expand);
-
- setOperationAction(ISD::BUILD_VECTOR, MVT::v1i8, Custom);
- setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom);
- setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
- setOperationAction(ISD::BUILD_VECTOR, MVT::v1i16, Custom);
- setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
- setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
- setOperationAction(ISD::BUILD_VECTOR, MVT::v1i32, Custom);
- setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom);
- setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
- setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom);
- setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
- setOperationAction(ISD::BUILD_VECTOR, MVT::v2f32, Custom);
- setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
- setOperationAction(ISD::BUILD_VECTOR, MVT::v1f64, Custom);
- setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
-
- setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
- setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
- setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
- setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i16, Custom);
- setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom);
- setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i32, Custom);
- setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom);
- setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
- setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f32, Custom);
- setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
- setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1f64, Custom);
- setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
-
- setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i32, Legal);
- setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i8, Legal);
- setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i16, Legal);
- setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Legal);
- setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i64, Legal);
- setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Legal);
- setOperationAction(ISD::CONCAT_VECTORS, MVT::v2f64, Legal);
-
- setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i8, Custom);
- setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i16, Custom);
- setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i8, Custom);
- setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i16, Custom);
- setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
-
- setOperationAction(ISD::SETCC, MVT::v8i8, Custom);
- setOperationAction(ISD::SETCC, MVT::v16i8, Custom);
- setOperationAction(ISD::SETCC, MVT::v4i16, Custom);
- setOperationAction(ISD::SETCC, MVT::v8i16, Custom);
- setOperationAction(ISD::SETCC, MVT::v2i32, Custom);
- setOperationAction(ISD::SETCC, MVT::v4i32, Custom);
- setOperationAction(ISD::SETCC, MVT::v1i64, Custom);
- setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
- setOperationAction(ISD::SETCC, MVT::v2f32, Custom);
- setOperationAction(ISD::SETCC, MVT::v4f32, Custom);
- setOperationAction(ISD::SETCC, MVT::v1f64, Custom);
- setOperationAction(ISD::SETCC, MVT::v2f64, Custom);
-
- setOperationAction(ISD::FFLOOR, MVT::v2f32, Legal);
- setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
- setOperationAction(ISD::FFLOOR, MVT::v1f64, Legal);
- setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
-
- setOperationAction(ISD::FCEIL, MVT::v2f32, Legal);
- setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
- setOperationAction(ISD::FCEIL, MVT::v1f64, Legal);
- setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
-
- setOperationAction(ISD::FTRUNC, MVT::v2f32, Legal);
- setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
- setOperationAction(ISD::FTRUNC, MVT::v1f64, Legal);
- setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
-
- setOperationAction(ISD::FRINT, MVT::v2f32, Legal);
- setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
- setOperationAction(ISD::FRINT, MVT::v1f64, Legal);
- setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
-
- setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Legal);
- setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
- setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Legal);
- setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
-
- setOperationAction(ISD::FROUND, MVT::v2f32, Legal);
- setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
- setOperationAction(ISD::FROUND, MVT::v1f64, Legal);
- setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
-
- setOperationAction(ISD::SINT_TO_FP, MVT::v1i8, Custom);
- setOperationAction(ISD::SINT_TO_FP, MVT::v1i16, Custom);
- setOperationAction(ISD::SINT_TO_FP, MVT::v1i32, Custom);
- setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
- setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
- setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
-
- setOperationAction(ISD::UINT_TO_FP, MVT::v1i8, Custom);
- setOperationAction(ISD::UINT_TO_FP, MVT::v1i16, Custom);
- setOperationAction(ISD::UINT_TO_FP, MVT::v1i32, Custom);
- setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
- setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
- setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
-
- setOperationAction(ISD::FP_TO_SINT, MVT::v1i8, Custom);
- setOperationAction(ISD::FP_TO_SINT, MVT::v1i16, Custom);
- setOperationAction(ISD::FP_TO_SINT, MVT::v1i32, Custom);
- setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
- setOperationAction(ISD::FP_TO_SINT, MVT::v2i32, Custom);
- setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Custom);
-
- setOperationAction(ISD::FP_TO_UINT, MVT::v1i8, Custom);
- setOperationAction(ISD::FP_TO_UINT, MVT::v1i16, Custom);
- setOperationAction(ISD::FP_TO_UINT, MVT::v1i32, Custom);
- setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
- setOperationAction(ISD::FP_TO_UINT, MVT::v2i32, Custom);
- setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Custom);
-
- // Neon does not support vector divide/remainder operations except
- // floating-point divide.
- setOperationAction(ISD::SDIV, MVT::v1i8, Expand);
- setOperationAction(ISD::SDIV, MVT::v8i8, Expand);
- setOperationAction(ISD::SDIV, MVT::v16i8, Expand);
- setOperationAction(ISD::SDIV, MVT::v1i16, Expand);
- setOperationAction(ISD::SDIV, MVT::v4i16, Expand);
- setOperationAction(ISD::SDIV, MVT::v8i16, Expand);
- setOperationAction(ISD::SDIV, MVT::v1i32, Expand);
- setOperationAction(ISD::SDIV, MVT::v2i32, Expand);
- setOperationAction(ISD::SDIV, MVT::v4i32, Expand);
- setOperationAction(ISD::SDIV, MVT::v1i64, Expand);
- setOperationAction(ISD::SDIV, MVT::v2i64, Expand);
-
- setOperationAction(ISD::UDIV, MVT::v1i8, Expand);
- setOperationAction(ISD::UDIV, MVT::v8i8, Expand);
- setOperationAction(ISD::UDIV, MVT::v16i8, Expand);
- setOperationAction(ISD::UDIV, MVT::v1i16, Expand);
- setOperationAction(ISD::UDIV, MVT::v4i16, Expand);
- setOperationAction(ISD::UDIV, MVT::v8i16, Expand);
- setOperationAction(ISD::UDIV, MVT::v1i32, Expand);
- setOperationAction(ISD::UDIV, MVT::v2i32, Expand);
- setOperationAction(ISD::UDIV, MVT::v4i32, Expand);
- setOperationAction(ISD::UDIV, MVT::v1i64, Expand);
- setOperationAction(ISD::UDIV, MVT::v2i64, Expand);
-
- setOperationAction(ISD::SREM, MVT::v1i8, Expand);
- setOperationAction(ISD::SREM, MVT::v8i8, Expand);
- setOperationAction(ISD::SREM, MVT::v16i8, Expand);
- setOperationAction(ISD::SREM, MVT::v1i16, Expand);
- setOperationAction(ISD::SREM, MVT::v4i16, Expand);
- setOperationAction(ISD::SREM, MVT::v8i16, Expand);
- setOperationAction(ISD::SREM, MVT::v1i32, Expand);
- setOperationAction(ISD::SREM, MVT::v2i32, Expand);
- setOperationAction(ISD::SREM, MVT::v4i32, Expand);
- setOperationAction(ISD::SREM, MVT::v1i64, Expand);
- setOperationAction(ISD::SREM, MVT::v2i64, Expand);
-
- setOperationAction(ISD::UREM, MVT::v1i8, Expand);
- setOperationAction(ISD::UREM, MVT::v8i8, Expand);
- setOperationAction(ISD::UREM, MVT::v16i8, Expand);
- setOperationAction(ISD::UREM, MVT::v1i16, Expand);
- setOperationAction(ISD::UREM, MVT::v4i16, Expand);
- setOperationAction(ISD::UREM, MVT::v8i16, Expand);
- setOperationAction(ISD::UREM, MVT::v1i32, Expand);
- setOperationAction(ISD::UREM, MVT::v2i32, Expand);
- setOperationAction(ISD::UREM, MVT::v4i32, Expand);
- setOperationAction(ISD::UREM, MVT::v1i64, Expand);
- setOperationAction(ISD::UREM, MVT::v2i64, Expand);
-
- setOperationAction(ISD::FREM, MVT::v2f32, Expand);
- setOperationAction(ISD::FREM, MVT::v4f32, Expand);
- setOperationAction(ISD::FREM, MVT::v1f64, Expand);
- setOperationAction(ISD::FREM, MVT::v2f64, Expand);
-
- setOperationAction(ISD::SELECT, MVT::v8i8, Expand);
- setOperationAction(ISD::SELECT, MVT::v16i8, Expand);
- setOperationAction(ISD::SELECT, MVT::v4i16, Expand);
- setOperationAction(ISD::SELECT, MVT::v8i16, Expand);
- setOperationAction(ISD::SELECT, MVT::v2i32, Expand);
- setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
- setOperationAction(ISD::SELECT, MVT::v1i64, Expand);
- setOperationAction(ISD::SELECT, MVT::v2i64, Expand);
- setOperationAction(ISD::SELECT, MVT::v2f32, Expand);
- setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
- setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
- setOperationAction(ISD::SELECT, MVT::v2f64, Expand);
-
- setOperationAction(ISD::SELECT_CC, MVT::v8i8, Custom);
- setOperationAction(ISD::SELECT_CC, MVT::v16i8, Custom);
- setOperationAction(ISD::SELECT_CC, MVT::v4i16, Custom);
- setOperationAction(ISD::SELECT_CC, MVT::v8i16, Custom);
- setOperationAction(ISD::SELECT_CC, MVT::v2i32, Custom);
- setOperationAction(ISD::SELECT_CC, MVT::v4i32, Custom);
- setOperationAction(ISD::SELECT_CC, MVT::v1i64, Custom);
- setOperationAction(ISD::SELECT_CC, MVT::v2i64, Custom);
- setOperationAction(ISD::SELECT_CC, MVT::v2f32, Custom);
- setOperationAction(ISD::SELECT_CC, MVT::v4f32, Custom);
- setOperationAction(ISD::SELECT_CC, MVT::v1f64, Custom);
- setOperationAction(ISD::SELECT_CC, MVT::v2f64, Custom);
-
- // Vector ExtLoad and TruncStore are expanded.
- for (unsigned I = MVT::FIRST_VECTOR_VALUETYPE;
- I <= MVT::LAST_VECTOR_VALUETYPE; ++I) {
- MVT VT = (MVT::SimpleValueType) I;
- setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
- setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
- setLoadExtAction(ISD::EXTLOAD, VT, Expand);
- for (unsigned II = MVT::FIRST_VECTOR_VALUETYPE;
- II <= MVT::LAST_VECTOR_VALUETYPE; ++II) {
- MVT VT1 = (MVT::SimpleValueType) II;
- // A TruncStore has two vector types of the same number of elements
- // and different element sizes.
- if (VT.getVectorNumElements() == VT1.getVectorNumElements() &&
- VT.getVectorElementType().getSizeInBits()
- > VT1.getVectorElementType().getSizeInBits())
- setTruncStoreAction(VT, VT1, Expand);
- }
-
- setOperationAction(ISD::MULHS, VT, Expand);
- setOperationAction(ISD::SMUL_LOHI, VT, Expand);
- setOperationAction(ISD::MULHU, VT, Expand);
- setOperationAction(ISD::UMUL_LOHI, VT, Expand);
-
- setOperationAction(ISD::BSWAP, VT, Expand);
- }
-
- // There is no v1i64/v2i64 multiply, expand v1i64/v2i64 to GPR i64 multiply.
- // FIXME: For a v2i64 multiply, we copy VPR to GPR and do 2 i64 multiplies,
- // and then copy back to VPR. This solution may be optimized by Following 3
- // NEON instructions:
- // pmull v2.1q, v0.1d, v1.1d
- // pmull2 v3.1q, v0.2d, v1.2d
- // ins v2.d[1], v3.d[0]
- // As currently we can't verify the correctness of such assumption, we can
- // do such optimization in the future.
- setOperationAction(ISD::MUL, MVT::v1i64, Expand);
- setOperationAction(ISD::MUL, MVT::v2i64, Expand);
-
- setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
- setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
- setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
- setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
- setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
- setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
- setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
- setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
- setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
- }
-
- setTargetDAGCombine(ISD::SIGN_EXTEND);
- setTargetDAGCombine(ISD::VSELECT);
-
- MaskAndBranchFoldingIsLegal = true;
-}
-
-EVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
- // It's reasonably important that this value matches the "natural" legal
- // promotion from i1 for scalar types. Otherwise LegalizeTypes can get itself
- // in a twist (e.g. inserting an any_extend which then becomes i64 -> i64).
- if (!VT.isVector()) return MVT::i32;
- return VT.changeVectorElementTypeToInteger();
-}
-
-static void getExclusiveOperation(unsigned Size, AtomicOrdering Ord,
- unsigned &LdrOpc,
- unsigned &StrOpc) {
- static const unsigned LoadBares[] = {AArch64::LDXR_byte, AArch64::LDXR_hword,
- AArch64::LDXR_word, AArch64::LDXR_dword};
- static const unsigned LoadAcqs[] = {AArch64::LDAXR_byte, AArch64::LDAXR_hword,
- AArch64::LDAXR_word, AArch64::LDAXR_dword};
- static const unsigned StoreBares[] = {AArch64::STXR_byte, AArch64::STXR_hword,
- AArch64::STXR_word, AArch64::STXR_dword};
- static const unsigned StoreRels[] = {AArch64::STLXR_byte,AArch64::STLXR_hword,
- AArch64::STLXR_word, AArch64::STLXR_dword};
-
- const unsigned *LoadOps, *StoreOps;
- if (Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent)
- LoadOps = LoadAcqs;
- else
- LoadOps = LoadBares;
-
- if (Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent)
- StoreOps = StoreRels;
- else
- StoreOps = StoreBares;
-
- assert(isPowerOf2_32(Size) && Size <= 8 &&
- "unsupported size for atomic binary op!");
-
- LdrOpc = LoadOps[Log2_32(Size)];
- StrOpc = StoreOps[Log2_32(Size)];
-}
-
-// FIXME: AArch64::DTripleRegClass and AArch64::QTripleRegClass don't really
-// have value type mapped, and they are both being defined as MVT::untyped.
-// Without knowing the MVT type, MachineLICM::getRegisterClassIDAndCost
-// would fail to figure out the register pressure correctly.
-std::pair<const TargetRegisterClass*, uint8_t>
-AArch64TargetLowering::findRepresentativeClass(MVT VT) const{
- const TargetRegisterClass *RRC = nullptr;
- uint8_t Cost = 1;
- switch (VT.SimpleTy) {
- default:
- return TargetLowering::findRepresentativeClass(VT);
- case MVT::v4i64:
- RRC = &AArch64::QPairRegClass;
- Cost = 2;
- break;
- case MVT::v8i64:
- RRC = &AArch64::QQuadRegClass;
- Cost = 4;
- break;
- }
- return std::make_pair(RRC, Cost);
-}
-
-MachineBasicBlock *
-AArch64TargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
- unsigned Size,
- unsigned BinOpcode) const {
- // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
-
- const BasicBlock *LLVM_BB = BB->getBasicBlock();
- MachineFunction *MF = BB->getParent();
- MachineFunction::iterator It = BB;
- ++It;
-
- unsigned dest = MI->getOperand(0).getReg();
- unsigned ptr = MI->getOperand(1).getReg();
- unsigned incr = MI->getOperand(2).getReg();
- AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(3).getImm());
- DebugLoc dl = MI->getDebugLoc();
-
- MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
-
- unsigned ldrOpc, strOpc;
- getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
-
- MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
- MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
- MF->insert(It, loopMBB);
- MF->insert(It, exitMBB);
-
- // Transfer the remainder of BB and its successor edges to exitMBB.
- exitMBB->splice(exitMBB->begin(), BB,
- std::next(MachineBasicBlock::iterator(MI)), BB->end());
- exitMBB->transferSuccessorsAndUpdatePHIs(BB);
-
- const TargetRegisterClass *TRC
- = Size == 8 ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
- unsigned scratch = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
-
- // thisMBB:
- // ...
- // fallthrough --> loopMBB
- BB->addSuccessor(loopMBB);
-
- // loopMBB:
- // ldxr dest, ptr
- // <binop> scratch, dest, incr
- // stxr stxr_status, scratch, ptr
- // cbnz stxr_status, loopMBB
- // fallthrough --> exitMBB
- BB = loopMBB;
- BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
- if (BinOpcode) {
- // All arithmetic operations we'll be creating are designed to take an extra
- // shift or extend operand, which we can conveniently set to zero.
-
- // Operand order needs to go the other way for NAND.
- if (BinOpcode == AArch64::BICwww_lsl || BinOpcode == AArch64::BICxxx_lsl)
- BuildMI(BB, dl, TII->get(BinOpcode), scratch)
- .addReg(incr).addReg(dest).addImm(0);
- else
- BuildMI(BB, dl, TII->get(BinOpcode), scratch)
- .addReg(dest).addReg(incr).addImm(0);
- }
-
- // From the stxr, the register is GPR32; from the cmp it's GPR32wsp
- unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
- MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
-
- BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(scratch).addReg(ptr);
- BuildMI(BB, dl, TII->get(AArch64::CBNZw))
- .addReg(stxr_status).addMBB(loopMBB);
-
- BB->addSuccessor(loopMBB);
- BB->addSuccessor(exitMBB);
-
- // exitMBB:
- // ...
- BB = exitMBB;
-
- MI->eraseFromParent(); // The instruction is gone now.
-
- return BB;
-}
-
-MachineBasicBlock *
-AArch64TargetLowering::emitAtomicBinaryMinMax(MachineInstr *MI,
- MachineBasicBlock *BB,
- unsigned Size,
- unsigned CmpOp,
- A64CC::CondCodes Cond) const {
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
-
- const BasicBlock *LLVM_BB = BB->getBasicBlock();
- MachineFunction *MF = BB->getParent();
- MachineFunction::iterator It = BB;
- ++It;
-
- unsigned dest = MI->getOperand(0).getReg();
- unsigned ptr = MI->getOperand(1).getReg();
- unsigned incr = MI->getOperand(2).getReg();
- AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(3).getImm());
-
- unsigned oldval = dest;
- DebugLoc dl = MI->getDebugLoc();
-
- MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
- const TargetRegisterClass *TRC, *TRCsp;
- if (Size == 8) {
- TRC = &AArch64::GPR64RegClass;
- TRCsp = &AArch64::GPR64xspRegClass;
- } else {
- TRC = &AArch64::GPR32RegClass;
- TRCsp = &AArch64::GPR32wspRegClass;
- }
-
- unsigned ldrOpc, strOpc;
- getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
-
- MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
- MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
- MF->insert(It, loopMBB);
- MF->insert(It, exitMBB);
-
- // Transfer the remainder of BB and its successor edges to exitMBB.
- exitMBB->splice(exitMBB->begin(), BB,
- std::next(MachineBasicBlock::iterator(MI)), BB->end());
- exitMBB->transferSuccessorsAndUpdatePHIs(BB);
-
- unsigned scratch = MRI.createVirtualRegister(TRC);
- MRI.constrainRegClass(scratch, TRCsp);
-
- // thisMBB:
- // ...
- // fallthrough --> loopMBB
- BB->addSuccessor(loopMBB);
-
- // loopMBB:
- // ldxr dest, ptr
- // cmp incr, dest (, sign extend if necessary)
- // csel scratch, dest, incr, cond
- // stxr stxr_status, scratch, ptr
- // cbnz stxr_status, loopMBB
- // fallthrough --> exitMBB
- BB = loopMBB;
- BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
-
- // Build compare and cmov instructions.
- MRI.constrainRegClass(incr, TRCsp);
- BuildMI(BB, dl, TII->get(CmpOp))
- .addReg(incr).addReg(oldval).addImm(0);
-
- BuildMI(BB, dl, TII->get(Size == 8 ? AArch64::CSELxxxc : AArch64::CSELwwwc),
- scratch)
- .addReg(oldval).addReg(incr).addImm(Cond);
-
- unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
- MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
-
- BuildMI(BB, dl, TII->get(strOpc), stxr_status)
- .addReg(scratch).addReg(ptr);
- BuildMI(BB, dl, TII->get(AArch64::CBNZw))
- .addReg(stxr_status).addMBB(loopMBB);
-
- BB->addSuccessor(loopMBB);
- BB->addSuccessor(exitMBB);
-
- // exitMBB:
- // ...
- BB = exitMBB;
-
- MI->eraseFromParent(); // The instruction is gone now.
-
- return BB;
-}
-
-MachineBasicBlock *
-AArch64TargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
- MachineBasicBlock *BB,
- unsigned Size) const {
- unsigned dest = MI->getOperand(0).getReg();
- unsigned ptr = MI->getOperand(1).getReg();
- unsigned oldval = MI->getOperand(2).getReg();
- unsigned newval = MI->getOperand(3).getReg();
- AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(4).getImm());
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
- DebugLoc dl = MI->getDebugLoc();
-
- MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
- const TargetRegisterClass *TRCsp;
- TRCsp = Size == 8 ? &AArch64::GPR64xspRegClass : &AArch64::GPR32wspRegClass;
-
- unsigned ldrOpc, strOpc;
- getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
-
- MachineFunction *MF = BB->getParent();
- const BasicBlock *LLVM_BB = BB->getBasicBlock();
- MachineFunction::iterator It = BB;
- ++It; // insert the new blocks after the current block
-
- MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
- MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
- MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
- MF->insert(It, loop1MBB);
- MF->insert(It, loop2MBB);
- MF->insert(It, exitMBB);
-
- // Transfer the remainder of BB and its successor edges to exitMBB.
- exitMBB->splice(exitMBB->begin(), BB,
- std::next(MachineBasicBlock::iterator(MI)), BB->end());
- exitMBB->transferSuccessorsAndUpdatePHIs(BB);
-
- // thisMBB:
- // ...
- // fallthrough --> loop1MBB
- BB->addSuccessor(loop1MBB);
-
- // loop1MBB:
- // ldxr dest, [ptr]
- // cmp dest, oldval
- // b.ne exitMBB
- BB = loop1MBB;
- BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
-
- unsigned CmpOp = Size == 8 ? AArch64::CMPxx_lsl : AArch64::CMPww_lsl;
- MRI.constrainRegClass(dest, TRCsp);
- BuildMI(BB, dl, TII->get(CmpOp))
- .addReg(dest).addReg(oldval).addImm(0);
- BuildMI(BB, dl, TII->get(AArch64::Bcc))
- .addImm(A64CC::NE).addMBB(exitMBB);
- BB->addSuccessor(loop2MBB);
- BB->addSuccessor(exitMBB);
-
- // loop2MBB:
- // strex stxr_status, newval, [ptr]
- // cbnz stxr_status, loop1MBB
- BB = loop2MBB;
- unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
- MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
-
- BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(newval).addReg(ptr);
- BuildMI(BB, dl, TII->get(AArch64::CBNZw))
- .addReg(stxr_status).addMBB(loop1MBB);
- BB->addSuccessor(loop1MBB);
- BB->addSuccessor(exitMBB);
-
- // exitMBB:
- // ...
- BB = exitMBB;
-
- MI->eraseFromParent(); // The instruction is gone now.
-
- return BB;
-}
-
-MachineBasicBlock *
-AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
- MachineBasicBlock *MBB) const {
- // We materialise the F128CSEL pseudo-instruction using conditional branches
- // and loads, giving an instruciton sequence like:
- // str q0, [sp]
- // b.ne IfTrue
- // b Finish
- // IfTrue:
- // str q1, [sp]
- // Finish:
- // ldr q0, [sp]
- //
- // Using virtual registers would probably not be beneficial since COPY
- // instructions are expensive for f128 (there's no actual instruction to
- // implement them).
- //
- // An alternative would be to do an integer-CSEL on some address. E.g.:
- // mov x0, sp
- // add x1, sp, #16
- // str q0, [x0]
- // str q1, [x1]
- // csel x0, x0, x1, ne
- // ldr q0, [x0]
- //
- // It's unclear which approach is actually optimal.
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
- MachineFunction *MF = MBB->getParent();
- const BasicBlock *LLVM_BB = MBB->getBasicBlock();
- DebugLoc DL = MI->getDebugLoc();
- MachineFunction::iterator It = MBB;
- ++It;
-
- unsigned DestReg = MI->getOperand(0).getReg();
- unsigned IfTrueReg = MI->getOperand(1).getReg();
- unsigned IfFalseReg = MI->getOperand(2).getReg();
- unsigned CondCode = MI->getOperand(3).getImm();
- bool NZCVKilled = MI->getOperand(4).isKill();
-
- MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
- MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
- MF->insert(It, TrueBB);
- MF->insert(It, EndBB);
-
- // Transfer rest of current basic-block to EndBB
- EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
- MBB->end());
- EndBB->transferSuccessorsAndUpdatePHIs(MBB);
-
- // We need somewhere to store the f128 value needed.
- int ScratchFI = MF->getFrameInfo()->CreateSpillStackObject(16, 16);
-
- // [... start of incoming MBB ...]
- // str qIFFALSE, [sp]
- // b.cc IfTrue
- // b Done
- BuildMI(MBB, DL, TII->get(AArch64::LSFP128_STR))
- .addReg(IfFalseReg)
- .addFrameIndex(ScratchFI)
- .addImm(0);
- BuildMI(MBB, DL, TII->get(AArch64::Bcc))
- .addImm(CondCode)
- .addMBB(TrueBB);
- BuildMI(MBB, DL, TII->get(AArch64::Bimm))
- .addMBB(EndBB);
- MBB->addSuccessor(TrueBB);
- MBB->addSuccessor(EndBB);
-
- if (!NZCVKilled) {
- // NZCV is live-through TrueBB.
- TrueBB->addLiveIn(AArch64::NZCV);
- EndBB->addLiveIn(AArch64::NZCV);
- }
-
- // IfTrue:
- // str qIFTRUE, [sp]
- BuildMI(TrueBB, DL, TII->get(AArch64::LSFP128_STR))
- .addReg(IfTrueReg)
- .addFrameIndex(ScratchFI)
- .addImm(0);
-
- // Note: fallthrough. We can rely on LLVM adding a branch if it reorders the
- // blocks.
- TrueBB->addSuccessor(EndBB);
-
- // Done:
- // ldr qDEST, [sp]
- // [... rest of incoming MBB ...]
- MachineInstr *StartOfEnd = EndBB->begin();
- BuildMI(*EndBB, StartOfEnd, DL, TII->get(AArch64::LSFP128_LDR), DestReg)
- .addFrameIndex(ScratchFI)
- .addImm(0);
-
- MI->eraseFromParent();
- return EndBB;
-}
-
-MachineBasicBlock *
-AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
- MachineBasicBlock *MBB) const {
- switch (MI->getOpcode()) {
- default: llvm_unreachable("Unhandled instruction with custom inserter");
- case AArch64::F128CSEL:
- return EmitF128CSEL(MI, MBB);
- case AArch64::ATOMIC_LOAD_ADD_I8:
- return emitAtomicBinary(MI, MBB, 1, AArch64::ADDwww_lsl);
- case AArch64::ATOMIC_LOAD_ADD_I16:
- return emitAtomicBinary(MI, MBB, 2, AArch64::ADDwww_lsl);
- case AArch64::ATOMIC_LOAD_ADD_I32:
- return emitAtomicBinary(MI, MBB, 4, AArch64::ADDwww_lsl);
- case AArch64::ATOMIC_LOAD_ADD_I64:
- return emitAtomicBinary(MI, MBB, 8, AArch64::ADDxxx_lsl);
-
- case AArch64::ATOMIC_LOAD_SUB_I8:
- return emitAtomicBinary(MI, MBB, 1, AArch64::SUBwww_lsl);
- case AArch64::ATOMIC_LOAD_SUB_I16:
- return emitAtomicBinary(MI, MBB, 2, AArch64::SUBwww_lsl);
- case AArch64::ATOMIC_LOAD_SUB_I32:
- return emitAtomicBinary(MI, MBB, 4, AArch64::SUBwww_lsl);
- case AArch64::ATOMIC_LOAD_SUB_I64:
- return emitAtomicBinary(MI, MBB, 8, AArch64::SUBxxx_lsl);
-
- case AArch64::ATOMIC_LOAD_AND_I8:
- return emitAtomicBinary(MI, MBB, 1, AArch64::ANDwww_lsl);
- case AArch64::ATOMIC_LOAD_AND_I16:
- return emitAtomicBinary(MI, MBB, 2, AArch64::ANDwww_lsl);
- case AArch64::ATOMIC_LOAD_AND_I32:
- return emitAtomicBinary(MI, MBB, 4, AArch64::ANDwww_lsl);
- case AArch64::ATOMIC_LOAD_AND_I64:
- return emitAtomicBinary(MI, MBB, 8, AArch64::ANDxxx_lsl);
-
- case AArch64::ATOMIC_LOAD_OR_I8:
- return emitAtomicBinary(MI, MBB, 1, AArch64::ORRwww_lsl);
- case AArch64::ATOMIC_LOAD_OR_I16:
- return emitAtomicBinary(MI, MBB, 2, AArch64::ORRwww_lsl);
- case AArch64::ATOMIC_LOAD_OR_I32:
- return emitAtomicBinary(MI, MBB, 4, AArch64::ORRwww_lsl);
- case AArch64::ATOMIC_LOAD_OR_I64:
- return emitAtomicBinary(MI, MBB, 8, AArch64::ORRxxx_lsl);
-
- case AArch64::ATOMIC_LOAD_XOR_I8:
- return emitAtomicBinary(MI, MBB, 1, AArch64::EORwww_lsl);
- case AArch64::ATOMIC_LOAD_XOR_I16:
- return emitAtomicBinary(MI, MBB, 2, AArch64::EORwww_lsl);
- case AArch64::ATOMIC_LOAD_XOR_I32:
- return emitAtomicBinary(MI, MBB, 4, AArch64::EORwww_lsl);
- case AArch64::ATOMIC_LOAD_XOR_I64:
- return emitAtomicBinary(MI, MBB, 8, AArch64::EORxxx_lsl);
-
- case AArch64::ATOMIC_LOAD_NAND_I8:
- return emitAtomicBinary(MI, MBB, 1, AArch64::BICwww_lsl);
- case AArch64::ATOMIC_LOAD_NAND_I16:
- return emitAtomicBinary(MI, MBB, 2, AArch64::BICwww_lsl);
- case AArch64::ATOMIC_LOAD_NAND_I32:
- return emitAtomicBinary(MI, MBB, 4, AArch64::BICwww_lsl);
- case AArch64::ATOMIC_LOAD_NAND_I64:
- return emitAtomicBinary(MI, MBB, 8, AArch64::BICxxx_lsl);
-
- case AArch64::ATOMIC_LOAD_MIN_I8:
- return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::GT);
- case AArch64::ATOMIC_LOAD_MIN_I16:
- return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::GT);
- case AArch64::ATOMIC_LOAD_MIN_I32:
- return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::GT);
- case AArch64::ATOMIC_LOAD_MIN_I64:
- return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::GT);
-
- case AArch64::ATOMIC_LOAD_MAX_I8:
- return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::LT);
- case AArch64::ATOMIC_LOAD_MAX_I16:
- return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::LT);
- case AArch64::ATOMIC_LOAD_MAX_I32:
- return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LT);
- case AArch64::ATOMIC_LOAD_MAX_I64:
- return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LT);
-
- case AArch64::ATOMIC_LOAD_UMIN_I8:
- return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::HI);
- case AArch64::ATOMIC_LOAD_UMIN_I16:
- return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::HI);
- case AArch64::ATOMIC_LOAD_UMIN_I32:
- return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::HI);
- case AArch64::ATOMIC_LOAD_UMIN_I64:
- return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::HI);
-
- case AArch64::ATOMIC_LOAD_UMAX_I8:
- return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::LO);
- case AArch64::ATOMIC_LOAD_UMAX_I16:
- return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::LO);
- case AArch64::ATOMIC_LOAD_UMAX_I32:
- return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LO);
- case AArch64::ATOMIC_LOAD_UMAX_I64:
- return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LO);
-
- case AArch64::ATOMIC_SWAP_I8:
- return emitAtomicBinary(MI, MBB, 1, 0);
- case AArch64::ATOMIC_SWAP_I16:
- return emitAtomicBinary(MI, MBB, 2, 0);
- case AArch64::ATOMIC_SWAP_I32:
- return emitAtomicBinary(MI, MBB, 4, 0);
- case AArch64::ATOMIC_SWAP_I64:
- return emitAtomicBinary(MI, MBB, 8, 0);
-
- case AArch64::ATOMIC_CMP_SWAP_I8:
- return emitAtomicCmpSwap(MI, MBB, 1);
- case AArch64::ATOMIC_CMP_SWAP_I16:
- return emitAtomicCmpSwap(MI, MBB, 2);
- case AArch64::ATOMIC_CMP_SWAP_I32:
- return emitAtomicCmpSwap(MI, MBB, 4);
- case AArch64::ATOMIC_CMP_SWAP_I64:
- return emitAtomicCmpSwap(MI, MBB, 8);
- }
-}
-
-
-const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
- switch (Opcode) {
- case AArch64ISD::BR_CC: return "AArch64ISD::BR_CC";
- case AArch64ISD::Call: return "AArch64ISD::Call";
- case AArch64ISD::FPMOV: return "AArch64ISD::FPMOV";
- case AArch64ISD::GOTLoad: return "AArch64ISD::GOTLoad";
- case AArch64ISD::BFI: return "AArch64ISD::BFI";
- case AArch64ISD::EXTR: return "AArch64ISD::EXTR";
- case AArch64ISD::Ret: return "AArch64ISD::Ret";
- case AArch64ISD::SBFX: return "AArch64ISD::SBFX";
- case AArch64ISD::SELECT_CC: return "AArch64ISD::SELECT_CC";
- case AArch64ISD::SETCC: return "AArch64ISD::SETCC";
- case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN";
- case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
- case AArch64ISD::TLSDESCCALL: return "AArch64ISD::TLSDESCCALL";
- case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge";
- case AArch64ISD::WrapperSmall: return "AArch64ISD::WrapperSmall";
-
- case AArch64ISD::NEON_MOVIMM:
- return "AArch64ISD::NEON_MOVIMM";
- case AArch64ISD::NEON_MVNIMM:
- return "AArch64ISD::NEON_MVNIMM";
- case AArch64ISD::NEON_FMOVIMM:
- return "AArch64ISD::NEON_FMOVIMM";
- case AArch64ISD::NEON_CMP:
- return "AArch64ISD::NEON_CMP";
- case AArch64ISD::NEON_CMPZ:
- return "AArch64ISD::NEON_CMPZ";
- case AArch64ISD::NEON_TST:
- return "AArch64ISD::NEON_TST";
- case AArch64ISD::NEON_QSHLs:
- return "AArch64ISD::NEON_QSHLs";
- case AArch64ISD::NEON_QSHLu:
- return "AArch64ISD::NEON_QSHLu";
- case AArch64ISD::NEON_VDUP:
- return "AArch64ISD::NEON_VDUP";
- case AArch64ISD::NEON_VDUPLANE:
- return "AArch64ISD::NEON_VDUPLANE";
- case AArch64ISD::NEON_REV16:
- return "AArch64ISD::NEON_REV16";
- case AArch64ISD::NEON_REV32:
- return "AArch64ISD::NEON_REV32";
- case AArch64ISD::NEON_REV64:
- return "AArch64ISD::NEON_REV64";
- case AArch64ISD::NEON_UZP1:
- return "AArch64ISD::NEON_UZP1";
- case AArch64ISD::NEON_UZP2:
- return "AArch64ISD::NEON_UZP2";
- case AArch64ISD::NEON_ZIP1:
- return "AArch64ISD::NEON_ZIP1";
- case AArch64ISD::NEON_ZIP2:
- return "AArch64ISD::NEON_ZIP2";
- case AArch64ISD::NEON_TRN1:
- return "AArch64ISD::NEON_TRN1";
- case AArch64ISD::NEON_TRN2:
- return "AArch64ISD::NEON_TRN2";
- case AArch64ISD::NEON_LD1_UPD:
- return "AArch64ISD::NEON_LD1_UPD";
- case AArch64ISD::NEON_LD2_UPD:
- return "AArch64ISD::NEON_LD2_UPD";
- case AArch64ISD::NEON_LD3_UPD:
- return "AArch64ISD::NEON_LD3_UPD";
- case AArch64ISD::NEON_LD4_UPD:
- return "AArch64ISD::NEON_LD4_UPD";
- case AArch64ISD::NEON_ST1_UPD:
- return "AArch64ISD::NEON_ST1_UPD";
- case AArch64ISD::NEON_ST2_UPD:
- return "AArch64ISD::NEON_ST2_UPD";
- case AArch64ISD::NEON_ST3_UPD:
- return "AArch64ISD::NEON_ST3_UPD";
- case AArch64ISD::NEON_ST4_UPD:
- return "AArch64ISD::NEON_ST4_UPD";
- case AArch64ISD::NEON_LD1x2_UPD:
- return "AArch64ISD::NEON_LD1x2_UPD";
- case AArch64ISD::NEON_LD1x3_UPD:
- return "AArch64ISD::NEON_LD1x3_UPD";
- case AArch64ISD::NEON_LD1x4_UPD:
- return "AArch64ISD::NEON_LD1x4_UPD";
- case AArch64ISD::NEON_ST1x2_UPD:
- return "AArch64ISD::NEON_ST1x2_UPD";
- case AArch64ISD::NEON_ST1x3_UPD:
- return "AArch64ISD::NEON_ST1x3_UPD";
- case AArch64ISD::NEON_ST1x4_UPD:
- return "AArch64ISD::NEON_ST1x4_UPD";
- case AArch64ISD::NEON_LD2DUP:
- return "AArch64ISD::NEON_LD2DUP";
- case AArch64ISD::NEON_LD3DUP:
- return "AArch64ISD::NEON_LD3DUP";
- case AArch64ISD::NEON_LD4DUP:
- return "AArch64ISD::NEON_LD4DUP";
- case AArch64ISD::NEON_LD2DUP_UPD:
- return "AArch64ISD::NEON_LD2DUP_UPD";
- case AArch64ISD::NEON_LD3DUP_UPD:
- return "AArch64ISD::NEON_LD3DUP_UPD";
- case AArch64ISD::NEON_LD4DUP_UPD:
- return "AArch64ISD::NEON_LD4DUP_UPD";
- case AArch64ISD::NEON_LD2LN_UPD:
- return "AArch64ISD::NEON_LD2LN_UPD";
- case AArch64ISD::NEON_LD3LN_UPD:
- return "AArch64ISD::NEON_LD3LN_UPD";
- case AArch64ISD::NEON_LD4LN_UPD:
- return "AArch64ISD::NEON_LD4LN_UPD";
- case AArch64ISD::NEON_ST2LN_UPD:
- return "AArch64ISD::NEON_ST2LN_UPD";
- case AArch64ISD::NEON_ST3LN_UPD:
- return "AArch64ISD::NEON_ST3LN_UPD";
- case AArch64ISD::NEON_ST4LN_UPD:
- return "AArch64ISD::NEON_ST4LN_UPD";
- case AArch64ISD::NEON_VEXTRACT:
- return "AArch64ISD::NEON_VEXTRACT";
- default:
- return nullptr;
- }
-}
-
-static const MCPhysReg AArch64FPRArgRegs[] = {
- AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
- AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7
-};
-static const unsigned NumFPRArgRegs = llvm::array_lengthof(AArch64FPRArgRegs);
-
-static const MCPhysReg AArch64ArgRegs[] = {
- AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3,
- AArch64::X4, AArch64::X5, AArch64::X6, AArch64::X7
-};
-static const unsigned NumArgRegs = llvm::array_lengthof(AArch64ArgRegs);
-
-static bool CC_AArch64NoMoreRegs(unsigned ValNo, MVT ValVT, MVT LocVT,
- CCValAssign::LocInfo LocInfo,
- ISD::ArgFlagsTy ArgFlags, CCState &State) {
- // Mark all remaining general purpose registers as allocated. We don't
- // backtrack: if (for example) an i128 gets put on the stack, no subsequent
- // i64 will go in registers (C.11).
- for (unsigned i = 0; i < NumArgRegs; ++i)
- State.AllocateReg(AArch64ArgRegs[i]);
-
- return false;
-}
-
-#include "AArch64GenCallingConv.inc"
-
-CCAssignFn *AArch64TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
-
- switch(CC) {
- default: llvm_unreachable("Unsupported calling convention");
- case CallingConv::Fast:
- case CallingConv::C:
- return CC_A64_APCS;
- }
-}
-
-void
-AArch64TargetLowering::SaveVarArgRegisters(CCState &CCInfo, SelectionDAG &DAG,
- SDLoc DL, SDValue &Chain) const {
- MachineFunction &MF = DAG.getMachineFunction();
- MachineFrameInfo *MFI = MF.getFrameInfo();
- AArch64MachineFunctionInfo *FuncInfo
- = MF.getInfo<AArch64MachineFunctionInfo>();
-
- SmallVector<SDValue, 8> MemOps;
-
- unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(AArch64ArgRegs,
- NumArgRegs);
- unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(AArch64FPRArgRegs,
- NumFPRArgRegs);
-
- unsigned GPRSaveSize = 8 * (NumArgRegs - FirstVariadicGPR);
- int GPRIdx = 0;
- if (GPRSaveSize != 0) {
- GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
-
- SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy());
-
- for (unsigned i = FirstVariadicGPR; i < NumArgRegs; ++i) {
- unsigned VReg = MF.addLiveIn(AArch64ArgRegs[i], &AArch64::GPR64RegClass);
- SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
- SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN,
- MachinePointerInfo::getStack(i * 8),
- false, false, 0);
- MemOps.push_back(Store);
- FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
- DAG.getConstant(8, getPointerTy()));
- }
- }
-
- if (getSubtarget()->hasFPARMv8()) {
- unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
- int FPRIdx = 0;
- // According to the AArch64 Procedure Call Standard, section B.1/B.3, we
- // can omit a register save area if we know we'll never use registers of
- // that class.
- if (FPRSaveSize != 0) {
- FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
-
- SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());
-
- for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
- unsigned VReg = MF.addLiveIn(AArch64FPRArgRegs[i],
- &AArch64::FPR128RegClass);
- SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
- SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN,
- MachinePointerInfo::getStack(i * 16),
- false, false, 0);
- MemOps.push_back(Store);
- FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
- DAG.getConstant(16, getPointerTy()));
- }
- }
- FuncInfo->setVariadicFPRIdx(FPRIdx);
- FuncInfo->setVariadicFPRSize(FPRSaveSize);
- }
-
- unsigned StackOffset = RoundUpToAlignment(CCInfo.getNextStackOffset(), 8);
- int StackIdx = MFI->CreateFixedObject(8, StackOffset, true);
-
- FuncInfo->setVariadicStackIdx(StackIdx);
- FuncInfo->setVariadicGPRIdx(GPRIdx);
- FuncInfo->setVariadicGPRSize(GPRSaveSize);
-
- if (!MemOps.empty()) {
- Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
- }
-}
-
-
-SDValue
-AArch64TargetLowering::LowerFormalArguments(SDValue Chain,
- CallingConv::ID CallConv, bool isVarArg,
- const SmallVectorImpl<ISD::InputArg> &Ins,
- SDLoc dl, SelectionDAG &DAG,
- SmallVectorImpl<SDValue> &InVals) const {
- MachineFunction &MF = DAG.getMachineFunction();
- AArch64MachineFunctionInfo *FuncInfo
- = MF.getInfo<AArch64MachineFunctionInfo>();
- MachineFrameInfo *MFI = MF.getFrameInfo();
- bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
-
- SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), ArgLocs, *DAG.getContext());
- CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
-
- SmallVector<SDValue, 16> ArgValues;
-
- SDValue ArgValue;
- for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
- CCValAssign &VA = ArgLocs[i];
- ISD::ArgFlagsTy Flags = Ins[i].Flags;
-
- if (Flags.isByVal()) {
- // Byval is used for small structs and HFAs in the PCS, but the system
- // should work in a non-compliant manner for larger structs.
- EVT PtrTy = getPointerTy();
- int Size = Flags.getByValSize();
- unsigned NumRegs = (Size + 7) / 8;
-
- uint32_t BEAlign = 0;
- if (Size < 8 && !getSubtarget()->isLittle())
- BEAlign = 8-Size;
- unsigned FrameIdx = MFI->CreateFixedObject(8 * NumRegs,
- VA.getLocMemOffset() + BEAlign,
- false);
- SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy);
- InVals.push_back(FrameIdxN);
-
- continue;
- } else if (VA.isRegLoc()) {
- MVT RegVT = VA.getLocVT();
- const TargetRegisterClass *RC = getRegClassFor(RegVT);
- unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
-
- ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
- } else { // VA.isRegLoc()
- assert(VA.isMemLoc());
-
- int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
- VA.getLocMemOffset(), true);
-
- SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
- ArgValue = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
- MachinePointerInfo::getFixedStack(FI),
- false, false, false, 0);
-
-
- }
-
- switch (VA.getLocInfo()) {
- default: llvm_unreachable("Unknown loc info!");
- case CCValAssign::Full: break;
- case CCValAssign::BCvt:
- ArgValue = DAG.getNode(ISD::BITCAST,dl, VA.getValVT(), ArgValue);
- break;
- case CCValAssign::SExt:
- case CCValAssign::ZExt:
- case CCValAssign::AExt:
- case CCValAssign::FPExt: {
- unsigned DestSize = VA.getValVT().getSizeInBits();
- unsigned DestSubReg;
-
- switch (DestSize) {
- case 8: DestSubReg = AArch64::sub_8; break;
- case 16: DestSubReg = AArch64::sub_16; break;
- case 32: DestSubReg = AArch64::sub_32; break;
- case 64: DestSubReg = AArch64::sub_64; break;
- default: llvm_unreachable("Unexpected argument promotion");
- }
-
- ArgValue = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
- VA.getValVT(), ArgValue,
- DAG.getTargetConstant(DestSubReg, MVT::i32)),
- 0);
- break;
- }
- }
-
- InVals.push_back(ArgValue);
- }
-
- if (isVarArg)
- SaveVarArgRegisters(CCInfo, DAG, dl, Chain);
-
- unsigned StackArgSize = CCInfo.getNextStackOffset();
- if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
- // This is a non-standard ABI so by fiat I say we're allowed to make full
- // use of the stack area to be popped, which must be aligned to 16 bytes in
- // any case:
- StackArgSize = RoundUpToAlignment(StackArgSize, 16);
-
- // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
- // a multiple of 16.
- FuncInfo->setArgumentStackToRestore(StackArgSize);
-
- // This realignment carries over to the available bytes below. Our own
- // callers will guarantee the space is free by giving an aligned value to
- // CALLSEQ_START.
- }
- // Even if we're not expected to free up the space, it's useful to know how
- // much is there while considering tail calls (because we can reuse it).
- FuncInfo->setBytesInStackArgArea(StackArgSize);
-
- return Chain;
-}
-
-SDValue
-AArch64TargetLowering::LowerReturn(SDValue Chain,
- CallingConv::ID CallConv, bool isVarArg,
- const SmallVectorImpl<ISD::OutputArg> &Outs,
- const SmallVectorImpl<SDValue> &OutVals,
- SDLoc dl, SelectionDAG &DAG) const {
- // CCValAssign - represent the assignment of the return value to a location.
- SmallVector<CCValAssign, 16> RVLocs;
-
- // CCState - Info about the registers and stack slots.
- CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), RVLocs, *DAG.getContext());
-
- // Analyze outgoing return values.
- CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv));
-
- SDValue Flag;
- SmallVector<SDValue, 4> RetOps(1, Chain);
-
- for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
- // PCS: "If the type, T, of the result of a function is such that
- // void func(T arg) would require that arg be passed as a value in a
- // register (or set of registers) according to the rules in 5.4, then the
- // result is returned in the same registers as would be used for such an
- // argument.
- //
- // Otherwise, the caller shall reserve a block of memory of sufficient
- // size and alignment to hold the result. The address of the memory block
- // shall be passed as an additional argument to the function in x8."
- //
- // This is implemented in two places. The register-return values are dealt
- // with here, more complex returns are passed as an sret parameter, which
- // means we don't have to worry about it during actual return.
- CCValAssign &VA = RVLocs[i];
- assert(VA.isRegLoc() && "Only register-returns should be created by PCS");
-
-
- SDValue Arg = OutVals[i];
-
- // There's no convenient note in the ABI about this as there is for normal
- // arguments, but it says return values are passed in the same registers as
- // an argument would be. I believe that includes the comments about
- // unspecified higher bits, putting the burden of widening on the *caller*
- // for return values.
- switch (VA.getLocInfo()) {
- default: llvm_unreachable("Unknown loc info");
- case CCValAssign::Full: break;
- case CCValAssign::SExt:
- case CCValAssign::ZExt:
- case CCValAssign::AExt:
- // Floating-point values should only be extended when they're going into
- // memory, which can't happen here so an integer extend is acceptable.
- Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
- break;
- case CCValAssign::BCvt:
- Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
- break;
- }
-
- Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
- Flag = Chain.getValue(1);
- RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
- }
-
- RetOps[0] = Chain; // Update chain.
-
- // Add the flag if we have it.
- if (Flag.getNode())
- RetOps.push_back(Flag);
-
- return DAG.getNode(AArch64ISD::Ret, dl, MVT::Other, RetOps);
-}
-
-unsigned AArch64TargetLowering::getByValTypeAlignment(Type *Ty) const {
- // This is a new backend. For anything more precise than this a FE should
- // set an explicit alignment.
- return 4;
-}
-
-SDValue
-AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
- SmallVectorImpl<SDValue> &InVals) const {
- SelectionDAG &DAG = CLI.DAG;
- SDLoc &dl = CLI.DL;
- SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
- SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
- SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
- SDValue Chain = CLI.Chain;
- SDValue Callee = CLI.Callee;
- bool &IsTailCall = CLI.IsTailCall;
- CallingConv::ID CallConv = CLI.CallConv;
- bool IsVarArg = CLI.IsVarArg;
-
- MachineFunction &MF = DAG.getMachineFunction();
- AArch64MachineFunctionInfo *FuncInfo
- = MF.getInfo<AArch64MachineFunctionInfo>();
- bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
- bool IsStructRet = !Outs.empty() && Outs[0].Flags.isSRet();
- bool IsSibCall = false;
-
- if (IsTailCall) {
- IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
- IsVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
- Outs, OutVals, Ins, DAG);
-
- if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
- report_fatal_error("failed to perform tail call elimination on a call "
- "site marked musttail");
-
- // A sibling call is one where we're under the usual C ABI and not planning
- // to change that but can still do a tail call:
- if (!TailCallOpt && IsTailCall)
- IsSibCall = true;
- }
-
- SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
- getTargetMachine(), ArgLocs, *DAG.getContext());
- CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
-
- // On AArch64 (and all other architectures I'm aware of) the most this has to
- // do is adjust the stack pointer.
- unsigned NumBytes = RoundUpToAlignment(CCInfo.getNextStackOffset(), 16);
- if (IsSibCall) {
- // Since we're not changing the ABI to make this a tail call, the memory
- // operands are already available in the caller's incoming argument space.
- NumBytes = 0;
- }
-
- // FPDiff is the byte offset of the call's argument area from the callee's.
- // Stores to callee stack arguments will be placed in FixedStackSlots offset
- // by this amount for a tail call. In a sibling call it must be 0 because the
- // caller will deallocate the entire stack and the callee still expects its
- // arguments to begin at SP+0. Completely unused for non-tail calls.
- int FPDiff = 0;
-
- if (IsTailCall && !IsSibCall) {
- unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
-
- // FPDiff will be negative if this tail call requires more space than we
- // would automatically have in our incoming argument space. Positive if we
- // can actually shrink the stack.
- FPDiff = NumReusableBytes - NumBytes;
-
- // The stack pointer must be 16-byte aligned at all times it's used for a
- // memory operation, which in practice means at *all* times and in
- // particular across call boundaries. Therefore our own arguments started at
- // a 16-byte aligned SP and the delta applied for the tail call should
- // satisfy the same constraint.
- assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
- }
-
- if (!IsSibCall)
- Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
- dl);
-
- SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, AArch64::XSP,
- getPointerTy());
-
- SmallVector<SDValue, 8> MemOpChains;
- SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
-
- for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
- CCValAssign &VA = ArgLocs[i];
- ISD::ArgFlagsTy Flags = Outs[i].Flags;
- SDValue Arg = OutVals[i];
-
- // Callee does the actual widening, so all extensions just use an implicit
- // definition of the rest of the Loc. Aesthetically, this would be nicer as
- // an ANY_EXTEND, but that isn't valid for floating-point types and this
- // alternative works on integer types too.
- switch (VA.getLocInfo()) {
- default: llvm_unreachable("Unknown loc info!");
- case CCValAssign::Full: break;
- case CCValAssign::SExt:
- case CCValAssign::ZExt:
- case CCValAssign::AExt:
- case CCValAssign::FPExt: {
- unsigned SrcSize = VA.getValVT().getSizeInBits();
- unsigned SrcSubReg;
-
- switch (SrcSize) {
- case 8: SrcSubReg = AArch64::sub_8; break;
- case 16: SrcSubReg = AArch64::sub_16; break;
- case 32: SrcSubReg = AArch64::sub_32; break;
- case 64: SrcSubReg = AArch64::sub_64; break;
- default: llvm_unreachable("Unexpected argument promotion");
- }
-
- Arg = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
- VA.getLocVT(),
- DAG.getUNDEF(VA.getLocVT()),
- Arg,
- DAG.getTargetConstant(SrcSubReg, MVT::i32)),
- 0);
-
- break;
- }
- case CCValAssign::BCvt:
- Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
- break;
- }
-
- if (VA.isRegLoc()) {
- // A normal register (sub-) argument. For now we just note it down because
- // we want to copy things into registers as late as possible to avoid
- // register-pressure (and possibly worse).
- RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
- continue;
- }
-
- assert(VA.isMemLoc() && "unexpected argument location");
-
- SDValue DstAddr;
- MachinePointerInfo DstInfo;
- if (IsTailCall) {
- uint32_t OpSize = Flags.isByVal() ? Flags.getByValSize() :
- VA.getLocVT().getSizeInBits();
- OpSize = (OpSize + 7) / 8;
- int32_t Offset = VA.getLocMemOffset() + FPDiff;
- int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
-
- DstAddr = DAG.getFrameIndex(FI, getPointerTy());
- DstInfo = MachinePointerInfo::getFixedStack(FI);
-
- // Make sure any stack arguments overlapping with where we're storing are
- // loaded before this eventual operation. Otherwise they'll be clobbered.
- Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
- } else {
- uint32_t OpSize = Flags.isByVal() ? Flags.getByValSize()*8 :
- VA.getLocVT().getSizeInBits();
- OpSize = (OpSize + 7) / 8;
- uint32_t BEAlign = 0;
- if (OpSize < 8 && !getSubtarget()->isLittle())
- BEAlign = 8-OpSize;
- SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + BEAlign);
-
- DstAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
- DstInfo = MachinePointerInfo::getStack(VA.getLocMemOffset());
- }
-
- if (Flags.isByVal()) {
- SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i64);
- SDValue Cpy = DAG.getMemcpy(Chain, dl, DstAddr, Arg, SizeNode,
- Flags.getByValAlign(),
- /*isVolatile = */ false,
- /*alwaysInline = */ false,
- DstInfo, MachinePointerInfo());
- MemOpChains.push_back(Cpy);
- } else {
- // Normal stack argument, put it where it's needed.
- SDValue Store = DAG.getStore(Chain, dl, Arg, DstAddr, DstInfo,
- false, false, 0);
- MemOpChains.push_back(Store);
- }
- }
-
- // The loads and stores generated above shouldn't clash with each
- // other. Combining them with this TokenFactor notes that fact for the rest of
- // the backend.
- if (!MemOpChains.empty())
- Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
-
- // Most of the rest of the instructions need to be glued together; we don't
- // want assignments to actual registers used by a call to be rearranged by a
- // well-meaning scheduler.
- SDValue InFlag;
-
- for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
- Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
- RegsToPass[i].second, InFlag);
- InFlag = Chain.getValue(1);
- }
-
- // The linker is responsible for inserting veneers when necessary to put a
- // function call destination in range, so we don't need to bother with a
- // wrapper here.
- if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
- const GlobalValue *GV = G->getGlobal();
- Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy());
- } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
- const char *Sym = S->getSymbol();
- Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
- }
-
- // We don't usually want to end the call-sequence here because we would tidy
- // the frame up *after* the call, however in the ABI-changing tail-call case
- // we've carefully laid out the parameters so that when sp is reset they'll be
- // in the correct location.
- if (IsTailCall && !IsSibCall) {
- Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
- DAG.getIntPtrConstant(0, true), InFlag, dl);
- InFlag = Chain.getValue(1);
- }
-
- // We produce the following DAG scheme for the actual call instruction:
- // (AArch64Call Chain, Callee, reg1, ..., regn, preserveMask, inflag?
- //
- // Most arguments aren't going to be used and just keep the values live as
- // far as LLVM is concerned. It's expected to be selected as simply "bl
- // callee" (for a direct, non-tail call).
- std::vector<SDValue> Ops;
- Ops.push_back(Chain);
- Ops.push_back(Callee);
-
- if (IsTailCall) {
- // Each tail call may have to adjust the stack by a different amount, so
- // this information must travel along with the operation for eventual
- // consumption by emitEpilogue.
- Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32));
- }
-
- for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
- Ops.push_back(DAG.getRegister(RegsToPass[i].first,
- RegsToPass[i].second.getValueType()));
-
-
- // Add a register mask operand representing the call-preserved registers. This
- // is used later in codegen to constrain register-allocation.
- const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
- const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
- assert(Mask && "Missing call preserved mask for calling convention");
- Ops.push_back(DAG.getRegisterMask(Mask));
-
- // If we needed glue, put it in as the last argument.
- if (InFlag.getNode())
- Ops.push_back(InFlag);
-
- SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
-
- if (IsTailCall) {
- return DAG.getNode(AArch64ISD::TC_RETURN, dl, NodeTys, Ops);
- }
-
- Chain = DAG.getNode(AArch64ISD::Call, dl, NodeTys, Ops);
- InFlag = Chain.getValue(1);
-
- // Now we can reclaim the stack, just as well do it before working out where
- // our return value is.
- if (!IsSibCall) {
- uint64_t CalleePopBytes
- = DoesCalleeRestoreStack(CallConv, TailCallOpt) ? NumBytes : 0;
-
- Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
- DAG.getIntPtrConstant(CalleePopBytes, true),
- InFlag, dl);
- InFlag = Chain.getValue(1);
- }
-
- return LowerCallResult(Chain, InFlag, CallConv,
- IsVarArg, Ins, dl, DAG, InVals);
-}
-
-SDValue
-AArch64TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
- CallingConv::ID CallConv, bool IsVarArg,
- const SmallVectorImpl<ISD::InputArg> &Ins,
- SDLoc dl, SelectionDAG &DAG,
- SmallVectorImpl<SDValue> &InVals) const {
- // Assign locations to each value returned by this call.
- SmallVector<CCValAssign, 16> RVLocs;
- CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
- getTargetMachine(), RVLocs, *DAG.getContext());
- CCInfo.AnalyzeCallResult(Ins, CCAssignFnForNode(CallConv));
-
- for (unsigned i = 0; i != RVLocs.size(); ++i) {
- CCValAssign VA = RVLocs[i];
-
- // Return values that are too big to fit into registers should use an sret
- // pointer, so this can be a lot simpler than the main argument code.
- assert(VA.isRegLoc() && "Memory locations not expected for call return");
-
- SDValue Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
- InFlag);
- Chain = Val.getValue(1);
- InFlag = Val.getValue(2);
-
- switch (VA.getLocInfo()) {
- default: llvm_unreachable("Unknown loc info!");
- case CCValAssign::Full: break;
- case CCValAssign::BCvt:
- Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
- break;
- case CCValAssign::ZExt:
- case CCValAssign::SExt:
- case CCValAssign::AExt:
- // Floating-point arguments only get extended/truncated if they're going
- // in memory, so using the integer operation is acceptable here.
- Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
- break;
- }
-
- InVals.push_back(Val);
- }
-
- return Chain;
-}
-
-bool
-AArch64TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
- CallingConv::ID CalleeCC,
- bool IsVarArg,
- bool IsCalleeStructRet,
- bool IsCallerStructRet,
- const SmallVectorImpl<ISD::OutputArg> &Outs,
- const SmallVectorImpl<SDValue> &OutVals,
- const SmallVectorImpl<ISD::InputArg> &Ins,
- SelectionDAG& DAG) const {
-
- // For CallingConv::C this function knows whether the ABI needs
- // changing. That's not true for other conventions so they will have to opt in
- // manually.
- if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
- return false;
-
- const MachineFunction &MF = DAG.getMachineFunction();
- const Function *CallerF = MF.getFunction();
- CallingConv::ID CallerCC = CallerF->getCallingConv();
- bool CCMatch = CallerCC == CalleeCC;
-
- // Byval parameters hand the function a pointer directly into the stack area
- // we want to reuse during a tail call. Working around this *is* possible (see
- // X86) but less efficient and uglier in LowerCall.
- for (Function::const_arg_iterator i = CallerF->arg_begin(),
- e = CallerF->arg_end(); i != e; ++i)
- if (i->hasByValAttr())
- return false;
-
- if (getTargetMachine().Options.GuaranteedTailCallOpt) {
- if (IsTailCallConvention(CalleeCC) && CCMatch)
- return true;
- return false;
- }
-
- // Now we search for cases where we can use a tail call without changing the
- // ABI. Sibcall is used in some places (particularly gcc) to refer to this
- // concept.
-
- // I want anyone implementing a new calling convention to think long and hard
- // about this assert.
- assert((!IsVarArg || CalleeCC == CallingConv::C)
- && "Unexpected variadic calling convention");
-
- if (IsVarArg && !Outs.empty()) {
- // At least two cases here: if caller is fastcc then we can't have any
- // memory arguments (we'd be expected to clean up the stack afterwards). If
- // caller is C then we could potentially use its argument area.
-
- // FIXME: for now we take the most conservative of these in both cases:
- // disallow all variadic memory operands.
- SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(),
- getTargetMachine(), ArgLocs, *DAG.getContext());
-
- CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
- for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
- if (!ArgLocs[i].isRegLoc())
- return false;
- }
-
- // If the calling conventions do not match, then we'd better make sure the
- // results are returned in the same way as what the caller expects.
- if (!CCMatch) {
- SmallVector<CCValAssign, 16> RVLocs1;
- CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
- getTargetMachine(), RVLocs1, *DAG.getContext());
- CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC));
-
- SmallVector<CCValAssign, 16> RVLocs2;
- CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
- getTargetMachine(), RVLocs2, *DAG.getContext());
- CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC));
-
- if (RVLocs1.size() != RVLocs2.size())
- return false;
- for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
- if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
- return false;
- if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
- return false;
- if (RVLocs1[i].isRegLoc()) {
- if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
- return false;
- } else {
- if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
- return false;
- }
- }
- }
-
- // Nothing more to check if the callee is taking no arguments
- if (Outs.empty())
- return true;
-
- SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(),
- getTargetMachine(), ArgLocs, *DAG.getContext());
-
- CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
-
- const AArch64MachineFunctionInfo *FuncInfo
- = MF.getInfo<AArch64MachineFunctionInfo>();
-
- // If the stack arguments for this call would fit into our own save area then
- // the call can be made tail.
- return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
-}
-
-bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
- bool TailCallOpt) const {
- return CallCC == CallingConv::Fast && TailCallOpt;
-}
-
-bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
- return CallCC == CallingConv::Fast;
-}
-
-SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
- SelectionDAG &DAG,
- MachineFrameInfo *MFI,
- int ClobberedFI) const {
- SmallVector<SDValue, 8> ArgChains;
- int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
- int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
-
- // Include the original chain at the beginning of the list. When this is
- // used by target LowerCall hooks, this helps legalize find the
- // CALLSEQ_BEGIN node.
- ArgChains.push_back(Chain);
-
- // Add a chain value for each stack argument corresponding
- for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
- UE = DAG.getEntryNode().getNode()->use_end(); U != UE; ++U)
- if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
- if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
- if (FI->getIndex() < 0) {
- int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
- int64_t InLastByte = InFirstByte;
- InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
-
- if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
- (FirstByte <= InFirstByte && InFirstByte <= LastByte))
- ArgChains.push_back(SDValue(L, 1));
- }
-
- // Build a tokenfactor for all the chains.
- return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
-}
-
-static A64CC::CondCodes IntCCToA64CC(ISD::CondCode CC) {
- switch (CC) {
- case ISD::SETEQ: return A64CC::EQ;
- case ISD::SETGT: return A64CC::GT;
- case ISD::SETGE: return A64CC::GE;
- case ISD::SETLT: return A64CC::LT;
- case ISD::SETLE: return A64CC::LE;
- case ISD::SETNE: return A64CC::NE;
- case ISD::SETUGT: return A64CC::HI;
- case ISD::SETUGE: return A64CC::HS;
- case ISD::SETULT: return A64CC::LO;
- case ISD::SETULE: return A64CC::LS;
- default: llvm_unreachable("Unexpected condition code");
- }
-}
-
-bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Val) const {
- // icmp is implemented using adds/subs immediate, which take an unsigned
- // 12-bit immediate, optionally shifted left by 12 bits.
-
- // Symmetric by using adds/subs
- if (Val < 0)
- Val = -Val;
-
- return (Val & ~0xfff) == 0 || (Val & ~0xfff000) == 0;
-}
-
-SDValue AArch64TargetLowering::getSelectableIntSetCC(SDValue LHS, SDValue RHS,
- ISD::CondCode CC, SDValue &A64cc,
- SelectionDAG &DAG, SDLoc &dl) const {
- if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
- int64_t C = 0;
- EVT VT = RHSC->getValueType(0);
- bool knownInvalid = false;
-
- // I'm not convinced the rest of LLVM handles these edge cases properly, but
- // we can at least get it right.
- if (isSignedIntSetCC(CC)) {
- C = RHSC->getSExtValue();
- } else if (RHSC->getZExtValue() > INT64_MAX) {
- // A 64-bit constant not representable by a signed 64-bit integer is far
- // too big to fit into a SUBS immediate anyway.
- knownInvalid = true;
- } else {
- C = RHSC->getZExtValue();
- }
-
- if (!knownInvalid && !isLegalICmpImmediate(C)) {
- // Constant does not fit, try adjusting it by one?
- switch (CC) {
- default: break;
- case ISD::SETLT:
- case ISD::SETGE:
- if (isLegalICmpImmediate(C-1)) {
- CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
- RHS = DAG.getConstant(C-1, VT);
- }
- break;
- case ISD::SETULT:
- case ISD::SETUGE:
- if (isLegalICmpImmediate(C-1)) {
- CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
- RHS = DAG.getConstant(C-1, VT);
- }
- break;
- case ISD::SETLE:
- case ISD::SETGT:
- if (isLegalICmpImmediate(C+1)) {
- CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
- RHS = DAG.getConstant(C+1, VT);
- }
- break;
- case ISD::SETULE:
- case ISD::SETUGT:
- if (isLegalICmpImmediate(C+1)) {
- CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
- RHS = DAG.getConstant(C+1, VT);
- }
- break;
- }
- }
- }
-
- A64CC::CondCodes CondCode = IntCCToA64CC(CC);
- A64cc = DAG.getConstant(CondCode, MVT::i32);
- return DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
- DAG.getCondCode(CC));
-}
-
-static A64CC::CondCodes FPCCToA64CC(ISD::CondCode CC,
- A64CC::CondCodes &Alternative) {
- A64CC::CondCodes CondCode = A64CC::Invalid;
- Alternative = A64CC::Invalid;
-
- switch (CC) {
- default: llvm_unreachable("Unknown FP condition!");
- case ISD::SETEQ:
- case ISD::SETOEQ: CondCode = A64CC::EQ; break;
- case ISD::SETGT:
- case ISD::SETOGT: CondCode = A64CC::GT; break;
- case ISD::SETGE:
- case ISD::SETOGE: CondCode = A64CC::GE; break;
- case ISD::SETOLT: CondCode = A64CC::MI; break;
- case ISD::SETOLE: CondCode = A64CC::LS; break;
- case ISD::SETONE: CondCode = A64CC::MI; Alternative = A64CC::GT; break;
- case ISD::SETO: CondCode = A64CC::VC; break;
- case ISD::SETUO: CondCode = A64CC::VS; break;
- case ISD::SETUEQ: CondCode = A64CC::EQ; Alternative = A64CC::VS; break;
- case ISD::SETUGT: CondCode = A64CC::HI; break;
- case ISD::SETUGE: CondCode = A64CC::PL; break;
- case ISD::SETLT:
- case ISD::SETULT: CondCode = A64CC::LT; break;
- case ISD::SETLE:
- case ISD::SETULE: CondCode = A64CC::LE; break;
- case ISD::SETNE:
- case ISD::SETUNE: CondCode = A64CC::NE; break;
- }
- return CondCode;
-}
-
-SDValue
-AArch64TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
- SDLoc DL(Op);
- EVT PtrVT = getPointerTy();
- const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
-
- switch(getTargetMachine().getCodeModel()) {
- case CodeModel::Small:
- // The most efficient code is PC-relative anyway for the small memory model,
- // so we don't need to worry about relocation model.
- return DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
- DAG.getTargetBlockAddress(BA, PtrVT, 0,
- AArch64II::MO_NO_FLAG),
- DAG.getTargetBlockAddress(BA, PtrVT, 0,
- AArch64II::MO_LO12),
- DAG.getConstant(/*Alignment=*/ 4, MVT::i32));
- case CodeModel::Large:
- return DAG.getNode(
- AArch64ISD::WrapperLarge, DL, PtrVT,
- DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G3),
- DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G2_NC),
- DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G1_NC),
- DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G0_NC));
- default:
- llvm_unreachable("Only small and large code models supported now");
- }
-}
-
-
-// (BRCOND chain, val, dest)
-SDValue
-AArch64TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
- SDLoc dl(Op);
- SDValue Chain = Op.getOperand(0);
- SDValue TheBit = Op.getOperand(1);
- SDValue DestBB = Op.getOperand(2);
-
- // AArch64 BooleanContents is the default UndefinedBooleanContent, which means
- // that as the consumer we are responsible for ignoring rubbish in higher
- // bits.
- TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit,
- DAG.getConstant(1, MVT::i32));
-
- SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit,
- DAG.getConstant(0, TheBit.getValueType()),
- DAG.getCondCode(ISD::SETNE));
-
- return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other, Chain,
- A64CMP, DAG.getConstant(A64CC::NE, MVT::i32),
- DestBB);
-}
-
-// (BR_CC chain, condcode, lhs, rhs, dest)
-SDValue
-AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
- SDLoc dl(Op);
- SDValue Chain = Op.getOperand(0);
- ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
- SDValue LHS = Op.getOperand(2);
- SDValue RHS = Op.getOperand(3);
- SDValue DestBB = Op.getOperand(4);
-
- if (LHS.getValueType() == MVT::f128) {
- // f128 comparisons are lowered to runtime calls by a routine which sets
- // LHS, RHS and CC appropriately for the rest of this function to continue.
- softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
-
- // If softenSetCCOperands returned a scalar, we need to compare the result
- // against zero to select between true and false values.
- if (!RHS.getNode()) {
- RHS = DAG.getConstant(0, LHS.getValueType());
- CC = ISD::SETNE;
- }
- }
-
- if (LHS.getValueType().isInteger()) {
- SDValue A64cc;
-
- // Integers are handled in a separate function because the combinations of
- // immediates and tests can get hairy and we may want to fiddle things.
- SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
-
- return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
- Chain, CmpOp, A64cc, DestBB);
- }
-
- // Note that some LLVM floating-point CondCodes can't be lowered to a single
- // conditional branch, hence FPCCToA64CC can set a second test, where either
- // passing is sufficient.
- A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
- CondCode = FPCCToA64CC(CC, Alternative);
- SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
- SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
- DAG.getCondCode(CC));
- SDValue A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
- Chain, SetCC, A64cc, DestBB);
-
- if (Alternative != A64CC::Invalid) {
- A64cc = DAG.getConstant(Alternative, MVT::i32);
- A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
- A64BR_CC, SetCC, A64cc, DestBB);
-
- }
-
- return A64BR_CC;
-}
-
-SDValue
-AArch64TargetLowering::LowerF128ToCall(SDValue Op, SelectionDAG &DAG,
- RTLIB::Libcall Call) const {
- ArgListTy Args;
- ArgListEntry Entry;
- for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
- EVT ArgVT = Op.getOperand(i).getValueType();
- Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
- Entry.Node = Op.getOperand(i); Entry.Ty = ArgTy;
- Entry.isSExt = false;
- Entry.isZExt = false;
- Args.push_back(Entry);
- }
- SDValue Callee = DAG.getExternalSymbol(getLibcallName(Call), getPointerTy());
-
- Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext());
-
- // By default, the input chain to this libcall is the entry node of the
- // function. If the libcall is going to be emitted as a tail call then
- // isUsedByReturnOnly will change it to the right chain if the return
- // node which is being folded has a non-entry input chain.
- SDValue InChain = DAG.getEntryNode();
-
- // isTailCall may be true since the callee does not reference caller stack
- // frame. Check if it's in the right position.
- SDValue TCChain = InChain;
- bool isTailCall = isInTailCallPosition(DAG, Op.getNode(), TCChain);
- if (isTailCall)
- InChain = TCChain;
-
- TargetLowering::CallLoweringInfo CLI(DAG);
- CLI.setDebugLoc(SDLoc(Op)).setChain(InChain)
- .setCallee(getLibcallCallingConv(Call), RetTy, Callee, &Args, 0)
- .setTailCall(isTailCall);
-
- std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
-
- if (!CallInfo.second.getNode())
- // It's a tailcall, return the chain (which is the DAG root).
- return DAG.getRoot();
-
- return CallInfo.first;
-}
-
-SDValue
-AArch64TargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
- if (Op.getOperand(0).getValueType() != MVT::f128) {
- // It's legal except when f128 is involved
- return Op;
- }
-
- RTLIB::Libcall LC;
- LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
-
- SDValue SrcVal = Op.getOperand(0);
- return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
- /*isSigned*/ false, SDLoc(Op)).first;
-}
-
-SDValue
-AArch64TargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
- assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
-
- RTLIB::Libcall LC;
- LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
-
- return LowerF128ToCall(Op, DAG, LC);
-}
-
-static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG,
- bool IsSigned) {
- SDLoc dl(Op);
- EVT VT = Op.getValueType();
- SDValue Vec = Op.getOperand(0);
- EVT OpVT = Vec.getValueType();
- unsigned Opc = IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
-
- if (VT.getVectorNumElements() == 1) {
- assert(OpVT == MVT::v1f64 && "Unexpected vector type!");
- if (VT.getSizeInBits() == OpVT.getSizeInBits())
- return Op;
- return DAG.UnrollVectorOp(Op.getNode());
- }
-
- if (VT.getSizeInBits() > OpVT.getSizeInBits()) {
- assert(Vec.getValueType() == MVT::v2f32 && VT == MVT::v2i64 &&
- "Unexpected vector type!");
- Vec = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v2f64, Vec);
- return DAG.getNode(Opc, dl, VT, Vec);
- } else if (VT.getSizeInBits() < OpVT.getSizeInBits()) {
- EVT CastVT = EVT::getIntegerVT(*DAG.getContext(),
- OpVT.getVectorElementType().getSizeInBits());
- CastVT =
- EVT::getVectorVT(*DAG.getContext(), CastVT, VT.getVectorNumElements());
- Vec = DAG.getNode(Opc, dl, CastVT, Vec);
- return DAG.getNode(ISD::TRUNCATE, dl, VT, Vec);
- }
- return DAG.getNode(Opc, dl, VT, Vec);
-}
-
-static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
- // We custom lower concat_vectors with 4, 8, or 16 operands that are all the
- // same operand and of type v1* using the DUP instruction.
- unsigned NumOps = Op->getNumOperands();
- if (NumOps == 2) {
- assert(Op.getValueType().getSizeInBits() == 128 && "unexpected concat");
- return Op;
- }
-
- if (NumOps != 4 && NumOps != 8 && NumOps != 16)
- return SDValue();
-
- // Must be a single value for VDUP.
- SDValue Op0 = Op.getOperand(0);
- for (unsigned i = 1; i < NumOps; ++i) {
- SDValue OpN = Op.getOperand(i);
- if (Op0 != OpN)
- return SDValue();
- }
-
- // Verify the value type.
- EVT EltVT = Op0.getValueType();
- switch (NumOps) {
- default: llvm_unreachable("Unexpected number of operands");
- case 4:
- if (EltVT != MVT::v1i16 && EltVT != MVT::v1i32)
- return SDValue();
- break;
- case 8:
- if (EltVT != MVT::v1i8 && EltVT != MVT::v1i16)
- return SDValue();
- break;
- case 16:
- if (EltVT != MVT::v1i8)
- return SDValue();
- break;
- }
-
- SDLoc DL(Op);
- EVT VT = Op.getValueType();
- // VDUP produces better code for constants.
- if (Op0->getOpcode() == ISD::BUILD_VECTOR)
- return DAG.getNode(AArch64ISD::NEON_VDUP, DL, VT, Op0->getOperand(0));
- return DAG.getNode(AArch64ISD::NEON_VDUPLANE, DL, VT, Op0,
- DAG.getConstant(0, MVT::i64));
-}
-
-SDValue
-AArch64TargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
- bool IsSigned) const {
- if (Op.getValueType().isVector())
- return LowerVectorFP_TO_INT(Op, DAG, IsSigned);
- if (Op.getOperand(0).getValueType() != MVT::f128) {
- // It's legal except when f128 is involved
- return Op;
- }
-
- RTLIB::Libcall LC;
- if (IsSigned)
- LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
- else
- LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
-
- return LowerF128ToCall(Op, DAG, LC);
-}
-
-SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
- MachineFunction &MF = DAG.getMachineFunction();
- MachineFrameInfo *MFI = MF.getFrameInfo();
- MFI->setReturnAddressIsTaken(true);
-
- if (verifyReturnAddressArgumentIsConstant(Op, DAG))
- return SDValue();
-
- EVT VT = Op.getValueType();
- SDLoc dl(Op);
- unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
- if (Depth) {
- SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
- SDValue Offset = DAG.getConstant(8, MVT::i64);
- return DAG.getLoad(VT, dl, DAG.getEntryNode(),
- DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
- MachinePointerInfo(), false, false, false, 0);
- }
-
- // Return X30, which contains the return address. Mark it an implicit live-in.
- unsigned Reg = MF.addLiveIn(AArch64::X30, getRegClassFor(MVT::i64));
- return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, MVT::i64);
-}
-
-
-SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG)
- const {
- MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
- MFI->setFrameAddressIsTaken(true);
-
- EVT VT = Op.getValueType();
- SDLoc dl(Op);
- unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
- unsigned FrameReg = AArch64::X29;
- SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
- while (Depth--)
- FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
- MachinePointerInfo(),
- false, false, false, 0);
- return FrameAddr;
-}
-
-// FIXME? Maybe this could be a TableGen attribute on some registers and
-// this table could be generated automatically from RegInfo.
-unsigned AArch64TargetLowering::getRegisterByName(const char* RegName,
- EVT VT) const {
- unsigned Reg = StringSwitch<unsigned>(RegName)
- .Case("sp", AArch64::XSP)
- .Default(0);
- if (Reg)
- return Reg;
- report_fatal_error("Invalid register name global variable");
-}
-
-SDValue
-AArch64TargetLowering::LowerGlobalAddressELFLarge(SDValue Op,
- SelectionDAG &DAG) const {
- assert(getTargetMachine().getCodeModel() == CodeModel::Large);
- assert(getTargetMachine().getRelocationModel() == Reloc::Static);
-
- EVT PtrVT = getPointerTy();
- SDLoc dl(Op);
- const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
- const GlobalValue *GV = GN->getGlobal();
-
- SDValue GlobalAddr = DAG.getNode(
- AArch64ISD::WrapperLarge, dl, PtrVT,
- DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G3),
- DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G2_NC),
- DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G1_NC),
- DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G0_NC));
-
- if (GN->getOffset() != 0)
- return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalAddr,
- DAG.getConstant(GN->getOffset(), PtrVT));
-
- return GlobalAddr;
-}
-
-SDValue
-AArch64TargetLowering::LowerGlobalAddressELFSmall(SDValue Op,
- SelectionDAG &DAG) const {
- assert(getTargetMachine().getCodeModel() == CodeModel::Small);
-
- EVT PtrVT = getPointerTy();
- SDLoc dl(Op);
- const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
- const GlobalValue *GV = GN->getGlobal();
- unsigned Alignment = GV->getAlignment();
- Reloc::Model RelocM = getTargetMachine().getRelocationModel();
- if (GV->isWeakForLinker() && GV->isDeclaration() && RelocM == Reloc::Static) {
- // Weak undefined symbols can't use ADRP/ADD pair since they should evaluate
- // to zero when they remain undefined. In PIC mode the GOT can take care of
- // this, but in absolute mode we use a constant pool load.
- SDValue PoolAddr;
- PoolAddr = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
- DAG.getTargetConstantPool(GV, PtrVT, 0, 0,
- AArch64II::MO_NO_FLAG),
- DAG.getTargetConstantPool(GV, PtrVT, 0, 0,
- AArch64II::MO_LO12),
- DAG.getConstant(8, MVT::i32));
- SDValue GlobalAddr = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), PoolAddr,
- MachinePointerInfo::getConstantPool(),
- /*isVolatile=*/ false,
- /*isNonTemporal=*/ true,
- /*isInvariant=*/ true, 8);
- if (GN->getOffset() != 0)
- return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalAddr,
- DAG.getConstant(GN->getOffset(), PtrVT));
-
- return GlobalAddr;
- }
-
- if (Alignment == 0) {
- const PointerType *GVPtrTy = cast<PointerType>(GV->getType());
- if (GVPtrTy->getElementType()->isSized()) {
- Alignment
- = getDataLayout()->getABITypeAlignment(GVPtrTy->getElementType());
- } else {
- // Be conservative if we can't guess, not that it really matters:
- // functions and labels aren't valid for loads, and the methods used to
- // actually calculate an address work with any alignment.
- Alignment = 1;
- }
- }
-
- unsigned char HiFixup, LoFixup;
- bool UseGOT = getSubtarget()->GVIsIndirectSymbol(GV, RelocM);
-
- if (UseGOT) {
- HiFixup = AArch64II::MO_GOT;
- LoFixup = AArch64II::MO_GOT_LO12;
- Alignment = 8;
- } else {
- HiFixup = AArch64II::MO_NO_FLAG;
- LoFixup = AArch64II::MO_LO12;
- }
-
- // AArch64's small model demands the following sequence:
- // ADRP x0, somewhere
- // ADD x0, x0, #:lo12:somewhere ; (or LDR directly).
- SDValue GlobalRef = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
- DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
- HiFixup),
- DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
- LoFixup),
- DAG.getConstant(Alignment, MVT::i32));
-
- if (UseGOT) {
- GlobalRef = DAG.getNode(AArch64ISD::GOTLoad, dl, PtrVT, DAG.getEntryNode(),
- GlobalRef);
- }
-
- if (GN->getOffset() != 0)
- return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalRef,
- DAG.getConstant(GN->getOffset(), PtrVT));
-
- return GlobalRef;
-}
-
-SDValue
-AArch64TargetLowering::LowerGlobalAddressELF(SDValue Op,
- SelectionDAG &DAG) const {
- // TableGen doesn't have easy access to the CodeModel or RelocationModel, so
- // we make those distinctions here.
-
- switch (getTargetMachine().getCodeModel()) {
- case CodeModel::Small:
- return LowerGlobalAddressELFSmall(Op, DAG);
- case CodeModel::Large:
- return LowerGlobalAddressELFLarge(Op, DAG);
- default:
- llvm_unreachable("Only small and large code models supported now");
- }
-}
-
-SDValue
-AArch64TargetLowering::LowerConstantPool(SDValue Op,
- SelectionDAG &DAG) const {
- SDLoc DL(Op);
- EVT PtrVT = getPointerTy();
- ConstantPoolSDNode *CN = cast<ConstantPoolSDNode>(Op);
- const Constant *C = CN->getConstVal();
-
- switch(getTargetMachine().getCodeModel()) {
- case CodeModel::Small:
- // The most efficient code is PC-relative anyway for the small memory model,
- // so we don't need to worry about relocation model.
- return DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
- DAG.getTargetConstantPool(C, PtrVT, 0, 0,
- AArch64II::MO_NO_FLAG),
- DAG.getTargetConstantPool(C, PtrVT, 0, 0,
- AArch64II::MO_LO12),
- DAG.getConstant(CN->getAlignment(), MVT::i32));
- case CodeModel::Large:
- return DAG.getNode(
- AArch64ISD::WrapperLarge, DL, PtrVT,
- DAG.getTargetConstantPool(C, PtrVT, 0, 0, AArch64II::MO_ABS_G3),
- DAG.getTargetConstantPool(C, PtrVT, 0, 0, AArch64II::MO_ABS_G2_NC),
- DAG.getTargetConstantPool(C, PtrVT, 0, 0, AArch64II::MO_ABS_G1_NC),
- DAG.getTargetConstantPool(C, PtrVT, 0, 0, AArch64II::MO_ABS_G0_NC));
- default:
- llvm_unreachable("Only small and large code models supported now");
- }
-}
-
-SDValue AArch64TargetLowering::LowerTLSDescCall(SDValue SymAddr,
- SDValue DescAddr,
- SDLoc DL,
- SelectionDAG &DAG) const {
- EVT PtrVT = getPointerTy();
-
- // The function we need to call is simply the first entry in the GOT for this
- // descriptor, load it in preparation.
- SDValue Func, Chain;
- Func = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(),
- DescAddr);
-
- // The function takes only one argument: the address of the descriptor itself
- // in X0.
- SDValue Glue;
- Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue);
- Glue = Chain.getValue(1);
-
- // Finally, there's a special calling-convention which means that the lookup
- // must preserve all registers (except X0, obviously).
- const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
- const AArch64RegisterInfo *A64RI
- = static_cast<const AArch64RegisterInfo *>(TRI);
- const uint32_t *Mask = A64RI->getTLSDescCallPreservedMask();
-
- // We're now ready to populate the argument list, as with a normal call:
- std::vector<SDValue> Ops;
- Ops.push_back(Chain);
- Ops.push_back(Func);
- Ops.push_back(SymAddr);
- Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT));
- Ops.push_back(DAG.getRegisterMask(Mask));
- Ops.push_back(Glue);
-
- SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
- Chain = DAG.getNode(AArch64ISD::TLSDESCCALL, DL, NodeTys, Ops);
- Glue = Chain.getValue(1);
-
- // After the call, the offset from TPIDR_EL0 is in X0, copy it out and pass it
- // back to the generic handling code.
- return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
-}
-
-SDValue
-AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
- SelectionDAG &DAG) const {
- assert(getSubtarget()->isTargetELF() &&
- "TLS not implemented for non-ELF targets");
- assert(getTargetMachine().getCodeModel() == CodeModel::Small
- && "TLS only supported in small memory model");
- const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
-
- TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
-
- SDValue TPOff;
- EVT PtrVT = getPointerTy();
- SDLoc DL(Op);
- const GlobalValue *GV = GA->getGlobal();
-
- SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
-
- if (Model == TLSModel::InitialExec) {
- TPOff = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
- DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
- AArch64II::MO_GOTTPREL),
- DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
- AArch64II::MO_GOTTPREL_LO12),
- DAG.getConstant(8, MVT::i32));
- TPOff = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(),
- TPOff);
- } else if (Model == TLSModel::LocalExec) {
- SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
- AArch64II::MO_TPREL_G1);
- SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
- AArch64II::MO_TPREL_G0_NC);
-
- TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar,
- DAG.getTargetConstant(1, MVT::i32)), 0);
- TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT,
- TPOff, LoVar,
- DAG.getTargetConstant(0, MVT::i32)), 0);
- } else if (Model == TLSModel::GeneralDynamic) {
- // Accesses used in this sequence go via the TLS descriptor which lives in
- // the GOT. Prepare an address we can use to handle this.
- SDValue HiDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
- AArch64II::MO_TLSDESC);
- SDValue LoDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
- AArch64II::MO_TLSDESC_LO12);
- SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
- HiDesc, LoDesc,
- DAG.getConstant(8, MVT::i32));
- SDValue SymAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0);
-
- TPOff = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG);
- } else if (Model == TLSModel::LocalDynamic) {
- // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
- // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
- // the beginning of the module's TLS region, followed by a DTPREL offset
- // calculation.
-
- // These accesses will need deduplicating if there's more than one.
- AArch64MachineFunctionInfo* MFI = DAG.getMachineFunction()
- .getInfo<AArch64MachineFunctionInfo>();
- MFI->incNumLocalDynamicTLSAccesses();
-
-
- // Get the location of _TLS_MODULE_BASE_:
- SDValue HiDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
- AArch64II::MO_TLSDESC);
- SDValue LoDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
- AArch64II::MO_TLSDESC_LO12);
- SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
- HiDesc, LoDesc,
- DAG.getConstant(8, MVT::i32));
- SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT);
-
- ThreadBase = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG);
-
- // Get the variable's offset from _TLS_MODULE_BASE_
- SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
- AArch64II::MO_DTPREL_G1);
- SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
- AArch64II::MO_DTPREL_G0_NC);
-
- TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar,
- DAG.getTargetConstant(0, MVT::i32)), 0);
- TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT,
- TPOff, LoVar,
- DAG.getTargetConstant(0, MVT::i32)), 0);
- } else
- llvm_unreachable("Unsupported TLS access model");
-
-
- return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
-}
-
-static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG,
- bool IsSigned) {
- SDLoc dl(Op);
- EVT VT = Op.getValueType();
- SDValue Vec = Op.getOperand(0);
- unsigned Opc = IsSigned ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
-
- if (VT.getVectorNumElements() == 1) {
- assert(VT == MVT::v1f64 && "Unexpected vector type!");
- if (VT.getSizeInBits() == Vec.getValueSizeInBits())
- return Op;
- return DAG.UnrollVectorOp(Op.getNode());
- }
-
- if (VT.getSizeInBits() < Vec.getValueSizeInBits()) {
- assert(Vec.getValueType() == MVT::v2i64 && VT == MVT::v2f32 &&
- "Unexpected vector type!");
- Vec = DAG.getNode(Opc, dl, MVT::v2f64, Vec);
- return DAG.getNode(ISD::FP_ROUND, dl, VT, Vec, DAG.getIntPtrConstant(0));
- } else if (VT.getSizeInBits() > Vec.getValueSizeInBits()) {
- unsigned CastOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
- EVT CastVT = EVT::getIntegerVT(*DAG.getContext(),
- VT.getVectorElementType().getSizeInBits());
- CastVT =
- EVT::getVectorVT(*DAG.getContext(), CastVT, VT.getVectorNumElements());
- Vec = DAG.getNode(CastOpc, dl, CastVT, Vec);
- }
-
- return DAG.getNode(Opc, dl, VT, Vec);
-}
-
-SDValue
-AArch64TargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG,
- bool IsSigned) const {
- if (Op.getValueType().isVector())
- return LowerVectorINT_TO_FP(Op, DAG, IsSigned);
- if (Op.getValueType() != MVT::f128) {
- // Legal for everything except f128.
- return Op;
- }
-
- RTLIB::Libcall LC;
- if (IsSigned)
- LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
- else
- LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
-
- return LowerF128ToCall(Op, DAG, LC);
-}
-
-
-SDValue
-AArch64TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
- JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
- SDLoc dl(JT);
- EVT PtrVT = getPointerTy();
-
- // When compiling PIC, jump tables get put in the code section so a static
- // relocation-style is acceptable for both cases.
- switch (getTargetMachine().getCodeModel()) {
- case CodeModel::Small:
- return DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
- DAG.getTargetJumpTable(JT->getIndex(), PtrVT),
- DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
- AArch64II::MO_LO12),
- DAG.getConstant(1, MVT::i32));
- case CodeModel::Large:
- return DAG.getNode(
- AArch64ISD::WrapperLarge, dl, PtrVT,
- DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G3),
- DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G2_NC),
- DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G1_NC),
- DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G0_NC));
- default:
- llvm_unreachable("Only small and large code models supported now");
- }
-}
-
-// (SELECT testbit, iftrue, iffalse)
-SDValue
-AArch64TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
- SDLoc dl(Op);
- SDValue TheBit = Op.getOperand(0);
- SDValue IfTrue = Op.getOperand(1);
- SDValue IfFalse = Op.getOperand(2);
-
- // AArch64 BooleanContents is the default UndefinedBooleanContent, which means
- // that as the consumer we are responsible for ignoring rubbish in higher
- // bits.
- TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit,
- DAG.getConstant(1, MVT::i32));
- SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit,
- DAG.getConstant(0, TheBit.getValueType()),
- DAG.getCondCode(ISD::SETNE));
-
- return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
- A64CMP, IfTrue, IfFalse,
- DAG.getConstant(A64CC::NE, MVT::i32));
-}
-
-static SDValue LowerVectorSETCC(SDValue Op, SelectionDAG &DAG) {
- SDLoc DL(Op);
- SDValue LHS = Op.getOperand(0);
- SDValue RHS = Op.getOperand(1);
- ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
- EVT VT = Op.getValueType();
- bool Invert = false;
- SDValue Op0, Op1;
- unsigned Opcode;
-
- if (LHS.getValueType().isInteger()) {
-
- // Attempt to use Vector Integer Compare Mask Test instruction.
- // TST = icmp ne (and (op0, op1), zero).
- if (CC == ISD::SETNE) {
- if (((LHS.getOpcode() == ISD::AND) &&
- ISD::isBuildVectorAllZeros(RHS.getNode())) ||
- ((RHS.getOpcode() == ISD::AND) &&
- ISD::isBuildVectorAllZeros(LHS.getNode()))) {
-
- SDValue AndOp = (LHS.getOpcode() == ISD::AND) ? LHS : RHS;
- SDValue NewLHS = DAG.getNode(ISD::BITCAST, DL, VT, AndOp.getOperand(0));
- SDValue NewRHS = DAG.getNode(ISD::BITCAST, DL, VT, AndOp.getOperand(1));
- return DAG.getNode(AArch64ISD::NEON_TST, DL, VT, NewLHS, NewRHS);
- }
- }
-
- // Attempt to use Vector Integer Compare Mask against Zero instr (Signed).
- // Note: Compare against Zero does not support unsigned predicates.
- if ((ISD::isBuildVectorAllZeros(RHS.getNode()) ||
- ISD::isBuildVectorAllZeros(LHS.getNode())) &&
- !isUnsignedIntSetCC(CC)) {
-
- // If LHS is the zero value, swap operands and CondCode.
- if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
- CC = getSetCCSwappedOperands(CC);
- Op0 = RHS;
- } else
- Op0 = LHS;
-
- // Ensure valid CondCode for Compare Mask against Zero instruction:
- // EQ, GE, GT, LE, LT.
- if (ISD::SETNE == CC) {
- Invert = true;
- CC = ISD::SETEQ;
- }
-
- // Using constant type to differentiate integer and FP compares with zero.
- Op1 = DAG.getConstant(0, MVT::i32);
- Opcode = AArch64ISD::NEON_CMPZ;
-
- } else {
- // Attempt to use Vector Integer Compare Mask instr (Signed/Unsigned).
- // Ensure valid CondCode for Compare Mask instr: EQ, GE, GT, UGE, UGT.
- bool Swap = false;
- switch (CC) {
- default:
- llvm_unreachable("Illegal integer comparison.");
- case ISD::SETEQ:
- case ISD::SETGT:
- case ISD::SETGE:
- case ISD::SETUGT:
- case ISD::SETUGE:
- break;
- case ISD::SETNE:
- Invert = true;
- CC = ISD::SETEQ;
- break;
- case ISD::SETULT:
- case ISD::SETULE:
- case ISD::SETLT:
- case ISD::SETLE:
- Swap = true;
- CC = getSetCCSwappedOperands(CC);
- }
-
- if (Swap)
- std::swap(LHS, RHS);
-
- Opcode = AArch64ISD::NEON_CMP;
- Op0 = LHS;
- Op1 = RHS;
- }
-
- // Generate Compare Mask instr or Compare Mask against Zero instr.
- SDValue NeonCmp =
- DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(CC));
-
- if (Invert)
- NeonCmp = DAG.getNOT(DL, NeonCmp, VT);
-
- return NeonCmp;
- }
-
- // Now handle Floating Point cases.
- // Attempt to use Vector Floating Point Compare Mask against Zero instruction.
- if (ISD::isBuildVectorAllZeros(RHS.getNode()) ||
- ISD::isBuildVectorAllZeros(LHS.getNode())) {
-
- // If LHS is the zero value, swap operands and CondCode.
- if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
- CC = getSetCCSwappedOperands(CC);
- Op0 = RHS;
- } else
- Op0 = LHS;
-
- // Using constant type to differentiate integer and FP compares with zero.
- Op1 = DAG.getConstantFP(0, MVT::f32);
- Opcode = AArch64ISD::NEON_CMPZ;
- } else {
- // Attempt to use Vector Floating Point Compare Mask instruction.
- Op0 = LHS;
- Op1 = RHS;
- Opcode = AArch64ISD::NEON_CMP;
- }
-
- SDValue NeonCmpAlt;
- // Some register compares have to be implemented with swapped CC and operands,
- // e.g.: OLT implemented as OGT with swapped operands.
- bool SwapIfRegArgs = false;
-
- // Ensure valid CondCode for FP Compare Mask against Zero instruction:
- // EQ, GE, GT, LE, LT.
- // And ensure valid CondCode for FP Compare Mask instruction: EQ, GE, GT.
- switch (CC) {
- default:
- llvm_unreachable("Illegal FP comparison");
- case ISD::SETUNE:
- case ISD::SETNE:
- Invert = true; // Fallthrough
- case ISD::SETOEQ:
- case ISD::SETEQ:
- CC = ISD::SETEQ;
- break;
- case ISD::SETOLT:
- case ISD::SETLT:
- CC = ISD::SETLT;
- SwapIfRegArgs = true;
- break;
- case ISD::SETOGT:
- case ISD::SETGT:
- CC = ISD::SETGT;
- break;
- case ISD::SETOLE:
- case ISD::SETLE:
- CC = ISD::SETLE;
- SwapIfRegArgs = true;
- break;
- case ISD::SETOGE:
- case ISD::SETGE:
- CC = ISD::SETGE;
- break;
- case ISD::SETUGE:
- Invert = true;
- CC = ISD::SETLT;
- SwapIfRegArgs = true;
- break;
- case ISD::SETULE:
- Invert = true;
- CC = ISD::SETGT;
- break;
- case ISD::SETUGT:
- Invert = true;
- CC = ISD::SETLE;
- SwapIfRegArgs = true;
- break;
- case ISD::SETULT:
- Invert = true;
- CC = ISD::SETGE;
- break;
- case ISD::SETUEQ:
- Invert = true; // Fallthrough
- case ISD::SETONE:
- // Expand this to (OGT |OLT).
- NeonCmpAlt =
- DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(ISD::SETGT));
- CC = ISD::SETLT;
- SwapIfRegArgs = true;
- break;
- case ISD::SETUO:
- Invert = true; // Fallthrough
- case ISD::SETO:
- // Expand this to (OGE | OLT).
- NeonCmpAlt =
- DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(ISD::SETGE));
- CC = ISD::SETLT;
- SwapIfRegArgs = true;
- break;
- }
-
- if (Opcode == AArch64ISD::NEON_CMP && SwapIfRegArgs) {
- CC = getSetCCSwappedOperands(CC);
- std::swap(Op0, Op1);
- }
-
- // Generate FP Compare Mask instr or FP Compare Mask against Zero instr
- SDValue NeonCmp = DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(CC));
-
- if (NeonCmpAlt.getNode())
- NeonCmp = DAG.getNode(ISD::OR, DL, VT, NeonCmp, NeonCmpAlt);
-
- if (Invert)
- NeonCmp = DAG.getNOT(DL, NeonCmp, VT);
-
- return NeonCmp;
-}
-
-// (SETCC lhs, rhs, condcode)
-SDValue
-AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
- SDLoc dl(Op);
- SDValue LHS = Op.getOperand(0);
- SDValue RHS = Op.getOperand(1);
- ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
- EVT VT = Op.getValueType();
-
- if (VT.isVector())
- return LowerVectorSETCC(Op, DAG);
-
- if (LHS.getValueType() == MVT::f128) {
- // f128 comparisons will be lowered to libcalls giving a valid LHS and RHS
- // for the rest of the function (some i32 or i64 values).
- softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
-
- // If softenSetCCOperands returned a scalar, use it.
- if (!RHS.getNode()) {
- assert(LHS.getValueType() == Op.getValueType() &&
- "Unexpected setcc expansion!");
- return LHS;
- }
- }
-
- if (LHS.getValueType().isInteger()) {
- SDValue A64cc;
-
- // Integers are handled in a separate function because the combinations of
- // immediates and tests can get hairy and we may want to fiddle things.
- SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
-
- return DAG.getNode(AArch64ISD::SELECT_CC, dl, VT,
- CmpOp, DAG.getConstant(1, VT), DAG.getConstant(0, VT),
- A64cc);
- }
-
- // Note that some LLVM floating-point CondCodes can't be lowered to a single
- // conditional branch, hence FPCCToA64CC can set a second test, where either
- // passing is sufficient.
- A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
- CondCode = FPCCToA64CC(CC, Alternative);
- SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
- SDValue CmpOp = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
- DAG.getCondCode(CC));
- SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT,
- CmpOp, DAG.getConstant(1, VT),
- DAG.getConstant(0, VT), A64cc);
-
- if (Alternative != A64CC::Invalid) {
- A64cc = DAG.getConstant(Alternative, MVT::i32);
- A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp,
- DAG.getConstant(1, VT), A64SELECT_CC, A64cc);
- }
-
- return A64SELECT_CC;
-}
-
-static SDValue LowerVectorSELECT_CC(SDValue Op, SelectionDAG &DAG) {
- SDLoc dl(Op);
- SDValue LHS = Op.getOperand(0);
- SDValue RHS = Op.getOperand(1);
- SDValue IfTrue = Op.getOperand(2);
- SDValue IfFalse = Op.getOperand(3);
- EVT IfTrueVT = IfTrue.getValueType();
- EVT CondVT = IfTrueVT.changeVectorElementTypeToInteger();
- ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
-
- // If LHS & RHS are floating point and IfTrue & IfFalse are vectors, we will
- // use NEON compare.
- if ((LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64)) {
- EVT EltVT = LHS.getValueType();
- unsigned EltNum = 128 / EltVT.getSizeInBits();
- EVT VT = EVT::getVectorVT(*DAG.getContext(), EltVT, EltNum);
- unsigned SubConstant =
- (LHS.getValueType() == MVT::f32) ? AArch64::sub_32 :AArch64::sub_64;
- EVT CEltT = (LHS.getValueType() == MVT::f32) ? MVT::i32 : MVT::i64;
- EVT CVT = EVT::getVectorVT(*DAG.getContext(), CEltT, EltNum);
-
- LHS
- = SDValue(DAG.getMachineNode(TargetOpcode::SUBREG_TO_REG, dl,
- VT, DAG.getTargetConstant(0, MVT::i32), LHS,
- DAG.getTargetConstant(SubConstant, MVT::i32)), 0);
- RHS
- = SDValue(DAG.getMachineNode(TargetOpcode::SUBREG_TO_REG, dl,
- VT, DAG.getTargetConstant(0, MVT::i32), RHS,
- DAG.getTargetConstant(SubConstant, MVT::i32)), 0);
-
- SDValue VSetCC = DAG.getSetCC(dl, CVT, LHS, RHS, CC);
- SDValue ResCC = LowerVectorSETCC(VSetCC, DAG);
- if (CEltT.getSizeInBits() < IfTrueVT.getSizeInBits()) {
- EVT DUPVT =
- EVT::getVectorVT(*DAG.getContext(), CEltT,
- IfTrueVT.getSizeInBits() / CEltT.getSizeInBits());
- ResCC = DAG.getNode(AArch64ISD::NEON_VDUPLANE, dl, DUPVT, ResCC,
- DAG.getConstant(0, MVT::i64, false));
-
- ResCC = DAG.getNode(ISD::BITCAST, dl, CondVT, ResCC);
- } else {
- // FIXME: If IfTrue & IfFalse hold v1i8, v1i16 or v1i32, this function
- // can't handle them and will hit this assert.
- assert(CEltT.getSizeInBits() == IfTrueVT.getSizeInBits() &&
- "Vector of IfTrue & IfFalse is too small.");
-
- unsigned ExEltNum =
- EltNum * IfTrueVT.getSizeInBits() / ResCC.getValueSizeInBits();
- EVT ExVT = EVT::getVectorVT(*DAG.getContext(), CEltT, ExEltNum);
- ResCC = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ExVT, ResCC,
- DAG.getConstant(0, MVT::i64, false));
- ResCC = DAG.getNode(ISD::BITCAST, dl, CondVT, ResCC);
- }
- SDValue VSelect = DAG.getNode(ISD::VSELECT, dl, IfTrue.getValueType(),
- ResCC, IfTrue, IfFalse);
- return VSelect;
- }
-
- // Here we handle the case that LHS & RHS are integer and IfTrue & IfFalse are
- // vectors.
- A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
- CondCode = FPCCToA64CC(CC, Alternative);
- SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
- SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
- DAG.getCondCode(CC));
- EVT SEVT = MVT::i32;
- if (IfTrue.getValueType().getVectorElementType().getSizeInBits() > 32)
- SEVT = MVT::i64;
- SDValue AllOne = DAG.getConstant(-1, SEVT);
- SDValue AllZero = DAG.getConstant(0, SEVT);
- SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, SEVT, SetCC,
- AllOne, AllZero, A64cc);
-
- if (Alternative != A64CC::Invalid) {
- A64cc = DAG.getConstant(Alternative, MVT::i32);
- A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
- SetCC, AllOne, A64SELECT_CC, A64cc);
- }
- SDValue VDup;
- if (IfTrue.getValueType().getVectorNumElements() == 1)
- VDup = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, CondVT, A64SELECT_CC);
- else
- VDup = DAG.getNode(AArch64ISD::NEON_VDUP, dl, CondVT, A64SELECT_CC);
- SDValue VSelect = DAG.getNode(ISD::VSELECT, dl, IfTrue.getValueType(),
- VDup, IfTrue, IfFalse);
- return VSelect;
-}
-
-// (SELECT_CC lhs, rhs, iftrue, iffalse, condcode)
-SDValue
-AArch64TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
- SDLoc dl(Op);
- SDValue LHS = Op.getOperand(0);
- SDValue RHS = Op.getOperand(1);
- SDValue IfTrue = Op.getOperand(2);
- SDValue IfFalse = Op.getOperand(3);
- ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
-
- if (IfTrue.getValueType().isVector())
- return LowerVectorSELECT_CC(Op, DAG);
-
- if (LHS.getValueType() == MVT::f128) {
- // f128 comparisons are lowered to libcalls, but slot in nicely here
- // afterwards.
- softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
-
- // If softenSetCCOperands returned a scalar, we need to compare the result
- // against zero to select between true and false values.
- if (!RHS.getNode()) {
- RHS = DAG.getConstant(0, LHS.getValueType());
- CC = ISD::SETNE;
- }
- }
-
- if (LHS.getValueType().isInteger()) {
- SDValue A64cc;
-
- // Integers are handled in a separate function because the combinations of
- // immediates and tests can get hairy and we may want to fiddle things.
- SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
-
- return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(), CmpOp,
- IfTrue, IfFalse, A64cc);
- }
-
- // Note that some LLVM floating-point CondCodes can't be lowered to a single
- // conditional branch, hence FPCCToA64CC can set a second test, where either
- // passing is sufficient.
- A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
- CondCode = FPCCToA64CC(CC, Alternative);
- SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
- SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
- DAG.getCondCode(CC));
- SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl,
- Op.getValueType(),
- SetCC, IfTrue, IfFalse, A64cc);
-
- if (Alternative != A64CC::Invalid) {
- A64cc = DAG.getConstant(Alternative, MVT::i32);
- A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
- SetCC, IfTrue, A64SELECT_CC, A64cc);
-
- }
-
- return A64SELECT_CC;
-}
-
-SDValue
-AArch64TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
- const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
- const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
-
- // We have to make sure we copy the entire structure: 8+8+8+4+4 = 32 bytes
- // rather than just 8.
- return DAG.getMemcpy(Op.getOperand(0), SDLoc(Op),
- Op.getOperand(1), Op.getOperand(2),
- DAG.getConstant(32, MVT::i32), 8, false, false,
- MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV));
-}
-
-SDValue
-AArch64TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
- // The layout of the va_list struct is specified in the AArch64 Procedure Call
- // Standard, section B.3.
- MachineFunction &MF = DAG.getMachineFunction();
- AArch64MachineFunctionInfo *FuncInfo
- = MF.getInfo<AArch64MachineFunctionInfo>();
- SDLoc DL(Op);
-
- SDValue Chain = Op.getOperand(0);
- SDValue VAList = Op.getOperand(1);
- const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
- SmallVector<SDValue, 4> MemOps;
-
- // void *__stack at offset 0
- SDValue Stack = DAG.getFrameIndex(FuncInfo->getVariadicStackIdx(),
- getPointerTy());
- MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
- MachinePointerInfo(SV), false, false, 0));
-
- // void *__gr_top at offset 8
- int GPRSize = FuncInfo->getVariadicGPRSize();
- if (GPRSize > 0) {
- SDValue GRTop, GRTopAddr;
-
- GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
- DAG.getConstant(8, getPointerTy()));
-
- GRTop = DAG.getFrameIndex(FuncInfo->getVariadicGPRIdx(), getPointerTy());
- GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop,
- DAG.getConstant(GPRSize, getPointerTy()));
-
- MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
- MachinePointerInfo(SV, 8),
- false, false, 0));
- }
-
- // void *__vr_top at offset 16
- int FPRSize = FuncInfo->getVariadicFPRSize();
- if (FPRSize > 0) {
- SDValue VRTop, VRTopAddr;
- VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
- DAG.getConstant(16, getPointerTy()));
-
- VRTop = DAG.getFrameIndex(FuncInfo->getVariadicFPRIdx(), getPointerTy());
- VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop,
- DAG.getConstant(FPRSize, getPointerTy()));
-
- MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
- MachinePointerInfo(SV, 16),
- false, false, 0));
- }
-
- // int __gr_offs at offset 24
- SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
- DAG.getConstant(24, getPointerTy()));
- MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32),
- GROffsAddr, MachinePointerInfo(SV, 24),
- false, false, 0));
-
- // int __vr_offs at offset 28
- SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
- DAG.getConstant(28, getPointerTy()));
- MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32),
- VROffsAddr, MachinePointerInfo(SV, 28),
- false, false, 0));
-
- return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
-}
-
-SDValue
-AArch64TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
- switch (Op.getOpcode()) {
- default: llvm_unreachable("Don't know how to custom lower this!");
- case ISD::FADD: return LowerF128ToCall(Op, DAG, RTLIB::ADD_F128);
- case ISD::FSUB: return LowerF128ToCall(Op, DAG, RTLIB::SUB_F128);
- case ISD::FMUL: return LowerF128ToCall(Op, DAG, RTLIB::MUL_F128);
- case ISD::FDIV: return LowerF128ToCall(Op, DAG, RTLIB::DIV_F128);
- case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, true);
- case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG, false);
- case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG, true);
- case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG, false);
- case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
- case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
- case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
- case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
-
- case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG);
- case ISD::SRL_PARTS:
- case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG);
-
- case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
- case ISD::BRCOND: return LowerBRCOND(Op, DAG);
- case ISD::BR_CC: return LowerBR_CC(Op, DAG);
- case ISD::GlobalAddress: return LowerGlobalAddressELF(Op, DAG);
- case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
- case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
- case ISD::JumpTable: return LowerJumpTable(Op, DAG);
- case ISD::SELECT: return LowerSELECT(Op, DAG);
- case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
- case ISD::SETCC: return LowerSETCC(Op, DAG);
- case ISD::VACOPY: return LowerVACOPY(Op, DAG);
- case ISD::VASTART: return LowerVASTART(Op, DAG);
- case ISD::BUILD_VECTOR:
- return LowerBUILD_VECTOR(Op, DAG, getSubtarget());
- case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
- case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
- }
-
- return SDValue();
-}
-
-/// Check if the specified splat value corresponds to a valid vector constant
-/// for a Neon instruction with a "modified immediate" operand (e.g., MOVI). If
-/// so, return the encoded 8-bit immediate and the OpCmode instruction fields
-/// values.
-static bool isNeonModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
- unsigned SplatBitSize, SelectionDAG &DAG,
- bool is128Bits, NeonModImmType type, EVT &VT,
- unsigned &Imm, unsigned &OpCmode) {
- switch (SplatBitSize) {
- default:
- llvm_unreachable("unexpected size for isNeonModifiedImm");
- case 8: {
- if (type != Neon_Mov_Imm)
- return false;
- assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
- // Neon movi per byte: Op=0, Cmode=1110.
- OpCmode = 0xe;
- Imm = SplatBits;
- VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
- break;
- }
- case 16: {
- // Neon move inst per halfword
- VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
- if ((SplatBits & ~0xff) == 0) {
- // Value = 0x00nn is 0x00nn LSL 0
- // movi: Op=0, Cmode=1000; mvni: Op=1, Cmode=1000
- // bic: Op=1, Cmode=1001; orr: Op=0, Cmode=1001
- // Op=x, Cmode=100y
- Imm = SplatBits;
- OpCmode = 0x8;
- break;
- }
- if ((SplatBits & ~0xff00) == 0) {
- // Value = 0xnn00 is 0x00nn LSL 8
- // movi: Op=0, Cmode=1010; mvni: Op=1, Cmode=1010
- // bic: Op=1, Cmode=1011; orr: Op=0, Cmode=1011
- // Op=x, Cmode=101x
- Imm = SplatBits >> 8;
- OpCmode = 0xa;
- break;
- }
- // can't handle any other
- return false;
- }
-
- case 32: {
- // First the LSL variants (MSL is unusable by some interested instructions).
-
- // Neon move instr per word, shift zeros
- VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
- if ((SplatBits & ~0xff) == 0) {
- // Value = 0x000000nn is 0x000000nn LSL 0
- // movi: Op=0, Cmode= 0000; mvni: Op=1, Cmode= 0000
- // bic: Op=1, Cmode= 0001; orr: Op=0, Cmode= 0001
- // Op=x, Cmode=000x
- Imm = SplatBits;
- OpCmode = 0;
- break;
- }
- if ((SplatBits & ~0xff00) == 0) {
- // Value = 0x0000nn00 is 0x000000nn LSL 8
- // movi: Op=0, Cmode= 0010; mvni: Op=1, Cmode= 0010
- // bic: Op=1, Cmode= 0011; orr : Op=0, Cmode= 0011
- // Op=x, Cmode=001x
- Imm = SplatBits >> 8;
- OpCmode = 0x2;
- break;
- }
- if ((SplatBits & ~0xff0000) == 0) {
- // Value = 0x00nn0000 is 0x000000nn LSL 16
- // movi: Op=0, Cmode= 0100; mvni: Op=1, Cmode= 0100
- // bic: Op=1, Cmode= 0101; orr: Op=0, Cmode= 0101
- // Op=x, Cmode=010x
- Imm = SplatBits >> 16;
- OpCmode = 0x4;
- break;
- }
- if ((SplatBits & ~0xff000000) == 0) {
- // Value = 0xnn000000 is 0x000000nn LSL 24
- // movi: Op=0, Cmode= 0110; mvni: Op=1, Cmode= 0110
- // bic: Op=1, Cmode= 0111; orr: Op=0, Cmode= 0111
- // Op=x, Cmode=011x
- Imm = SplatBits >> 24;
- OpCmode = 0x6;
- break;
- }
-
- // Now the MSL immediates.
-
- // Neon move instr per word, shift ones
- if ((SplatBits & ~0xffff) == 0 &&
- ((SplatBits | SplatUndef) & 0xff) == 0xff) {
- // Value = 0x0000nnff is 0x000000nn MSL 8
- // movi: Op=0, Cmode= 1100; mvni: Op=1, Cmode= 1100
- // Op=x, Cmode=1100
- Imm = SplatBits >> 8;
- OpCmode = 0xc;
- break;
- }
- if ((SplatBits & ~0xffffff) == 0 &&
- ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
- // Value = 0x00nnffff is 0x000000nn MSL 16
- // movi: Op=1, Cmode= 1101; mvni: Op=1, Cmode= 1101
- // Op=x, Cmode=1101
- Imm = SplatBits >> 16;
- OpCmode = 0xd;
- break;
- }
- // can't handle any other
- return false;
- }
-
- case 64: {
- if (type != Neon_Mov_Imm)
- return false;
- // Neon move instr bytemask, where each byte is either 0x00 or 0xff.
- // movi Op=1, Cmode=1110.
- OpCmode = 0x1e;
- uint64_t BitMask = 0xff;
- uint64_t Val = 0;
- unsigned ImmMask = 1;
- Imm = 0;
- for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
- if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
- Val |= BitMask;
- Imm |= ImmMask;
- } else if ((SplatBits & BitMask) != 0) {
- return false;
- }
- BitMask <<= 8;
- ImmMask <<= 1;
- }
- SplatBits = Val;
- VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
- break;
- }
- }
-
- return true;
-}
-
-static SDValue PerformANDCombine(SDNode *N,
- TargetLowering::DAGCombinerInfo &DCI) {
-
- SelectionDAG &DAG = DCI.DAG;
- SDLoc DL(N);
- EVT VT = N->getValueType(0);
-
- // We're looking for an SRA/SHL pair which form an SBFX.
-
- if (VT != MVT::i32 && VT != MVT::i64)
- return SDValue();
-
- if (!isa<ConstantSDNode>(N->getOperand(1)))
- return SDValue();
-
- uint64_t TruncMask = N->getConstantOperandVal(1);
- if (!isMask_64(TruncMask))
- return SDValue();
-
- uint64_t Width = CountPopulation_64(TruncMask);
- SDValue Shift = N->getOperand(0);
-
- if (Shift.getOpcode() != ISD::SRL)
- return SDValue();
-
- if (!isa<ConstantSDNode>(Shift->getOperand(1)))
- return SDValue();
- uint64_t LSB = Shift->getConstantOperandVal(1);
-
- if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits())
- return SDValue();
-
- return DAG.getNode(AArch64ISD::UBFX, DL, VT, Shift.getOperand(0),
- DAG.getConstant(LSB, MVT::i64),
- DAG.getConstant(LSB + Width - 1, MVT::i64));
-}
-
-/// For a true bitfield insert, the bits getting into that contiguous mask
-/// should come from the low part of an existing value: they must be formed from
-/// a compatible SHL operation (unless they're already low). This function
-/// checks that condition and returns the least-significant bit that's
-/// intended. If the operation not a field preparation, -1 is returned.
-static int32_t getLSBForBFI(SelectionDAG &DAG, SDLoc DL, EVT VT,
- SDValue &MaskedVal, uint64_t Mask) {
- if (!isShiftedMask_64(Mask))
- return -1;
-
- // Now we need to alter MaskedVal so that it is an appropriate input for a BFI
- // instruction. BFI will do a left-shift by LSB before applying the mask we've
- // spotted, so in general we should pre-emptively "undo" that by making sure
- // the incoming bits have had a right-shift applied to them.
- //
- // This right shift, however, will combine with existing left/right shifts. In
- // the simplest case of a completely straight bitfield operation, it will be
- // expected to completely cancel out with an existing SHL. More complicated
- // cases (e.g. bitfield to bitfield copy) may still need a real shift before
- // the BFI.
-
- uint64_t LSB = countTrailingZeros(Mask);
- int64_t ShiftRightRequired = LSB;
- if (MaskedVal.getOpcode() == ISD::SHL &&
- isa<ConstantSDNode>(MaskedVal.getOperand(1))) {
- ShiftRightRequired -= MaskedVal.getConstantOperandVal(1);
- MaskedVal = MaskedVal.getOperand(0);
- } else if (MaskedVal.getOpcode() == ISD::SRL &&
- isa<ConstantSDNode>(MaskedVal.getOperand(1))) {
- ShiftRightRequired += MaskedVal.getConstantOperandVal(1);
- MaskedVal = MaskedVal.getOperand(0);
- }
-
- if (ShiftRightRequired > 0)
- MaskedVal = DAG.getNode(ISD::SRL, DL, VT, MaskedVal,
- DAG.getConstant(ShiftRightRequired, MVT::i64));
- else if (ShiftRightRequired < 0) {
- // We could actually end up with a residual left shift, for example with
- // "struc.bitfield = val << 1".
- MaskedVal = DAG.getNode(ISD::SHL, DL, VT, MaskedVal,
- DAG.getConstant(-ShiftRightRequired, MVT::i64));
- }
-
- return LSB;
-}
-
-/// Searches from N for an existing AArch64ISD::BFI node, possibly surrounded by
-/// a mask and an extension. Returns true if a BFI was found and provides
-/// information on its surroundings.
-static bool findMaskedBFI(SDValue N, SDValue &BFI, uint64_t &Mask,
- bool &Extended) {
- Extended = false;
- if (N.getOpcode() == ISD::ZERO_EXTEND) {
- Extended = true;
- N = N.getOperand(0);
- }
-
- if (N.getOpcode() == ISD::AND && isa<ConstantSDNode>(N.getOperand(1))) {
- Mask = N->getConstantOperandVal(1);
- N = N.getOperand(0);
- } else {
- // Mask is the whole width.
- Mask = -1ULL >> (64 - N.getValueType().getSizeInBits());
- }
-
- if (N.getOpcode() == AArch64ISD::BFI) {
- BFI = N;
- return true;
- }
-
- return false;
-}
-
-/// Try to combine a subtree (rooted at an OR) into a "masked BFI" node, which
-/// is roughly equivalent to (and (BFI ...), mask). This form is used because it
-/// can often be further combined with a larger mask. Ultimately, we want mask
-/// to be 2^32-1 or 2^64-1 so the AND can be skipped.
-static SDValue tryCombineToBFI(SDNode *N,
- TargetLowering::DAGCombinerInfo &DCI,
- const AArch64Subtarget *Subtarget) {
- SelectionDAG &DAG = DCI.DAG;
- SDLoc DL(N);
- EVT VT = N->getValueType(0);
-
- assert(N->getOpcode() == ISD::OR && "Unexpected root");
-
- // We need the LHS to be (and SOMETHING, MASK). Find out what that mask is or
- // abandon the effort.
- SDValue LHS = N->getOperand(0);
- if (LHS.getOpcode() != ISD::AND)
- return SDValue();
-
- uint64_t LHSMask;
- if (isa<ConstantSDNode>(LHS.getOperand(1)))
- LHSMask = LHS->getConstantOperandVal(1);
- else
- return SDValue();
-
- // We also need the RHS to be (and SOMETHING, MASK). Find out what that mask
- // is or abandon the effort.
- SDValue RHS = N->getOperand(1);
- if (RHS.getOpcode() != ISD::AND)
- return SDValue();
-
- uint64_t RHSMask;
- if (isa<ConstantSDNode>(RHS.getOperand(1)))
- RHSMask = RHS->getConstantOperandVal(1);
- else
- return SDValue();
-
- // Can't do anything if the masks are incompatible.
- if (LHSMask & RHSMask)
- return SDValue();
-
- // Now we need one of the masks to be a contiguous field. Without loss of
- // generality that should be the RHS one.
- SDValue Bitfield = LHS.getOperand(0);
- if (getLSBForBFI(DAG, DL, VT, Bitfield, LHSMask) != -1) {
- // We know that LHS is a candidate new value, and RHS isn't already a better
- // one.
- std::swap(LHS, RHS);
- std::swap(LHSMask, RHSMask);
- }
-
- // We've done our best to put the right operands in the right places, all we
- // can do now is check whether a BFI exists.
- Bitfield = RHS.getOperand(0);
- int32_t LSB = getLSBForBFI(DAG, DL, VT, Bitfield, RHSMask);
- if (LSB == -1)
- return SDValue();
-
- uint32_t Width = CountPopulation_64(RHSMask);
- assert(Width && "Expected non-zero bitfield width");
-
- SDValue BFI = DAG.getNode(AArch64ISD::BFI, DL, VT,
- LHS.getOperand(0), Bitfield,
- DAG.getConstant(LSB, MVT::i64),
- DAG.getConstant(Width, MVT::i64));
-
- // Mask is trivial
- if ((LHSMask | RHSMask) == (-1ULL >> (64 - VT.getSizeInBits())))
- return BFI;
-
- return DAG.getNode(ISD::AND, DL, VT, BFI,
- DAG.getConstant(LHSMask | RHSMask, VT));
-}
-
-/// Search for the bitwise combining (with careful masks) of a MaskedBFI and its
-/// original input. This is surprisingly common because SROA splits things up
-/// into i8 chunks, so the originally detected MaskedBFI may actually only act
-/// on the low (say) byte of a word. This is then orred into the rest of the
-/// word afterwards.
-///
-/// Basic input: (or (and OLDFIELD, MASK1), (MaskedBFI MASK2, OLDFIELD, ...)).
-///
-/// If MASK1 and MASK2 are compatible, we can fold the whole thing into the
-/// MaskedBFI. We can also deal with a certain amount of extend/truncate being
-/// involved.
-static SDValue tryCombineToLargerBFI(SDNode *N,
- TargetLowering::DAGCombinerInfo &DCI,
- const AArch64Subtarget *Subtarget) {
- SelectionDAG &DAG = DCI.DAG;
- SDLoc DL(N);
- EVT VT = N->getValueType(0);
-
- // First job is to hunt for a MaskedBFI on either the left or right. Swap
- // operands if it's actually on the right.
- SDValue BFI;
- SDValue PossExtraMask;
- uint64_t ExistingMask = 0;
- bool Extended = false;
- if (findMaskedBFI(N->getOperand(0), BFI, ExistingMask, Extended))
- PossExtraMask = N->getOperand(1);
- else if (findMaskedBFI(N->getOperand(1), BFI, ExistingMask, Extended))
- PossExtraMask = N->getOperand(0);
- else
- return SDValue();
-
- // We can only combine a BFI with another compatible mask.
- if (PossExtraMask.getOpcode() != ISD::AND ||
- !isa<ConstantSDNode>(PossExtraMask.getOperand(1)))
- return SDValue();
-
- uint64_t ExtraMask = PossExtraMask->getConstantOperandVal(1);
-
- // Masks must be compatible.
- if (ExtraMask & ExistingMask)
- return SDValue();
-
- SDValue OldBFIVal = BFI.getOperand(0);
- SDValue NewBFIVal = BFI.getOperand(1);
- if (Extended) {
- // We skipped a ZERO_EXTEND above, so the input to the MaskedBFIs should be
- // 32-bit and we'll be forming a 64-bit MaskedBFI. The MaskedBFI arguments
- // need to be made compatible.
- assert(VT == MVT::i64 && BFI.getValueType() == MVT::i32
- && "Invalid types for BFI");
- OldBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, OldBFIVal);
- NewBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, NewBFIVal);
- }
-
- // We need the MaskedBFI to be combined with a mask of the *same* value.
- if (PossExtraMask.getOperand(0) != OldBFIVal)
- return SDValue();
-
- BFI = DAG.getNode(AArch64ISD::BFI, DL, VT,
- OldBFIVal, NewBFIVal,
- BFI.getOperand(2), BFI.getOperand(3));
-
- // If the masking is trivial, we don't need to create it.
- if ((ExtraMask | ExistingMask) == (-1ULL >> (64 - VT.getSizeInBits())))
- return BFI;
-
- return DAG.getNode(ISD::AND, DL, VT, BFI,
- DAG.getConstant(ExtraMask | ExistingMask, VT));
-}
-
-/// An EXTR instruction is made up of two shifts, ORed together. This helper
-/// searches for and classifies those shifts.
-static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
- bool &FromHi) {
- if (N.getOpcode() == ISD::SHL)
- FromHi = false;
- else if (N.getOpcode() == ISD::SRL)
- FromHi = true;
- else
- return false;
-
- if (!isa<ConstantSDNode>(N.getOperand(1)))
- return false;
-
- ShiftAmount = N->getConstantOperandVal(1);
- Src = N->getOperand(0);
- return true;
-}
-
-/// EXTR instruction extracts a contiguous chunk of bits from two existing
-/// registers viewed as a high/low pair. This function looks for the pattern:
-/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
-/// EXTR. Can't quite be done in TableGen because the two immediates aren't
-/// independent.
-static SDValue tryCombineToEXTR(SDNode *N,
- TargetLowering::DAGCombinerInfo &DCI) {
- SelectionDAG &DAG = DCI.DAG;
- SDLoc DL(N);
- EVT VT = N->getValueType(0);
-
- assert(N->getOpcode() == ISD::OR && "Unexpected root");
-
- if (VT != MVT::i32 && VT != MVT::i64)
- return SDValue();
-
- SDValue LHS;
- uint32_t ShiftLHS = 0;
- bool LHSFromHi = 0;
- if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
- return SDValue();
-
- SDValue RHS;
- uint32_t ShiftRHS = 0;
- bool RHSFromHi = 0;
- if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
- return SDValue();
-
- // If they're both trying to come from the high part of the register, they're
- // not really an EXTR.
- if (LHSFromHi == RHSFromHi)
- return SDValue();
-
- if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
- return SDValue();
-
- if (LHSFromHi) {
- std::swap(LHS, RHS);
- std::swap(ShiftLHS, ShiftRHS);
- }
-
- return DAG.getNode(AArch64ISD::EXTR, DL, VT,
- LHS, RHS,
- DAG.getConstant(ShiftRHS, MVT::i64));
-}
-
-/// Target-specific dag combine xforms for ISD::OR
-static SDValue PerformORCombine(SDNode *N,
- TargetLowering::DAGCombinerInfo &DCI,
- const AArch64Subtarget *Subtarget) {
-
- SelectionDAG &DAG = DCI.DAG;
- SDLoc DL(N);
- EVT VT = N->getValueType(0);
-
- if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
- return SDValue();
-
- // Attempt to recognise bitfield-insert operations.
- SDValue Res = tryCombineToBFI(N, DCI, Subtarget);
- if (Res.getNode())
- return Res;
-
- // Attempt to combine an existing MaskedBFI operation into one with a larger
- // mask.
- Res = tryCombineToLargerBFI(N, DCI, Subtarget);
- if (Res.getNode())
- return Res;
-
- Res = tryCombineToEXTR(N, DCI);
- if (Res.getNode())
- return Res;
-
- if (!Subtarget->hasNEON())
- return SDValue();
-
- // Attempt to use vector immediate-form BSL
- // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
-
- SDValue N0 = N->getOperand(0);
- if (N0.getOpcode() != ISD::AND)
- return SDValue();
-
- SDValue N1 = N->getOperand(1);
- if (N1.getOpcode() != ISD::AND)
- return SDValue();
-
- if (VT.isVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
- APInt SplatUndef;
- unsigned SplatBitSize;
- bool HasAnyUndefs;
- BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
- APInt SplatBits0;
- if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
- HasAnyUndefs) &&
- !HasAnyUndefs) {
- BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
- APInt SplatBits1;
- if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
- HasAnyUndefs) && !HasAnyUndefs &&
- SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
- SplatBits0 == ~SplatBits1) {
-
- return DAG.getNode(ISD::VSELECT, DL, VT, N0->getOperand(1),
- N0->getOperand(0), N1->getOperand(0));
- }
- }
- }
-
- return SDValue();
-}
-
-/// Target-specific dag combine xforms for ISD::SRA
-static SDValue PerformSRACombine(SDNode *N,
- TargetLowering::DAGCombinerInfo &DCI) {
-
- SelectionDAG &DAG = DCI.DAG;
- SDLoc DL(N);
- EVT VT = N->getValueType(0);
-
- // We're looking for an SRA/SHL pair which form an SBFX.
-
- if (VT != MVT::i32 && VT != MVT::i64)
- return SDValue();
-
- if (!isa<ConstantSDNode>(N->getOperand(1)))
- return SDValue();
-
- uint64_t ExtraSignBits = N->getConstantOperandVal(1);
- SDValue Shift = N->getOperand(0);
-
- if (Shift.getOpcode() != ISD::SHL)
- return SDValue();
-
- if (!isa<ConstantSDNode>(Shift->getOperand(1)))
- return SDValue();
-
- uint64_t BitsOnLeft = Shift->getConstantOperandVal(1);
- uint64_t Width = VT.getSizeInBits() - ExtraSignBits;
- uint64_t LSB = VT.getSizeInBits() - Width - BitsOnLeft;
-
- if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits())
- return SDValue();
-
- return DAG.getNode(AArch64ISD::SBFX, DL, VT, Shift.getOperand(0),
- DAG.getConstant(LSB, MVT::i64),
- DAG.getConstant(LSB + Width - 1, MVT::i64));
-}
-
-/// Check if this is a valid build_vector for the immediate operand of
-/// a vector shift operation, where all the elements of the build_vector
-/// must have the same constant integer value.
-static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
- // Ignore bit_converts.
- while (Op.getOpcode() == ISD::BITCAST)
- Op = Op.getOperand(0);
- BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
- APInt SplatBits, SplatUndef;
- unsigned SplatBitSize;
- bool HasAnyUndefs;
- if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
- HasAnyUndefs, ElementBits) ||
- SplatBitSize > ElementBits)
- return false;
- Cnt = SplatBits.getSExtValue();
- return true;
-}
-
-/// Check if this is a valid build_vector for the immediate operand of
-/// a vector shift left operation. That value must be in the range:
-/// 0 <= Value < ElementBits
-static bool isVShiftLImm(SDValue Op, EVT VT, int64_t &Cnt) {
- assert(VT.isVector() && "vector shift count is not a vector type");
- unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
- if (!getVShiftImm(Op, ElementBits, Cnt))
- return false;
- return (Cnt >= 0 && Cnt < ElementBits);
-}
-
-/// Check if this is a valid build_vector for the immediate operand of a
-/// vector shift right operation. The value must be in the range:
-/// 1 <= Value <= ElementBits
-static bool isVShiftRImm(SDValue Op, EVT VT, int64_t &Cnt) {
- assert(VT.isVector() && "vector shift count is not a vector type");
- unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
- if (!getVShiftImm(Op, ElementBits, Cnt))
- return false;
- return (Cnt >= 1 && Cnt <= ElementBits);
-}
-
-static SDValue GenForSextInreg(SDNode *N,
- TargetLowering::DAGCombinerInfo &DCI,
- EVT SrcVT, EVT DestVT, EVT SubRegVT,
- const int *Mask, SDValue Src) {
- SelectionDAG &DAG = DCI.DAG;
- SDValue Bitcast
- = DAG.getNode(ISD::BITCAST, SDLoc(N), SrcVT, Src);
- SDValue Sext
- = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), DestVT, Bitcast);
- SDValue ShuffleVec
- = DAG.getVectorShuffle(DestVT, SDLoc(N), Sext, DAG.getUNDEF(DestVT), Mask);
- SDValue ExtractSubreg
- = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, SDLoc(N),
- SubRegVT, ShuffleVec,
- DAG.getTargetConstant(AArch64::sub_64, MVT::i32)), 0);
- return ExtractSubreg;
-}
-
-/// Checks for vector shifts and lowers them.
-static SDValue PerformShiftCombine(SDNode *N,
- TargetLowering::DAGCombinerInfo &DCI,
- const AArch64Subtarget *ST) {
- SelectionDAG &DAG = DCI.DAG;
- EVT VT = N->getValueType(0);
- if (N->getOpcode() == ISD::SRA && (VT == MVT::i32 || VT == MVT::i64))
- return PerformSRACombine(N, DCI);
-
- // We're looking for an SRA/SHL pair to help generating instruction
- // sshll v0.8h, v0.8b, #0
- // The instruction STXL is also the alias of this instruction.
- //
- // For example, for DAG like below,
- // v2i32 = sra (v2i32 (shl v2i32, 16)), 16
- // we can transform it into
- // v2i32 = EXTRACT_SUBREG
- // (v4i32 (suffle_vector
- // (v4i32 (sext (v4i16 (bitcast v2i32))),
- // undef, (0, 2, u, u)),
- // sub_64
- //
- // With this transformation we expect to generate "SSHLL + UZIP1"
- // Sometimes UZIP1 can be optimized away by combining with other context.
- int64_t ShrCnt, ShlCnt;
- if (N->getOpcode() == ISD::SRA
- && (VT == MVT::v2i32 || VT == MVT::v4i16)
- && isVShiftRImm(N->getOperand(1), VT, ShrCnt)
- && N->getOperand(0).getOpcode() == ISD::SHL
- && isVShiftRImm(N->getOperand(0).getOperand(1), VT, ShlCnt)) {
- SDValue Src = N->getOperand(0).getOperand(0);
- if (VT == MVT::v2i32 && ShrCnt == 16 && ShlCnt == 16) {
- // sext_inreg(v2i32, v2i16)
- // We essentially only care the Mask {0, 2, u, u}
- int Mask[4] = {0, 2, 4, 6};
- return GenForSextInreg(N, DCI, MVT::v4i16, MVT::v4i32, MVT::v2i32,
- Mask, Src);
- }
- else if (VT == MVT::v2i32 && ShrCnt == 24 && ShlCnt == 24) {
- // sext_inreg(v2i16, v2i8)
- // We essentially only care the Mask {0, u, 4, u, u, u, u, u, u, u, u, u}
- int Mask[8] = {0, 2, 4, 6, 8, 10, 12, 14};
- return GenForSextInreg(N, DCI, MVT::v8i8, MVT::v8i16, MVT::v2i32,
- Mask, Src);
- }
- else if (VT == MVT::v4i16 && ShrCnt == 8 && ShlCnt == 8) {
- // sext_inreg(v4i16, v4i8)
- // We essentially only care the Mask {0, 2, 4, 6, u, u, u, u, u, u, u, u}
- int Mask[8] = {0, 2, 4, 6, 8, 10, 12, 14};
- return GenForSextInreg(N, DCI, MVT::v8i8, MVT::v8i16, MVT::v4i16,
- Mask, Src);
- }
- }
-
- // Nothing to be done for scalar shifts.
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- if (!VT.isVector() || !TLI.isTypeLegal(VT))
- return SDValue();
-
- assert(ST->hasNEON() && "unexpected vector shift");
- int64_t Cnt;
-
- switch (N->getOpcode()) {
- default:
- llvm_unreachable("unexpected shift opcode");
-
- case ISD::SHL:
- if (isVShiftLImm(N->getOperand(1), VT, Cnt)) {
- SDValue RHS =
- DAG.getNode(AArch64ISD::NEON_VDUP, SDLoc(N->getOperand(1)), VT,
- DAG.getConstant(Cnt, MVT::i32));
- return DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0), RHS);
- }
- break;
-
- case ISD::SRA:
- case ISD::SRL:
- if (isVShiftRImm(N->getOperand(1), VT, Cnt)) {
- SDValue RHS =
- DAG.getNode(AArch64ISD::NEON_VDUP, SDLoc(N->getOperand(1)), VT,
- DAG.getConstant(Cnt, MVT::i32));
- return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N->getOperand(0), RHS);
- }
- break;
- }
-
- return SDValue();
-}
-
-/// ARM-specific DAG combining for intrinsics.
-static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
- unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
-
- switch (IntNo) {
- default:
- // Don't do anything for most intrinsics.
- break;
-
- case Intrinsic::arm_neon_vqshifts:
- case Intrinsic::arm_neon_vqshiftu:
- EVT VT = N->getOperand(1).getValueType();
- int64_t Cnt;
- if (!isVShiftLImm(N->getOperand(2), VT, Cnt))
- break;
- unsigned VShiftOpc = (IntNo == Intrinsic::arm_neon_vqshifts)
- ? AArch64ISD::NEON_QSHLs
- : AArch64ISD::NEON_QSHLu;
- return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0),
- N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
- }
-
- return SDValue();
-}
-
-/// Target-specific DAG combine function for NEON load/store intrinsics
-/// to merge base address updates.
-static SDValue CombineBaseUpdate(SDNode *N,
- TargetLowering::DAGCombinerInfo &DCI) {
- if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
- return SDValue();
-
- SelectionDAG &DAG = DCI.DAG;
- bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
- N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
- unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
- SDValue Addr = N->getOperand(AddrOpIdx);
-
- // Search for a use of the address operand that is an increment.
- for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
- UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
- SDNode *User = *UI;
- if (User->getOpcode() != ISD::ADD ||
- UI.getUse().getResNo() != Addr.getResNo())
- continue;
-
- // Check that the add is independent of the load/store. Otherwise, folding
- // it would create a cycle.
- if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
- continue;
-
- // Find the new opcode for the updating load/store.
- bool isLoad = true;
- bool isLaneOp = false;
- unsigned NewOpc = 0;
- unsigned NumVecs = 0;
- if (isIntrinsic) {
- unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
- switch (IntNo) {
- default: llvm_unreachable("unexpected intrinsic for Neon base update");
- case Intrinsic::arm_neon_vld1: NewOpc = AArch64ISD::NEON_LD1_UPD;
- NumVecs = 1; break;
- case Intrinsic::arm_neon_vld2: NewOpc = AArch64ISD::NEON_LD2_UPD;
- NumVecs = 2; break;
- case Intrinsic::arm_neon_vld3: NewOpc = AArch64ISD::NEON_LD3_UPD;
- NumVecs = 3; break;
- case Intrinsic::arm_neon_vld4: NewOpc = AArch64ISD::NEON_LD4_UPD;
- NumVecs = 4; break;
- case Intrinsic::arm_neon_vst1: NewOpc = AArch64ISD::NEON_ST1_UPD;
- NumVecs = 1; isLoad = false; break;
- case Intrinsic::arm_neon_vst2: NewOpc = AArch64ISD::NEON_ST2_UPD;
- NumVecs = 2; isLoad = false; break;
- case Intrinsic::arm_neon_vst3: NewOpc = AArch64ISD::NEON_ST3_UPD;
- NumVecs = 3; isLoad = false; break;
- case Intrinsic::arm_neon_vst4: NewOpc = AArch64ISD::NEON_ST4_UPD;
- NumVecs = 4; isLoad = false; break;
- case Intrinsic::aarch64_neon_vld1x2: NewOpc = AArch64ISD::NEON_LD1x2_UPD;
- NumVecs = 2; break;
- case Intrinsic::aarch64_neon_vld1x3: NewOpc = AArch64ISD::NEON_LD1x3_UPD;
- NumVecs = 3; break;
- case Intrinsic::aarch64_neon_vld1x4: NewOpc = AArch64ISD::NEON_LD1x4_UPD;
- NumVecs = 4; break;
- case Intrinsic::aarch64_neon_vst1x2: NewOpc = AArch64ISD::NEON_ST1x2_UPD;
- NumVecs = 2; isLoad = false; break;
- case Intrinsic::aarch64_neon_vst1x3: NewOpc = AArch64ISD::NEON_ST1x3_UPD;
- NumVecs = 3; isLoad = false; break;
- case Intrinsic::aarch64_neon_vst1x4: NewOpc = AArch64ISD::NEON_ST1x4_UPD;
- NumVecs = 4; isLoad = false; break;
- case Intrinsic::arm_neon_vld2lane: NewOpc = AArch64ISD::NEON_LD2LN_UPD;
- NumVecs = 2; isLaneOp = true; break;
- case Intrinsic::arm_neon_vld3lane: NewOpc = AArch64ISD::NEON_LD3LN_UPD;
- NumVecs = 3; isLaneOp = true; break;
- case Intrinsic::arm_neon_vld4lane: NewOpc = AArch64ISD::NEON_LD4LN_UPD;
- NumVecs = 4; isLaneOp = true; break;
- case Intrinsic::arm_neon_vst2lane: NewOpc = AArch64ISD::NEON_ST2LN_UPD;
- NumVecs = 2; isLoad = false; isLaneOp = true; break;
- case Intrinsic::arm_neon_vst3lane: NewOpc = AArch64ISD::NEON_ST3LN_UPD;
- NumVecs = 3; isLoad = false; isLaneOp = true; break;
- case Intrinsic::arm_neon_vst4lane: NewOpc = AArch64ISD::NEON_ST4LN_UPD;
- NumVecs = 4; isLoad = false; isLaneOp = true; break;
- }
- } else {
- isLaneOp = true;
- switch (N->getOpcode()) {
- default: llvm_unreachable("unexpected opcode for Neon base update");
- case AArch64ISD::NEON_LD2DUP: NewOpc = AArch64ISD::NEON_LD2DUP_UPD;
- NumVecs = 2; break;
- case AArch64ISD::NEON_LD3DUP: NewOpc = AArch64ISD::NEON_LD3DUP_UPD;
- NumVecs = 3; break;
- case AArch64ISD::NEON_LD4DUP: NewOpc = AArch64ISD::NEON_LD4DUP_UPD;
- NumVecs = 4; break;
- }
- }
-
- // Find the size of memory referenced by the load/store.
- EVT VecTy;
- if (isLoad)
- VecTy = N->getValueType(0);
- else
- VecTy = N->getOperand(AddrOpIdx + 1).getValueType();
- unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
- if (isLaneOp)
- NumBytes /= VecTy.getVectorNumElements();
-
- // If the increment is a constant, it must match the memory ref size.
- SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
- if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
- uint32_t IncVal = CInc->getZExtValue();
- if (IncVal != NumBytes)
- continue;
- Inc = DAG.getTargetConstant(IncVal, MVT::i32);
- }
-
- // Create the new updating load/store node.
- EVT Tys[6];
- unsigned NumResultVecs = (isLoad ? NumVecs : 0);
- unsigned n;
- for (n = 0; n < NumResultVecs; ++n)
- Tys[n] = VecTy;
- Tys[n++] = MVT::i64;
- Tys[n] = MVT::Other;
- SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, NumResultVecs + 2));
- SmallVector<SDValue, 8> Ops;
- Ops.push_back(N->getOperand(0)); // incoming chain
- Ops.push_back(N->getOperand(AddrOpIdx));
- Ops.push_back(Inc);
- for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
- Ops.push_back(N->getOperand(i));
- }
- MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
- SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys,
- Ops, MemInt->getMemoryVT(),
- MemInt->getMemOperand());
-
- // Update the uses.
- std::vector<SDValue> NewResults;
- for (unsigned i = 0; i < NumResultVecs; ++i) {
- NewResults.push_back(SDValue(UpdN.getNode(), i));
- }
- NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); // chain
- DCI.CombineTo(N, NewResults);
- DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
-
- break;
- }
- return SDValue();
-}
-
-/// For a VDUPLANE node N, check if its source operand is a vldN-lane (N > 1)
-/// intrinsic, and if all the other uses of that intrinsic are also VDUPLANEs.
-/// If so, combine them to a vldN-dup operation and return true.
-static SDValue CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
- SelectionDAG &DAG = DCI.DAG;
- EVT VT = N->getValueType(0);
-
- // Check if the VDUPLANE operand is a vldN-dup intrinsic.
- SDNode *VLD = N->getOperand(0).getNode();
- if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
- return SDValue();
- unsigned NumVecs = 0;
- unsigned NewOpc = 0;
- unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
- if (IntNo == Intrinsic::arm_neon_vld2lane) {
- NumVecs = 2;
- NewOpc = AArch64ISD::NEON_LD2DUP;
- } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
- NumVecs = 3;
- NewOpc = AArch64ISD::NEON_LD3DUP;
- } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
- NumVecs = 4;
- NewOpc = AArch64ISD::NEON_LD4DUP;
- } else {
- return SDValue();
- }
-
- // First check that all the vldN-lane uses are VDUPLANEs and that the lane
- // numbers match the load.
- unsigned VLDLaneNo =
- cast<ConstantSDNode>(VLD->getOperand(NumVecs + 3))->getZExtValue();
- for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
- UI != UE; ++UI) {
- // Ignore uses of the chain result.
- if (UI.getUse().getResNo() == NumVecs)
- continue;
- SDNode *User = *UI;
- if (User->getOpcode() != AArch64ISD::NEON_VDUPLANE ||
- VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
- return SDValue();
- }
-
- // Create the vldN-dup node.
- EVT Tys[5];
- unsigned n;
- for (n = 0; n < NumVecs; ++n)
- Tys[n] = VT;
- Tys[n] = MVT::Other;
- SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, NumVecs + 1));
- SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
- MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
- SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys, Ops,
- VLDMemInt->getMemoryVT(),
- VLDMemInt->getMemOperand());
-
- // Update the uses.
- for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
- UI != UE; ++UI) {
- unsigned ResNo = UI.getUse().getResNo();
- // Ignore uses of the chain result.
- if (ResNo == NumVecs)
- continue;
- SDNode *User = *UI;
- DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
- }
-
- // Now the vldN-lane intrinsic is dead except for its chain result.
- // Update uses of the chain.
- std::vector<SDValue> VLDDupResults;
- for (unsigned n = 0; n < NumVecs; ++n)
- VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
- VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
- DCI.CombineTo(VLD, VLDDupResults);
-
- return SDValue(N, 0);
-}
-
-// vselect (v1i1 setcc) ->
-// vselect (v1iXX setcc) (XX is the size of the compared operand type)
-// FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
-// condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
-// such VSELECT.
-static SDValue PerformVSelectCombine(SDNode *N, SelectionDAG &DAG) {
- SDValue N0 = N->getOperand(0);
- EVT CCVT = N0.getValueType();
-
- if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
- CCVT.getVectorElementType() != MVT::i1)
- return SDValue();
-
- EVT ResVT = N->getValueType(0);
- EVT CmpVT = N0.getOperand(0).getValueType();
- // Only combine when the result type is of the same size as the compared
- // operands.
- if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
- return SDValue();
-
- SDValue IfTrue = N->getOperand(1);
- SDValue IfFalse = N->getOperand(2);
- SDValue SetCC =
- DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
- N0.getOperand(0), N0.getOperand(1),
- cast<CondCodeSDNode>(N0.getOperand(2))->get());
- return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
- IfTrue, IfFalse);
-}
-
-// sign_extend (extract_vector_elt (v1i1 setcc)) ->
-// extract_vector_elt (v1iXX setcc)
-// (XX is the size of the compared operand type)
-static SDValue PerformSignExtendCombine(SDNode *N, SelectionDAG &DAG) {
- SDValue N0 = N->getOperand(0);
- SDValue Vec = N0.getOperand(0);
-
- if (N0.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
- Vec.getOpcode() != ISD::SETCC)
- return SDValue();
-
- EVT ResVT = N->getValueType(0);
- EVT CmpVT = Vec.getOperand(0).getValueType();
- // Only optimize when the result type is of the same size as the element
- // type of the compared operand.
- if (ResVT.getSizeInBits() != CmpVT.getVectorElementType().getSizeInBits())
- return SDValue();
-
- SDValue Lane = N0.getOperand(1);
- SDValue SetCC =
- DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
- Vec.getOperand(0), Vec.getOperand(1),
- cast<CondCodeSDNode>(Vec.getOperand(2))->get());
- return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), ResVT,
- SetCC, Lane);
-}
-
-SDValue
-AArch64TargetLowering::PerformDAGCombine(SDNode *N,
- DAGCombinerInfo &DCI) const {
- switch (N->getOpcode()) {
- default: break;
- case ISD::AND: return PerformANDCombine(N, DCI);
- case ISD::OR: return PerformORCombine(N, DCI, getSubtarget());
- case ISD::SHL:
- case ISD::SRA:
- case ISD::SRL:
- return PerformShiftCombine(N, DCI, getSubtarget());
- case ISD::VSELECT: return PerformVSelectCombine(N, DCI.DAG);
- case ISD::SIGN_EXTEND: return PerformSignExtendCombine(N, DCI.DAG);
- case ISD::INTRINSIC_WO_CHAIN:
- return PerformIntrinsicCombine(N, DCI.DAG);
- case AArch64ISD::NEON_VDUPLANE:
- return CombineVLDDUP(N, DCI);
- case AArch64ISD::NEON_LD2DUP:
- case AArch64ISD::NEON_LD3DUP:
- case AArch64ISD::NEON_LD4DUP:
- return CombineBaseUpdate(N, DCI);
- case ISD::INTRINSIC_VOID:
- case ISD::INTRINSIC_W_CHAIN:
- switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
- case Intrinsic::arm_neon_vld1:
- case Intrinsic::arm_neon_vld2:
- case Intrinsic::arm_neon_vld3:
- case Intrinsic::arm_neon_vld4:
- case Intrinsic::arm_neon_vst1:
- case Intrinsic::arm_neon_vst2:
- case Intrinsic::arm_neon_vst3:
- case Intrinsic::arm_neon_vst4:
- case Intrinsic::arm_neon_vld2lane:
- case Intrinsic::arm_neon_vld3lane:
- case Intrinsic::arm_neon_vld4lane:
- case Intrinsic::aarch64_neon_vld1x2:
- case Intrinsic::aarch64_neon_vld1x3:
- case Intrinsic::aarch64_neon_vld1x4:
- case Intrinsic::aarch64_neon_vst1x2:
- case Intrinsic::aarch64_neon_vst1x3:
- case Intrinsic::aarch64_neon_vst1x4:
- case Intrinsic::arm_neon_vst2lane:
- case Intrinsic::arm_neon_vst3lane:
- case Intrinsic::arm_neon_vst4lane:
- return CombineBaseUpdate(N, DCI);
- default:
- break;
- }
- }
- return SDValue();
-}
-
-bool
-AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
- VT = VT.getScalarType();
-
- if (!VT.isSimple())
- return false;
-
- switch (VT.getSimpleVT().SimpleTy) {
- case MVT::f16:
- case MVT::f32:
- case MVT::f64:
- return true;
- case MVT::f128:
- return false;
- default:
- break;
- }
-
- return false;
-}
-
-bool AArch64TargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
- unsigned AddrSpace,
- bool *Fast) const {
- const AArch64Subtarget *Subtarget = getSubtarget();
- // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
- bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
-
- switch (VT.getSimpleVT().SimpleTy) {
- default:
- return false;
- // Scalar types
- case MVT::i8: case MVT::i16:
- case MVT::i32: case MVT::i64:
- case MVT::f32: case MVT::f64: {
- // Unaligned access can use (for example) LRDB, LRDH, LDRW
- if (AllowsUnaligned) {
- if (Fast)
- *Fast = true;
- return true;
- }
- return false;
- }
- // 64-bit vector types
- case MVT::v8i8: case MVT::v4i16:
- case MVT::v2i32: case MVT::v1i64:
- case MVT::v2f32: case MVT::v1f64:
- // 128-bit vector types
- case MVT::v16i8: case MVT::v8i16:
- case MVT::v4i32: case MVT::v2i64:
- case MVT::v4f32: case MVT::v2f64: {
- // For any little-endian targets with neon, we can support unaligned
- // load/store of V registers using ld1/st1.
- // A big-endian target may also explicitly support unaligned accesses
- if (Subtarget->hasNEON() && (AllowsUnaligned || isLittleEndian())) {
- if (Fast)
- *Fast = true;
- return true;
- }
- return false;
- }
- }
-}
-
-// Check whether a shuffle_vector could be presented as concat_vector.
-bool AArch64TargetLowering::isConcatVector(SDValue Op, SelectionDAG &DAG,
- SDValue V0, SDValue V1,
- const int *Mask,
- SDValue &Res) const {
- SDLoc DL(Op);
- EVT VT = Op.getValueType();
- if (VT.getSizeInBits() != 128)
- return false;
- if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
- VT.getVectorElementType() != V1.getValueType().getVectorElementType())
- return false;
-
- unsigned NumElts = VT.getVectorNumElements();
- bool isContactVector = true;
- bool splitV0 = false;
- if (V0.getValueType().getSizeInBits() == 128)
- splitV0 = true;
-
- for (int I = 0, E = NumElts / 2; I != E; I++) {
- if (Mask[I] != I) {
- isContactVector = false;
- break;
- }
- }
-
- if (isContactVector) {
- int offset = NumElts / 2;
- for (int I = NumElts / 2, E = NumElts; I != E; I++) {
- if (Mask[I] != I + splitV0 * offset) {
- isContactVector = false;
- break;
- }
- }
- }
-
- if (isContactVector) {
- EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
- NumElts / 2);
- if (splitV0) {
- V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
- DAG.getConstant(0, MVT::i64));
- }
- if (V1.getValueType().getSizeInBits() == 128) {
- V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
- DAG.getConstant(0, MVT::i64));
- }
- Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
- return true;
- }
- return false;
-}
-
-// Check whether a Build Vector could be presented as Shuffle Vector.
-// This Shuffle Vector maybe not legalized, so the length of its operand and
-// the length of result may not equal.
-bool AArch64TargetLowering::isKnownShuffleVector(SDValue Op, SelectionDAG &DAG,
- SDValue &V0, SDValue &V1,
- int *Mask) const {
- SDLoc DL(Op);
- EVT VT = Op.getValueType();
- unsigned NumElts = VT.getVectorNumElements();
- unsigned V0NumElts = 0;
-
- // Check if all elements are extracted from less than 3 vectors.
- for (unsigned i = 0; i < NumElts; ++i) {
- SDValue Elt = Op.getOperand(i);
- if (Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
- Elt.getOperand(0).getValueType().getVectorElementType() !=
- VT.getVectorElementType())
- return false;
-
- if (!V0.getNode()) {
- V0 = Elt.getOperand(0);
- V0NumElts = V0.getValueType().getVectorNumElements();
- }
- if (Elt.getOperand(0) == V0) {
- Mask[i] = (cast<ConstantSDNode>(Elt->getOperand(1))->getZExtValue());
- continue;
- } else if (!V1.getNode()) {
- V1 = Elt.getOperand(0);
- }
- if (Elt.getOperand(0) == V1) {
- unsigned Lane = cast<ConstantSDNode>(Elt->getOperand(1))->getZExtValue();
- Mask[i] = (Lane + V0NumElts);
- continue;
- } else {
- return false;
- }
- }
- return true;
-}
-
-// LowerShiftRightParts - Lower SRL_PARTS and SRA_PARTS, which returns two
-/// i64 values and take a 2 x i64 value to shift plus a shift amount.
-SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
- SelectionDAG &DAG) const {
- assert(Op.getNumOperands() == 3 && "Not a quad-shift!");
- EVT VT = Op.getValueType();
- unsigned VTBits = VT.getSizeInBits();
- SDLoc dl(Op);
- SDValue ShOpLo = Op.getOperand(0);
- SDValue ShOpHi = Op.getOperand(1);
- SDValue ShAmt = Op.getOperand(2);
- unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
-
- assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
- SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
- DAG.getConstant(VTBits, MVT::i64), ShAmt);
- SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
- SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
- DAG.getConstant(VTBits, MVT::i64));
- SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
- SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
- SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
- SDValue Tmp3 = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
-
- SDValue A64cc;
- SDValue CmpOp = getSelectableIntSetCC(ExtraShAmt,
- DAG.getConstant(0, MVT::i64),
- ISD::SETGE, A64cc,
- DAG, dl);
-
- SDValue Hi = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp,
- DAG.getConstant(0, Tmp3.getValueType()), Tmp3,
- A64cc);
- SDValue Lo = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp,
- TrueVal, FalseVal, A64cc);
-
- SDValue Ops[2] = { Lo, Hi };
- return DAG.getMergeValues(Ops, dl);
-}
-
-/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
-/// i64 values and take a 2 x i64 value to shift plus a shift amount.
-SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
- SelectionDAG &DAG) const {
- assert(Op.getNumOperands() == 3 && "Not a quad-shift!");
- EVT VT = Op.getValueType();
- unsigned VTBits = VT.getSizeInBits();
- SDLoc dl(Op);
- SDValue ShOpLo = Op.getOperand(0);
- SDValue ShOpHi = Op.getOperand(1);
- SDValue ShAmt = Op.getOperand(2);
-
- assert(Op.getOpcode() == ISD::SHL_PARTS);
- SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
- DAG.getConstant(VTBits, MVT::i64), ShAmt);
- SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
- SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
- DAG.getConstant(VTBits, MVT::i64));
- SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
- SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
- SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
- SDValue Tmp4 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
-
- SDValue A64cc;
- SDValue CmpOp = getSelectableIntSetCC(ExtraShAmt,
- DAG.getConstant(0, MVT::i64),
- ISD::SETGE, A64cc,
- DAG, dl);
-
- SDValue Lo = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp,
- DAG.getConstant(0, Tmp4.getValueType()), Tmp4,
- A64cc);
- SDValue Hi = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp,
- Tmp3, FalseVal, A64cc);
-
- SDValue Ops[2] = { Lo, Hi };
- return DAG.getMergeValues(Ops, dl);
-}
-
-// If this is a case we can't handle, return null and let the default
-// expansion code take care of it.
-SDValue
-AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
- const AArch64Subtarget *ST) const {
-
- BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
- SDLoc DL(Op);
- EVT VT = Op.getValueType();
-
- APInt SplatBits, SplatUndef;
- unsigned SplatBitSize;
- bool HasAnyUndefs;
-
- unsigned UseNeonMov = VT.getSizeInBits() >= 64;
-
- // Note we favor lowering MOVI over MVNI.
- // This has implications on the definition of patterns in TableGen to select
- // BIC immediate instructions but not ORR immediate instructions.
- // If this lowering order is changed, TableGen patterns for BIC immediate and
- // ORR immediate instructions have to be updated.
- if (UseNeonMov &&
- BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
- if (SplatBitSize <= 64) {
- // First attempt to use vector immediate-form MOVI
- EVT NeonMovVT;
- unsigned Imm = 0;
- unsigned OpCmode = 0;
-
- if (isNeonModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
- SplatBitSize, DAG, VT.is128BitVector(),
- Neon_Mov_Imm, NeonMovVT, Imm, OpCmode)) {
- SDValue ImmVal = DAG.getTargetConstant(Imm, MVT::i32);
- SDValue OpCmodeVal = DAG.getConstant(OpCmode, MVT::i32);
-
- if (ImmVal.getNode() && OpCmodeVal.getNode()) {
- SDValue NeonMov = DAG.getNode(AArch64ISD::NEON_MOVIMM, DL, NeonMovVT,
- ImmVal, OpCmodeVal);
- return DAG.getNode(ISD::BITCAST, DL, VT, NeonMov);
- }
- }
-
- // Then attempt to use vector immediate-form MVNI
- uint64_t NegatedImm = (~SplatBits).getZExtValue();
- if (isNeonModifiedImm(NegatedImm, SplatUndef.getZExtValue(), SplatBitSize,
- DAG, VT.is128BitVector(), Neon_Mvn_Imm, NeonMovVT,
- Imm, OpCmode)) {
- SDValue ImmVal = DAG.getTargetConstant(Imm, MVT::i32);
- SDValue OpCmodeVal = DAG.getConstant(OpCmode, MVT::i32);
- if (ImmVal.getNode() && OpCmodeVal.getNode()) {
- SDValue NeonMov = DAG.getNode(AArch64ISD::NEON_MVNIMM, DL, NeonMovVT,
- ImmVal, OpCmodeVal);
- return DAG.getNode(ISD::BITCAST, DL, VT, NeonMov);
- }
- }
-
- // Attempt to use vector immediate-form FMOV
- if (((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) ||
- (VT == MVT::v2f64 && SplatBitSize == 64)) {
- APFloat RealVal(
- SplatBitSize == 32 ? APFloat::IEEEsingle : APFloat::IEEEdouble,
- SplatBits);
- uint32_t ImmVal;
- if (A64Imms::isFPImm(RealVal, ImmVal)) {
- SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
- return DAG.getNode(AArch64ISD::NEON_FMOVIMM, DL, VT, Val);
- }
- }
- }
- }
-
- unsigned NumElts = VT.getVectorNumElements();
- bool isOnlyLowElement = true;
- bool usesOnlyOneValue = true;
- bool hasDominantValue = false;
- bool isConstant = true;
-
- // Map of the number of times a particular SDValue appears in the
- // element list.
- DenseMap<SDValue, unsigned> ValueCounts;
- SDValue Value;
- for (unsigned i = 0; i < NumElts; ++i) {
- SDValue V = Op.getOperand(i);
- if (V.getOpcode() == ISD::UNDEF)
- continue;
- if (i > 0)
- isOnlyLowElement = false;
- if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
- isConstant = false;
-
- ValueCounts.insert(std::make_pair(V, 0));
- unsigned &Count = ValueCounts[V];
-
- // Is this value dominant? (takes up more than half of the lanes)
- if (++Count > (NumElts / 2)) {
- hasDominantValue = true;
- Value = V;
- }
- }
- if (ValueCounts.size() != 1)
- usesOnlyOneValue = false;
- if (!Value.getNode() && ValueCounts.size() > 0)
- Value = ValueCounts.begin()->first;
-
- if (ValueCounts.size() == 0)
- return DAG.getUNDEF(VT);
-
- if (isOnlyLowElement)
- return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
-
- unsigned EltSize = VT.getVectorElementType().getSizeInBits();
- if (hasDominantValue && EltSize <= 64) {
- // Use VDUP for non-constant splats.
- if (!isConstant) {
- SDValue N;
-
- // If we are DUPing a value that comes directly from a vector, we could
- // just use DUPLANE. We can only do this if the lane being extracted
- // is at a constant index, as the DUP from lane instructions only have
- // constant-index forms.
- //
- // If there is a TRUNCATE between EXTRACT_VECTOR_ELT and DUP, we can
- // remove TRUNCATE for DUPLANE by apdating the source vector to
- // appropriate vector type and lane index.
- //
- // FIXME: for now we have v1i8, v1i16, v1i32 legal vector types, if they
- // are not legal any more, no need to check the type size in bits should
- // be large than 64.
- SDValue V = Value;
- if (Value->getOpcode() == ISD::TRUNCATE)
- V = Value->getOperand(0);
- if (V->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
- isa<ConstantSDNode>(V->getOperand(1)) &&
- V->getOperand(0).getValueType().getSizeInBits() >= 64) {
-
- // If the element size of source vector is larger than DUPLANE
- // element size, we can do transformation by,
- // 1) bitcasting source register to smaller element vector
- // 2) mutiplying the lane index by SrcEltSize/ResEltSize
- // For example, we can lower
- // "v8i16 vdup_lane(v4i32, 1)"
- // to be
- // "v8i16 vdup_lane(v8i16 bitcast(v4i32), 2)".
- SDValue SrcVec = V->getOperand(0);
- unsigned SrcEltSize =
- SrcVec.getValueType().getVectorElementType().getSizeInBits();
- unsigned ResEltSize = VT.getVectorElementType().getSizeInBits();
- if (SrcEltSize > ResEltSize) {
- assert((SrcEltSize % ResEltSize == 0) && "Invalid element size");
- SDValue BitCast;
- unsigned SrcSize = SrcVec.getValueType().getSizeInBits();
- unsigned ResSize = VT.getSizeInBits();
-
- if (SrcSize > ResSize) {
- assert((SrcSize % ResSize == 0) && "Invalid vector size");
- EVT CastVT =
- EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
- SrcSize / ResEltSize);
- BitCast = DAG.getNode(ISD::BITCAST, DL, CastVT, SrcVec);
- } else {
- assert((SrcSize == ResSize) && "Invalid vector size of source vec");
- BitCast = DAG.getNode(ISD::BITCAST, DL, VT, SrcVec);
- }
-
- unsigned LaneIdx = V->getConstantOperandVal(1);
- SDValue Lane =
- DAG.getConstant((SrcEltSize / ResEltSize) * LaneIdx, MVT::i64);
- N = DAG.getNode(AArch64ISD::NEON_VDUPLANE, DL, VT, BitCast, Lane);
- } else {
- assert((SrcEltSize == ResEltSize) &&
- "Invalid element size of source vec");
- N = DAG.getNode(AArch64ISD::NEON_VDUPLANE, DL, VT, V->getOperand(0),
- V->getOperand(1));
- }
- } else
- N = DAG.getNode(AArch64ISD::NEON_VDUP, DL, VT, Value);
-
- if (!usesOnlyOneValue) {
- // The dominant value was splatted as 'N', but we now have to insert
- // all differing elements.
- for (unsigned I = 0; I < NumElts; ++I) {
- if (Op.getOperand(I) == Value)
- continue;
- SmallVector<SDValue, 3> Ops;
- Ops.push_back(N);
- Ops.push_back(Op.getOperand(I));
- Ops.push_back(DAG.getConstant(I, MVT::i64));
- N = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Ops);
- }
- }
- return N;
- }
- if (usesOnlyOneValue && isConstant) {
- return DAG.getNode(AArch64ISD::NEON_VDUP, DL, VT, Value);
- }
- }
- // If all elements are constants and the case above didn't get hit, fall back
- // to the default expansion, which will generate a load from the constant
- // pool.
- if (isConstant)
- return SDValue();
-
- // Try to lower this in lowering ShuffleVector way.
- SDValue V0, V1;
- int Mask[16];
- if (isKnownShuffleVector(Op, DAG, V0, V1, Mask)) {
- unsigned V0NumElts = V0.getValueType().getVectorNumElements();
- if (!V1.getNode() && V0NumElts == NumElts * 2) {
- V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V0,
- DAG.getConstant(NumElts, MVT::i64));
- V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V0,
- DAG.getConstant(0, MVT::i64));
- V0NumElts = V0.getValueType().getVectorNumElements();
- }
-
- if (V1.getNode() && NumElts == V0NumElts &&
- V0NumElts == V1.getValueType().getVectorNumElements()) {
- SDValue Shuffle = DAG.getVectorShuffle(VT, DL, V0, V1, Mask);
- if (Shuffle.getOpcode() != ISD::VECTOR_SHUFFLE)
- return Shuffle;
- else
- return LowerVECTOR_SHUFFLE(Shuffle, DAG);
- } else {
- SDValue Res;
- if (isConcatVector(Op, DAG, V0, V1, Mask, Res))
- return Res;
- }
- }
-
- // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
- // know the default expansion would otherwise fall back on something even
- // worse. For a vector with one or two non-undef values, that's
- // scalar_to_vector for the elements followed by a shuffle (provided the
- // shuffle is valid for the target) and materialization element by element
- // on the stack followed by a load for everything else.
- if (!isConstant && !usesOnlyOneValue) {
- SDValue Vec = DAG.getUNDEF(VT);
- for (unsigned i = 0 ; i < NumElts; ++i) {
- SDValue V = Op.getOperand(i);
- if (V.getOpcode() == ISD::UNDEF)
- continue;
- SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
- Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, LaneIdx);
- }
- return Vec;
- }
- return SDValue();
-}
-
-/// isREVMask - Check if a vector shuffle corresponds to a REV
-/// instruction with the specified blocksize. (The order of the elements
-/// within each block of the vector is reversed.)
-static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
- assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
- "Only possible block sizes for REV are: 16, 32, 64");
-
- unsigned EltSz = VT.getVectorElementType().getSizeInBits();
- if (EltSz == 64)
- return false;
-
- unsigned NumElts = VT.getVectorNumElements();
- unsigned BlockElts = M[0] + 1;
- // If the first shuffle index is UNDEF, be optimistic.
- if (M[0] < 0)
- BlockElts = BlockSize / EltSz;
-
- if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
- return false;
-
- for (unsigned i = 0; i < NumElts; ++i) {
- if (M[i] < 0)
- continue; // ignore UNDEF indices
- if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
- return false;
- }
-
- return true;
-}
-
-// isPermuteMask - Check whether the vector shuffle matches to UZP, ZIP and
-// TRN instruction.
-static unsigned isPermuteMask(ArrayRef<int> M, EVT VT, bool isV2undef) {
- unsigned NumElts = VT.getVectorNumElements();
- if (NumElts < 4)
- return 0;
-
- bool ismatch = true;
-
- // Check UZP1
- for (unsigned i = 0; i < NumElts; ++i) {
- unsigned answer = i * 2;
- if (isV2undef && answer >= NumElts)
- answer -= NumElts;
- if (M[i] != -1 && (unsigned)M[i] != answer) {
- ismatch = false;
- break;
- }
- }
- if (ismatch)
- return AArch64ISD::NEON_UZP1;
-
- // Check UZP2
- ismatch = true;
- for (unsigned i = 0; i < NumElts; ++i) {
- unsigned answer = i * 2 + 1;
- if (isV2undef && answer >= NumElts)
- answer -= NumElts;
- if (M[i] != -1 && (unsigned)M[i] != answer) {
- ismatch = false;
- break;
- }
- }
- if (ismatch)
- return AArch64ISD::NEON_UZP2;
-
- // Check ZIP1
- ismatch = true;
- for (unsigned i = 0; i < NumElts; ++i) {
- unsigned answer = i / 2 + NumElts * (i % 2);
- if (isV2undef && answer >= NumElts)
- answer -= NumElts;
- if (M[i] != -1 && (unsigned)M[i] != answer) {
- ismatch = false;
- break;
- }
- }
- if (ismatch)
- return AArch64ISD::NEON_ZIP1;
-
- // Check ZIP2
- ismatch = true;
- for (unsigned i = 0; i < NumElts; ++i) {
- unsigned answer = (NumElts + i) / 2 + NumElts * (i % 2);
- if (isV2undef && answer >= NumElts)
- answer -= NumElts;
- if (M[i] != -1 && (unsigned)M[i] != answer) {
- ismatch = false;
- break;
- }
- }
- if (ismatch)
- return AArch64ISD::NEON_ZIP2;
-
- // Check TRN1
- ismatch = true;
- for (unsigned i = 0; i < NumElts; ++i) {
- unsigned answer = i + (NumElts - 1) * (i % 2);
- if (isV2undef && answer >= NumElts)
- answer -= NumElts;
- if (M[i] != -1 && (unsigned)M[i] != answer) {
- ismatch = false;
- break;
- }
- }
- if (ismatch)
- return AArch64ISD::NEON_TRN1;
-
- // Check TRN2
- ismatch = true;
- for (unsigned i = 0; i < NumElts; ++i) {
- unsigned answer = 1 + i + (NumElts - 1) * (i % 2);
- if (isV2undef && answer >= NumElts)
- answer -= NumElts;
- if (M[i] != -1 && (unsigned)M[i] != answer) {
- ismatch = false;
- break;
- }
- }
- if (ismatch)
- return AArch64ISD::NEON_TRN2;
-
- return 0;
-}
-
-SDValue
-AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
- SelectionDAG &DAG) const {
- SDValue V1 = Op.getOperand(0);
- SDValue V2 = Op.getOperand(1);
- SDLoc dl(Op);
- EVT VT = Op.getValueType();
- ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
-
- // Convert shuffles that are directly supported on NEON to target-specific
- // DAG nodes, instead of keeping them as shuffles and matching them again
- // during code selection. This is more efficient and avoids the possibility
- // of inconsistencies between legalization and selection.
- ArrayRef<int> ShuffleMask = SVN->getMask();
-
- unsigned EltSize = VT.getVectorElementType().getSizeInBits();
- if (EltSize > 64)
- return SDValue();
-
- if (isREVMask(ShuffleMask, VT, 64))
- return DAG.getNode(AArch64ISD::NEON_REV64, dl, VT, V1);
- if (isREVMask(ShuffleMask, VT, 32))
- return DAG.getNode(AArch64ISD::NEON_REV32, dl, VT, V1);
- if (isREVMask(ShuffleMask, VT, 16))
- return DAG.getNode(AArch64ISD::NEON_REV16, dl, VT, V1);
-
- unsigned ISDNo;
- if (V2.getOpcode() == ISD::UNDEF)
- ISDNo = isPermuteMask(ShuffleMask, VT, true);
- else
- ISDNo = isPermuteMask(ShuffleMask, VT, false);
-
- if (ISDNo) {
- if (V2.getOpcode() == ISD::UNDEF)
- return DAG.getNode(ISDNo, dl, VT, V1, V1);
- else
- return DAG.getNode(ISDNo, dl, VT, V1, V2);
- }
-
- SDValue Res;
- if (isConcatVector(Op, DAG, V1, V2, &ShuffleMask[0], Res))
- return Res;
-
- // If the element of shuffle mask are all the same constant, we can
- // transform it into either NEON_VDUP or NEON_VDUPLANE
- if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
- int Lane = SVN->getSplatIndex();
- // If this is undef splat, generate it via "just" vdup, if possible.
- if (Lane == -1) Lane = 0;
-
- // Test if V1 is a SCALAR_TO_VECTOR.
- if (V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
- return DAG.getNode(AArch64ISD::NEON_VDUP, dl, VT, V1.getOperand(0));
- }
- // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR.
- if (V1.getOpcode() == ISD::BUILD_VECTOR) {
- bool IsScalarToVector = true;
- for (unsigned i = 0, e = V1.getNumOperands(); i != e; ++i)
- if (V1.getOperand(i).getOpcode() != ISD::UNDEF &&
- i != (unsigned)Lane) {
- IsScalarToVector = false;
- break;
- }
- if (IsScalarToVector)
- return DAG.getNode(AArch64ISD::NEON_VDUP, dl, VT,
- V1.getOperand(Lane));
- }
-
- // Test if V1 is a EXTRACT_SUBVECTOR.
- if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
- int ExtLane = cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
- return DAG.getNode(AArch64ISD::NEON_VDUPLANE, dl, VT, V1.getOperand(0),
- DAG.getConstant(Lane + ExtLane, MVT::i64));
- }
- // Test if V1 is a CONCAT_VECTORS.
- if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
- V1.getOperand(1).getOpcode() == ISD::UNDEF) {
- SDValue Op0 = V1.getOperand(0);
- assert((unsigned)Lane < Op0.getValueType().getVectorNumElements() &&
- "Invalid vector lane access");
- return DAG.getNode(AArch64ISD::NEON_VDUPLANE, dl, VT, Op0,
- DAG.getConstant(Lane, MVT::i64));
- }
-
- return DAG.getNode(AArch64ISD::NEON_VDUPLANE, dl, VT, V1,
- DAG.getConstant(Lane, MVT::i64));
- }
-
- int Length = ShuffleMask.size();
- int V1EltNum = V1.getValueType().getVectorNumElements();
-
- // If the number of v1 elements is the same as the number of shuffle mask
- // element and the shuffle masks are sequential values, we can transform
- // it into NEON_VEXTRACT.
- if (V1EltNum == Length) {
- // Check if the shuffle mask is sequential.
- int SkipUndef = 0;
- while (ShuffleMask[SkipUndef] == -1) {
- SkipUndef++;
- }
- int CurMask = ShuffleMask[SkipUndef];
- if (CurMask >= SkipUndef) {
- bool IsSequential = true;
- for (int I = SkipUndef; I < Length; ++I) {
- if (ShuffleMask[I] != -1 && ShuffleMask[I] != CurMask) {
- IsSequential = false;
- break;
- }
- CurMask++;
- }
- if (IsSequential) {
- assert((EltSize % 8 == 0) && "Bitsize of vector element is incorrect");
- unsigned VecSize = EltSize * V1EltNum;
- unsigned Index = (EltSize / 8) * (ShuffleMask[SkipUndef] - SkipUndef);
- if (VecSize == 64 || VecSize == 128)
- return DAG.getNode(AArch64ISD::NEON_VEXTRACT, dl, VT, V1, V2,
- DAG.getConstant(Index, MVT::i64));
- }
- }
- }
-
- // For shuffle mask like "0, 1, 2, 3, 4, 5, 13, 7", try to generate insert
- // by element from V2 to V1 .
- // If shuffle mask is like "0, 1, 10, 11, 12, 13, 14, 15", V2 would be a
- // better choice to be inserted than V1 as less insert needed, so we count
- // element to be inserted for both V1 and V2, and select less one as insert
- // target.
-
- // Collect elements need to be inserted and their index.
- SmallVector<int, 8> NV1Elt;
- SmallVector<int, 8> N1Index;
- SmallVector<int, 8> NV2Elt;
- SmallVector<int, 8> N2Index;
- for (int I = 0; I != Length; ++I) {
- if (ShuffleMask[I] != I) {
- NV1Elt.push_back(ShuffleMask[I]);
- N1Index.push_back(I);
- }
- }
- for (int I = 0; I != Length; ++I) {
- if (ShuffleMask[I] != (I + V1EltNum)) {
- NV2Elt.push_back(ShuffleMask[I]);
- N2Index.push_back(I);
- }
- }
-
- // Decide which to be inserted. If all lanes mismatch, neither V1 nor V2
- // will be inserted.
- SDValue InsV = V1;
- SmallVector<int, 8> InsMasks = NV1Elt;
- SmallVector<int, 8> InsIndex = N1Index;
- if ((int)NV1Elt.size() != Length || (int)NV2Elt.size() != Length) {
- if (NV1Elt.size() > NV2Elt.size()) {
- InsV = V2;
- InsMasks = NV2Elt;
- InsIndex = N2Index;
- }
- } else {
- InsV = DAG.getNode(ISD::UNDEF, dl, VT);
- }
-
- for (int I = 0, E = InsMasks.size(); I != E; ++I) {
- SDValue ExtV = V1;
- int Mask = InsMasks[I];
- if (Mask >= V1EltNum) {
- ExtV = V2;
- Mask -= V1EltNum;
- }
- // Any value type smaller than i32 is illegal in AArch64, and this lower
- // function is called after legalize pass, so we need to legalize
- // the result here.
- EVT EltVT;
- if (VT.getVectorElementType().isFloatingPoint())
- EltVT = (EltSize == 64) ? MVT::f64 : MVT::f32;
- else
- EltVT = (EltSize == 64) ? MVT::i64 : MVT::i32;
-
- if (Mask >= 0) {
- ExtV = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, ExtV,
- DAG.getConstant(Mask, MVT::i64));
- InsV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, InsV, ExtV,
- DAG.getConstant(InsIndex[I], MVT::i64));
- }
- }
- return InsV;
-}
-
-AArch64TargetLowering::ConstraintType
-AArch64TargetLowering::getConstraintType(const std::string &Constraint) const {
- if (Constraint.size() == 1) {
- switch (Constraint[0]) {
- default: break;
- case 'w': // An FP/SIMD vector register
- return C_RegisterClass;
- case 'I': // Constant that can be used with an ADD instruction
- case 'J': // Constant that can be used with a SUB instruction
- case 'K': // Constant that can be used with a 32-bit logical instruction
- case 'L': // Constant that can be used with a 64-bit logical instruction
- case 'M': // Constant that can be used as a 32-bit MOV immediate
- case 'N': // Constant that can be used as a 64-bit MOV immediate
- case 'Y': // Floating point constant zero
- case 'Z': // Integer constant zero
- return C_Other;
- case 'Q': // A memory reference with base register and no offset
- return C_Memory;
- case 'S': // A symbolic address
- return C_Other;
- }
- }
-
- // FIXME: Ump, Utf, Usa, Ush
- // Ump: A memory address suitable for ldp/stp in SI, DI, SF and DF modes,
- // whatever they may be
- // Utf: A memory address suitable for ldp/stp in TF mode, whatever it may be
- // Usa: An absolute symbolic address
- // Ush: The high part (bits 32:12) of a pc-relative symbolic address
- assert(Constraint != "Ump" && Constraint != "Utf" && Constraint != "Usa"
- && Constraint != "Ush" && "Unimplemented constraints");
-
- return TargetLowering::getConstraintType(Constraint);
-}
-
-TargetLowering::ConstraintWeight
-AArch64TargetLowering::getSingleConstraintMatchWeight(AsmOperandInfo &Info,
- const char *Constraint) const {
-
- llvm_unreachable("Constraint weight unimplemented");
-}
-
-void
-AArch64TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
- std::string &Constraint,
- std::vector<SDValue> &Ops,
- SelectionDAG &DAG) const {
- SDValue Result;
-
- // Only length 1 constraints are C_Other.
- if (Constraint.size() != 1) return;
-
- // Only C_Other constraints get lowered like this. That means constants for us
- // so return early if there's no hope the constraint can be lowered.
-
- switch(Constraint[0]) {
- default: break;
- case 'I': case 'J': case 'K': case 'L':
- case 'M': case 'N': case 'Z': {
- ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
- if (!C)
- return;
-
- uint64_t CVal = C->getZExtValue();
- uint32_t Bits;
-
- switch (Constraint[0]) {
- default:
- // FIXME: 'M' and 'N' are MOV pseudo-insts -- unsupported in assembly. 'J'
- // is a peculiarly useless SUB constraint.
- llvm_unreachable("Unimplemented C_Other constraint");
- case 'I':
- if (CVal <= 0xfff)
- break;
- return;
- case 'K':
- if (A64Imms::isLogicalImm(32, CVal, Bits))
- break;
- return;
- case 'L':
- if (A64Imms::isLogicalImm(64, CVal, Bits))
- break;
- return;
- case 'Z':
- if (CVal == 0)
- break;
- return;
- }
-
- Result = DAG.getTargetConstant(CVal, Op.getValueType());
- break;
- }
- case 'S': {
- // An absolute symbolic address or label reference.
- if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
- Result = DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
- GA->getValueType(0));
- } else if (const BlockAddressSDNode *BA
- = dyn_cast<BlockAddressSDNode>(Op)) {
- Result = DAG.getTargetBlockAddress(BA->getBlockAddress(),
- BA->getValueType(0));
- } else if (const ExternalSymbolSDNode *ES
- = dyn_cast<ExternalSymbolSDNode>(Op)) {
- Result = DAG.getTargetExternalSymbol(ES->getSymbol(),
- ES->getValueType(0));
- } else
- return;
- break;
- }
- case 'Y':
- if (const ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
- if (CFP->isExactlyValue(0.0)) {
- Result = DAG.getTargetConstantFP(0.0, CFP->getValueType(0));
- break;
- }
- }
- return;
- }
-
- if (Result.getNode()) {
- Ops.push_back(Result);
- return;
- }
-
- // It's an unknown constraint for us. Let generic code have a go.
- TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
-}
-
-std::pair<unsigned, const TargetRegisterClass*>
-AArch64TargetLowering::getRegForInlineAsmConstraint(
- const std::string &Constraint,
- MVT VT) const {
- if (Constraint.size() == 1) {
- switch (Constraint[0]) {
- case 'r':
- if (VT.getSizeInBits() <= 32)
- return std::make_pair(0U, &AArch64::GPR32RegClass);
- else if (VT == MVT::i64)
- return std::make_pair(0U, &AArch64::GPR64RegClass);
- break;
- case 'w':
- if (VT == MVT::f16)
- return std::make_pair(0U, &AArch64::FPR16RegClass);
- else if (VT == MVT::f32)
- return std::make_pair(0U, &AArch64::FPR32RegClass);
- else if (VT.getSizeInBits() == 64)
- return std::make_pair(0U, &AArch64::FPR64RegClass);
- else if (VT.getSizeInBits() == 128)
- return std::make_pair(0U, &AArch64::FPR128RegClass);
- break;
- }
- }
-
- // Use the default implementation in TargetLowering to convert the register
- // constraint into a member of a register class.
- return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
-}
-
-/// Represent NEON load and store intrinsics as MemIntrinsicNodes.
-/// The associated MachineMemOperands record the alignment specified
-/// in the intrinsic calls.
-bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
- const CallInst &I,
- unsigned Intrinsic) const {
- switch (Intrinsic) {
- case Intrinsic::arm_neon_vld1:
- case Intrinsic::arm_neon_vld2:
- case Intrinsic::arm_neon_vld3:
- case Intrinsic::arm_neon_vld4:
- case Intrinsic::aarch64_neon_vld1x2:
- case Intrinsic::aarch64_neon_vld1x3:
- case Intrinsic::aarch64_neon_vld1x4:
- case Intrinsic::arm_neon_vld2lane:
- case Intrinsic::arm_neon_vld3lane:
- case Intrinsic::arm_neon_vld4lane: {
- Info.opc = ISD::INTRINSIC_W_CHAIN;
- // Conservatively set memVT to the entire set of vectors loaded.
- uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
- Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
- Info.ptrVal = I.getArgOperand(0);
- Info.offset = 0;
- Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
- Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
- Info.vol = false; // volatile loads with NEON intrinsics not supported
- Info.readMem = true;
- Info.writeMem = false;
- return true;
- }
- case Intrinsic::arm_neon_vst1:
- case Intrinsic::arm_neon_vst2:
- case Intrinsic::arm_neon_vst3:
- case Intrinsic::arm_neon_vst4:
- case Intrinsic::aarch64_neon_vst1x2:
- case Intrinsic::aarch64_neon_vst1x3:
- case Intrinsic::aarch64_neon_vst1x4:
- case Intrinsic::arm_neon_vst2lane:
- case Intrinsic::arm_neon_vst3lane:
- case Intrinsic::arm_neon_vst4lane: {
- Info.opc = ISD::INTRINSIC_VOID;
- // Conservatively set memVT to the entire set of vectors stored.
- unsigned NumElts = 0;
- for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
- Type *ArgTy = I.getArgOperand(ArgI)->getType();
- if (!ArgTy->isVectorTy())
- break;
- NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
- }
- Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
- Info.ptrVal = I.getArgOperand(0);
- Info.offset = 0;
- Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
- Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
- Info.vol = false; // volatile stores with NEON intrinsics not supported
- Info.readMem = false;
- Info.writeMem = true;
- return true;
- }
- default:
- break;
- }
-
- return false;
-}
-
-// Truncations from 64-bit GPR to 32-bit GPR is free.
-bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
- if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
- return false;
- unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
- unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
- if (NumBits1 <= NumBits2)
- return false;
- return true;
-}
-
-bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
- if (!VT1.isInteger() || !VT2.isInteger())
- return false;
- unsigned NumBits1 = VT1.getSizeInBits();
- unsigned NumBits2 = VT2.getSizeInBits();
- if (NumBits1 <= NumBits2)
- return false;
- return true;
-}
-
-// All 32-bit GPR operations implicitly zero the high-half of the corresponding
-// 64-bit GPR.
-bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
- if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
- return false;
- unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
- unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
- if (NumBits1 == 32 && NumBits2 == 64)
- return true;
- return false;
-}
-
-bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
- if (!VT1.isInteger() || !VT2.isInteger())
- return false;
- unsigned NumBits1 = VT1.getSizeInBits();
- unsigned NumBits2 = VT2.getSizeInBits();
- if (NumBits1 == 32 && NumBits2 == 64)
- return true;
- return false;
-}
-
-bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
- EVT VT1 = Val.getValueType();
- if (isZExtFree(VT1, VT2)) {
- return true;
- }
-
- if (Val.getOpcode() != ISD::LOAD)
- return false;
-
- // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
- return (VT1.isSimple() && VT1.isInteger() && VT2.isSimple() &&
- VT2.isInteger() && VT1.getSizeInBits() <= 32);
-}
-
-// isLegalAddressingMode - Return true if the addressing mode represented
-/// by AM is legal for this target, for a load/store of the specified type.
-bool AArch64TargetLowering::isLegalAddressingMode(const AddrMode &AM,
- Type *Ty) const {
- // AArch64 has five basic addressing modes:
- // reg
- // reg + 9-bit signed offset
- // reg + SIZE_IN_BYTES * 12-bit unsigned offset
- // reg1 + reg2
- // reg + SIZE_IN_BYTES * reg
-
- // No global is ever allowed as a base.
- if (AM.BaseGV)
- return false;
-
- // No reg+reg+imm addressing.
- if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
- return false;
-
- // check reg + imm case:
- // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
- uint64_t NumBytes = 0;
- if (Ty->isSized()) {
- uint64_t NumBits = getDataLayout()->getTypeSizeInBits(Ty);
- NumBytes = NumBits / 8;
- if (!isPowerOf2_64(NumBits))
- NumBytes = 0;
- }
-
- if (!AM.Scale) {
- int64_t Offset = AM.BaseOffs;
-
- // 9-bit signed offset
- if (Offset >= -(1LL << 9) && Offset <= (1LL << 9) - 1)
- return true;
-
- // 12-bit unsigned offset
- unsigned shift = Log2_64(NumBytes);
- if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
- // Must be a multiple of NumBytes (NumBytes is a power of 2)
- (Offset >> shift) << shift == Offset)
- return true;
- return false;
- }
- if (!AM.Scale || AM.Scale == 1 ||
- (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes))
- return true;
- return false;
-}
-
-int AArch64TargetLowering::getScalingFactorCost(const AddrMode &AM,
- Type *Ty) const {
- // Scaling factors are not free at all.
- // Operands | Rt Latency
- // -------------------------------------------
- // Rt, [Xn, Xm] | 4
- // -------------------------------------------
- // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
- // Rt, [Xn, Wm, <extend> #imm] |
- if (isLegalAddressingMode(AM, Ty))
- // Scale represents reg2 * scale, thus account for 1 if
- // it is not equal to 0 or 1.
- return AM.Scale != 0 && AM.Scale != 1;
- return -1;
-}
-
-/// getMaximalGlobalOffset - Returns the maximal possible offset which can
-/// be used for loads / stores from the global.
-unsigned AArch64TargetLowering::getMaximalGlobalOffset() const {
- return 4095;
-}
-
OpenPOWER on IntegriCloud