summaryrefslogtreecommitdiffstats
path: root/llvm/lib/ExecutionEngine
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/ExecutionEngine')
-rw-r--r--llvm/lib/ExecutionEngine/CMakeLists.txt1
-rw-r--r--llvm/lib/ExecutionEngine/ExecutionEngine.cpp27
-rw-r--r--llvm/lib/ExecutionEngine/ExecutionEngineBindings.cpp4
-rw-r--r--llvm/lib/ExecutionEngine/Interpreter/Interpreter.h12
-rw-r--r--llvm/lib/ExecutionEngine/JIT/CMakeLists.txt8
-rw-r--r--llvm/lib/ExecutionEngine/JIT/JIT.cpp696
-rw-r--r--llvm/lib/ExecutionEngine/JIT/JIT.h214
-rw-r--r--llvm/lib/ExecutionEngine/JIT/JITEmitter.cpp1249
-rw-r--r--llvm/lib/ExecutionEngine/JIT/JITMemoryManager.cpp (renamed from llvm/lib/ExecutionEngine/MCJIT/JITMemoryManager.cpp)0
-rw-r--r--llvm/lib/ExecutionEngine/JIT/LLVMBuild.txt22
-rw-r--r--llvm/lib/ExecutionEngine/JIT/Makefile38
-rw-r--r--llvm/lib/ExecutionEngine/LLVMBuild.txt2
-rw-r--r--llvm/lib/ExecutionEngine/MCJIT/CMakeLists.txt1
-rw-r--r--llvm/lib/ExecutionEngine/MCJIT/MCJIT.cpp18
-rw-r--r--llvm/lib/ExecutionEngine/MCJIT/MCJIT.h8
-rw-r--r--llvm/lib/ExecutionEngine/Makefile2
-rw-r--r--llvm/lib/ExecutionEngine/TargetSelect.cpp5
17 files changed, 2295 insertions, 12 deletions
diff --git a/llvm/lib/ExecutionEngine/CMakeLists.txt b/llvm/lib/ExecutionEngine/CMakeLists.txt
index 208495c8847..3102c7bd582 100644
--- a/llvm/lib/ExecutionEngine/CMakeLists.txt
+++ b/llvm/lib/ExecutionEngine/CMakeLists.txt
@@ -8,6 +8,7 @@ add_llvm_library(LLVMExecutionEngine
)
add_subdirectory(Interpreter)
+add_subdirectory(JIT)
add_subdirectory(MCJIT)
add_subdirectory(RuntimeDyld)
diff --git a/llvm/lib/ExecutionEngine/ExecutionEngine.cpp b/llvm/lib/ExecutionEngine/ExecutionEngine.cpp
index 01b9bcc8905..063f3fb05c2 100644
--- a/llvm/lib/ExecutionEngine/ExecutionEngine.cpp
+++ b/llvm/lib/ExecutionEngine/ExecutionEngine.cpp
@@ -48,6 +48,12 @@ void ObjectCache::anchor() {}
void ObjectBuffer::anchor() {}
void ObjectBufferStream::anchor() {}
+ExecutionEngine *(*ExecutionEngine::JITCtor)(
+ Module *M,
+ std::string *ErrorStr,
+ JITMemoryManager *JMM,
+ bool GVsWithCode,
+ TargetMachine *TM) = nullptr;
ExecutionEngine *(*ExecutionEngine::MCJITCtor)(
Module *M,
std::string *ErrorStr,
@@ -411,8 +417,10 @@ void EngineBuilder::InitEngine() {
MCJMM = nullptr;
JMM = nullptr;
Options = TargetOptions();
+ AllocateGVsWithCode = false;
RelocModel = Reloc::Default;
CMModel = CodeModel::JITDefault;
+ UseMCJIT = false;
// IR module verification is enabled by default in debug builds, and disabled
// by default in release builds.
@@ -445,6 +453,14 @@ ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
return nullptr;
}
}
+
+ if (MCJMM && ! UseMCJIT) {
+ if (ErrorStr)
+ *ErrorStr =
+ "Cannot create a legacy JIT with a runtime dyld memory "
+ "manager.";
+ return nullptr;
+ }
// Unless the interpreter was explicitly selected or the JIT is not linked,
// try making a JIT.
@@ -457,9 +473,12 @@ ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
}
ExecutionEngine *EE = nullptr;
- if (ExecutionEngine::MCJITCtor)
+ if (UseMCJIT && ExecutionEngine::MCJITCtor)
EE = ExecutionEngine::MCJITCtor(M, ErrorStr, MCJMM ? MCJMM : JMM,
TheTM.release());
+ else if (ExecutionEngine::JITCtor)
+ EE = ExecutionEngine::JITCtor(M, ErrorStr, JMM,
+ AllocateGVsWithCode, TheTM.release());
if (EE) {
EE->setVerifyModules(VerifyModules);
@@ -477,7 +496,8 @@ ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
return nullptr;
}
- if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) {
+ if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::JITCtor &&
+ !ExecutionEngine::MCJITCtor) {
if (ErrorStr)
*ErrorStr = "JIT has not been linked in.";
}
@@ -823,6 +843,9 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
+ else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
+ Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>(
+ BA->getBasicBlock())));
else
llvm_unreachable("Unknown constant pointer type!");
break;
diff --git a/llvm/lib/ExecutionEngine/ExecutionEngineBindings.cpp b/llvm/lib/ExecutionEngine/ExecutionEngineBindings.cpp
index fa2f23809a8..6ff1e7ac063 100644
--- a/llvm/lib/ExecutionEngine/ExecutionEngineBindings.cpp
+++ b/llvm/lib/ExecutionEngine/ExecutionEngineBindings.cpp
@@ -192,6 +192,7 @@ LLVMBool LLVMCreateMCJITCompilerForModule(
EngineBuilder builder(unwrap(M));
builder.setEngineKind(EngineKind::JIT)
.setErrorStr(&Error)
+ .setUseMCJIT(true)
.setOptLevel((CodeGenOpt::Level)options.OptLevel)
.setCodeModel(unwrap(options.CodeModel))
.setTargetOptions(targetOptions);
@@ -274,6 +275,7 @@ LLVMGenericValueRef LLVMRunFunction(LLVMExecutionEngineRef EE, LLVMValueRef F,
}
void LLVMFreeMachineCodeForFunction(LLVMExecutionEngineRef EE, LLVMValueRef F) {
+ unwrap(EE)->freeMachineCodeForFunction(unwrap<Function>(F));
}
void LLVMAddModule(LLVMExecutionEngineRef EE, LLVMModuleRef M){
@@ -312,7 +314,7 @@ LLVMBool LLVMFindFunction(LLVMExecutionEngineRef EE, const char *Name,
void *LLVMRecompileAndRelinkFunction(LLVMExecutionEngineRef EE,
LLVMValueRef Fn) {
- return nullptr;
+ return unwrap(EE)->recompileAndRelinkFunction(unwrap<Function>(Fn));
}
LLVMTargetDataRef LLVMGetExecutionEngineTargetData(LLVMExecutionEngineRef EE) {
diff --git a/llvm/lib/ExecutionEngine/Interpreter/Interpreter.h b/llvm/lib/ExecutionEngine/Interpreter/Interpreter.h
index ed6f8f44629..2145cde05fb 100644
--- a/llvm/lib/ExecutionEngine/Interpreter/Interpreter.h
+++ b/llvm/lib/ExecutionEngine/Interpreter/Interpreter.h
@@ -121,6 +121,17 @@ public:
return nullptr;
}
+ /// recompileAndRelinkFunction - For the interpreter, functions are always
+ /// up-to-date.
+ ///
+ void *recompileAndRelinkFunction(Function *F) override {
+ return getPointerToFunction(F);
+ }
+
+ /// freeMachineCodeForFunction - The interpreter does not generate any code.
+ ///
+ void freeMachineCodeForFunction(Function *F) override { }
+
// Methods used to execute code:
// Place a call on the stack
void callFunction(Function *F, const std::vector<GenericValue> &ArgVals);
@@ -202,6 +213,7 @@ private: // Helper functions
void SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF);
void *getPointerToFunction(Function *F) override { return (void*)F; }
+ void *getPointerToBasicBlock(BasicBlock *BB) override { return (void*)BB; }
void initializeExecutionEngine() { }
void initializeExternalFunctions();
diff --git a/llvm/lib/ExecutionEngine/JIT/CMakeLists.txt b/llvm/lib/ExecutionEngine/JIT/CMakeLists.txt
new file mode 100644
index 00000000000..e16baede50f
--- /dev/null
+++ b/llvm/lib/ExecutionEngine/JIT/CMakeLists.txt
@@ -0,0 +1,8 @@
+# TODO: Support other architectures. See Makefile.
+add_definitions(-DENABLE_X86_JIT)
+
+add_llvm_library(LLVMJIT
+ JIT.cpp
+ JITEmitter.cpp
+ JITMemoryManager.cpp
+ )
diff --git a/llvm/lib/ExecutionEngine/JIT/JIT.cpp b/llvm/lib/ExecutionEngine/JIT/JIT.cpp
new file mode 100644
index 00000000000..ab0c1a680bd
--- /dev/null
+++ b/llvm/lib/ExecutionEngine/JIT/JIT.cpp
@@ -0,0 +1,696 @@
+//===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This tool implements a just-in-time compiler for LLVM, allowing direct
+// execution of LLVM bitcode in an efficient manner.
+//
+//===----------------------------------------------------------------------===//
+
+#include "JIT.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/CodeGen/JITCodeEmitter.h"
+#include "llvm/CodeGen/MachineCodeInfo.h"
+#include "llvm/Config/config.h"
+#include "llvm/ExecutionEngine/GenericValue.h"
+#include "llvm/ExecutionEngine/JITEventListener.h"
+#include "llvm/ExecutionEngine/JITMemoryManager.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/Dwarf.h"
+#include "llvm/Support/DynamicLibrary.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/MutexGuard.h"
+#include "llvm/Target/TargetJITInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+
+using namespace llvm;
+
+#ifdef __APPLE__
+// Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead
+// of atexit). It passes the address of linker generated symbol __dso_handle
+// to the function.
+// This configuration change happened at version 5330.
+# include <AvailabilityMacros.h>
+# if defined(MAC_OS_X_VERSION_10_4) && \
+ ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \
+ (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \
+ __APPLE_CC__ >= 5330))
+# ifndef HAVE___DSO_HANDLE
+# define HAVE___DSO_HANDLE 1
+# endif
+# endif
+#endif
+
+#if HAVE___DSO_HANDLE
+extern void *__dso_handle __attribute__ ((__visibility__ ("hidden")));
+#endif
+
+namespace {
+
+static struct RegisterJIT {
+ RegisterJIT() { JIT::Register(); }
+} JITRegistrator;
+
+}
+
+extern "C" void LLVMLinkInJIT() {
+}
+
+/// createJIT - This is the factory method for creating a JIT for the current
+/// machine, it does not fall back to the interpreter. This takes ownership
+/// of the module.
+ExecutionEngine *JIT::createJIT(Module *M,
+ std::string *ErrorStr,
+ JITMemoryManager *JMM,
+ bool GVsWithCode,
+ TargetMachine *TM) {
+ // Try to register the program as a source of symbols to resolve against.
+ //
+ // FIXME: Don't do this here.
+ sys::DynamicLibrary::LoadLibraryPermanently(nullptr, nullptr);
+
+ // If the target supports JIT code generation, create the JIT.
+ if (TargetJITInfo *TJ = TM->getSubtargetImpl()->getJITInfo()) {
+ return new JIT(M, *TM, *TJ, JMM, GVsWithCode);
+ } else {
+ if (ErrorStr)
+ *ErrorStr = "target does not support JIT code generation";
+ return nullptr;
+ }
+}
+
+namespace {
+/// This class supports the global getPointerToNamedFunction(), which allows
+/// bugpoint or gdb users to search for a function by name without any context.
+class JitPool {
+ SmallPtrSet<JIT*, 1> JITs; // Optimize for process containing just 1 JIT.
+ mutable sys::Mutex Lock;
+public:
+ void Add(JIT *jit) {
+ MutexGuard guard(Lock);
+ JITs.insert(jit);
+ }
+ void Remove(JIT *jit) {
+ MutexGuard guard(Lock);
+ JITs.erase(jit);
+ }
+ void *getPointerToNamedFunction(const char *Name) const {
+ MutexGuard guard(Lock);
+ assert(JITs.size() != 0 && "No Jit registered");
+ //search function in every instance of JIT
+ for (SmallPtrSet<JIT*, 1>::const_iterator Jit = JITs.begin(),
+ end = JITs.end();
+ Jit != end; ++Jit) {
+ if (Function *F = (*Jit)->FindFunctionNamed(Name))
+ return (*Jit)->getPointerToFunction(F);
+ }
+ // The function is not available : fallback on the first created (will
+ // search in symbol of the current program/library)
+ return (*JITs.begin())->getPointerToNamedFunction(Name);
+ }
+};
+ManagedStatic<JitPool> AllJits;
+}
+extern "C" {
+ // getPointerToNamedFunction - This function is used as a global wrapper to
+ // JIT::getPointerToNamedFunction for the purpose of resolving symbols when
+ // bugpoint is debugging the JIT. In that scenario, we are loading an .so and
+ // need to resolve function(s) that are being mis-codegenerated, so we need to
+ // resolve their addresses at runtime, and this is the way to do it.
+ void *getPointerToNamedFunction(const char *Name) {
+ return AllJits->getPointerToNamedFunction(Name);
+ }
+}
+
+JIT::JIT(Module *M, TargetMachine &tm, TargetJITInfo &tji,
+ JITMemoryManager *jmm, bool GVsWithCode)
+ : ExecutionEngine(M), TM(tm), TJI(tji),
+ JMM(jmm ? jmm : JITMemoryManager::CreateDefaultMemManager()),
+ AllocateGVsWithCode(GVsWithCode), isAlreadyCodeGenerating(false) {
+ setDataLayout(TM.getSubtargetImpl()->getDataLayout());
+
+ jitstate = new JITState(M);
+
+ // Initialize JCE
+ JCE = createEmitter(*this, JMM, TM);
+
+ // Register in global list of all JITs.
+ AllJits->Add(this);
+
+ // Add target data
+ MutexGuard locked(lock);
+ FunctionPassManager &PM = jitstate->getPM();
+ M->setDataLayout(TM.getSubtargetImpl()->getDataLayout());
+ PM.add(new DataLayoutPass(M));
+
+ // Turn the machine code intermediate representation into bytes in memory that
+ // may be executed.
+ if (TM.addPassesToEmitMachineCode(PM, *JCE, !getVerifyModules())) {
+ report_fatal_error("Target does not support machine code emission!");
+ }
+
+ // Initialize passes.
+ PM.doInitialization();
+}
+
+JIT::~JIT() {
+ // Cleanup.
+ AllJits->Remove(this);
+ delete jitstate;
+ delete JCE;
+ // JMM is a ownership of JCE, so we no need delete JMM here.
+ delete &TM;
+}
+
+/// addModule - Add a new Module to the JIT. If we previously removed the last
+/// Module, we need re-initialize jitstate with a valid Module.
+void JIT::addModule(Module *M) {
+ MutexGuard locked(lock);
+
+ if (Modules.empty()) {
+ assert(!jitstate && "jitstate should be NULL if Modules vector is empty!");
+
+ jitstate = new JITState(M);
+
+ FunctionPassManager &PM = jitstate->getPM();
+ M->setDataLayout(TM.getSubtargetImpl()->getDataLayout());
+ PM.add(new DataLayoutPass(M));
+
+ // Turn the machine code intermediate representation into bytes in memory
+ // that may be executed.
+ if (TM.addPassesToEmitMachineCode(PM, *JCE, !getVerifyModules())) {
+ report_fatal_error("Target does not support machine code emission!");
+ }
+
+ // Initialize passes.
+ PM.doInitialization();
+ }
+
+ ExecutionEngine::addModule(M);
+}
+
+/// removeModule - If we are removing the last Module, invalidate the jitstate
+/// since the PassManager it contains references a released Module.
+bool JIT::removeModule(Module *M) {
+ bool result = ExecutionEngine::removeModule(M);
+
+ MutexGuard locked(lock);
+
+ if (jitstate && jitstate->getModule() == M) {
+ delete jitstate;
+ jitstate = nullptr;
+ }
+
+ if (!jitstate && !Modules.empty()) {
+ jitstate = new JITState(Modules[0]);
+
+ FunctionPassManager &PM = jitstate->getPM();
+ M->setDataLayout(TM.getSubtargetImpl()->getDataLayout());
+ PM.add(new DataLayoutPass(M));
+
+ // Turn the machine code intermediate representation into bytes in memory
+ // that may be executed.
+ if (TM.addPassesToEmitMachineCode(PM, *JCE, !getVerifyModules())) {
+ report_fatal_error("Target does not support machine code emission!");
+ }
+
+ // Initialize passes.
+ PM.doInitialization();
+ }
+ return result;
+}
+
+/// run - Start execution with the specified function and arguments.
+///
+GenericValue JIT::runFunction(Function *F,
+ const std::vector<GenericValue> &ArgValues) {
+ assert(F && "Function *F was null at entry to run()");
+
+ void *FPtr = getPointerToFunction(F);
+ assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
+ FunctionType *FTy = F->getFunctionType();
+ Type *RetTy = FTy->getReturnType();
+
+ assert((FTy->getNumParams() == ArgValues.size() ||
+ (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
+ "Wrong number of arguments passed into function!");
+ assert(FTy->getNumParams() == ArgValues.size() &&
+ "This doesn't support passing arguments through varargs (yet)!");
+
+ // Handle some common cases first. These cases correspond to common `main'
+ // prototypes.
+ if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) {
+ switch (ArgValues.size()) {
+ case 3:
+ if (FTy->getParamType(0)->isIntegerTy(32) &&
+ FTy->getParamType(1)->isPointerTy() &&
+ FTy->getParamType(2)->isPointerTy()) {
+ int (*PF)(int, char **, const char **) =
+ (int(*)(int, char **, const char **))(intptr_t)FPtr;
+
+ // Call the function.
+ GenericValue rv;
+ rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
+ (char **)GVTOP(ArgValues[1]),
+ (const char **)GVTOP(ArgValues[2])));
+ return rv;
+ }
+ break;
+ case 2:
+ if (FTy->getParamType(0)->isIntegerTy(32) &&
+ FTy->getParamType(1)->isPointerTy()) {
+ int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
+
+ // Call the function.
+ GenericValue rv;
+ rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
+ (char **)GVTOP(ArgValues[1])));
+ return rv;
+ }
+ break;
+ case 1:
+ if (FTy->getParamType(0)->isIntegerTy(32)) {
+ GenericValue rv;
+ int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
+ rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
+ return rv;
+ }
+ if (FTy->getParamType(0)->isPointerTy()) {
+ GenericValue rv;
+ int (*PF)(char *) = (int(*)(char *))(intptr_t)FPtr;
+ rv.IntVal = APInt(32, PF((char*)GVTOP(ArgValues[0])));
+ return rv;
+ }
+ break;
+ }
+ }
+
+ // Handle cases where no arguments are passed first.
+ if (ArgValues.empty()) {
+ GenericValue rv;
+ switch (RetTy->getTypeID()) {
+ default: llvm_unreachable("Unknown return type for function call!");
+ case Type::IntegerTyID: {
+ unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
+ if (BitWidth == 1)
+ rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
+ else if (BitWidth <= 8)
+ rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
+ else if (BitWidth <= 16)
+ rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
+ else if (BitWidth <= 32)
+ rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
+ else if (BitWidth <= 64)
+ rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
+ else
+ llvm_unreachable("Integer types > 64 bits not supported");
+ return rv;
+ }
+ case Type::VoidTyID:
+ rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
+ return rv;
+ case Type::FloatTyID:
+ rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
+ return rv;
+ case Type::DoubleTyID:
+ rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
+ return rv;
+ case Type::X86_FP80TyID:
+ case Type::FP128TyID:
+ case Type::PPC_FP128TyID:
+ llvm_unreachable("long double not supported yet");
+ case Type::PointerTyID:
+ return PTOGV(((void*(*)())(intptr_t)FPtr)());
+ }
+ }
+
+ // Okay, this is not one of our quick and easy cases. Because we don't have a
+ // full FFI, we have to codegen a nullary stub function that just calls the
+ // function we are interested in, passing in constants for all of the
+ // arguments. Make this function and return.
+
+ // First, create the function.
+ FunctionType *STy=FunctionType::get(RetTy, false);
+ Function *Stub = Function::Create(STy, Function::InternalLinkage, "",
+ F->getParent());
+
+ // Insert a basic block.
+ BasicBlock *StubBB = BasicBlock::Create(F->getContext(), "", Stub);
+
+ // Convert all of the GenericValue arguments over to constants. Note that we
+ // currently don't support varargs.
+ SmallVector<Value*, 8> Args;
+ for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) {
+ Constant *C = nullptr;
+ Type *ArgTy = FTy->getParamType(i);
+ const GenericValue &AV = ArgValues[i];
+ switch (ArgTy->getTypeID()) {
+ default: llvm_unreachable("Unknown argument type for function call!");
+ case Type::IntegerTyID:
+ C = ConstantInt::get(F->getContext(), AV.IntVal);
+ break;
+ case Type::FloatTyID:
+ C = ConstantFP::get(F->getContext(), APFloat(AV.FloatVal));
+ break;
+ case Type::DoubleTyID:
+ C = ConstantFP::get(F->getContext(), APFloat(AV.DoubleVal));
+ break;
+ case Type::PPC_FP128TyID:
+ case Type::X86_FP80TyID:
+ case Type::FP128TyID:
+ C = ConstantFP::get(F->getContext(), APFloat(ArgTy->getFltSemantics(),
+ AV.IntVal));
+ break;
+ case Type::PointerTyID:
+ void *ArgPtr = GVTOP(AV);
+ if (sizeof(void*) == 4)
+ C = ConstantInt::get(Type::getInt32Ty(F->getContext()),
+ (int)(intptr_t)ArgPtr);
+ else
+ C = ConstantInt::get(Type::getInt64Ty(F->getContext()),
+ (intptr_t)ArgPtr);
+ // Cast the integer to pointer
+ C = ConstantExpr::getIntToPtr(C, ArgTy);
+ break;
+ }
+ Args.push_back(C);
+ }
+
+ CallInst *TheCall = CallInst::Create(F, Args, "", StubBB);
+ TheCall->setCallingConv(F->getCallingConv());
+ TheCall->setTailCall();
+ if (!TheCall->getType()->isVoidTy())
+ // Return result of the call.
+ ReturnInst::Create(F->getContext(), TheCall, StubBB);
+ else
+ ReturnInst::Create(F->getContext(), StubBB); // Just return void.
+
+ // Finally, call our nullary stub function.
+ GenericValue Result = runFunction(Stub, std::vector<GenericValue>());
+ // Erase it, since no other function can have a reference to it.
+ Stub->eraseFromParent();
+ // And return the result.
+ return Result;
+}
+
+void JIT::RegisterJITEventListener(JITEventListener *L) {
+ if (!L)
+ return;
+ MutexGuard locked(lock);
+ EventListeners.push_back(L);
+}
+void JIT::UnregisterJITEventListener(JITEventListener *L) {
+ if (!L)
+ return;
+ MutexGuard locked(lock);
+ std::vector<JITEventListener*>::reverse_iterator I=
+ std::find(EventListeners.rbegin(), EventListeners.rend(), L);
+ if (I != EventListeners.rend()) {
+ std::swap(*I, EventListeners.back());
+ EventListeners.pop_back();
+ }
+}
+void JIT::NotifyFunctionEmitted(
+ const Function &F,
+ void *Code, size_t Size,
+ const JITEvent_EmittedFunctionDetails &Details) {
+ MutexGuard locked(lock);
+ for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
+ EventListeners[I]->NotifyFunctionEmitted(F, Code, Size, Details);
+ }
+}
+
+void JIT::NotifyFreeingMachineCode(void *OldPtr) {
+ MutexGuard locked(lock);
+ for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
+ EventListeners[I]->NotifyFreeingMachineCode(OldPtr);
+ }
+}
+
+/// runJITOnFunction - Run the FunctionPassManager full of
+/// just-in-time compilation passes on F, hopefully filling in
+/// GlobalAddress[F] with the address of F's machine code.
+///
+void JIT::runJITOnFunction(Function *F, MachineCodeInfo *MCI) {
+ MutexGuard locked(lock);
+
+ class MCIListener : public JITEventListener {
+ MachineCodeInfo *const MCI;
+ public:
+ MCIListener(MachineCodeInfo *mci) : MCI(mci) {}
+ void NotifyFunctionEmitted(const Function &, void *Code, size_t Size,
+ const EmittedFunctionDetails &) override {
+ MCI->setAddress(Code);
+ MCI->setSize(Size);
+ }
+ };
+ MCIListener MCIL(MCI);
+ if (MCI)
+ RegisterJITEventListener(&MCIL);
+
+ runJITOnFunctionUnlocked(F);
+
+ if (MCI)
+ UnregisterJITEventListener(&MCIL);
+}
+
+void JIT::runJITOnFunctionUnlocked(Function *F) {
+ assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!");
+
+ jitTheFunctionUnlocked(F);
+
+ // If the function referred to another function that had not yet been
+ // read from bitcode, and we are jitting non-lazily, emit it now.
+ while (!jitstate->getPendingFunctions().empty()) {
+ Function *PF = jitstate->getPendingFunctions().back();
+ jitstate->getPendingFunctions().pop_back();
+
+ assert(!PF->hasAvailableExternallyLinkage() &&
+ "Externally-defined function should not be in pending list.");
+
+ jitTheFunctionUnlocked(PF);
+
+ // Now that the function has been jitted, ask the JITEmitter to rewrite
+ // the stub with real address of the function.
+ updateFunctionStubUnlocked(PF);
+ }
+}
+
+void JIT::jitTheFunctionUnlocked(Function *F) {
+ isAlreadyCodeGenerating = true;
+ jitstate->getPM().run(*F);
+ isAlreadyCodeGenerating = false;
+
+ // clear basic block addresses after this function is done
+ getBasicBlockAddressMap().clear();
+}
+
+/// getPointerToFunction - This method is used to get the address of the
+/// specified function, compiling it if necessary.
+///
+void *JIT::getPointerToFunction(Function *F) {
+
+ if (void *Addr = getPointerToGlobalIfAvailable(F))
+ return Addr; // Check if function already code gen'd
+
+ MutexGuard locked(lock);
+
+ // Now that this thread owns the lock, make sure we read in the function if it
+ // exists in this Module.
+ std::string ErrorMsg;
+ if (F->Materialize(&ErrorMsg)) {
+ report_fatal_error("Error reading function '" + F->getName()+
+ "' from bitcode file: " + ErrorMsg);
+ }
+
+ // ... and check if another thread has already code gen'd the function.
+ if (void *Addr = getPointerToGlobalIfAvailable(F))
+ return Addr;
+
+ if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
+ bool AbortOnFailure = !F->hasExternalWeakLinkage();
+ void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure);
+ addGlobalMapping(F, Addr);
+ return Addr;
+ }
+
+ runJITOnFunctionUnlocked(F);
+
+ void *Addr = getPointerToGlobalIfAvailable(F);
+ assert(Addr && "Code generation didn't add function to GlobalAddress table!");
+ return Addr;
+}
+
+void JIT::addPointerToBasicBlock(const BasicBlock *BB, void *Addr) {
+ MutexGuard locked(lock);
+
+ BasicBlockAddressMapTy::iterator I =
+ getBasicBlockAddressMap().find(BB);
+ if (I == getBasicBlockAddressMap().end()) {
+ getBasicBlockAddressMap()[BB] = Addr;
+ } else {
+ // ignore repeats: some BBs can be split into few MBBs?
+ }
+}
+
+void JIT::clearPointerToBasicBlock(const BasicBlock *BB) {
+ MutexGuard locked(lock);
+ getBasicBlockAddressMap().erase(BB);
+}
+
+void *JIT::getPointerToBasicBlock(BasicBlock *BB) {
+ // make sure it's function is compiled by JIT
+ (void)getPointerToFunction(BB->getParent());
+
+ // resolve basic block address
+ MutexGuard locked(lock);
+
+ BasicBlockAddressMapTy::iterator I =
+ getBasicBlockAddressMap().find(BB);
+ if (I != getBasicBlockAddressMap().end()) {
+ return I->second;
+ } else {
+ llvm_unreachable("JIT does not have BB address for address-of-label, was"
+ " it eliminated by optimizer?");
+ }
+}
+
+void *JIT::getPointerToNamedFunction(const std::string &Name,
+ bool AbortOnFailure){
+ if (!isSymbolSearchingDisabled()) {
+ void *ptr = JMM->getPointerToNamedFunction(Name, false);
+ if (ptr)
+ return ptr;
+ }
+
+ /// If a LazyFunctionCreator is installed, use it to get/create the function.
+ if (LazyFunctionCreator)
+ if (void *RP = LazyFunctionCreator(Name))
+ return RP;
+
+ if (AbortOnFailure) {
+ report_fatal_error("Program used external function '"+Name+
+ "' which could not be resolved!");
+ }
+ return nullptr;
+}
+
+
+/// getOrEmitGlobalVariable - Return the address of the specified global
+/// variable, possibly emitting it to memory if needed. This is used by the
+/// Emitter.
+void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) {
+ MutexGuard locked(lock);
+
+ void *Ptr = getPointerToGlobalIfAvailable(GV);
+ if (Ptr) return Ptr;
+
+ // If the global is external, just remember the address.
+ if (GV->isDeclaration() || GV->hasAvailableExternallyLinkage()) {
+#if HAVE___DSO_HANDLE
+ if (GV->getName() == "__dso_handle")
+ return (void*)&__dso_handle;
+#endif
+ Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName());
+ if (!Ptr) {
+ report_fatal_error("Could not resolve external global address: "
+ +GV->getName());
+ }
+ addGlobalMapping(GV, Ptr);
+ } else {
+ // If the global hasn't been emitted to memory yet, allocate space and
+ // emit it into memory.
+ Ptr = getMemoryForGV(GV);
+ addGlobalMapping(GV, Ptr);
+ EmitGlobalVariable(GV); // Initialize the variable.
+ }
+ return Ptr;
+}
+
+/// recompileAndRelinkFunction - This method is used to force a function
+/// which has already been compiled, to be compiled again, possibly
+/// after it has been modified. Then the entry to the old copy is overwritten
+/// with a branch to the new copy. If there was no old copy, this acts
+/// just like JIT::getPointerToFunction().
+///
+void *JIT::recompileAndRelinkFunction(Function *F) {
+ void *OldAddr = getPointerToGlobalIfAvailable(F);
+
+ // If it's not already compiled there is no reason to patch it up.
+ if (!OldAddr) return getPointerToFunction(F);
+
+ // Delete the old function mapping.
+ addGlobalMapping(F, nullptr);
+
+ // Recodegen the function
+ runJITOnFunction(F);
+
+ // Update state, forward the old function to the new function.
+ void *Addr = getPointerToGlobalIfAvailable(F);
+ assert(Addr && "Code generation didn't add function to GlobalAddress table!");
+ TJI.replaceMachineCodeForFunction(OldAddr, Addr);
+ return Addr;
+}
+
+/// getMemoryForGV - This method abstracts memory allocation of global
+/// variable so that the JIT can allocate thread local variables depending
+/// on the target.
+///
+char* JIT::getMemoryForGV(const GlobalVariable* GV) {
+ char *Ptr;
+
+ // GlobalVariable's which are not "constant" will cause trouble in a server
+ // situation. It's returned in the same block of memory as code which may
+ // not be writable.
+ if (isGVCompilationDisabled() && !GV->isConstant()) {
+ report_fatal_error("Compilation of non-internal GlobalValue is disabled!");
+ }
+
+ // Some applications require globals and code to live together, so they may
+ // be allocated into the same buffer, but in general globals are allocated
+ // through the memory manager which puts them near the code but not in the
+ // same buffer.
+ Type *GlobalType = GV->getType()->getElementType();
+ size_t S = getDataLayout()->getTypeAllocSize(GlobalType);
+ size_t A = getDataLayout()->getPreferredAlignment(GV);
+ if (GV->isThreadLocal()) {
+ MutexGuard locked(lock);
+ Ptr = TJI.allocateThreadLocalMemory(S);
+ } else if (TJI.allocateSeparateGVMemory()) {
+ if (A <= 8) {
+ Ptr = (char*)malloc(S);
+ } else {
+ // Allocate S+A bytes of memory, then use an aligned pointer within that
+ // space.
+ Ptr = (char*)malloc(S+A);
+ unsigned MisAligned = ((intptr_t)Ptr & (A-1));
+ Ptr = Ptr + (MisAligned ? (A-MisAligned) : 0);
+ }
+ } else if (AllocateGVsWithCode) {
+ Ptr = (char*)JCE->allocateSpace(S, A);
+ } else {
+ Ptr = (char*)JCE->allocateGlobal(S, A);
+ }
+ return Ptr;
+}
+
+void JIT::addPendingFunction(Function *F) {
+ MutexGuard locked(lock);
+ jitstate->getPendingFunctions().push_back(F);
+}
+
+
+JITEventListener::~JITEventListener() {}
diff --git a/llvm/lib/ExecutionEngine/JIT/JIT.h b/llvm/lib/ExecutionEngine/JIT/JIT.h
new file mode 100644
index 00000000000..a742a61de7f
--- /dev/null
+++ b/llvm/lib/ExecutionEngine/JIT/JIT.h
@@ -0,0 +1,214 @@
+//===-- JIT.h - Class definition for the JIT --------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the top-level JIT data structure.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef JIT_H
+#define JIT_H
+
+#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/PassManager.h"
+
+namespace llvm {
+
+class Function;
+struct JITEvent_EmittedFunctionDetails;
+class MachineCodeEmitter;
+class MachineCodeInfo;
+class TargetJITInfo;
+class TargetMachine;
+
+class JITState {
+private:
+ FunctionPassManager PM; // Passes to compile a function
+ Module *M; // Module used to create the PM
+
+ /// PendingFunctions - Functions which have not been code generated yet, but
+ /// were called from a function being code generated.
+ std::vector<AssertingVH<Function> > PendingFunctions;
+
+public:
+ explicit JITState(Module *M) : PM(M), M(M) {}
+
+ FunctionPassManager &getPM() {
+ return PM;
+ }
+
+ Module *getModule() const { return M; }
+ std::vector<AssertingVH<Function> > &getPendingFunctions() {
+ return PendingFunctions;
+ }
+};
+
+
+class JIT : public ExecutionEngine {
+ /// types
+ typedef ValueMap<const BasicBlock *, void *>
+ BasicBlockAddressMapTy;
+ /// data
+ TargetMachine &TM; // The current target we are compiling to
+ TargetJITInfo &TJI; // The JITInfo for the target we are compiling to
+ JITCodeEmitter *JCE; // JCE object
+ JITMemoryManager *JMM;
+ std::vector<JITEventListener*> EventListeners;
+
+ /// AllocateGVsWithCode - Some applications require that global variables and
+ /// code be allocated into the same region of memory, in which case this flag
+ /// should be set to true. Doing so breaks freeMachineCodeForFunction.
+ bool AllocateGVsWithCode;
+
+ /// True while the JIT is generating code. Used to assert against recursive
+ /// entry.
+ bool isAlreadyCodeGenerating;
+
+ JITState *jitstate;
+
+ /// BasicBlockAddressMap - A mapping between LLVM basic blocks and their
+ /// actualized version, only filled for basic blocks that have their address
+ /// taken.
+ BasicBlockAddressMapTy BasicBlockAddressMap;
+
+
+ JIT(Module *M, TargetMachine &tm, TargetJITInfo &tji,
+ JITMemoryManager *JMM, bool AllocateGVsWithCode);
+public:
+ ~JIT();
+
+ static void Register() {
+ JITCtor = createJIT;
+ }
+
+ /// getJITInfo - Return the target JIT information structure.
+ ///
+ TargetJITInfo &getJITInfo() const { return TJI; }
+
+ void addModule(Module *M) override;
+
+ /// removeModule - Remove a Module from the list of modules. Returns true if
+ /// M is found.
+ bool removeModule(Module *M) override;
+
+ /// runFunction - Start execution with the specified function and arguments.
+ ///
+ GenericValue runFunction(Function *F,
+ const std::vector<GenericValue> &ArgValues) override;
+
+ /// getPointerToNamedFunction - This method returns the address of the
+ /// specified function by using the MemoryManager. As such it is only
+ /// useful for resolving library symbols, not code generated symbols.
+ ///
+ /// If AbortOnFailure is false and no function with the given name is
+ /// found, this function silently returns a null pointer. Otherwise,
+ /// it prints a message to stderr and aborts.
+ ///
+ void *getPointerToNamedFunction(const std::string &Name,
+ bool AbortOnFailure = true) override;
+
+ // CompilationCallback - Invoked the first time that a call site is found,
+ // which causes lazy compilation of the target function.
+ //
+ static void CompilationCallback();
+
+ /// getPointerToFunction - This returns the address of the specified function,
+ /// compiling it if necessary.
+ ///
+ void *getPointerToFunction(Function *F) override;
+
+ /// addPointerToBasicBlock - Adds address of the specific basic block.
+ void addPointerToBasicBlock(const BasicBlock *BB, void *Addr);
+
+ /// clearPointerToBasicBlock - Removes address of specific basic block.
+ void clearPointerToBasicBlock(const BasicBlock *BB);
+
+ /// getPointerToBasicBlock - This returns the address of the specified basic
+ /// block, assuming function is compiled.
+ void *getPointerToBasicBlock(BasicBlock *BB) override;
+
+ /// getOrEmitGlobalVariable - Return the address of the specified global
+ /// variable, possibly emitting it to memory if needed. This is used by the
+ /// Emitter.
+ void *getOrEmitGlobalVariable(const GlobalVariable *GV) override;
+
+ /// getPointerToFunctionOrStub - If the specified function has been
+ /// code-gen'd, return a pointer to the function. If not, compile it, or use
+ /// a stub to implement lazy compilation if available.
+ ///
+ void *getPointerToFunctionOrStub(Function *F) override;
+
+ /// recompileAndRelinkFunction - This method is used to force a function
+ /// which has already been compiled, to be compiled again, possibly
+ /// after it has been modified. Then the entry to the old copy is overwritten
+ /// with a branch to the new copy. If there was no old copy, this acts
+ /// just like JIT::getPointerToFunction().
+ ///
+ void *recompileAndRelinkFunction(Function *F) override;
+
+ /// freeMachineCodeForFunction - deallocate memory used to code-generate this
+ /// Function.
+ ///
+ void freeMachineCodeForFunction(Function *F) override;
+
+ /// addPendingFunction - while jitting non-lazily, a called but non-codegen'd
+ /// function was encountered. Add it to a pending list to be processed after
+ /// the current function.
+ ///
+ void addPendingFunction(Function *F);
+
+ /// getCodeEmitter - Return the code emitter this JIT is emitting into.
+ ///
+ JITCodeEmitter *getCodeEmitter() const { return JCE; }
+
+ static ExecutionEngine *createJIT(Module *M,
+ std::string *ErrorStr,
+ JITMemoryManager *JMM,
+ bool GVsWithCode,
+ TargetMachine *TM);
+
+ // Run the JIT on F and return information about the generated code
+ void runJITOnFunction(Function *F, MachineCodeInfo *MCI = nullptr) override;
+
+ void RegisterJITEventListener(JITEventListener *L) override;
+ void UnregisterJITEventListener(JITEventListener *L) override;
+
+ TargetMachine *getTargetMachine() override { return &TM; }
+
+ /// These functions correspond to the methods on JITEventListener. They
+ /// iterate over the registered listeners and call the corresponding method on
+ /// each.
+ void NotifyFunctionEmitted(
+ const Function &F, void *Code, size_t Size,
+ const JITEvent_EmittedFunctionDetails &Details);
+ void NotifyFreeingMachineCode(void *OldPtr);
+
+ BasicBlockAddressMapTy &
+ getBasicBlockAddressMap() {
+ return BasicBlockAddressMap;
+ }
+
+
+private:
+ static JITCodeEmitter *createEmitter(JIT &J, JITMemoryManager *JMM,
+ TargetMachine &tm);
+ void runJITOnFunctionUnlocked(Function *F);
+ void updateFunctionStubUnlocked(Function *F);
+ void jitTheFunctionUnlocked(Function *F);
+
+protected:
+
+ /// getMemoryforGV - Allocate memory for a global variable.
+ char* getMemoryForGV(const GlobalVariable* GV) override;
+
+};
+
+} // End llvm namespace
+
+#endif
diff --git a/llvm/lib/ExecutionEngine/JIT/JITEmitter.cpp b/llvm/lib/ExecutionEngine/JIT/JITEmitter.cpp
new file mode 100644
index 00000000000..2ba1f8695d7
--- /dev/null
+++ b/llvm/lib/ExecutionEngine/JIT/JITEmitter.cpp
@@ -0,0 +1,1249 @@
+//===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a MachineCodeEmitter object that is used by the JIT to
+// write machine code to memory and remember where relocatable values are.
+//
+//===----------------------------------------------------------------------===//
+
+#include "JIT.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/JITCodeEmitter.h"
+#include "llvm/CodeGen/MachineCodeInfo.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRelocation.h"
+#include "llvm/ExecutionEngine/GenericValue.h"
+#include "llvm/ExecutionEngine/JITEventListener.h"
+#include "llvm/ExecutionEngine/JITMemoryManager.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/IR/ValueMap.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/Memory.h"
+#include "llvm/Support/MutexGuard.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetJITInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+#include <algorithm>
+#ifndef NDEBUG
+#include <iomanip>
+#endif
+using namespace llvm;
+
+#define DEBUG_TYPE "jit"
+
+STATISTIC(NumBytes, "Number of bytes of machine code compiled");
+STATISTIC(NumRelos, "Number of relocations applied");
+STATISTIC(NumRetries, "Number of retries with more memory");
+
+
+// A declaration may stop being a declaration once it's fully read from bitcode.
+// This function returns true if F is fully read and is still a declaration.
+static bool isNonGhostDeclaration(const Function *F) {
+ return F->isDeclaration() && !F->isMaterializable();
+}
+
+//===----------------------------------------------------------------------===//
+// JIT lazy compilation code.
+//
+namespace {
+ class JITEmitter;
+ class JITResolverState;
+
+ template<typename ValueTy>
+ struct NoRAUWValueMapConfig : public ValueMapConfig<ValueTy> {
+ typedef JITResolverState *ExtraData;
+ static void onRAUW(JITResolverState *, Value *Old, Value *New) {
+ llvm_unreachable("The JIT doesn't know how to handle a"
+ " RAUW on a value it has emitted.");
+ }
+ };
+
+ struct CallSiteValueMapConfig : public NoRAUWValueMapConfig<Function*> {
+ typedef JITResolverState *ExtraData;
+ static void onDelete(JITResolverState *JRS, Function *F);
+ };
+
+ class JITResolverState {
+ public:
+ typedef ValueMap<Function*, void*, NoRAUWValueMapConfig<Function*> >
+ FunctionToLazyStubMapTy;
+ typedef std::map<void*, AssertingVH<Function> > CallSiteToFunctionMapTy;
+ typedef ValueMap<Function *, SmallPtrSet<void*, 1>,
+ CallSiteValueMapConfig> FunctionToCallSitesMapTy;
+ typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy;
+ private:
+ /// FunctionToLazyStubMap - Keep track of the lazy stub created for a
+ /// particular function so that we can reuse them if necessary.
+ FunctionToLazyStubMapTy FunctionToLazyStubMap;
+
+ /// CallSiteToFunctionMap - Keep track of the function that each lazy call
+ /// site corresponds to, and vice versa.
+ CallSiteToFunctionMapTy CallSiteToFunctionMap;
+ FunctionToCallSitesMapTy FunctionToCallSitesMap;
+
+ /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a
+ /// particular GlobalVariable so that we can reuse them if necessary.
+ GlobalToIndirectSymMapTy GlobalToIndirectSymMap;
+
+#ifndef NDEBUG
+ /// Instance of the JIT this ResolverState serves.
+ JIT *TheJIT;
+#endif
+
+ public:
+ JITResolverState(JIT *jit) : FunctionToLazyStubMap(this),
+ FunctionToCallSitesMap(this) {
+#ifndef NDEBUG
+ TheJIT = jit;
+#endif
+ }
+
+ FunctionToLazyStubMapTy& getFunctionToLazyStubMap() {
+ return FunctionToLazyStubMap;
+ }
+
+ GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap() {
+ return GlobalToIndirectSymMap;
+ }
+
+ std::pair<void *, Function *> LookupFunctionFromCallSite(
+ void *CallSite) const {
+ // The address given to us for the stub may not be exactly right, it
+ // might be a little bit after the stub. As such, use upper_bound to
+ // find it.
+ CallSiteToFunctionMapTy::const_iterator I =
+ CallSiteToFunctionMap.upper_bound(CallSite);
+ assert(I != CallSiteToFunctionMap.begin() &&
+ "This is not a known call site!");
+ --I;
+ return *I;
+ }
+
+ void AddCallSite(void *CallSite, Function *F) {
+ bool Inserted = CallSiteToFunctionMap.insert(
+ std::make_pair(CallSite, F)).second;
+ (void)Inserted;
+ assert(Inserted && "Pair was already in CallSiteToFunctionMap");
+ FunctionToCallSitesMap[F].insert(CallSite);
+ }
+
+ void EraseAllCallSitesForPrelocked(Function *F);
+
+ // Erases _all_ call sites regardless of their function. This is used to
+ // unregister the stub addresses from the StubToResolverMap in
+ // ~JITResolver().
+ void EraseAllCallSitesPrelocked();
+ };
+
+ /// JITResolver - Keep track of, and resolve, call sites for functions that
+ /// have not yet been compiled.
+ class JITResolver {
+ typedef JITResolverState::FunctionToLazyStubMapTy FunctionToLazyStubMapTy;
+ typedef JITResolverState::CallSiteToFunctionMapTy CallSiteToFunctionMapTy;
+ typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy;
+
+ /// LazyResolverFn - The target lazy resolver function that we actually
+ /// rewrite instructions to use.
+ TargetJITInfo::LazyResolverFn LazyResolverFn;
+
+ JITResolverState state;
+
+ /// ExternalFnToStubMap - This is the equivalent of FunctionToLazyStubMap
+ /// for external functions. TODO: Of course, external functions don't need
+ /// a lazy stub. It's actually here to make it more likely that far calls
+ /// succeed, but no single stub can guarantee that. I'll remove this in a
+ /// subsequent checkin when I actually fix far calls.
+ std::map<void*, void*> ExternalFnToStubMap;
+
+ /// revGOTMap - map addresses to indexes in the GOT
+ std::map<void*, unsigned> revGOTMap;
+ unsigned nextGOTIndex;
+
+ JITEmitter &JE;
+
+ /// Instance of JIT corresponding to this Resolver.
+ JIT *TheJIT;
+
+ public:
+ explicit JITResolver(JIT &jit, JITEmitter &je)
+ : state(&jit), nextGOTIndex(0), JE(je), TheJIT(&jit) {
+ LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
+ }
+
+ ~JITResolver();
+
+ /// getLazyFunctionStubIfAvailable - This returns a pointer to a function's
+ /// lazy-compilation stub if it has already been created.
+ void *getLazyFunctionStubIfAvailable(Function *F);
+
+ /// getLazyFunctionStub - This returns a pointer to a function's
+ /// lazy-compilation stub, creating one on demand as needed.
+ void *getLazyFunctionStub(Function *F);
+
+ /// getExternalFunctionStub - Return a stub for the function at the
+ /// specified address, created lazily on demand.
+ void *getExternalFunctionStub(void *FnAddr);
+
+ /// getGlobalValueIndirectSym - Return an indirect symbol containing the
+ /// specified GV address.
+ void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress);
+
+ /// getGOTIndexForAddress - Return a new or existing index in the GOT for
+ /// an address. This function only manages slots, it does not manage the
+ /// contents of the slots or the memory associated with the GOT.
+ unsigned getGOTIndexForAddr(void *addr);
+
+ /// JITCompilerFn - This function is called to resolve a stub to a compiled
+ /// address. If the LLVM Function corresponding to the stub has not yet
+ /// been compiled, this function compiles it first.
+ static void *JITCompilerFn(void *Stub);
+ };
+
+ class StubToResolverMapTy {
+ /// Map a stub address to a specific instance of a JITResolver so that
+ /// lazily-compiled functions can find the right resolver to use.
+ ///
+ /// Guarded by Lock.
+ std::map<void*, JITResolver*> Map;
+
+ /// Guards Map from concurrent accesses.
+ mutable sys::Mutex Lock;
+
+ public:
+ /// Registers a Stub to be resolved by Resolver.
+ void RegisterStubResolver(void *Stub, JITResolver *Resolver) {
+ MutexGuard guard(Lock);
+ Map.insert(std::make_pair(Stub, Resolver));
+ }
+ /// Unregisters the Stub when it's invalidated.
+ void UnregisterStubResolver(void *Stub) {
+ MutexGuard guard(Lock);
+ Map.erase(Stub);
+ }
+ /// Returns the JITResolver instance that owns the Stub.
+ JITResolver *getResolverFromStub(void *Stub) const {
+ MutexGuard guard(Lock);
+ // The address given to us for the stub may not be exactly right, it might
+ // be a little bit after the stub. As such, use upper_bound to find it.
+ // This is the same trick as in LookupFunctionFromCallSite from
+ // JITResolverState.
+ std::map<void*, JITResolver*>::const_iterator I = Map.upper_bound(Stub);
+ assert(I != Map.begin() && "This is not a known stub!");
+ --I;
+ return I->second;
+ }
+ /// True if any stubs refer to the given resolver. Only used in an assert().
+ /// O(N)
+ bool ResolverHasStubs(JITResolver* Resolver) const {
+ MutexGuard guard(Lock);
+ for (std::map<void*, JITResolver*>::const_iterator I = Map.begin(),
+ E = Map.end(); I != E; ++I) {
+ if (I->second == Resolver)
+ return true;
+ }
+ return false;
+ }
+ };
+ /// This needs to be static so that a lazy call stub can access it with no
+ /// context except the address of the stub.
+ ManagedStatic<StubToResolverMapTy> StubToResolverMap;
+
+ /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
+ /// used to output functions to memory for execution.
+ class JITEmitter : public JITCodeEmitter {
+ JITMemoryManager *MemMgr;
+
+ // When outputting a function stub in the context of some other function, we
+ // save BufferBegin/BufferEnd/CurBufferPtr here.
+ uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
+
+ // When reattempting to JIT a function after running out of space, we store
+ // the estimated size of the function we're trying to JIT here, so we can
+ // ask the memory manager for at least this much space. When we
+ // successfully emit the function, we reset this back to zero.
+ uintptr_t SizeEstimate;
+
+ /// Relocations - These are the relocations that the function needs, as
+ /// emitted.
+ std::vector<MachineRelocation> Relocations;
+
+ /// MBBLocations - This vector is a mapping from MBB ID's to their address.
+ /// It is filled in by the StartMachineBasicBlock callback and queried by
+ /// the getMachineBasicBlockAddress callback.
+ std::vector<uintptr_t> MBBLocations;
+
+ /// ConstantPool - The constant pool for the current function.
+ ///
+ MachineConstantPool *ConstantPool;
+
+ /// ConstantPoolBase - A pointer to the first entry in the constant pool.
+ ///
+ void *ConstantPoolBase;
+
+ /// ConstPoolAddresses - Addresses of individual constant pool entries.
+ ///
+ SmallVector<uintptr_t, 8> ConstPoolAddresses;
+
+ /// JumpTable - The jump tables for the current function.
+ ///
+ MachineJumpTableInfo *JumpTable;
+
+ /// JumpTableBase - A pointer to the first entry in the jump table.
+ ///
+ void *JumpTableBase;
+
+ /// Resolver - This contains info about the currently resolved functions.
+ JITResolver Resolver;
+
+ /// LabelLocations - This vector is a mapping from Label ID's to their
+ /// address.
+ DenseMap<MCSymbol*, uintptr_t> LabelLocations;
+
+ /// MMI - Machine module info for exception informations
+ MachineModuleInfo* MMI;
+
+ // CurFn - The llvm function being emitted. Only valid during
+ // finishFunction().
+ const Function *CurFn;
+
+ /// Information about emitted code, which is passed to the
+ /// JITEventListeners. This is reset in startFunction and used in
+ /// finishFunction.
+ JITEvent_EmittedFunctionDetails EmissionDetails;
+
+ struct EmittedCode {
+ void *FunctionBody; // Beginning of the function's allocation.
+ void *Code; // The address the function's code actually starts at.
+ void *ExceptionTable;
+ EmittedCode() : FunctionBody(nullptr), Code(nullptr),
+ ExceptionTable(nullptr) {}
+ };
+ struct EmittedFunctionConfig : public ValueMapConfig<const Function*> {
+ typedef JITEmitter *ExtraData;
+ static void onDelete(JITEmitter *, const Function*);
+ static void onRAUW(JITEmitter *, const Function*, const Function*);
+ };
+ ValueMap<const Function *, EmittedCode,
+ EmittedFunctionConfig> EmittedFunctions;
+
+ DebugLoc PrevDL;
+
+ /// Instance of the JIT
+ JIT *TheJIT;
+
+ public:
+ JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM)
+ : SizeEstimate(0), Resolver(jit, *this), MMI(nullptr), CurFn(nullptr),
+ EmittedFunctions(this), TheJIT(&jit) {
+ MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
+ if (jit.getJITInfo().needsGOT()) {
+ MemMgr->AllocateGOT();
+ DEBUG(dbgs() << "JIT is managing a GOT\n");
+ }
+
+ }
+ ~JITEmitter() {
+ delete MemMgr;
+ }
+
+ JITResolver &getJITResolver() { return Resolver; }
+
+ void startFunction(MachineFunction &F) override;
+ bool finishFunction(MachineFunction &F) override;
+
+ void emitConstantPool(MachineConstantPool *MCP);
+ void initJumpTableInfo(MachineJumpTableInfo *MJTI);
+ void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
+
+ void startGVStub(const GlobalValue* GV,
+ unsigned StubSize, unsigned Alignment = 1);
+ void startGVStub(void *Buffer, unsigned StubSize);
+ void finishGVStub();
+ void *allocIndirectGV(const GlobalValue *GV, const uint8_t *Buffer,
+ size_t Size, unsigned Alignment) override;
+
+ /// allocateSpace - Reserves space in the current block if any, or
+ /// allocate a new one of the given size.
+ void *allocateSpace(uintptr_t Size, unsigned Alignment) override;
+
+ /// allocateGlobal - Allocate memory for a global. Unlike allocateSpace,
+ /// this method does not allocate memory in the current output buffer,
+ /// because a global may live longer than the current function.
+ void *allocateGlobal(uintptr_t Size, unsigned Alignment) override;
+
+ void addRelocation(const MachineRelocation &MR) override {
+ Relocations.push_back(MR);
+ }
+
+ void StartMachineBasicBlock(MachineBasicBlock *MBB) override {
+ if (MBBLocations.size() <= (unsigned)MBB->getNumber())
+ MBBLocations.resize((MBB->getNumber()+1)*2);
+ MBBLocations[MBB->getNumber()] = getCurrentPCValue();
+ if (MBB->hasAddressTaken())
+ TheJIT->addPointerToBasicBlock(MBB->getBasicBlock(),
+ (void*)getCurrentPCValue());
+ DEBUG(dbgs() << "JIT: Emitting BB" << MBB->getNumber() << " at ["
+ << (void*) getCurrentPCValue() << "]\n");
+ }
+
+ uintptr_t getConstantPoolEntryAddress(unsigned Entry) const override;
+ uintptr_t getJumpTableEntryAddress(unsigned Entry) const override;
+
+ uintptr_t
+ getMachineBasicBlockAddress(MachineBasicBlock *MBB) const override {
+ assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
+ MBBLocations[MBB->getNumber()] && "MBB not emitted!");
+ return MBBLocations[MBB->getNumber()];
+ }
+
+ /// retryWithMoreMemory - Log a retry and deallocate all memory for the
+ /// given function. Increase the minimum allocation size so that we get
+ /// more memory next time.
+ void retryWithMoreMemory(MachineFunction &F);
+
+ /// deallocateMemForFunction - Deallocate all memory for the specified
+ /// function body.
+ void deallocateMemForFunction(const Function *F);
+
+ void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) override;
+
+ void emitLabel(MCSymbol *Label) override {
+ LabelLocations[Label] = getCurrentPCValue();
+ }
+
+ DenseMap<MCSymbol*, uintptr_t> *getLabelLocations() override {
+ return &LabelLocations;
+ }
+
+ uintptr_t getLabelAddress(MCSymbol *Label) const override {
+ assert(LabelLocations.count(Label) && "Label not emitted!");
+ return LabelLocations.find(Label)->second;
+ }
+
+ void setModuleInfo(MachineModuleInfo* Info) override {
+ MMI = Info;
+ }
+
+ private:
+ void *getPointerToGlobal(GlobalValue *GV, void *Reference,
+ bool MayNeedFarStub);
+ void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference);
+ };
+}
+
+void CallSiteValueMapConfig::onDelete(JITResolverState *JRS, Function *F) {
+ JRS->EraseAllCallSitesForPrelocked(F);
+}
+
+void JITResolverState::EraseAllCallSitesForPrelocked(Function *F) {
+ FunctionToCallSitesMapTy::iterator F2C = FunctionToCallSitesMap.find(F);
+ if (F2C == FunctionToCallSitesMap.end())
+ return;
+ StubToResolverMapTy &S2RMap = *StubToResolverMap;
+ for (SmallPtrSet<void*, 1>::const_iterator I = F2C->second.begin(),
+ E = F2C->second.end(); I != E; ++I) {
+ S2RMap.UnregisterStubResolver(*I);
+ bool Erased = CallSiteToFunctionMap.erase(*I);
+ (void)Erased;
+ assert(Erased && "Missing call site->function mapping");
+ }
+ FunctionToCallSitesMap.erase(F2C);
+}
+
+void JITResolverState::EraseAllCallSitesPrelocked() {
+ StubToResolverMapTy &S2RMap = *StubToResolverMap;
+ for (CallSiteToFunctionMapTy::const_iterator
+ I = CallSiteToFunctionMap.begin(),
+ E = CallSiteToFunctionMap.end(); I != E; ++I) {
+ S2RMap.UnregisterStubResolver(I->first);
+ }
+ CallSiteToFunctionMap.clear();
+ FunctionToCallSitesMap.clear();
+}
+
+JITResolver::~JITResolver() {
+ // No need to lock because we're in the destructor, and state isn't shared.
+ state.EraseAllCallSitesPrelocked();
+ assert(!StubToResolverMap->ResolverHasStubs(this) &&
+ "Resolver destroyed with stubs still alive.");
+}
+
+/// getLazyFunctionStubIfAvailable - This returns a pointer to a function stub
+/// if it has already been created.
+void *JITResolver::getLazyFunctionStubIfAvailable(Function *F) {
+ MutexGuard locked(TheJIT->lock);
+
+ // If we already have a stub for this function, recycle it.
+ return state.getFunctionToLazyStubMap().lookup(F);
+}
+
+/// getFunctionStub - This returns a pointer to a function stub, creating
+/// one on demand as needed.
+void *JITResolver::getLazyFunctionStub(Function *F) {
+ MutexGuard locked(TheJIT->lock);
+
+ // If we already have a lazy stub for this function, recycle it.
+ void *&Stub = state.getFunctionToLazyStubMap()[F];
+ if (Stub) return Stub;
+
+ // Call the lazy resolver function if we are JIT'ing lazily. Otherwise we
+ // must resolve the symbol now.
+ void *Actual = TheJIT->isCompilingLazily()
+ ? (void *)(intptr_t)LazyResolverFn : (void *)nullptr;
+
+ // If this is an external declaration, attempt to resolve the address now
+ // to place in the stub.
+ if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) {
+ Actual = TheJIT->getPointerToFunction(F);
+
+ // If we resolved the symbol to a null address (eg. a weak external)
+ // don't emit a stub. Return a null pointer to the application.
+ if (!Actual) return nullptr;
+ }
+
+ TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
+ JE.startGVStub(F, SL.Size, SL.Alignment);
+ // Codegen a new stub, calling the lazy resolver or the actual address of the
+ // external function, if it was resolved.
+ Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, JE);
+ JE.finishGVStub();
+
+ if (Actual != (void*)(intptr_t)LazyResolverFn) {
+ // If we are getting the stub for an external function, we really want the
+ // address of the stub in the GlobalAddressMap for the JIT, not the address
+ // of the external function.
+ TheJIT->updateGlobalMapping(F, Stub);
+ }
+
+ DEBUG(dbgs() << "JIT: Lazy stub emitted at [" << Stub << "] for function '"
+ << F->getName() << "'\n");
+
+ if (TheJIT->isCompilingLazily()) {
+ // Register this JITResolver as the one corresponding to this call site so
+ // JITCompilerFn will be able to find it.
+ StubToResolverMap->RegisterStubResolver(Stub, this);
+
+ // Finally, keep track of the stub-to-Function mapping so that the
+ // JITCompilerFn knows which function to compile!
+ state.AddCallSite(Stub, F);
+ } else if (!Actual) {
+ // If we are JIT'ing non-lazily but need to call a function that does not
+ // exist yet, add it to the JIT's work list so that we can fill in the
+ // stub address later.
+ assert(!isNonGhostDeclaration(F) && !F->hasAvailableExternallyLinkage() &&
+ "'Actual' should have been set above.");
+ TheJIT->addPendingFunction(F);
+ }
+
+ return Stub;
+}
+
+/// getGlobalValueIndirectSym - Return a lazy pointer containing the specified
+/// GV address.
+void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) {
+ MutexGuard locked(TheJIT->lock);
+
+ // If we already have a stub for this global variable, recycle it.
+ void *&IndirectSym = state.getGlobalToIndirectSymMap()[GV];
+ if (IndirectSym) return IndirectSym;
+
+ // Otherwise, codegen a new indirect symbol.
+ IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress,
+ JE);
+
+ DEBUG(dbgs() << "JIT: Indirect symbol emitted at [" << IndirectSym
+ << "] for GV '" << GV->getName() << "'\n");
+
+ return IndirectSym;
+}
+
+/// getExternalFunctionStub - Return a stub for the function at the
+/// specified address, created lazily on demand.
+void *JITResolver::getExternalFunctionStub(void *FnAddr) {
+ // If we already have a stub for this function, recycle it.
+ void *&Stub = ExternalFnToStubMap[FnAddr];
+ if (Stub) return Stub;
+
+ TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
+ JE.startGVStub(nullptr, SL.Size, SL.Alignment);
+ Stub = TheJIT->getJITInfo().emitFunctionStub(nullptr, FnAddr, JE);
+ JE.finishGVStub();
+
+ DEBUG(dbgs() << "JIT: Stub emitted at [" << Stub
+ << "] for external function at '" << FnAddr << "'\n");
+ return Stub;
+}
+
+unsigned JITResolver::getGOTIndexForAddr(void* addr) {
+ unsigned idx = revGOTMap[addr];
+ if (!idx) {
+ idx = ++nextGOTIndex;
+ revGOTMap[addr] = idx;
+ DEBUG(dbgs() << "JIT: Adding GOT entry " << idx << " for addr ["
+ << addr << "]\n");
+ }
+ return idx;
+}
+
+/// JITCompilerFn - This function is called when a lazy compilation stub has
+/// been entered. It looks up which function this stub corresponds to, compiles
+/// it if necessary, then returns the resultant function pointer.
+void *JITResolver::JITCompilerFn(void *Stub) {
+ JITResolver *JR = StubToResolverMap->getResolverFromStub(Stub);
+ assert(JR && "Unable to find the corresponding JITResolver to the call site");
+
+ Function* F = nullptr;
+ void* ActualPtr = nullptr;
+
+ {
+ // Only lock for getting the Function. The call getPointerToFunction made
+ // in this function might trigger function materializing, which requires
+ // JIT lock to be unlocked.
+ MutexGuard locked(JR->TheJIT->lock);
+
+ // The address given to us for the stub may not be exactly right, it might
+ // be a little bit after the stub. As such, use upper_bound to find it.
+ std::pair<void*, Function*> I =
+ JR->state.LookupFunctionFromCallSite(Stub);
+ F = I.second;
+ ActualPtr = I.first;
+ }
+
+ // If we have already code generated the function, just return the address.
+ void *Result = JR->TheJIT->getPointerToGlobalIfAvailable(F);
+
+ if (!Result) {
+ // Otherwise we don't have it, do lazy compilation now.
+
+ // If lazy compilation is disabled, emit a useful error message and abort.
+ if (!JR->TheJIT->isCompilingLazily()) {
+ report_fatal_error("LLVM JIT requested to do lazy compilation of"
+ " function '"
+ + F->getName() + "' when lazy compiles are disabled!");
+ }
+
+ DEBUG(dbgs() << "JIT: Lazily resolving function '" << F->getName()
+ << "' In stub ptr = " << Stub << " actual ptr = "
+ << ActualPtr << "\n");
+ (void)ActualPtr;
+
+ Result = JR->TheJIT->getPointerToFunction(F);
+ }
+
+ // Reacquire the lock to update the GOT map.
+ MutexGuard locked(JR->TheJIT->lock);
+
+ // We might like to remove the call site from the CallSiteToFunction map, but
+ // we can't do that! Multiple threads could be stuck, waiting to acquire the
+ // lock above. As soon as the 1st function finishes compiling the function,
+ // the next one will be released, and needs to be able to find the function it
+ // needs to call.
+
+ // FIXME: We could rewrite all references to this stub if we knew them.
+
+ // What we will do is set the compiled function address to map to the
+ // same GOT entry as the stub so that later clients may update the GOT
+ // if they see it still using the stub address.
+ // Note: this is done so the Resolver doesn't have to manage GOT memory
+ // Do this without allocating map space if the target isn't using a GOT
+ if(JR->revGOTMap.find(Stub) != JR->revGOTMap.end())
+ JR->revGOTMap[Result] = JR->revGOTMap[Stub];
+
+ return Result;
+}
+
+//===----------------------------------------------------------------------===//
+// JITEmitter code.
+//
+
+static GlobalObject *getSimpleAliasee(Constant *C) {
+ C = C->stripPointerCasts();
+ return dyn_cast<GlobalObject>(C);
+}
+
+void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
+ bool MayNeedFarStub) {
+ if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
+ return TheJIT->getOrEmitGlobalVariable(GV);
+
+ if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
+ // We can only handle simple cases.
+ if (GlobalValue *GV = getSimpleAliasee(GA->getAliasee()))
+ return TheJIT->getPointerToGlobal(GV);
+ return nullptr;
+ }
+
+ // If we have already compiled the function, return a pointer to its body.
+ Function *F = cast<Function>(V);
+
+ void *FnStub = Resolver.getLazyFunctionStubIfAvailable(F);
+ if (FnStub) {
+ // Return the function stub if it's already created. We do this first so
+ // that we're returning the same address for the function as any previous
+ // call. TODO: Yes, this is wrong. The lazy stub isn't guaranteed to be
+ // close enough to call.
+ return FnStub;
+ }
+
+ // If we know the target can handle arbitrary-distance calls, try to
+ // return a direct pointer.
+ if (!MayNeedFarStub) {
+ // If we have code, go ahead and return that.
+ void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
+ if (ResultPtr) return ResultPtr;
+
+ // If this is an external function pointer, we can force the JIT to
+ // 'compile' it, which really just adds it to the map.
+ if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage())
+ return TheJIT->getPointerToFunction(F);
+ }
+
+ // Otherwise, we may need a to emit a stub, and, conservatively, we always do
+ // so. Note that it's possible to return null from getLazyFunctionStub in the
+ // case of a weak extern that fails to resolve.
+ return Resolver.getLazyFunctionStub(F);
+}
+
+void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference) {
+ // Make sure GV is emitted first, and create a stub containing the fully
+ // resolved address.
+ void *GVAddress = getPointerToGlobal(V, Reference, false);
+ void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress);
+ return StubAddr;
+}
+
+void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) {
+ if (DL.isUnknown()) return;
+ if (!BeforePrintingInsn) return;
+
+ const LLVMContext &Context = EmissionDetails.MF->getFunction()->getContext();
+
+ if (DL.getScope(Context) != nullptr && PrevDL != DL) {
+ JITEvent_EmittedFunctionDetails::LineStart NextLine;
+ NextLine.Address = getCurrentPCValue();
+ NextLine.Loc = DL;
+ EmissionDetails.LineStarts.push_back(NextLine);
+ }
+
+ PrevDL = DL;
+}
+
+static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP,
+ const DataLayout *TD) {
+ const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
+ if (Constants.empty()) return 0;
+
+ unsigned Size = 0;
+ for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
+ MachineConstantPoolEntry CPE = Constants[i];
+ unsigned AlignMask = CPE.getAlignment() - 1;
+ Size = (Size + AlignMask) & ~AlignMask;
+ Type *Ty = CPE.getType();
+ Size += TD->getTypeAllocSize(Ty);
+ }
+ return Size;
+}
+
+void JITEmitter::startFunction(MachineFunction &F) {
+ DEBUG(dbgs() << "JIT: Starting CodeGen of Function "
+ << F.getName() << "\n");
+
+ uintptr_t ActualSize = 0;
+ // Set the memory writable, if it's not already
+ MemMgr->setMemoryWritable();
+
+ if (SizeEstimate > 0) {
+ // SizeEstimate will be non-zero on reallocation attempts.
+ ActualSize = SizeEstimate;
+ }
+
+ BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
+ ActualSize);
+ BufferEnd = BufferBegin+ActualSize;
+ EmittedFunctions[F.getFunction()].FunctionBody = BufferBegin;
+
+ // Ensure the constant pool/jump table info is at least 4-byte aligned.
+ emitAlignment(16);
+
+ emitConstantPool(F.getConstantPool());
+ if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
+ initJumpTableInfo(MJTI);
+
+ // About to start emitting the machine code for the function.
+ emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
+ TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
+ EmittedFunctions[F.getFunction()].Code = CurBufferPtr;
+
+ MBBLocations.clear();
+
+ EmissionDetails.MF = &F;
+ EmissionDetails.LineStarts.clear();
+}
+
+bool JITEmitter::finishFunction(MachineFunction &F) {
+ if (CurBufferPtr == BufferEnd) {
+ // We must call endFunctionBody before retrying, because
+ // deallocateMemForFunction requires it.
+ MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
+ retryWithMoreMemory(F);
+ return true;
+ }
+
+ if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
+ emitJumpTableInfo(MJTI);
+
+ // FnStart is the start of the text, not the start of the constant pool and
+ // other per-function data.
+ uint8_t *FnStart =
+ (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
+
+ // FnEnd is the end of the function's machine code.
+ uint8_t *FnEnd = CurBufferPtr;
+
+ if (!Relocations.empty()) {
+ CurFn = F.getFunction();
+ NumRelos += Relocations.size();
+
+ // Resolve the relocations to concrete pointers.
+ for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
+ MachineRelocation &MR = Relocations[i];
+ void *ResultPtr = nullptr;
+ if (!MR.letTargetResolve()) {
+ if (MR.isExternalSymbol()) {
+ ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(),
+ false);
+ DEBUG(dbgs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to ["
+ << ResultPtr << "]\n");
+
+ // If the target REALLY wants a stub for this function, emit it now.
+ if (MR.mayNeedFarStub()) {
+ ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
+ }
+ } else if (MR.isGlobalValue()) {
+ ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
+ BufferBegin+MR.getMachineCodeOffset(),
+ MR.mayNeedFarStub());
+ } else if (MR.isIndirectSymbol()) {
+ ResultPtr = getPointerToGVIndirectSym(
+ MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset());
+ } else if (MR.isBasicBlock()) {
+ ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
+ } else if (MR.isConstantPoolIndex()) {
+ ResultPtr =
+ (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
+ } else {
+ assert(MR.isJumpTableIndex());
+ ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
+ }
+
+ MR.setResultPointer(ResultPtr);
+ }
+
+ // if we are managing the GOT and the relocation wants an index,
+ // give it one
+ if (MR.isGOTRelative() && MemMgr->isManagingGOT()) {
+ unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
+ MR.setGOTIndex(idx);
+ if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
+ DEBUG(dbgs() << "JIT: GOT was out of date for " << ResultPtr
+ << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
+ << "\n");
+ ((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
+ }
+ }
+ }
+
+ CurFn = nullptr;
+ TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
+ Relocations.size(), MemMgr->getGOTBase());
+ }
+
+ // Update the GOT entry for F to point to the new code.
+ if (MemMgr->isManagingGOT()) {
+ unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
+ if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
+ DEBUG(dbgs() << "JIT: GOT was out of date for " << (void*)BufferBegin
+ << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
+ << "\n");
+ ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
+ }
+ }
+
+ // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for
+ // global variables that were referenced in the relocations.
+ MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
+
+ if (CurBufferPtr == BufferEnd) {
+ retryWithMoreMemory(F);
+ return true;
+ } else {
+ // Now that we've succeeded in emitting the function, reset the
+ // SizeEstimate back down to zero.
+ SizeEstimate = 0;
+ }
+
+ BufferBegin = CurBufferPtr = nullptr;
+ NumBytes += FnEnd-FnStart;
+
+ // Invalidate the icache if necessary.
+ sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart);
+
+ TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart,
+ EmissionDetails);
+
+ // Reset the previous debug location.
+ PrevDL = DebugLoc();
+
+ DEBUG(dbgs() << "JIT: Finished CodeGen of [" << (void*)FnStart
+ << "] Function: " << F.getName()
+ << ": " << (FnEnd-FnStart) << " bytes of text, "
+ << Relocations.size() << " relocations\n");
+
+ Relocations.clear();
+ ConstPoolAddresses.clear();
+
+ // Mark code region readable and executable if it's not so already.
+ MemMgr->setMemoryExecutable();
+
+ DEBUG({
+ dbgs() << "JIT: Binary code:\n";
+ uint8_t* q = FnStart;
+ for (int i = 0; q < FnEnd; q += 4, ++i) {
+ if (i == 4)
+ i = 0;
+ if (i == 0)
+ dbgs() << "JIT: " << (long)(q - FnStart) << ": ";
+ bool Done = false;
+ for (int j = 3; j >= 0; --j) {
+ if (q + j >= FnEnd)
+ Done = true;
+ else
+ dbgs() << (unsigned short)q[j];
+ }
+ if (Done)
+ break;
+ dbgs() << ' ';
+ if (i == 3)
+ dbgs() << '\n';
+ }
+ dbgs()<< '\n';
+ });
+
+ if (MMI)
+ MMI->EndFunction();
+
+ return false;
+}
+
+void JITEmitter::retryWithMoreMemory(MachineFunction &F) {
+ DEBUG(dbgs() << "JIT: Ran out of space for native code. Reattempting.\n");
+ Relocations.clear(); // Clear the old relocations or we'll reapply them.
+ ConstPoolAddresses.clear();
+ ++NumRetries;
+ deallocateMemForFunction(F.getFunction());
+ // Try again with at least twice as much free space.
+ SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin));
+
+ for (MachineFunction::iterator MBB = F.begin(), E = F.end(); MBB != E; ++MBB){
+ if (MBB->hasAddressTaken())
+ TheJIT->clearPointerToBasicBlock(MBB->getBasicBlock());
+ }
+}
+
+/// deallocateMemForFunction - Deallocate all memory for the specified
+/// function body. Also drop any references the function has to stubs.
+/// May be called while the Function is being destroyed inside ~Value().
+void JITEmitter::deallocateMemForFunction(const Function *F) {
+ ValueMap<const Function *, EmittedCode, EmittedFunctionConfig>::iterator
+ Emitted = EmittedFunctions.find(F);
+ if (Emitted != EmittedFunctions.end()) {
+ MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody);
+ TheJIT->NotifyFreeingMachineCode(Emitted->second.Code);
+
+ EmittedFunctions.erase(Emitted);
+ }
+}
+
+
+void *JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) {
+ if (BufferBegin)
+ return JITCodeEmitter::allocateSpace(Size, Alignment);
+
+ // create a new memory block if there is no active one.
+ // care must be taken so that BufferBegin is invalidated when a
+ // block is trimmed
+ BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment);
+ BufferEnd = BufferBegin+Size;
+ return CurBufferPtr;
+}
+
+void *JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) {
+ // Delegate this call through the memory manager.
+ return MemMgr->allocateGlobal(Size, Alignment);
+}
+
+void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
+ if (TheJIT->getJITInfo().hasCustomConstantPool())
+ return;
+
+ const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
+ if (Constants.empty()) return;
+
+ unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getDataLayout());
+ unsigned Align = MCP->getConstantPoolAlignment();
+ ConstantPoolBase = allocateSpace(Size, Align);
+ ConstantPool = MCP;
+
+ if (!ConstantPoolBase) return; // Buffer overflow.
+
+ DEBUG(dbgs() << "JIT: Emitted constant pool at [" << ConstantPoolBase
+ << "] (size: " << Size << ", alignment: " << Align << ")\n");
+
+ // Initialize the memory for all of the constant pool entries.
+ unsigned Offset = 0;
+ for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
+ MachineConstantPoolEntry CPE = Constants[i];
+ unsigned AlignMask = CPE.getAlignment() - 1;
+ Offset = (Offset + AlignMask) & ~AlignMask;
+
+ uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset;
+ ConstPoolAddresses.push_back(CAddr);
+ if (CPE.isMachineConstantPoolEntry()) {
+ // FIXME: add support to lower machine constant pool values into bytes!
+ report_fatal_error("Initialize memory with machine specific constant pool"
+ "entry has not been implemented!");
+ }
+ TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr);
+ DEBUG(dbgs() << "JIT: CP" << i << " at [0x";
+ dbgs().write_hex(CAddr) << "]\n");
+
+ Type *Ty = CPE.Val.ConstVal->getType();
+ Offset += TheJIT->getDataLayout()->getTypeAllocSize(Ty);
+ }
+}
+
+void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
+ if (TheJIT->getJITInfo().hasCustomJumpTables())
+ return;
+ if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline)
+ return;
+
+ const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
+ if (JT.empty()) return;
+
+ unsigned NumEntries = 0;
+ for (unsigned i = 0, e = JT.size(); i != e; ++i)
+ NumEntries += JT[i].MBBs.size();
+
+ unsigned EntrySize = MJTI->getEntrySize(*TheJIT->getDataLayout());
+
+ // Just allocate space for all the jump tables now. We will fix up the actual
+ // MBB entries in the tables after we emit the code for each block, since then
+ // we will know the final locations of the MBBs in memory.
+ JumpTable = MJTI;
+ JumpTableBase = allocateSpace(NumEntries * EntrySize,
+ MJTI->getEntryAlignment(*TheJIT->getDataLayout()));
+}
+
+void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
+ if (TheJIT->getJITInfo().hasCustomJumpTables())
+ return;
+
+ const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
+ if (JT.empty() || !JumpTableBase) return;
+
+
+ switch (MJTI->getEntryKind()) {
+ case MachineJumpTableInfo::EK_Inline:
+ return;
+ case MachineJumpTableInfo::EK_BlockAddress: {
+ // EK_BlockAddress - Each entry is a plain address of block, e.g.:
+ // .word LBB123
+ assert(MJTI->getEntrySize(*TheJIT->getDataLayout()) == sizeof(void*) &&
+ "Cross JIT'ing?");
+
+ // For each jump table, map each target in the jump table to the address of
+ // an emitted MachineBasicBlock.
+ intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
+
+ for (unsigned i = 0, e = JT.size(); i != e; ++i) {
+ const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
+ // Store the address of the basic block for this jump table slot in the
+ // memory we allocated for the jump table in 'initJumpTableInfo'
+ for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
+ *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
+ }
+ break;
+ }
+
+ case MachineJumpTableInfo::EK_Custom32:
+ case MachineJumpTableInfo::EK_GPRel32BlockAddress:
+ case MachineJumpTableInfo::EK_LabelDifference32: {
+ assert(MJTI->getEntrySize(*TheJIT->getDataLayout()) == 4&&"Cross JIT'ing?");
+ // For each jump table, place the offset from the beginning of the table
+ // to the target address.
+ int *SlotPtr = (int*)JumpTableBase;
+
+ for (unsigned i = 0, e = JT.size(); i != e; ++i) {
+ const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
+ // Store the offset of the basic block for this jump table slot in the
+ // memory we allocated for the jump table in 'initJumpTableInfo'
+ uintptr_t Base = (uintptr_t)SlotPtr;
+ for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
+ uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]);
+ /// FIXME: USe EntryKind instead of magic "getPICJumpTableEntry" hook.
+ *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base);
+ }
+ }
+ break;
+ }
+ case MachineJumpTableInfo::EK_GPRel64BlockAddress:
+ llvm_unreachable(
+ "JT Info emission not implemented for GPRel64BlockAddress yet.");
+ }
+}
+
+void JITEmitter::startGVStub(const GlobalValue* GV,
+ unsigned StubSize, unsigned Alignment) {
+ SavedBufferBegin = BufferBegin;
+ SavedBufferEnd = BufferEnd;
+ SavedCurBufferPtr = CurBufferPtr;
+
+ BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment);
+ BufferEnd = BufferBegin+StubSize+1;
+}
+
+void JITEmitter::startGVStub(void *Buffer, unsigned StubSize) {
+ SavedBufferBegin = BufferBegin;
+ SavedBufferEnd = BufferEnd;
+ SavedCurBufferPtr = CurBufferPtr;
+
+ BufferBegin = CurBufferPtr = (uint8_t *)Buffer;
+ BufferEnd = BufferBegin+StubSize+1;
+}
+
+void JITEmitter::finishGVStub() {
+ assert(CurBufferPtr != BufferEnd && "Stub overflowed allocated space.");
+ NumBytes += getCurrentPCOffset();
+ BufferBegin = SavedBufferBegin;
+ BufferEnd = SavedBufferEnd;
+ CurBufferPtr = SavedCurBufferPtr;
+}
+
+void *JITEmitter::allocIndirectGV(const GlobalValue *GV,
+ const uint8_t *Buffer, size_t Size,
+ unsigned Alignment) {
+ uint8_t *IndGV = MemMgr->allocateStub(GV, Size, Alignment);
+ memcpy(IndGV, Buffer, Size);
+ return IndGV;
+}
+
+// getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
+// in the constant pool that was last emitted with the 'emitConstantPool'
+// method.
+//
+uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
+ assert(ConstantNum < ConstantPool->getConstants().size() &&
+ "Invalid ConstantPoolIndex!");
+ return ConstPoolAddresses[ConstantNum];
+}
+
+// getJumpTableEntryAddress - Return the address of the JumpTable with index
+// 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
+//
+uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
+ const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
+ assert(Index < JT.size() && "Invalid jump table index!");
+
+ unsigned EntrySize = JumpTable->getEntrySize(*TheJIT->getDataLayout());
+
+ unsigned Offset = 0;
+ for (unsigned i = 0; i < Index; ++i)
+ Offset += JT[i].MBBs.size();
+
+ Offset *= EntrySize;
+
+ return (uintptr_t)((char *)JumpTableBase + Offset);
+}
+
+void JITEmitter::EmittedFunctionConfig::onDelete(
+ JITEmitter *Emitter, const Function *F) {
+ Emitter->deallocateMemForFunction(F);
+}
+void JITEmitter::EmittedFunctionConfig::onRAUW(
+ JITEmitter *, const Function*, const Function*) {
+ llvm_unreachable("The JIT doesn't know how to handle a"
+ " RAUW on a value it has emitted.");
+}
+
+
+//===----------------------------------------------------------------------===//
+// Public interface to this file
+//===----------------------------------------------------------------------===//
+
+JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM,
+ TargetMachine &tm) {
+ return new JITEmitter(jit, JMM, tm);
+}
+
+// getPointerToFunctionOrStub - If the specified function has been
+// code-gen'd, return a pointer to the function. If not, compile it, or use
+// a stub to implement lazy compilation if available.
+//
+void *JIT::getPointerToFunctionOrStub(Function *F) {
+ // If we have already code generated the function, just return the address.
+ if (void *Addr = getPointerToGlobalIfAvailable(F))
+ return Addr;
+
+ // Get a stub if the target supports it.
+ JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter());
+ return JE->getJITResolver().getLazyFunctionStub(F);
+}
+
+void JIT::updateFunctionStubUnlocked(Function *F) {
+ // Get the empty stub we generated earlier.
+ JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter());
+ void *Stub = JE->getJITResolver().getLazyFunctionStub(F);
+ void *Addr = getPointerToGlobalIfAvailable(F);
+ assert(Addr != Stub && "Function must have non-stub address to be updated.");
+
+ // Tell the target jit info to rewrite the stub at the specified address,
+ // rather than creating a new one.
+ TargetJITInfo::StubLayout layout = getJITInfo().getStubLayout();
+ JE->startGVStub(Stub, layout.Size);
+ getJITInfo().emitFunctionStub(F, Addr, *getCodeEmitter());
+ JE->finishGVStub();
+}
+
+/// freeMachineCodeForFunction - release machine code memory for given Function.
+///
+void JIT::freeMachineCodeForFunction(Function *F) {
+ // Delete translation for this from the ExecutionEngine, so it will get
+ // retranslated next time it is used.
+ updateGlobalMapping(F, nullptr);
+
+ // Free the actual memory for the function body and related stuff.
+ static_cast<JITEmitter*>(JCE)->deallocateMemForFunction(F);
+}
diff --git a/llvm/lib/ExecutionEngine/MCJIT/JITMemoryManager.cpp b/llvm/lib/ExecutionEngine/JIT/JITMemoryManager.cpp
index 584b93f8150..584b93f8150 100644
--- a/llvm/lib/ExecutionEngine/MCJIT/JITMemoryManager.cpp
+++ b/llvm/lib/ExecutionEngine/JIT/JITMemoryManager.cpp
diff --git a/llvm/lib/ExecutionEngine/JIT/LLVMBuild.txt b/llvm/lib/ExecutionEngine/JIT/LLVMBuild.txt
new file mode 100644
index 00000000000..dd22f1b464a
--- /dev/null
+++ b/llvm/lib/ExecutionEngine/JIT/LLVMBuild.txt
@@ -0,0 +1,22 @@
+;===- ./lib/ExecutionEngine/JIT/LLVMBuild.txt ------------------*- Conf -*--===;
+;
+; The LLVM Compiler Infrastructure
+;
+; This file is distributed under the University of Illinois Open Source
+; License. See LICENSE.TXT for details.
+;
+;===------------------------------------------------------------------------===;
+;
+; This is an LLVMBuild description file for the components in this subdirectory.
+;
+; For more information on the LLVMBuild system, please see:
+;
+; http://llvm.org/docs/LLVMBuild.html
+;
+;===------------------------------------------------------------------------===;
+
+[component_0]
+type = Library
+name = JIT
+parent = ExecutionEngine
+required_libraries = CodeGen Core ExecutionEngine Support
diff --git a/llvm/lib/ExecutionEngine/JIT/Makefile b/llvm/lib/ExecutionEngine/JIT/Makefile
new file mode 100644
index 00000000000..aafa3d9d420
--- /dev/null
+++ b/llvm/lib/ExecutionEngine/JIT/Makefile
@@ -0,0 +1,38 @@
+##===- lib/ExecutionEngine/JIT/Makefile --------------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+
+LEVEL = ../../..
+LIBRARYNAME = LLVMJIT
+
+# Get the $(ARCH) setting
+include $(LEVEL)/Makefile.config
+
+# Enable the X86 JIT if compiling on X86
+ifeq ($(ARCH), x86)
+ ENABLE_X86_JIT = 1
+endif
+
+# This flag can also be used on the command line to force inclusion
+# of the X86 JIT on non-X86 hosts
+ifdef ENABLE_X86_JIT
+ CPPFLAGS += -DENABLE_X86_JIT
+endif
+
+# Enable the Sparc JIT if compiling on Sparc
+ifeq ($(ARCH), Sparc)
+ ENABLE_SPARC_JIT = 1
+endif
+
+# This flag can also be used on the command line to force inclusion
+# of the Sparc JIT on non-Sparc hosts
+ifdef ENABLE_SPARC_JIT
+ CPPFLAGS += -DENABLE_SPARC_JIT
+endif
+
+include $(LEVEL)/Makefile.common
diff --git a/llvm/lib/ExecutionEngine/LLVMBuild.txt b/llvm/lib/ExecutionEngine/LLVMBuild.txt
index ecae078ec7d..6dc75af2ec9 100644
--- a/llvm/lib/ExecutionEngine/LLVMBuild.txt
+++ b/llvm/lib/ExecutionEngine/LLVMBuild.txt
@@ -16,7 +16,7 @@
;===------------------------------------------------------------------------===;
[common]
-subdirectories = Interpreter MCJIT RuntimeDyld IntelJITEvents OProfileJIT
+subdirectories = Interpreter JIT MCJIT RuntimeDyld IntelJITEvents OProfileJIT
[component_0]
type = Library
diff --git a/llvm/lib/ExecutionEngine/MCJIT/CMakeLists.txt b/llvm/lib/ExecutionEngine/MCJIT/CMakeLists.txt
index 0f42c31060b..088635a0e99 100644
--- a/llvm/lib/ExecutionEngine/MCJIT/CMakeLists.txt
+++ b/llvm/lib/ExecutionEngine/MCJIT/CMakeLists.txt
@@ -1,5 +1,4 @@
add_llvm_library(LLVMMCJIT
- JITMemoryManager.cpp
MCJIT.cpp
SectionMemoryManager.cpp
)
diff --git a/llvm/lib/ExecutionEngine/MCJIT/MCJIT.cpp b/llvm/lib/ExecutionEngine/MCJIT/MCJIT.cpp
index 5f1fac7eff1..53630d5a5e8 100644
--- a/llvm/lib/ExecutionEngine/MCJIT/MCJIT.cpp
+++ b/llvm/lib/ExecutionEngine/MCJIT/MCJIT.cpp
@@ -247,6 +247,10 @@ void MCJIT::finalizeModule(Module *M) {
finalizeLoadedModules();
}
+void *MCJIT::getPointerToBasicBlock(BasicBlock *BB) {
+ report_fatal_error("not yet implemented");
+}
+
uint64_t MCJIT::getExistingSymbolAddress(const std::string &Name) {
Mangler Mang(TM->getSubtargetImpl()->getDataLayout());
SmallString<128> FullName;
@@ -368,6 +372,14 @@ void *MCJIT::getPointerToFunction(Function *F) {
return (void*)Dyld.getSymbolLoadAddress(Name);
}
+void *MCJIT::recompileAndRelinkFunction(Function *F) {
+ report_fatal_error("not yet implemented");
+}
+
+void MCJIT::freeMachineCodeForFunction(Function *F) {
+ report_fatal_error("not yet implemented");
+}
+
void MCJIT::runStaticConstructorsDestructorsInModulePtrSet(
bool isDtors, ModulePtrSet::iterator I, ModulePtrSet::iterator E) {
for (; I != E; ++I) {
@@ -537,7 +549,8 @@ void MCJIT::UnregisterJITEventListener(JITEventListener *L) {
if (!L)
return;
MutexGuard locked(lock);
- auto I = std::find(EventListeners.rbegin(), EventListeners.rend(), L);
+ SmallVector<JITEventListener*, 2>::reverse_iterator I=
+ std::find(EventListeners.rbegin(), EventListeners.rend(), L);
if (I != EventListeners.rend()) {
std::swap(*I, EventListeners.back());
EventListeners.pop_back();
@@ -553,8 +566,7 @@ void MCJIT::NotifyObjectEmitted(const ObjectImage& Obj) {
void MCJIT::NotifyFreeingObject(const ObjectImage& Obj) {
MutexGuard locked(lock);
for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
- JITEventListener *L = EventListeners[I];
- L->NotifyFreeingObject(Obj);
+ EventListeners[I]->NotifyFreeingObject(Obj);
}
}
diff --git a/llvm/lib/ExecutionEngine/MCJIT/MCJIT.h b/llvm/lib/ExecutionEngine/MCJIT/MCJIT.h
index 247de7c90b8..83e3321db92 100644
--- a/llvm/lib/ExecutionEngine/MCJIT/MCJIT.h
+++ b/llvm/lib/ExecutionEngine/MCJIT/MCJIT.h
@@ -211,7 +211,7 @@ class MCJIT : public ExecutionEngine {
MCContext *Ctx;
LinkingMemoryManager MemMgr;
RuntimeDyld Dyld;
- std::vector<JITEventListener*> EventListeners;
+ SmallVector<JITEventListener*, 2> EventListeners;
OwningModuleContainer OwnedModules;
@@ -275,8 +275,14 @@ public:
/// \param isDtors - Run the destructors instead of constructors.
void runStaticConstructorsDestructors(bool isDtors) override;
+ void *getPointerToBasicBlock(BasicBlock *BB) override;
+
void *getPointerToFunction(Function *F) override;
+ void *recompileAndRelinkFunction(Function *F) override;
+
+ void freeMachineCodeForFunction(Function *F) override;
+
GenericValue runFunction(Function *F,
const std::vector<GenericValue> &ArgValues) override;
diff --git a/llvm/lib/ExecutionEngine/Makefile b/llvm/lib/ExecutionEngine/Makefile
index cf714324e3b..c26e0ada5bc 100644
--- a/llvm/lib/ExecutionEngine/Makefile
+++ b/llvm/lib/ExecutionEngine/Makefile
@@ -11,7 +11,7 @@ LIBRARYNAME = LLVMExecutionEngine
include $(LEVEL)/Makefile.config
-PARALLEL_DIRS = Interpreter MCJIT RuntimeDyld
+PARALLEL_DIRS = Interpreter JIT MCJIT RuntimeDyld
ifeq ($(USE_INTEL_JITEVENTS), 1)
PARALLEL_DIRS += IntelJITEvents
diff --git a/llvm/lib/ExecutionEngine/TargetSelect.cpp b/llvm/lib/ExecutionEngine/TargetSelect.cpp
index e6679cfb7f7..b10d51f6486 100644
--- a/llvm/lib/ExecutionEngine/TargetSelect.cpp
+++ b/llvm/lib/ExecutionEngine/TargetSelect.cpp
@@ -30,7 +30,7 @@ TargetMachine *EngineBuilder::selectTarget() {
// MCJIT can generate code for remote targets, but the old JIT and Interpreter
// must use the host architecture.
- if (WhichEngine != EngineKind::Interpreter && M)
+ if (UseMCJIT && WhichEngine != EngineKind::Interpreter && M)
TT.setTriple(M->getTargetTriple());
return selectTarget(TT, MArch, MCPU, MAttrs);
@@ -89,7 +89,8 @@ TargetMachine *EngineBuilder::selectTarget(const Triple &TargetTriple,
}
// FIXME: non-iOS ARM FastISel is broken with MCJIT.
- if (TheTriple.getArch() == Triple::arm &&
+ if (UseMCJIT &&
+ TheTriple.getArch() == Triple::arm &&
!TheTriple.isiOS() &&
OptLevel == CodeGenOpt::None) {
OptLevel = CodeGenOpt::Less;
OpenPOWER on IntegriCloud