summaryrefslogtreecommitdiffstats
path: root/llvm/lib/CodeGen
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/CodeGen')
-rw-r--r--llvm/lib/CodeGen/CMakeLists.txt3
-rw-r--r--llvm/lib/CodeGen/RDFGraph.cpp1837
-rw-r--r--llvm/lib/CodeGen/RDFLiveness.cpp1118
-rw-r--r--llvm/lib/CodeGen/RDFRegisters.cpp380
4 files changed, 3338 insertions, 0 deletions
diff --git a/llvm/lib/CodeGen/CMakeLists.txt b/llvm/lib/CodeGen/CMakeLists.txt
index 470b027e38c..a3916b7c624 100644
--- a/llvm/lib/CodeGen/CMakeLists.txt
+++ b/llvm/lib/CodeGen/CMakeLists.txt
@@ -114,6 +114,9 @@ add_llvm_component_library(LLVMCodeGen
ProcessImplicitDefs.cpp
PrologEpilogInserter.cpp
PseudoSourceValue.cpp
+ RDFGraph.cpp
+ RDFLiveness.cpp
+ RDFRegisters.cpp
ReachingDefAnalysis.cpp
RegAllocBase.cpp
RegAllocBasic.cpp
diff --git a/llvm/lib/CodeGen/RDFGraph.cpp b/llvm/lib/CodeGen/RDFGraph.cpp
new file mode 100644
index 00000000000..437a6b03009
--- /dev/null
+++ b/llvm/lib/CodeGen/RDFGraph.cpp
@@ -0,0 +1,1837 @@
+//===- RDFGraph.cpp -------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Target-independent, SSA-based data flow graph for register data flow (RDF).
+//
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineDominanceFrontier.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RDFGraph.h"
+#include "llvm/CodeGen/RDFRegisters.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/IR/Function.h"
+#include "llvm/MC/LaneBitmask.h"
+#include "llvm/MC/MCInstrDesc.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <cstring>
+#include <iterator>
+#include <set>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+using namespace rdf;
+
+// Printing functions. Have them here first, so that the rest of the code
+// can use them.
+namespace llvm {
+namespace rdf {
+
+raw_ostream &operator<< (raw_ostream &OS, const PrintLaneMaskOpt &P) {
+ if (!P.Mask.all())
+ OS << ':' << PrintLaneMask(P.Mask);
+ return OS;
+}
+
+raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterRef> &P) {
+ auto &TRI = P.G.getTRI();
+ if (P.Obj.Reg > 0 && P.Obj.Reg < TRI.getNumRegs())
+ OS << TRI.getName(P.Obj.Reg);
+ else
+ OS << '#' << P.Obj.Reg;
+ OS << PrintLaneMaskOpt(P.Obj.Mask);
+ return OS;
+}
+
+raw_ostream &operator<< (raw_ostream &OS, const Print<NodeId> &P) {
+ auto NA = P.G.addr<NodeBase*>(P.Obj);
+ uint16_t Attrs = NA.Addr->getAttrs();
+ uint16_t Kind = NodeAttrs::kind(Attrs);
+ uint16_t Flags = NodeAttrs::flags(Attrs);
+ switch (NodeAttrs::type(Attrs)) {
+ case NodeAttrs::Code:
+ switch (Kind) {
+ case NodeAttrs::Func: OS << 'f'; break;
+ case NodeAttrs::Block: OS << 'b'; break;
+ case NodeAttrs::Stmt: OS << 's'; break;
+ case NodeAttrs::Phi: OS << 'p'; break;
+ default: OS << "c?"; break;
+ }
+ break;
+ case NodeAttrs::Ref:
+ if (Flags & NodeAttrs::Undef)
+ OS << '/';
+ if (Flags & NodeAttrs::Dead)
+ OS << '\\';
+ if (Flags & NodeAttrs::Preserving)
+ OS << '+';
+ if (Flags & NodeAttrs::Clobbering)
+ OS << '~';
+ switch (Kind) {
+ case NodeAttrs::Use: OS << 'u'; break;
+ case NodeAttrs::Def: OS << 'd'; break;
+ case NodeAttrs::Block: OS << 'b'; break;
+ default: OS << "r?"; break;
+ }
+ break;
+ default:
+ OS << '?';
+ break;
+ }
+ OS << P.Obj;
+ if (Flags & NodeAttrs::Shadow)
+ OS << '"';
+ return OS;
+}
+
+static void printRefHeader(raw_ostream &OS, const NodeAddr<RefNode*> RA,
+ const DataFlowGraph &G) {
+ OS << Print<NodeId>(RA.Id, G) << '<'
+ << Print<RegisterRef>(RA.Addr->getRegRef(G), G) << '>';
+ if (RA.Addr->getFlags() & NodeAttrs::Fixed)
+ OS << '!';
+}
+
+raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<DefNode*>> &P) {
+ printRefHeader(OS, P.Obj, P.G);
+ OS << '(';
+ if (NodeId N = P.Obj.Addr->getReachingDef())
+ OS << Print<NodeId>(N, P.G);
+ OS << ',';
+ if (NodeId N = P.Obj.Addr->getReachedDef())
+ OS << Print<NodeId>(N, P.G);
+ OS << ',';
+ if (NodeId N = P.Obj.Addr->getReachedUse())
+ OS << Print<NodeId>(N, P.G);
+ OS << "):";
+ if (NodeId N = P.Obj.Addr->getSibling())
+ OS << Print<NodeId>(N, P.G);
+ return OS;
+}
+
+raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<UseNode*>> &P) {
+ printRefHeader(OS, P.Obj, P.G);
+ OS << '(';
+ if (NodeId N = P.Obj.Addr->getReachingDef())
+ OS << Print<NodeId>(N, P.G);
+ OS << "):";
+ if (NodeId N = P.Obj.Addr->getSibling())
+ OS << Print<NodeId>(N, P.G);
+ return OS;
+}
+
+raw_ostream &operator<< (raw_ostream &OS,
+ const Print<NodeAddr<PhiUseNode*>> &P) {
+ printRefHeader(OS, P.Obj, P.G);
+ OS << '(';
+ if (NodeId N = P.Obj.Addr->getReachingDef())
+ OS << Print<NodeId>(N, P.G);
+ OS << ',';
+ if (NodeId N = P.Obj.Addr->getPredecessor())
+ OS << Print<NodeId>(N, P.G);
+ OS << "):";
+ if (NodeId N = P.Obj.Addr->getSibling())
+ OS << Print<NodeId>(N, P.G);
+ return OS;
+}
+
+raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<RefNode*>> &P) {
+ switch (P.Obj.Addr->getKind()) {
+ case NodeAttrs::Def:
+ OS << PrintNode<DefNode*>(P.Obj, P.G);
+ break;
+ case NodeAttrs::Use:
+ if (P.Obj.Addr->getFlags() & NodeAttrs::PhiRef)
+ OS << PrintNode<PhiUseNode*>(P.Obj, P.G);
+ else
+ OS << PrintNode<UseNode*>(P.Obj, P.G);
+ break;
+ }
+ return OS;
+}
+
+raw_ostream &operator<< (raw_ostream &OS, const Print<NodeList> &P) {
+ unsigned N = P.Obj.size();
+ for (auto I : P.Obj) {
+ OS << Print<NodeId>(I.Id, P.G);
+ if (--N)
+ OS << ' ';
+ }
+ return OS;
+}
+
+raw_ostream &operator<< (raw_ostream &OS, const Print<NodeSet> &P) {
+ unsigned N = P.Obj.size();
+ for (auto I : P.Obj) {
+ OS << Print<NodeId>(I, P.G);
+ if (--N)
+ OS << ' ';
+ }
+ return OS;
+}
+
+namespace {
+
+ template <typename T>
+ struct PrintListV {
+ PrintListV(const NodeList &L, const DataFlowGraph &G) : List(L), G(G) {}
+
+ using Type = T;
+ const NodeList &List;
+ const DataFlowGraph &G;
+ };
+
+ template <typename T>
+ raw_ostream &operator<< (raw_ostream &OS, const PrintListV<T> &P) {
+ unsigned N = P.List.size();
+ for (NodeAddr<T> A : P.List) {
+ OS << PrintNode<T>(A, P.G);
+ if (--N)
+ OS << ", ";
+ }
+ return OS;
+ }
+
+} // end anonymous namespace
+
+raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<PhiNode*>> &P) {
+ OS << Print<NodeId>(P.Obj.Id, P.G) << ": phi ["
+ << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']';
+ return OS;
+}
+
+raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<StmtNode *>> &P) {
+ const MachineInstr &MI = *P.Obj.Addr->getCode();
+ unsigned Opc = MI.getOpcode();
+ OS << Print<NodeId>(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opc);
+ // Print the target for calls and branches (for readability).
+ if (MI.isCall() || MI.isBranch()) {
+ MachineInstr::const_mop_iterator T =
+ llvm::find_if(MI.operands(),
+ [] (const MachineOperand &Op) -> bool {
+ return Op.isMBB() || Op.isGlobal() || Op.isSymbol();
+ });
+ if (T != MI.operands_end()) {
+ OS << ' ';
+ if (T->isMBB())
+ OS << printMBBReference(*T->getMBB());
+ else if (T->isGlobal())
+ OS << T->getGlobal()->getName();
+ else if (T->isSymbol())
+ OS << T->getSymbolName();
+ }
+ }
+ OS << " [" << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']';
+ return OS;
+}
+
+raw_ostream &operator<< (raw_ostream &OS,
+ const Print<NodeAddr<InstrNode*>> &P) {
+ switch (P.Obj.Addr->getKind()) {
+ case NodeAttrs::Phi:
+ OS << PrintNode<PhiNode*>(P.Obj, P.G);
+ break;
+ case NodeAttrs::Stmt:
+ OS << PrintNode<StmtNode*>(P.Obj, P.G);
+ break;
+ default:
+ OS << "instr? " << Print<NodeId>(P.Obj.Id, P.G);
+ break;
+ }
+ return OS;
+}
+
+raw_ostream &operator<< (raw_ostream &OS,
+ const Print<NodeAddr<BlockNode*>> &P) {
+ MachineBasicBlock *BB = P.Obj.Addr->getCode();
+ unsigned NP = BB->pred_size();
+ std::vector<int> Ns;
+ auto PrintBBs = [&OS] (std::vector<int> Ns) -> void {
+ unsigned N = Ns.size();
+ for (int I : Ns) {
+ OS << "%bb." << I;
+ if (--N)
+ OS << ", ";
+ }
+ };
+
+ OS << Print<NodeId>(P.Obj.Id, P.G) << ": --- " << printMBBReference(*BB)
+ << " --- preds(" << NP << "): ";
+ for (MachineBasicBlock *B : BB->predecessors())
+ Ns.push_back(B->getNumber());
+ PrintBBs(Ns);
+
+ unsigned NS = BB->succ_size();
+ OS << " succs(" << NS << "): ";
+ Ns.clear();
+ for (MachineBasicBlock *B : BB->successors())
+ Ns.push_back(B->getNumber());
+ PrintBBs(Ns);
+ OS << '\n';
+
+ for (auto I : P.Obj.Addr->members(P.G))
+ OS << PrintNode<InstrNode*>(I, P.G) << '\n';
+ return OS;
+}
+
+raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<FuncNode *>> &P) {
+ OS << "DFG dump:[\n" << Print<NodeId>(P.Obj.Id, P.G) << ": Function: "
+ << P.Obj.Addr->getCode()->getName() << '\n';
+ for (auto I : P.Obj.Addr->members(P.G))
+ OS << PrintNode<BlockNode*>(I, P.G) << '\n';
+ OS << "]\n";
+ return OS;
+}
+
+raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterSet> &P) {
+ OS << '{';
+ for (auto I : P.Obj)
+ OS << ' ' << Print<RegisterRef>(I, P.G);
+ OS << " }";
+ return OS;
+}
+
+raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterAggr> &P) {
+ P.Obj.print(OS);
+ return OS;
+}
+
+raw_ostream &operator<< (raw_ostream &OS,
+ const Print<DataFlowGraph::DefStack> &P) {
+ for (auto I = P.Obj.top(), E = P.Obj.bottom(); I != E; ) {
+ OS << Print<NodeId>(I->Id, P.G)
+ << '<' << Print<RegisterRef>(I->Addr->getRegRef(P.G), P.G) << '>';
+ I.down();
+ if (I != E)
+ OS << ' ';
+ }
+ return OS;
+}
+
+} // end namespace rdf
+} // end namespace llvm
+
+// Node allocation functions.
+//
+// Node allocator is like a slab memory allocator: it allocates blocks of
+// memory in sizes that are multiples of the size of a node. Each block has
+// the same size. Nodes are allocated from the currently active block, and
+// when it becomes full, a new one is created.
+// There is a mapping scheme between node id and its location in a block,
+// and within that block is described in the header file.
+//
+void NodeAllocator::startNewBlock() {
+ void *T = MemPool.Allocate(NodesPerBlock*NodeMemSize, NodeMemSize);
+ char *P = static_cast<char*>(T);
+ Blocks.push_back(P);
+ // Check if the block index is still within the allowed range, i.e. less
+ // than 2^N, where N is the number of bits in NodeId for the block index.
+ // BitsPerIndex is the number of bits per node index.
+ assert((Blocks.size() < ((size_t)1 << (8*sizeof(NodeId)-BitsPerIndex))) &&
+ "Out of bits for block index");
+ ActiveEnd = P;
+}
+
+bool NodeAllocator::needNewBlock() {
+ if (Blocks.empty())
+ return true;
+
+ char *ActiveBegin = Blocks.back();
+ uint32_t Index = (ActiveEnd-ActiveBegin)/NodeMemSize;
+ return Index >= NodesPerBlock;
+}
+
+NodeAddr<NodeBase*> NodeAllocator::New() {
+ if (needNewBlock())
+ startNewBlock();
+
+ uint32_t ActiveB = Blocks.size()-1;
+ uint32_t Index = (ActiveEnd - Blocks[ActiveB])/NodeMemSize;
+ NodeAddr<NodeBase*> NA = { reinterpret_cast<NodeBase*>(ActiveEnd),
+ makeId(ActiveB, Index) };
+ ActiveEnd += NodeMemSize;
+ return NA;
+}
+
+NodeId NodeAllocator::id(const NodeBase *P) const {
+ uintptr_t A = reinterpret_cast<uintptr_t>(P);
+ for (unsigned i = 0, n = Blocks.size(); i != n; ++i) {
+ uintptr_t B = reinterpret_cast<uintptr_t>(Blocks[i]);
+ if (A < B || A >= B + NodesPerBlock*NodeMemSize)
+ continue;
+ uint32_t Idx = (A-B)/NodeMemSize;
+ return makeId(i, Idx);
+ }
+ llvm_unreachable("Invalid node address");
+}
+
+void NodeAllocator::clear() {
+ MemPool.Reset();
+ Blocks.clear();
+ ActiveEnd = nullptr;
+}
+
+// Insert node NA after "this" in the circular chain.
+void NodeBase::append(NodeAddr<NodeBase*> NA) {
+ NodeId Nx = Next;
+ // If NA is already "next", do nothing.
+ if (Next != NA.Id) {
+ Next = NA.Id;
+ NA.Addr->Next = Nx;
+ }
+}
+
+// Fundamental node manipulator functions.
+
+// Obtain the register reference from a reference node.
+RegisterRef RefNode::getRegRef(const DataFlowGraph &G) const {
+ assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
+ if (NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)
+ return G.unpack(Ref.PR);
+ assert(Ref.Op != nullptr);
+ return G.makeRegRef(*Ref.Op);
+}
+
+// Set the register reference in the reference node directly (for references
+// in phi nodes).
+void RefNode::setRegRef(RegisterRef RR, DataFlowGraph &G) {
+ assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
+ assert(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef);
+ Ref.PR = G.pack(RR);
+}
+
+// Set the register reference in the reference node based on a machine
+// operand (for references in statement nodes).
+void RefNode::setRegRef(MachineOperand *Op, DataFlowGraph &G) {
+ assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
+ assert(!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef));
+ (void)G;
+ Ref.Op = Op;
+}
+
+// Get the owner of a given reference node.
+NodeAddr<NodeBase*> RefNode::getOwner(const DataFlowGraph &G) {
+ NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext());
+
+ while (NA.Addr != this) {
+ if (NA.Addr->getType() == NodeAttrs::Code)
+ return NA;
+ NA = G.addr<NodeBase*>(NA.Addr->getNext());
+ }
+ llvm_unreachable("No owner in circular list");
+}
+
+// Connect the def node to the reaching def node.
+void DefNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) {
+ Ref.RD = DA.Id;
+ Ref.Sib = DA.Addr->getReachedDef();
+ DA.Addr->setReachedDef(Self);
+}
+
+// Connect the use node to the reaching def node.
+void UseNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) {
+ Ref.RD = DA.Id;
+ Ref.Sib = DA.Addr->getReachedUse();
+ DA.Addr->setReachedUse(Self);
+}
+
+// Get the first member of the code node.
+NodeAddr<NodeBase*> CodeNode::getFirstMember(const DataFlowGraph &G) const {
+ if (Code.FirstM == 0)
+ return NodeAddr<NodeBase*>();
+ return G.addr<NodeBase*>(Code.FirstM);
+}
+
+// Get the last member of the code node.
+NodeAddr<NodeBase*> CodeNode::getLastMember(const DataFlowGraph &G) const {
+ if (Code.LastM == 0)
+ return NodeAddr<NodeBase*>();
+ return G.addr<NodeBase*>(Code.LastM);
+}
+
+// Add node NA at the end of the member list of the given code node.
+void CodeNode::addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) {
+ NodeAddr<NodeBase*> ML = getLastMember(G);
+ if (ML.Id != 0) {
+ ML.Addr->append(NA);
+ } else {
+ Code.FirstM = NA.Id;
+ NodeId Self = G.id(this);
+ NA.Addr->setNext(Self);
+ }
+ Code.LastM = NA.Id;
+}
+
+// Add node NA after member node MA in the given code node.
+void CodeNode::addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA,
+ const DataFlowGraph &G) {
+ MA.Addr->append(NA);
+ if (Code.LastM == MA.Id)
+ Code.LastM = NA.Id;
+}
+
+// Remove member node NA from the given code node.
+void CodeNode::removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) {
+ NodeAddr<NodeBase*> MA = getFirstMember(G);
+ assert(MA.Id != 0);
+
+ // Special handling if the member to remove is the first member.
+ if (MA.Id == NA.Id) {
+ if (Code.LastM == MA.Id) {
+ // If it is the only member, set both first and last to 0.
+ Code.FirstM = Code.LastM = 0;
+ } else {
+ // Otherwise, advance the first member.
+ Code.FirstM = MA.Addr->getNext();
+ }
+ return;
+ }
+
+ while (MA.Addr != this) {
+ NodeId MX = MA.Addr->getNext();
+ if (MX == NA.Id) {
+ MA.Addr->setNext(NA.Addr->getNext());
+ // If the member to remove happens to be the last one, update the
+ // LastM indicator.
+ if (Code.LastM == NA.Id)
+ Code.LastM = MA.Id;
+ return;
+ }
+ MA = G.addr<NodeBase*>(MX);
+ }
+ llvm_unreachable("No such member");
+}
+
+// Return the list of all members of the code node.
+NodeList CodeNode::members(const DataFlowGraph &G) const {
+ static auto True = [] (NodeAddr<NodeBase*>) -> bool { return true; };
+ return members_if(True, G);
+}
+
+// Return the owner of the given instr node.
+NodeAddr<NodeBase*> InstrNode::getOwner(const DataFlowGraph &G) {
+ NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext());
+
+ while (NA.Addr != this) {
+ assert(NA.Addr->getType() == NodeAttrs::Code);
+ if (NA.Addr->getKind() == NodeAttrs::Block)
+ return NA;
+ NA = G.addr<NodeBase*>(NA.Addr->getNext());
+ }
+ llvm_unreachable("No owner in circular list");
+}
+
+// Add the phi node PA to the given block node.
+void BlockNode::addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G) {
+ NodeAddr<NodeBase*> M = getFirstMember(G);
+ if (M.Id == 0) {
+ addMember(PA, G);
+ return;
+ }
+
+ assert(M.Addr->getType() == NodeAttrs::Code);
+ if (M.Addr->getKind() == NodeAttrs::Stmt) {
+ // If the first member of the block is a statement, insert the phi as
+ // the first member.
+ Code.FirstM = PA.Id;
+ PA.Addr->setNext(M.Id);
+ } else {
+ // If the first member is a phi, find the last phi, and append PA to it.
+ assert(M.Addr->getKind() == NodeAttrs::Phi);
+ NodeAddr<NodeBase*> MN = M;
+ do {
+ M = MN;
+ MN = G.addr<NodeBase*>(M.Addr->getNext());
+ assert(MN.Addr->getType() == NodeAttrs::Code);
+ } while (MN.Addr->getKind() == NodeAttrs::Phi);
+
+ // M is the last phi.
+ addMemberAfter(M, PA, G);
+ }
+}
+
+// Find the block node corresponding to the machine basic block BB in the
+// given func node.
+NodeAddr<BlockNode*> FuncNode::findBlock(const MachineBasicBlock *BB,
+ const DataFlowGraph &G) const {
+ auto EqBB = [BB] (NodeAddr<NodeBase*> NA) -> bool {
+ return NodeAddr<BlockNode*>(NA).Addr->getCode() == BB;
+ };
+ NodeList Ms = members_if(EqBB, G);
+ if (!Ms.empty())
+ return Ms[0];
+ return NodeAddr<BlockNode*>();
+}
+
+// Get the block node for the entry block in the given function.
+NodeAddr<BlockNode*> FuncNode::getEntryBlock(const DataFlowGraph &G) {
+ MachineBasicBlock *EntryB = &getCode()->front();
+ return findBlock(EntryB, G);
+}
+
+// Target operand information.
+//
+
+// For a given instruction, check if there are any bits of RR that can remain
+// unchanged across this def.
+bool TargetOperandInfo::isPreserving(const MachineInstr &In, unsigned OpNum)
+ const {
+ return TII.isPredicated(In);
+}
+
+// Check if the definition of RR produces an unspecified value.
+bool TargetOperandInfo::isClobbering(const MachineInstr &In, unsigned OpNum)
+ const {
+ const MachineOperand &Op = In.getOperand(OpNum);
+ if (Op.isRegMask())
+ return true;
+ assert(Op.isReg());
+ if (In.isCall())
+ if (Op.isDef() && Op.isDead())
+ return true;
+ return false;
+}
+
+// Check if the given instruction specifically requires
+bool TargetOperandInfo::isFixedReg(const MachineInstr &In, unsigned OpNum)
+ const {
+ if (In.isCall() || In.isReturn() || In.isInlineAsm())
+ return true;
+ // Check for a tail call.
+ if (In.isBranch())
+ for (const MachineOperand &O : In.operands())
+ if (O.isGlobal() || O.isSymbol())
+ return true;
+
+ const MCInstrDesc &D = In.getDesc();
+ if (!D.getImplicitDefs() && !D.getImplicitUses())
+ return false;
+ const MachineOperand &Op = In.getOperand(OpNum);
+ // If there is a sub-register, treat the operand as non-fixed. Currently,
+ // fixed registers are those that are listed in the descriptor as implicit
+ // uses or defs, and those lists do not allow sub-registers.
+ if (Op.getSubReg() != 0)
+ return false;
+ Register Reg = Op.getReg();
+ const MCPhysReg *ImpR = Op.isDef() ? D.getImplicitDefs()
+ : D.getImplicitUses();
+ if (!ImpR)
+ return false;
+ while (*ImpR)
+ if (*ImpR++ == Reg)
+ return true;
+ return false;
+}
+
+//
+// The data flow graph construction.
+//
+
+DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
+ const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
+ const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi)
+ : MF(mf), TII(tii), TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(toi),
+ LiveIns(PRI) {
+}
+
+// The implementation of the definition stack.
+// Each register reference has its own definition stack. In particular,
+// for a register references "Reg" and "Reg:subreg" will each have their
+// own definition stacks.
+
+// Construct a stack iterator.
+DataFlowGraph::DefStack::Iterator::Iterator(const DataFlowGraph::DefStack &S,
+ bool Top) : DS(S) {
+ if (!Top) {
+ // Initialize to bottom.
+ Pos = 0;
+ return;
+ }
+ // Initialize to the top, i.e. top-most non-delimiter (or 0, if empty).
+ Pos = DS.Stack.size();
+ while (Pos > 0 && DS.isDelimiter(DS.Stack[Pos-1]))
+ Pos--;
+}
+
+// Return the size of the stack, including block delimiters.
+unsigned DataFlowGraph::DefStack::size() const {
+ unsigned S = 0;
+ for (auto I = top(), E = bottom(); I != E; I.down())
+ S++;
+ return S;
+}
+
+// Remove the top entry from the stack. Remove all intervening delimiters
+// so that after this, the stack is either empty, or the top of the stack
+// is a non-delimiter.
+void DataFlowGraph::DefStack::pop() {
+ assert(!empty());
+ unsigned P = nextDown(Stack.size());
+ Stack.resize(P);
+}
+
+// Push a delimiter for block node N on the stack.
+void DataFlowGraph::DefStack::start_block(NodeId N) {
+ assert(N != 0);
+ Stack.push_back(NodeAddr<DefNode*>(nullptr, N));
+}
+
+// Remove all nodes from the top of the stack, until the delimited for
+// block node N is encountered. Remove the delimiter as well. In effect,
+// this will remove from the stack all definitions from block N.
+void DataFlowGraph::DefStack::clear_block(NodeId N) {
+ assert(N != 0);
+ unsigned P = Stack.size();
+ while (P > 0) {
+ bool Found = isDelimiter(Stack[P-1], N);
+ P--;
+ if (Found)
+ break;
+ }
+ // This will also remove the delimiter, if found.
+ Stack.resize(P);
+}
+
+// Move the stack iterator up by one.
+unsigned DataFlowGraph::DefStack::nextUp(unsigned P) const {
+ // Get the next valid position after P (skipping all delimiters).
+ // The input position P does not have to point to a non-delimiter.
+ unsigned SS = Stack.size();
+ bool IsDelim;
+ assert(P < SS);
+ do {
+ P++;
+ IsDelim = isDelimiter(Stack[P-1]);
+ } while (P < SS && IsDelim);
+ assert(!IsDelim);
+ return P;
+}
+
+// Move the stack iterator down by one.
+unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const {
+ // Get the preceding valid position before P (skipping all delimiters).
+ // The input position P does not have to point to a non-delimiter.
+ assert(P > 0 && P <= Stack.size());
+ bool IsDelim = isDelimiter(Stack[P-1]);
+ do {
+ if (--P == 0)
+ break;
+ IsDelim = isDelimiter(Stack[P-1]);
+ } while (P > 0 && IsDelim);
+ assert(!IsDelim);
+ return P;
+}
+
+// Register information.
+
+RegisterSet DataFlowGraph::getLandingPadLiveIns() const {
+ RegisterSet LR;
+ const Function &F = MF.getFunction();
+ const Constant *PF = F.hasPersonalityFn() ? F.getPersonalityFn()
+ : nullptr;
+ const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
+ if (RegisterId R = TLI.getExceptionPointerRegister(PF))
+ LR.insert(RegisterRef(R));
+ if (!isFuncletEHPersonality(classifyEHPersonality(PF))) {
+ if (RegisterId R = TLI.getExceptionSelectorRegister(PF))
+ LR.insert(RegisterRef(R));
+ }
+ return LR;
+}
+
+// Node management functions.
+
+// Get the pointer to the node with the id N.
+NodeBase *DataFlowGraph::ptr(NodeId N) const {
+ if (N == 0)
+ return nullptr;
+ return Memory.ptr(N);
+}
+
+// Get the id of the node at the address P.
+NodeId DataFlowGraph::id(const NodeBase *P) const {
+ if (P == nullptr)
+ return 0;
+ return Memory.id(P);
+}
+
+// Allocate a new node and set the attributes to Attrs.
+NodeAddr<NodeBase*> DataFlowGraph::newNode(uint16_t Attrs) {
+ NodeAddr<NodeBase*> P = Memory.New();
+ P.Addr->init();
+ P.Addr->setAttrs(Attrs);
+ return P;
+}
+
+// Make a copy of the given node B, except for the data-flow links, which
+// are set to 0.
+NodeAddr<NodeBase*> DataFlowGraph::cloneNode(const NodeAddr<NodeBase*> B) {
+ NodeAddr<NodeBase*> NA = newNode(0);
+ memcpy(NA.Addr, B.Addr, sizeof(NodeBase));
+ // Ref nodes need to have the data-flow links reset.
+ if (NA.Addr->getType() == NodeAttrs::Ref) {
+ NodeAddr<RefNode*> RA = NA;
+ RA.Addr->setReachingDef(0);
+ RA.Addr->setSibling(0);
+ if (NA.Addr->getKind() == NodeAttrs::Def) {
+ NodeAddr<DefNode*> DA = NA;
+ DA.Addr->setReachedDef(0);
+ DA.Addr->setReachedUse(0);
+ }
+ }
+ return NA;
+}
+
+// Allocation routines for specific node types/kinds.
+
+NodeAddr<UseNode*> DataFlowGraph::newUse(NodeAddr<InstrNode*> Owner,
+ MachineOperand &Op, uint16_t Flags) {
+ NodeAddr<UseNode*> UA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
+ UA.Addr->setRegRef(&Op, *this);
+ return UA;
+}
+
+NodeAddr<PhiUseNode*> DataFlowGraph::newPhiUse(NodeAddr<PhiNode*> Owner,
+ RegisterRef RR, NodeAddr<BlockNode*> PredB, uint16_t Flags) {
+ NodeAddr<PhiUseNode*> PUA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
+ assert(Flags & NodeAttrs::PhiRef);
+ PUA.Addr->setRegRef(RR, *this);
+ PUA.Addr->setPredecessor(PredB.Id);
+ return PUA;
+}
+
+NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner,
+ MachineOperand &Op, uint16_t Flags) {
+ NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
+ DA.Addr->setRegRef(&Op, *this);
+ return DA;
+}
+
+NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner,
+ RegisterRef RR, uint16_t Flags) {
+ NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
+ assert(Flags & NodeAttrs::PhiRef);
+ DA.Addr->setRegRef(RR, *this);
+ return DA;
+}
+
+NodeAddr<PhiNode*> DataFlowGraph::newPhi(NodeAddr<BlockNode*> Owner) {
+ NodeAddr<PhiNode*> PA = newNode(NodeAttrs::Code | NodeAttrs::Phi);
+ Owner.Addr->addPhi(PA, *this);
+ return PA;
+}
+
+NodeAddr<StmtNode*> DataFlowGraph::newStmt(NodeAddr<BlockNode*> Owner,
+ MachineInstr *MI) {
+ NodeAddr<StmtNode*> SA = newNode(NodeAttrs::Code | NodeAttrs::Stmt);
+ SA.Addr->setCode(MI);
+ Owner.Addr->addMember(SA, *this);
+ return SA;
+}
+
+NodeAddr<BlockNode*> DataFlowGraph::newBlock(NodeAddr<FuncNode*> Owner,
+ MachineBasicBlock *BB) {
+ NodeAddr<BlockNode*> BA = newNode(NodeAttrs::Code | NodeAttrs::Block);
+ BA.Addr->setCode(BB);
+ Owner.Addr->addMember(BA, *this);
+ return BA;
+}
+
+NodeAddr<FuncNode*> DataFlowGraph::newFunc(MachineFunction *MF) {
+ NodeAddr<FuncNode*> FA = newNode(NodeAttrs::Code | NodeAttrs::Func);
+ FA.Addr->setCode(MF);
+ return FA;
+}
+
+// Build the data flow graph.
+void DataFlowGraph::build(unsigned Options) {
+ reset();
+ Func = newFunc(&MF);
+
+ if (MF.empty())
+ return;
+
+ for (MachineBasicBlock &B : MF) {
+ NodeAddr<BlockNode*> BA = newBlock(Func, &B);
+ BlockNodes.insert(std::make_pair(&B, BA));
+ for (MachineInstr &I : B) {
+ if (I.isDebugInstr())
+ continue;
+ buildStmt(BA, I);
+ }
+ }
+
+ NodeAddr<BlockNode*> EA = Func.Addr->getEntryBlock(*this);
+ NodeList Blocks = Func.Addr->members(*this);
+
+ // Collect information about block references.
+ RegisterSet AllRefs;
+ for (NodeAddr<BlockNode*> BA : Blocks)
+ for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this))
+ for (NodeAddr<RefNode*> RA : IA.Addr->members(*this))
+ AllRefs.insert(RA.Addr->getRegRef(*this));
+
+ // Collect function live-ins and entry block live-ins.
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ MachineBasicBlock &EntryB = *EA.Addr->getCode();
+ assert(EntryB.pred_empty() && "Function entry block has predecessors");
+ for (std::pair<unsigned,unsigned> P : MRI.liveins())
+ LiveIns.insert(RegisterRef(P.first));
+ if (MRI.tracksLiveness()) {
+ for (auto I : EntryB.liveins())
+ LiveIns.insert(RegisterRef(I.PhysReg, I.LaneMask));
+ }
+
+ // Add function-entry phi nodes for the live-in registers.
+ //for (std::pair<RegisterId,LaneBitmask> P : LiveIns) {
+ for (auto I = LiveIns.rr_begin(), E = LiveIns.rr_end(); I != E; ++I) {
+ RegisterRef RR = *I;
+ NodeAddr<PhiNode*> PA = newPhi(EA);
+ uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
+ NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
+ PA.Addr->addMember(DA, *this);
+ }
+
+ // Add phis for landing pads.
+ // Landing pads, unlike usual backs blocks, are not entered through
+ // branches in the program, or fall-throughs from other blocks. They
+ // are entered from the exception handling runtime and target's ABI
+ // may define certain registers as defined on entry to such a block.
+ RegisterSet EHRegs = getLandingPadLiveIns();
+ if (!EHRegs.empty()) {
+ for (NodeAddr<BlockNode*> BA : Blocks) {
+ const MachineBasicBlock &B = *BA.Addr->getCode();
+ if (!B.isEHPad())
+ continue;
+
+ // Prepare a list of NodeIds of the block's predecessors.
+ NodeList Preds;
+ for (MachineBasicBlock *PB : B.predecessors())
+ Preds.push_back(findBlock(PB));
+
+ // Build phi nodes for each live-in.
+ for (RegisterRef RR : EHRegs) {
+ NodeAddr<PhiNode*> PA = newPhi(BA);
+ uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
+ // Add def:
+ NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
+ PA.Addr->addMember(DA, *this);
+ // Add uses (no reaching defs for phi uses):
+ for (NodeAddr<BlockNode*> PBA : Preds) {
+ NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA);
+ PA.Addr->addMember(PUA, *this);
+ }
+ }
+ }
+ }
+
+ // Build a map "PhiM" which will contain, for each block, the set
+ // of references that will require phi definitions in that block.
+ BlockRefsMap PhiM;
+ for (NodeAddr<BlockNode*> BA : Blocks)
+ recordDefsForDF(PhiM, BA);
+ for (NodeAddr<BlockNode*> BA : Blocks)
+ buildPhis(PhiM, AllRefs, BA);
+
+ // Link all the refs. This will recursively traverse the dominator tree.
+ DefStackMap DM;
+ linkBlockRefs(DM, EA);
+
+ // Finally, remove all unused phi nodes.
+ if (!(Options & BuildOptions::KeepDeadPhis))
+ removeUnusedPhis();
+}
+
+RegisterRef DataFlowGraph::makeRegRef(unsigned Reg, unsigned Sub) const {
+ assert(PhysicalRegisterInfo::isRegMaskId(Reg) ||
+ Register::isPhysicalRegister(Reg));
+ assert(Reg != 0);
+ if (Sub != 0)
+ Reg = TRI.getSubReg(Reg, Sub);
+ return RegisterRef(Reg);
+}
+
+RegisterRef DataFlowGraph::makeRegRef(const MachineOperand &Op) const {
+ assert(Op.isReg() || Op.isRegMask());
+ if (Op.isReg())
+ return makeRegRef(Op.getReg(), Op.getSubReg());
+ return RegisterRef(PRI.getRegMaskId(Op.getRegMask()), LaneBitmask::getAll());
+}
+
+RegisterRef DataFlowGraph::restrictRef(RegisterRef AR, RegisterRef BR) const {
+ if (AR.Reg == BR.Reg) {
+ LaneBitmask M = AR.Mask & BR.Mask;
+ return M.any() ? RegisterRef(AR.Reg, M) : RegisterRef();
+ }
+#ifndef NDEBUG
+// RegisterRef NAR = PRI.normalize(AR);
+// RegisterRef NBR = PRI.normalize(BR);
+// assert(NAR.Reg != NBR.Reg);
+#endif
+ // This isn't strictly correct, because the overlap may happen in the
+ // part masked out.
+ if (PRI.alias(AR, BR))
+ return AR;
+ return RegisterRef();
+}
+
+// For each stack in the map DefM, push the delimiter for block B on it.
+void DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) {
+ // Push block delimiters.
+ for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I)
+ I->second.start_block(B);
+}
+
+// Remove all definitions coming from block B from each stack in DefM.
+void DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) {
+ // Pop all defs from this block from the definition stack. Defs that were
+ // added to the map during the traversal of instructions will not have a
+ // delimiter, but for those, the whole stack will be emptied.
+ for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I)
+ I->second.clear_block(B);
+
+ // Finally, remove empty stacks from the map.
+ for (auto I = DefM.begin(), E = DefM.end(), NextI = I; I != E; I = NextI) {
+ NextI = std::next(I);
+ // This preserves the validity of iterators other than I.
+ if (I->second.empty())
+ DefM.erase(I);
+ }
+}
+
+// Push all definitions from the instruction node IA to an appropriate
+// stack in DefM.
+void DataFlowGraph::pushAllDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
+ pushClobbers(IA, DefM);
+ pushDefs(IA, DefM);
+}
+
+// Push all definitions from the instruction node IA to an appropriate
+// stack in DefM.
+void DataFlowGraph::pushClobbers(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
+ NodeSet Visited;
+ std::set<RegisterId> Defined;
+
+ // The important objectives of this function are:
+ // - to be able to handle instructions both while the graph is being
+ // constructed, and after the graph has been constructed, and
+ // - maintain proper ordering of definitions on the stack for each
+ // register reference:
+ // - if there are two or more related defs in IA (i.e. coming from
+ // the same machine operand), then only push one def on the stack,
+ // - if there are multiple unrelated defs of non-overlapping
+ // subregisters of S, then the stack for S will have both (in an
+ // unspecified order), but the order does not matter from the data-
+ // -flow perspective.
+
+ for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) {
+ if (Visited.count(DA.Id))
+ continue;
+ if (!(DA.Addr->getFlags() & NodeAttrs::Clobbering))
+ continue;
+
+ NodeList Rel = getRelatedRefs(IA, DA);
+ NodeAddr<DefNode*> PDA = Rel.front();
+ RegisterRef RR = PDA.Addr->getRegRef(*this);
+
+ // Push the definition on the stack for the register and all aliases.
+ // The def stack traversal in linkNodeUp will check the exact aliasing.
+ DefM[RR.Reg].push(DA);
+ Defined.insert(RR.Reg);
+ for (RegisterId A : PRI.getAliasSet(RR.Reg)) {
+ // Check that we don't push the same def twice.
+ assert(A != RR.Reg);
+ if (!Defined.count(A))
+ DefM[A].push(DA);
+ }
+ // Mark all the related defs as visited.
+ for (NodeAddr<NodeBase*> T : Rel)
+ Visited.insert(T.Id);
+ }
+}
+
+// Push all definitions from the instruction node IA to an appropriate
+// stack in DefM.
+void DataFlowGraph::pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
+ NodeSet Visited;
+#ifndef NDEBUG
+ std::set<RegisterId> Defined;
+#endif
+
+ // The important objectives of this function are:
+ // - to be able to handle instructions both while the graph is being
+ // constructed, and after the graph has been constructed, and
+ // - maintain proper ordering of definitions on the stack for each
+ // register reference:
+ // - if there are two or more related defs in IA (i.e. coming from
+ // the same machine operand), then only push one def on the stack,
+ // - if there are multiple unrelated defs of non-overlapping
+ // subregisters of S, then the stack for S will have both (in an
+ // unspecified order), but the order does not matter from the data-
+ // -flow perspective.
+
+ for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) {
+ if (Visited.count(DA.Id))
+ continue;
+ if (DA.Addr->getFlags() & NodeAttrs::Clobbering)
+ continue;
+
+ NodeList Rel = getRelatedRefs(IA, DA);
+ NodeAddr<DefNode*> PDA = Rel.front();
+ RegisterRef RR = PDA.Addr->getRegRef(*this);
+#ifndef NDEBUG
+ // Assert if the register is defined in two or more unrelated defs.
+ // This could happen if there are two or more def operands defining it.
+ if (!Defined.insert(RR.Reg).second) {
+ MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode();
+ dbgs() << "Multiple definitions of register: "
+ << Print<RegisterRef>(RR, *this) << " in\n " << *MI << "in "
+ << printMBBReference(*MI->getParent()) << '\n';
+ llvm_unreachable(nullptr);
+ }
+#endif
+ // Push the definition on the stack for the register and all aliases.
+ // The def stack traversal in linkNodeUp will check the exact aliasing.
+ DefM[RR.Reg].push(DA);
+ for (RegisterId A : PRI.getAliasSet(RR.Reg)) {
+ // Check that we don't push the same def twice.
+ assert(A != RR.Reg);
+ DefM[A].push(DA);
+ }
+ // Mark all the related defs as visited.
+ for (NodeAddr<NodeBase*> T : Rel)
+ Visited.insert(T.Id);
+ }
+}
+
+// Return the list of all reference nodes related to RA, including RA itself.
+// See "getNextRelated" for the meaning of a "related reference".
+NodeList DataFlowGraph::getRelatedRefs(NodeAddr<InstrNode*> IA,
+ NodeAddr<RefNode*> RA) const {
+ assert(IA.Id != 0 && RA.Id != 0);
+
+ NodeList Refs;
+ NodeId Start = RA.Id;
+ do {
+ Refs.push_back(RA);
+ RA = getNextRelated(IA, RA);
+ } while (RA.Id != 0 && RA.Id != Start);
+ return Refs;
+}
+
+// Clear all information in the graph.
+void DataFlowGraph::reset() {
+ Memory.clear();
+ BlockNodes.clear();
+ Func = NodeAddr<FuncNode*>();
+}
+
+// Return the next reference node in the instruction node IA that is related
+// to RA. Conceptually, two reference nodes are related if they refer to the
+// same instance of a register access, but differ in flags or other minor
+// characteristics. Specific examples of related nodes are shadow reference
+// nodes.
+// Return the equivalent of nullptr if there are no more related references.
+NodeAddr<RefNode*> DataFlowGraph::getNextRelated(NodeAddr<InstrNode*> IA,
+ NodeAddr<RefNode*> RA) const {
+ assert(IA.Id != 0 && RA.Id != 0);
+
+ auto Related = [this,RA](NodeAddr<RefNode*> TA) -> bool {
+ if (TA.Addr->getKind() != RA.Addr->getKind())
+ return false;
+ if (TA.Addr->getRegRef(*this) != RA.Addr->getRegRef(*this))
+ return false;
+ return true;
+ };
+ auto RelatedStmt = [&Related,RA](NodeAddr<RefNode*> TA) -> bool {
+ return Related(TA) &&
+ &RA.Addr->getOp() == &TA.Addr->getOp();
+ };
+ auto RelatedPhi = [&Related,RA](NodeAddr<RefNode*> TA) -> bool {
+ if (!Related(TA))
+ return false;
+ if (TA.Addr->getKind() != NodeAttrs::Use)
+ return true;
+ // For phi uses, compare predecessor blocks.
+ const NodeAddr<const PhiUseNode*> TUA = TA;
+ const NodeAddr<const PhiUseNode*> RUA = RA;
+ return TUA.Addr->getPredecessor() == RUA.Addr->getPredecessor();
+ };
+
+ RegisterRef RR = RA.Addr->getRegRef(*this);
+ if (IA.Addr->getKind() == NodeAttrs::Stmt)
+ return RA.Addr->getNextRef(RR, RelatedStmt, true, *this);
+ return RA.Addr->getNextRef(RR, RelatedPhi, true, *this);
+}
+
+// Find the next node related to RA in IA that satisfies condition P.
+// If such a node was found, return a pair where the second element is the
+// located node. If such a node does not exist, return a pair where the
+// first element is the element after which such a node should be inserted,
+// and the second element is a null-address.
+template <typename Predicate>
+std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>>
+DataFlowGraph::locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
+ Predicate P) const {
+ assert(IA.Id != 0 && RA.Id != 0);
+
+ NodeAddr<RefNode*> NA;
+ NodeId Start = RA.Id;
+ while (true) {
+ NA = getNextRelated(IA, RA);
+ if (NA.Id == 0 || NA.Id == Start)
+ break;
+ if (P(NA))
+ break;
+ RA = NA;
+ }
+
+ if (NA.Id != 0 && NA.Id != Start)
+ return std::make_pair(RA, NA);
+ return std::make_pair(RA, NodeAddr<RefNode*>());
+}
+
+// Get the next shadow node in IA corresponding to RA, and optionally create
+// such a node if it does not exist.
+NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA,
+ NodeAddr<RefNode*> RA, bool Create) {
+ assert(IA.Id != 0 && RA.Id != 0);
+
+ uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
+ auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool {
+ return TA.Addr->getFlags() == Flags;
+ };
+ auto Loc = locateNextRef(IA, RA, IsShadow);
+ if (Loc.second.Id != 0 || !Create)
+ return Loc.second;
+
+ // Create a copy of RA and mark is as shadow.
+ NodeAddr<RefNode*> NA = cloneNode(RA);
+ NA.Addr->setFlags(Flags | NodeAttrs::Shadow);
+ IA.Addr->addMemberAfter(Loc.first, NA, *this);
+ return NA;
+}
+
+// Get the next shadow node in IA corresponding to RA. Return null-address
+// if such a node does not exist.
+NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA,
+ NodeAddr<RefNode*> RA) const {
+ assert(IA.Id != 0 && RA.Id != 0);
+ uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
+ auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool {
+ return TA.Addr->getFlags() == Flags;
+ };
+ return locateNextRef(IA, RA, IsShadow).second;
+}
+
+// Create a new statement node in the block node BA that corresponds to
+// the machine instruction MI.
+void DataFlowGraph::buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In) {
+ NodeAddr<StmtNode*> SA = newStmt(BA, &In);
+
+ auto isCall = [] (const MachineInstr &In) -> bool {
+ if (In.isCall())
+ return true;
+ // Is tail call?
+ if (In.isBranch()) {
+ for (const MachineOperand &Op : In.operands())
+ if (Op.isGlobal() || Op.isSymbol())
+ return true;
+ // Assume indirect branches are calls. This is for the purpose of
+ // keeping implicit operands, and so it won't hurt on intra-function
+ // indirect branches.
+ if (In.isIndirectBranch())
+ return true;
+ }
+ return false;
+ };
+
+ auto isDefUndef = [this] (const MachineInstr &In, RegisterRef DR) -> bool {
+ // This instruction defines DR. Check if there is a use operand that
+ // would make DR live on entry to the instruction.
+ for (const MachineOperand &Op : In.operands()) {
+ if (!Op.isReg() || Op.getReg() == 0 || !Op.isUse() || Op.isUndef())
+ continue;
+ RegisterRef UR = makeRegRef(Op);
+ if (PRI.alias(DR, UR))
+ return false;
+ }
+ return true;
+ };
+
+ bool IsCall = isCall(In);
+ unsigned NumOps = In.getNumOperands();
+
+ // Avoid duplicate implicit defs. This will not detect cases of implicit
+ // defs that define registers that overlap, but it is not clear how to
+ // interpret that in the absence of explicit defs. Overlapping explicit
+ // defs are likely illegal already.
+ BitVector DoneDefs(TRI.getNumRegs());
+ // Process explicit defs first.
+ for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
+ MachineOperand &Op = In.getOperand(OpN);
+ if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
+ continue;
+ Register R = Op.getReg();
+ if (!R || !Register::isPhysicalRegister(R))
+ continue;
+ uint16_t Flags = NodeAttrs::None;
+ if (TOI.isPreserving(In, OpN)) {
+ Flags |= NodeAttrs::Preserving;
+ // If the def is preserving, check if it is also undefined.
+ if (isDefUndef(In, makeRegRef(Op)))
+ Flags |= NodeAttrs::Undef;
+ }
+ if (TOI.isClobbering(In, OpN))
+ Flags |= NodeAttrs::Clobbering;
+ if (TOI.isFixedReg(In, OpN))
+ Flags |= NodeAttrs::Fixed;
+ if (IsCall && Op.isDead())
+ Flags |= NodeAttrs::Dead;
+ NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
+ SA.Addr->addMember(DA, *this);
+ assert(!DoneDefs.test(R));
+ DoneDefs.set(R);
+ }
+
+ // Process reg-masks (as clobbers).
+ BitVector DoneClobbers(TRI.getNumRegs());
+ for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
+ MachineOperand &Op = In.getOperand(OpN);
+ if (!Op.isRegMask())
+ continue;
+ uint16_t Flags = NodeAttrs::Clobbering | NodeAttrs::Fixed |
+ NodeAttrs::Dead;
+ NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
+ SA.Addr->addMember(DA, *this);
+ // Record all clobbered registers in DoneDefs.
+ const uint32_t *RM = Op.getRegMask();
+ for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i)
+ if (!(RM[i/32] & (1u << (i%32))))
+ DoneClobbers.set(i);
+ }
+
+ // Process implicit defs, skipping those that have already been added
+ // as explicit.
+ for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
+ MachineOperand &Op = In.getOperand(OpN);
+ if (!Op.isReg() || !Op.isDef() || !Op.isImplicit())
+ continue;
+ Register R = Op.getReg();
+ if (!R || !Register::isPhysicalRegister(R) || DoneDefs.test(R))
+ continue;
+ RegisterRef RR = makeRegRef(Op);
+ uint16_t Flags = NodeAttrs::None;
+ if (TOI.isPreserving(In, OpN)) {
+ Flags |= NodeAttrs::Preserving;
+ // If the def is preserving, check if it is also undefined.
+ if (isDefUndef(In, RR))
+ Flags |= NodeAttrs::Undef;
+ }
+ if (TOI.isClobbering(In, OpN))
+ Flags |= NodeAttrs::Clobbering;
+ if (TOI.isFixedReg(In, OpN))
+ Flags |= NodeAttrs::Fixed;
+ if (IsCall && Op.isDead()) {
+ if (DoneClobbers.test(R))
+ continue;
+ Flags |= NodeAttrs::Dead;
+ }
+ NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
+ SA.Addr->addMember(DA, *this);
+ DoneDefs.set(R);
+ }
+
+ for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
+ MachineOperand &Op = In.getOperand(OpN);
+ if (!Op.isReg() || !Op.isUse())
+ continue;
+ Register R = Op.getReg();
+ if (!R || !Register::isPhysicalRegister(R))
+ continue;
+ uint16_t Flags = NodeAttrs::None;
+ if (Op.isUndef())
+ Flags |= NodeAttrs::Undef;
+ if (TOI.isFixedReg(In, OpN))
+ Flags |= NodeAttrs::Fixed;
+ NodeAddr<UseNode*> UA = newUse(SA, Op, Flags);
+ SA.Addr->addMember(UA, *this);
+ }
+}
+
+// Scan all defs in the block node BA and record in PhiM the locations of
+// phi nodes corresponding to these defs.
+void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM,
+ NodeAddr<BlockNode*> BA) {
+ // Check all defs from block BA and record them in each block in BA's
+ // iterated dominance frontier. This information will later be used to
+ // create phi nodes.
+ MachineBasicBlock *BB = BA.Addr->getCode();
+ assert(BB);
+ auto DFLoc = MDF.find(BB);
+ if (DFLoc == MDF.end() || DFLoc->second.empty())
+ return;
+
+ // Traverse all instructions in the block and collect the set of all
+ // defined references. For each reference there will be a phi created
+ // in the block's iterated dominance frontier.
+ // This is done to make sure that each defined reference gets only one
+ // phi node, even if it is defined multiple times.
+ RegisterSet Defs;
+ for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this))
+ for (NodeAddr<RefNode*> RA : IA.Addr->members_if(IsDef, *this))
+ Defs.insert(RA.Addr->getRegRef(*this));
+
+ // Calculate the iterated dominance frontier of BB.
+ const MachineDominanceFrontier::DomSetType &DF = DFLoc->second;
+ SetVector<MachineBasicBlock*> IDF(DF.begin(), DF.end());
+ for (unsigned i = 0; i < IDF.size(); ++i) {
+ auto F = MDF.find(IDF[i]);
+ if (F != MDF.end())
+ IDF.insert(F->second.begin(), F->second.end());
+ }
+
+ // Finally, add the set of defs to each block in the iterated dominance
+ // frontier.
+ for (auto DB : IDF) {
+ NodeAddr<BlockNode*> DBA = findBlock(DB);
+ PhiM[DBA.Id].insert(Defs.begin(), Defs.end());
+ }
+}
+
+// Given the locations of phi nodes in the map PhiM, create the phi nodes
+// that are located in the block node BA.
+void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs,
+ NodeAddr<BlockNode*> BA) {
+ // Check if this blocks has any DF defs, i.e. if there are any defs
+ // that this block is in the iterated dominance frontier of.
+ auto HasDF = PhiM.find(BA.Id);
+ if (HasDF == PhiM.end() || HasDF->second.empty())
+ return;
+
+ // First, remove all R in Refs in such that there exists T in Refs
+ // such that T covers R. In other words, only leave those refs that
+ // are not covered by another ref (i.e. maximal with respect to covering).
+
+ auto MaxCoverIn = [this] (RegisterRef RR, RegisterSet &RRs) -> RegisterRef {
+ for (RegisterRef I : RRs)
+ if (I != RR && RegisterAggr::isCoverOf(I, RR, PRI))
+ RR = I;
+ return RR;
+ };
+
+ RegisterSet MaxDF;
+ for (RegisterRef I : HasDF->second)
+ MaxDF.insert(MaxCoverIn(I, HasDF->second));
+
+ std::vector<RegisterRef> MaxRefs;
+ for (RegisterRef I : MaxDF)
+ MaxRefs.push_back(MaxCoverIn(I, AllRefs));
+
+ // Now, for each R in MaxRefs, get the alias closure of R. If the closure
+ // only has R in it, create a phi a def for R. Otherwise, create a phi,
+ // and add a def for each S in the closure.
+
+ // Sort the refs so that the phis will be created in a deterministic order.
+ llvm::sort(MaxRefs);
+ // Remove duplicates.
+ auto NewEnd = std::unique(MaxRefs.begin(), MaxRefs.end());
+ MaxRefs.erase(NewEnd, MaxRefs.end());
+
+ auto Aliased = [this,&MaxRefs](RegisterRef RR,
+ std::vector<unsigned> &Closure) -> bool {
+ for (unsigned I : Closure)
+ if (PRI.alias(RR, MaxRefs[I]))
+ return true;
+ return false;
+ };
+
+ // Prepare a list of NodeIds of the block's predecessors.
+ NodeList Preds;
+ const MachineBasicBlock *MBB = BA.Addr->getCode();
+ for (MachineBasicBlock *PB : MBB->predecessors())
+ Preds.push_back(findBlock(PB));
+
+ while (!MaxRefs.empty()) {
+ // Put the first element in the closure, and then add all subsequent
+ // elements from MaxRefs to it, if they alias at least one element
+ // already in the closure.
+ // ClosureIdx: vector of indices in MaxRefs of members of the closure.
+ std::vector<unsigned> ClosureIdx = { 0 };
+ for (unsigned i = 1; i != MaxRefs.size(); ++i)
+ if (Aliased(MaxRefs[i], ClosureIdx))
+ ClosureIdx.push_back(i);
+
+ // Build a phi for the closure.
+ unsigned CS = ClosureIdx.size();
+ NodeAddr<PhiNode*> PA = newPhi(BA);
+
+ // Add defs.
+ for (unsigned X = 0; X != CS; ++X) {
+ RegisterRef RR = MaxRefs[ClosureIdx[X]];
+ uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
+ NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
+ PA.Addr->addMember(DA, *this);
+ }
+ // Add phi uses.
+ for (NodeAddr<BlockNode*> PBA : Preds) {
+ for (unsigned X = 0; X != CS; ++X) {
+ RegisterRef RR = MaxRefs[ClosureIdx[X]];
+ NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA);
+ PA.Addr->addMember(PUA, *this);
+ }
+ }
+
+ // Erase from MaxRefs all elements in the closure.
+ auto Begin = MaxRefs.begin();
+ for (unsigned i = ClosureIdx.size(); i != 0; --i)
+ MaxRefs.erase(Begin + ClosureIdx[i-1]);
+ }
+}
+
+// Remove any unneeded phi nodes that were created during the build process.
+void DataFlowGraph::removeUnusedPhis() {
+ // This will remove unused phis, i.e. phis where each def does not reach
+ // any uses or other defs. This will not detect or remove circular phi
+ // chains that are otherwise dead. Unused/dead phis are created during
+ // the build process and this function is intended to remove these cases
+ // that are easily determinable to be unnecessary.
+
+ SetVector<NodeId> PhiQ;
+ for (NodeAddr<BlockNode*> BA : Func.Addr->members(*this)) {
+ for (auto P : BA.Addr->members_if(IsPhi, *this))
+ PhiQ.insert(P.Id);
+ }
+
+ static auto HasUsedDef = [](NodeList &Ms) -> bool {
+ for (NodeAddr<NodeBase*> M : Ms) {
+ if (M.Addr->getKind() != NodeAttrs::Def)
+ continue;
+ NodeAddr<DefNode*> DA = M;
+ if (DA.Addr->getReachedDef() != 0 || DA.Addr->getReachedUse() != 0)
+ return true;
+ }
+ return false;
+ };
+
+ // Any phi, if it is removed, may affect other phis (make them dead).
+ // For each removed phi, collect the potentially affected phis and add
+ // them back to the queue.
+ while (!PhiQ.empty()) {
+ auto PA = addr<PhiNode*>(PhiQ[0]);
+ PhiQ.remove(PA.Id);
+ NodeList Refs = PA.Addr->members(*this);
+ if (HasUsedDef(Refs))
+ continue;
+ for (NodeAddr<RefNode*> RA : Refs) {
+ if (NodeId RD = RA.Addr->getReachingDef()) {
+ auto RDA = addr<DefNode*>(RD);
+ NodeAddr<InstrNode*> OA = RDA.Addr->getOwner(*this);
+ if (IsPhi(OA))
+ PhiQ.insert(OA.Id);
+ }
+ if (RA.Addr->isDef())
+ unlinkDef(RA, true);
+ else
+ unlinkUse(RA, true);
+ }
+ NodeAddr<BlockNode*> BA = PA.Addr->getOwner(*this);
+ BA.Addr->removeMember(PA, *this);
+ }
+}
+
+// For a given reference node TA in an instruction node IA, connect the
+// reaching def of TA to the appropriate def node. Create any shadow nodes
+// as appropriate.
+template <typename T>
+void DataFlowGraph::linkRefUp(NodeAddr<InstrNode*> IA, NodeAddr<T> TA,
+ DefStack &DS) {
+ if (DS.empty())
+ return;
+ RegisterRef RR = TA.Addr->getRegRef(*this);
+ NodeAddr<T> TAP;
+
+ // References from the def stack that have been examined so far.
+ RegisterAggr Defs(PRI);
+
+ for (auto I = DS.top(), E = DS.bottom(); I != E; I.down()) {
+ RegisterRef QR = I->Addr->getRegRef(*this);
+
+ // Skip all defs that are aliased to any of the defs that we have already
+ // seen. If this completes a cover of RR, stop the stack traversal.
+ bool Alias = Defs.hasAliasOf(QR);
+ bool Cover = Defs.insert(QR).hasCoverOf(RR);
+ if (Alias) {
+ if (Cover)
+ break;
+ continue;
+ }
+
+ // The reaching def.
+ NodeAddr<DefNode*> RDA = *I;
+
+ // Pick the reached node.
+ if (TAP.Id == 0) {
+ TAP = TA;
+ } else {
+ // Mark the existing ref as "shadow" and create a new shadow.
+ TAP.Addr->setFlags(TAP.Addr->getFlags() | NodeAttrs::Shadow);
+ TAP = getNextShadow(IA, TAP, true);
+ }
+
+ // Create the link.
+ TAP.Addr->linkToDef(TAP.Id, RDA);
+
+ if (Cover)
+ break;
+ }
+}
+
+// Create data-flow links for all reference nodes in the statement node SA.
+template <typename Predicate>
+void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, NodeAddr<StmtNode*> SA,
+ Predicate P) {
+#ifndef NDEBUG
+ RegisterSet Defs;
+#endif
+
+ // Link all nodes (upwards in the data-flow) with their reaching defs.
+ for (NodeAddr<RefNode*> RA : SA.Addr->members_if(P, *this)) {
+ uint16_t Kind = RA.Addr->getKind();
+ assert(Kind == NodeAttrs::Def || Kind == NodeAttrs::Use);
+ RegisterRef RR = RA.Addr->getRegRef(*this);
+#ifndef NDEBUG
+ // Do not expect multiple defs of the same reference.
+ assert(Kind != NodeAttrs::Def || !Defs.count(RR));
+ Defs.insert(RR);
+#endif
+
+ auto F = DefM.find(RR.Reg);
+ if (F == DefM.end())
+ continue;
+ DefStack &DS = F->second;
+ if (Kind == NodeAttrs::Use)
+ linkRefUp<UseNode*>(SA, RA, DS);
+ else if (Kind == NodeAttrs::Def)
+ linkRefUp<DefNode*>(SA, RA, DS);
+ else
+ llvm_unreachable("Unexpected node in instruction");
+ }
+}
+
+// Create data-flow links for all instructions in the block node BA. This
+// will include updating any phi nodes in BA.
+void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA) {
+ // Push block delimiters.
+ markBlock(BA.Id, DefM);
+
+ auto IsClobber = [] (NodeAddr<RefNode*> RA) -> bool {
+ return IsDef(RA) && (RA.Addr->getFlags() & NodeAttrs::Clobbering);
+ };
+ auto IsNoClobber = [] (NodeAddr<RefNode*> RA) -> bool {
+ return IsDef(RA) && !(RA.Addr->getFlags() & NodeAttrs::Clobbering);
+ };
+
+ assert(BA.Addr && "block node address is needed to create a data-flow link");
+ // For each non-phi instruction in the block, link all the defs and uses
+ // to their reaching defs. For any member of the block (including phis),
+ // push the defs on the corresponding stacks.
+ for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) {
+ // Ignore phi nodes here. They will be linked part by part from the
+ // predecessors.
+ if (IA.Addr->getKind() == NodeAttrs::Stmt) {
+ linkStmtRefs(DefM, IA, IsUse);
+ linkStmtRefs(DefM, IA, IsClobber);
+ }
+
+ // Push the definitions on the stack.
+ pushClobbers(IA, DefM);
+
+ if (IA.Addr->getKind() == NodeAttrs::Stmt)
+ linkStmtRefs(DefM, IA, IsNoClobber);
+
+ pushDefs(IA, DefM);
+ }
+
+ // Recursively process all children in the dominator tree.
+ MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode());
+ for (auto I : *N) {
+ MachineBasicBlock *SB = I->getBlock();
+ NodeAddr<BlockNode*> SBA = findBlock(SB);
+ linkBlockRefs(DefM, SBA);
+ }
+
+ // Link the phi uses from the successor blocks.
+ auto IsUseForBA = [BA](NodeAddr<NodeBase*> NA) -> bool {
+ if (NA.Addr->getKind() != NodeAttrs::Use)
+ return false;
+ assert(NA.Addr->getFlags() & NodeAttrs::PhiRef);
+ NodeAddr<PhiUseNode*> PUA = NA;
+ return PUA.Addr->getPredecessor() == BA.Id;
+ };
+
+ RegisterSet EHLiveIns = getLandingPadLiveIns();
+ MachineBasicBlock *MBB = BA.Addr->getCode();
+
+ for (MachineBasicBlock *SB : MBB->successors()) {
+ bool IsEHPad = SB->isEHPad();
+ NodeAddr<BlockNode*> SBA = findBlock(SB);
+ for (NodeAddr<InstrNode*> IA : SBA.Addr->members_if(IsPhi, *this)) {
+ // Do not link phi uses for landing pad live-ins.
+ if (IsEHPad) {
+ // Find what register this phi is for.
+ NodeAddr<RefNode*> RA = IA.Addr->getFirstMember(*this);
+ assert(RA.Id != 0);
+ if (EHLiveIns.count(RA.Addr->getRegRef(*this)))
+ continue;
+ }
+ // Go over each phi use associated with MBB, and link it.
+ for (auto U : IA.Addr->members_if(IsUseForBA, *this)) {
+ NodeAddr<PhiUseNode*> PUA = U;
+ RegisterRef RR = PUA.Addr->getRegRef(*this);
+ linkRefUp<UseNode*>(IA, PUA, DefM[RR.Reg]);
+ }
+ }
+ }
+
+ // Pop all defs from this block from the definition stacks.
+ releaseBlock(BA.Id, DefM);
+}
+
+// Remove the use node UA from any data-flow and structural links.
+void DataFlowGraph::unlinkUseDF(NodeAddr<UseNode*> UA) {
+ NodeId RD = UA.Addr->getReachingDef();
+ NodeId Sib = UA.Addr->getSibling();
+
+ if (RD == 0) {
+ assert(Sib == 0);
+ return;
+ }
+
+ auto RDA = addr<DefNode*>(RD);
+ auto TA = addr<UseNode*>(RDA.Addr->getReachedUse());
+ if (TA.Id == UA.Id) {
+ RDA.Addr->setReachedUse(Sib);
+ return;
+ }
+
+ while (TA.Id != 0) {
+ NodeId S = TA.Addr->getSibling();
+ if (S == UA.Id) {
+ TA.Addr->setSibling(UA.Addr->getSibling());
+ return;
+ }
+ TA = addr<UseNode*>(S);
+ }
+}
+
+// Remove the def node DA from any data-flow and structural links.
+void DataFlowGraph::unlinkDefDF(NodeAddr<DefNode*> DA) {
+ //
+ // RD
+ // | reached
+ // | def
+ // :
+ // .
+ // +----+
+ // ... -- | DA | -- ... -- 0 : sibling chain of DA
+ // +----+
+ // | | reached
+ // | : def
+ // | .
+ // | ... : Siblings (defs)
+ // |
+ // : reached
+ // . use
+ // ... : sibling chain of reached uses
+
+ NodeId RD = DA.Addr->getReachingDef();
+
+ // Visit all siblings of the reached def and reset their reaching defs.
+ // Also, defs reached by DA are now "promoted" to being reached by RD,
+ // so all of them will need to be spliced into the sibling chain where
+ // DA belongs.
+ auto getAllNodes = [this] (NodeId N) -> NodeList {
+ NodeList Res;
+ while (N) {
+ auto RA = addr<RefNode*>(N);
+ // Keep the nodes in the exact sibling order.
+ Res.push_back(RA);
+ N = RA.Addr->getSibling();
+ }
+ return Res;
+ };
+ NodeList ReachedDefs = getAllNodes(DA.Addr->getReachedDef());
+ NodeList ReachedUses = getAllNodes(DA.Addr->getReachedUse());
+
+ if (RD == 0) {
+ for (NodeAddr<RefNode*> I : ReachedDefs)
+ I.Addr->setSibling(0);
+ for (NodeAddr<RefNode*> I : ReachedUses)
+ I.Addr->setSibling(0);
+ }
+ for (NodeAddr<DefNode*> I : ReachedDefs)
+ I.Addr->setReachingDef(RD);
+ for (NodeAddr<UseNode*> I : ReachedUses)
+ I.Addr->setReachingDef(RD);
+
+ NodeId Sib = DA.Addr->getSibling();
+ if (RD == 0) {
+ assert(Sib == 0);
+ return;
+ }
+
+ // Update the reaching def node and remove DA from the sibling list.
+ auto RDA = addr<DefNode*>(RD);
+ auto TA = addr<DefNode*>(RDA.Addr->getReachedDef());
+ if (TA.Id == DA.Id) {
+ // If DA is the first reached def, just update the RD's reached def
+ // to the DA's sibling.
+ RDA.Addr->setReachedDef(Sib);
+ } else {
+ // Otherwise, traverse the sibling list of the reached defs and remove
+ // DA from it.
+ while (TA.Id != 0) {
+ NodeId S = TA.Addr->getSibling();
+ if (S == DA.Id) {
+ TA.Addr->setSibling(Sib);
+ break;
+ }
+ TA = addr<DefNode*>(S);
+ }
+ }
+
+ // Splice the DA's reached defs into the RDA's reached def chain.
+ if (!ReachedDefs.empty()) {
+ auto Last = NodeAddr<DefNode*>(ReachedDefs.back());
+ Last.Addr->setSibling(RDA.Addr->getReachedDef());
+ RDA.Addr->setReachedDef(ReachedDefs.front().Id);
+ }
+ // Splice the DA's reached uses into the RDA's reached use chain.
+ if (!ReachedUses.empty()) {
+ auto Last = NodeAddr<UseNode*>(ReachedUses.back());
+ Last.Addr->setSibling(RDA.Addr->getReachedUse());
+ RDA.Addr->setReachedUse(ReachedUses.front().Id);
+ }
+}
diff --git a/llvm/lib/CodeGen/RDFLiveness.cpp b/llvm/lib/CodeGen/RDFLiveness.cpp
new file mode 100644
index 00000000000..0bcd27f8ea4
--- /dev/null
+++ b/llvm/lib/CodeGen/RDFLiveness.cpp
@@ -0,0 +1,1118 @@
+//===- RDFLiveness.cpp ----------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Computation of the liveness information from the data-flow graph.
+//
+// The main functionality of this code is to compute block live-in
+// information. With the live-in information in place, the placement
+// of kill flags can also be recalculated.
+//
+// The block live-in calculation is based on the ideas from the following
+// publication:
+//
+// Dibyendu Das, Ramakrishna Upadrasta, Benoit Dupont de Dinechin.
+// "Efficient Liveness Computation Using Merge Sets and DJ-Graphs."
+// ACM Transactions on Architecture and Code Optimization, Association for
+// Computing Machinery, 2012, ACM TACO Special Issue on "High-Performance
+// and Embedded Architectures and Compilers", 8 (4),
+// <10.1145/2086696.2086706>. <hal-00647369>
+//
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineDominanceFrontier.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/RDFLiveness.h"
+#include "llvm/CodeGen/RDFGraph.h"
+#include "llvm/CodeGen/RDFRegisters.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/MC/LaneBitmask.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <iterator>
+#include <map>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+using namespace rdf;
+
+static cl::opt<unsigned> MaxRecNest("rdf-liveness-max-rec", cl::init(25),
+ cl::Hidden, cl::desc("Maximum recursion level"));
+
+namespace llvm {
+namespace rdf {
+
+ raw_ostream &operator<< (raw_ostream &OS, const Print<Liveness::RefMap> &P) {
+ OS << '{';
+ for (auto &I : P.Obj) {
+ OS << ' ' << printReg(I.first, &P.G.getTRI()) << '{';
+ for (auto J = I.second.begin(), E = I.second.end(); J != E; ) {
+ OS << Print<NodeId>(J->first, P.G) << PrintLaneMaskOpt(J->second);
+ if (++J != E)
+ OS << ',';
+ }
+ OS << '}';
+ }
+ OS << " }";
+ return OS;
+ }
+
+} // end namespace rdf
+} // end namespace llvm
+
+// The order in the returned sequence is the order of reaching defs in the
+// upward traversal: the first def is the closest to the given reference RefA,
+// the next one is further up, and so on.
+// The list ends at a reaching phi def, or when the reference from RefA is
+// covered by the defs in the list (see FullChain).
+// This function provides two modes of operation:
+// (1) Returning the sequence of reaching defs for a particular reference
+// node. This sequence will terminate at the first phi node [1].
+// (2) Returning a partial sequence of reaching defs, where the final goal
+// is to traverse past phi nodes to the actual defs arising from the code
+// itself.
+// In mode (2), the register reference for which the search was started
+// may be different from the reference node RefA, for which this call was
+// made, hence the argument RefRR, which holds the original register.
+// Also, some definitions may have already been encountered in a previous
+// call that will influence register covering. The register references
+// already defined are passed in through DefRRs.
+// In mode (1), the "continuation" considerations do not apply, and the
+// RefRR is the same as the register in RefA, and the set DefRRs is empty.
+//
+// [1] It is possible for multiple phi nodes to be included in the returned
+// sequence:
+// SubA = phi ...
+// SubB = phi ...
+// ... = SuperAB(rdef:SubA), SuperAB"(rdef:SubB)
+// However, these phi nodes are independent from one another in terms of
+// the data-flow.
+
+NodeList Liveness::getAllReachingDefs(RegisterRef RefRR,
+ NodeAddr<RefNode*> RefA, bool TopShadows, bool FullChain,
+ const RegisterAggr &DefRRs) {
+ NodeList RDefs; // Return value.
+ SetVector<NodeId> DefQ;
+ SetVector<NodeId> Owners;
+
+ // Dead defs will be treated as if they were live, since they are actually
+ // on the data-flow path. They cannot be ignored because even though they
+ // do not generate meaningful values, they still modify registers.
+
+ // If the reference is undefined, there is nothing to do.
+ if (RefA.Addr->getFlags() & NodeAttrs::Undef)
+ return RDefs;
+
+ // The initial queue should not have reaching defs for shadows. The
+ // whole point of a shadow is that it will have a reaching def that
+ // is not aliased to the reaching defs of the related shadows.
+ NodeId Start = RefA.Id;
+ auto SNA = DFG.addr<RefNode*>(Start);
+ if (NodeId RD = SNA.Addr->getReachingDef())
+ DefQ.insert(RD);
+ if (TopShadows) {
+ for (auto S : DFG.getRelatedRefs(RefA.Addr->getOwner(DFG), RefA))
+ if (NodeId RD = NodeAddr<RefNode*>(S).Addr->getReachingDef())
+ DefQ.insert(RD);
+ }
+
+ // Collect all the reaching defs, going up until a phi node is encountered,
+ // or there are no more reaching defs. From this set, the actual set of
+ // reaching defs will be selected.
+ // The traversal upwards must go on until a covering def is encountered.
+ // It is possible that a collection of non-covering (individually) defs
+ // will be sufficient, but keep going until a covering one is found.
+ for (unsigned i = 0; i < DefQ.size(); ++i) {
+ auto TA = DFG.addr<DefNode*>(DefQ[i]);
+ if (TA.Addr->getFlags() & NodeAttrs::PhiRef)
+ continue;
+ // Stop at the covering/overwriting def of the initial register reference.
+ RegisterRef RR = TA.Addr->getRegRef(DFG);
+ if (!DFG.IsPreservingDef(TA))
+ if (RegisterAggr::isCoverOf(RR, RefRR, PRI))
+ continue;
+ // Get the next level of reaching defs. This will include multiple
+ // reaching defs for shadows.
+ for (auto S : DFG.getRelatedRefs(TA.Addr->getOwner(DFG), TA))
+ if (NodeId RD = NodeAddr<RefNode*>(S).Addr->getReachingDef())
+ DefQ.insert(RD);
+ }
+
+ // Remove all non-phi defs that are not aliased to RefRR, and collect
+ // the owners of the remaining defs.
+ SetVector<NodeId> Defs;
+ for (NodeId N : DefQ) {
+ auto TA = DFG.addr<DefNode*>(N);
+ bool IsPhi = TA.Addr->getFlags() & NodeAttrs::PhiRef;
+ if (!IsPhi && !PRI.alias(RefRR, TA.Addr->getRegRef(DFG)))
+ continue;
+ Defs.insert(TA.Id);
+ Owners.insert(TA.Addr->getOwner(DFG).Id);
+ }
+
+ // Return the MachineBasicBlock containing a given instruction.
+ auto Block = [this] (NodeAddr<InstrNode*> IA) -> MachineBasicBlock* {
+ if (IA.Addr->getKind() == NodeAttrs::Stmt)
+ return NodeAddr<StmtNode*>(IA).Addr->getCode()->getParent();
+ assert(IA.Addr->getKind() == NodeAttrs::Phi);
+ NodeAddr<PhiNode*> PA = IA;
+ NodeAddr<BlockNode*> BA = PA.Addr->getOwner(DFG);
+ return BA.Addr->getCode();
+ };
+ // Less(A,B) iff instruction A is further down in the dominator tree than B.
+ auto Less = [&Block,this] (NodeId A, NodeId B) -> bool {
+ if (A == B)
+ return false;
+ auto OA = DFG.addr<InstrNode*>(A), OB = DFG.addr<InstrNode*>(B);
+ MachineBasicBlock *BA = Block(OA), *BB = Block(OB);
+ if (BA != BB)
+ return MDT.dominates(BB, BA);
+ // They are in the same block.
+ bool StmtA = OA.Addr->getKind() == NodeAttrs::Stmt;
+ bool StmtB = OB.Addr->getKind() == NodeAttrs::Stmt;
+ if (StmtA) {
+ if (!StmtB) // OB is a phi and phis dominate statements.
+ return true;
+ MachineInstr *CA = NodeAddr<StmtNode*>(OA).Addr->getCode();
+ MachineInstr *CB = NodeAddr<StmtNode*>(OB).Addr->getCode();
+ // The order must be linear, so tie-break such equalities.
+ if (CA == CB)
+ return A < B;
+ return MDT.dominates(CB, CA);
+ } else {
+ // OA is a phi.
+ if (StmtB)
+ return false;
+ // Both are phis. There is no ordering between phis (in terms of
+ // the data-flow), so tie-break this via node id comparison.
+ return A < B;
+ }
+ };
+
+ std::vector<NodeId> Tmp(Owners.begin(), Owners.end());
+ llvm::sort(Tmp, Less);
+
+ // The vector is a list of instructions, so that defs coming from
+ // the same instruction don't need to be artificially ordered.
+ // Then, when computing the initial segment, and iterating over an
+ // instruction, pick the defs that contribute to the covering (i.e. is
+ // not covered by previously added defs). Check the defs individually,
+ // i.e. first check each def if is covered or not (without adding them
+ // to the tracking set), and then add all the selected ones.
+
+ // The reason for this is this example:
+ // *d1<A>, *d2<B>, ... Assume A and B are aliased (can happen in phi nodes).
+ // *d3<C> If A \incl BuC, and B \incl AuC, then *d2 would be
+ // covered if we added A first, and A would be covered
+ // if we added B first.
+
+ RegisterAggr RRs(DefRRs);
+
+ auto DefInSet = [&Defs] (NodeAddr<RefNode*> TA) -> bool {
+ return TA.Addr->getKind() == NodeAttrs::Def &&
+ Defs.count(TA.Id);
+ };
+ for (NodeId T : Tmp) {
+ if (!FullChain && RRs.hasCoverOf(RefRR))
+ break;
+ auto TA = DFG.addr<InstrNode*>(T);
+ bool IsPhi = DFG.IsCode<NodeAttrs::Phi>(TA);
+ NodeList Ds;
+ for (NodeAddr<DefNode*> DA : TA.Addr->members_if(DefInSet, DFG)) {
+ RegisterRef QR = DA.Addr->getRegRef(DFG);
+ // Add phi defs even if they are covered by subsequent defs. This is
+ // for cases where the reached use is not covered by any of the defs
+ // encountered so far: the phi def is needed to expose the liveness
+ // of that use to the entry of the block.
+ // Example:
+ // phi d1<R3>(,d2,), ... Phi def d1 is covered by d2.
+ // d2<R3>(d1,,u3), ...
+ // ..., u3<D1>(d2) This use needs to be live on entry.
+ if (FullChain || IsPhi || !RRs.hasCoverOf(QR))
+ Ds.push_back(DA);
+ }
+ RDefs.insert(RDefs.end(), Ds.begin(), Ds.end());
+ for (NodeAddr<DefNode*> DA : Ds) {
+ // When collecting a full chain of definitions, do not consider phi
+ // defs to actually define a register.
+ uint16_t Flags = DA.Addr->getFlags();
+ if (!FullChain || !(Flags & NodeAttrs::PhiRef))
+ if (!(Flags & NodeAttrs::Preserving)) // Don't care about Undef here.
+ RRs.insert(DA.Addr->getRegRef(DFG));
+ }
+ }
+
+ auto DeadP = [](const NodeAddr<DefNode*> DA) -> bool {
+ return DA.Addr->getFlags() & NodeAttrs::Dead;
+ };
+ RDefs.resize(std::distance(RDefs.begin(), llvm::remove_if(RDefs, DeadP)));
+
+ return RDefs;
+}
+
+std::pair<NodeSet,bool>
+Liveness::getAllReachingDefsRec(RegisterRef RefRR, NodeAddr<RefNode*> RefA,
+ NodeSet &Visited, const NodeSet &Defs) {
+ return getAllReachingDefsRecImpl(RefRR, RefA, Visited, Defs, 0, MaxRecNest);
+}
+
+std::pair<NodeSet,bool>
+Liveness::getAllReachingDefsRecImpl(RegisterRef RefRR, NodeAddr<RefNode*> RefA,
+ NodeSet &Visited, const NodeSet &Defs, unsigned Nest, unsigned MaxNest) {
+ if (Nest > MaxNest)
+ return { NodeSet(), false };
+ // Collect all defined registers. Do not consider phis to be defining
+ // anything, only collect "real" definitions.
+ RegisterAggr DefRRs(PRI);
+ for (NodeId D : Defs) {
+ const auto DA = DFG.addr<const DefNode*>(D);
+ if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
+ DefRRs.insert(DA.Addr->getRegRef(DFG));
+ }
+
+ NodeList RDs = getAllReachingDefs(RefRR, RefA, false, true, DefRRs);
+ if (RDs.empty())
+ return { Defs, true };
+
+ // Make a copy of the preexisting definitions and add the newly found ones.
+ NodeSet TmpDefs = Defs;
+ for (NodeAddr<NodeBase*> R : RDs)
+ TmpDefs.insert(R.Id);
+
+ NodeSet Result = Defs;
+
+ for (NodeAddr<DefNode*> DA : RDs) {
+ Result.insert(DA.Id);
+ if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
+ continue;
+ NodeAddr<PhiNode*> PA = DA.Addr->getOwner(DFG);
+ if (Visited.count(PA.Id))
+ continue;
+ Visited.insert(PA.Id);
+ // Go over all phi uses and get the reaching defs for each use.
+ for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
+ const auto &T = getAllReachingDefsRecImpl(RefRR, U, Visited, TmpDefs,
+ Nest+1, MaxNest);
+ if (!T.second)
+ return { T.first, false };
+ Result.insert(T.first.begin(), T.first.end());
+ }
+ }
+
+ return { Result, true };
+}
+
+/// Find the nearest ref node aliased to RefRR, going upwards in the data
+/// flow, starting from the instruction immediately preceding Inst.
+NodeAddr<RefNode*> Liveness::getNearestAliasedRef(RegisterRef RefRR,
+ NodeAddr<InstrNode*> IA) {
+ NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
+ NodeList Ins = BA.Addr->members(DFG);
+ NodeId FindId = IA.Id;
+ auto E = Ins.rend();
+ auto B = std::find_if(Ins.rbegin(), E,
+ [FindId] (const NodeAddr<InstrNode*> T) {
+ return T.Id == FindId;
+ });
+ // Do not scan IA (which is what B would point to).
+ if (B != E)
+ ++B;
+
+ do {
+ // Process the range of instructions from B to E.
+ for (NodeAddr<InstrNode*> I : make_range(B, E)) {
+ NodeList Refs = I.Addr->members(DFG);
+ NodeAddr<RefNode*> Clob, Use;
+ // Scan all the refs in I aliased to RefRR, and return the one that
+ // is the closest to the output of I, i.e. def > clobber > use.
+ for (NodeAddr<RefNode*> R : Refs) {
+ if (!PRI.alias(R.Addr->getRegRef(DFG), RefRR))
+ continue;
+ if (DFG.IsDef(R)) {
+ // If it's a non-clobbering def, just return it.
+ if (!(R.Addr->getFlags() & NodeAttrs::Clobbering))
+ return R;
+ Clob = R;
+ } else {
+ Use = R;
+ }
+ }
+ if (Clob.Id != 0)
+ return Clob;
+ if (Use.Id != 0)
+ return Use;
+ }
+
+ // Go up to the immediate dominator, if any.
+ MachineBasicBlock *BB = BA.Addr->getCode();
+ BA = NodeAddr<BlockNode*>();
+ if (MachineDomTreeNode *N = MDT.getNode(BB)) {
+ if ((N = N->getIDom()))
+ BA = DFG.findBlock(N->getBlock());
+ }
+ if (!BA.Id)
+ break;
+
+ Ins = BA.Addr->members(DFG);
+ B = Ins.rbegin();
+ E = Ins.rend();
+ } while (true);
+
+ return NodeAddr<RefNode*>();
+}
+
+NodeSet Liveness::getAllReachedUses(RegisterRef RefRR,
+ NodeAddr<DefNode*> DefA, const RegisterAggr &DefRRs) {
+ NodeSet Uses;
+
+ // If the original register is already covered by all the intervening
+ // defs, no more uses can be reached.
+ if (DefRRs.hasCoverOf(RefRR))
+ return Uses;
+
+ // Add all directly reached uses.
+ // If the def is dead, it does not provide a value for any use.
+ bool IsDead = DefA.Addr->getFlags() & NodeAttrs::Dead;
+ NodeId U = !IsDead ? DefA.Addr->getReachedUse() : 0;
+ while (U != 0) {
+ auto UA = DFG.addr<UseNode*>(U);
+ if (!(UA.Addr->getFlags() & NodeAttrs::Undef)) {
+ RegisterRef UR = UA.Addr->getRegRef(DFG);
+ if (PRI.alias(RefRR, UR) && !DefRRs.hasCoverOf(UR))
+ Uses.insert(U);
+ }
+ U = UA.Addr->getSibling();
+ }
+
+ // Traverse all reached defs. This time dead defs cannot be ignored.
+ for (NodeId D = DefA.Addr->getReachedDef(), NextD; D != 0; D = NextD) {
+ auto DA = DFG.addr<DefNode*>(D);
+ NextD = DA.Addr->getSibling();
+ RegisterRef DR = DA.Addr->getRegRef(DFG);
+ // If this def is already covered, it cannot reach anything new.
+ // Similarly, skip it if it is not aliased to the interesting register.
+ if (DefRRs.hasCoverOf(DR) || !PRI.alias(RefRR, DR))
+ continue;
+ NodeSet T;
+ if (DFG.IsPreservingDef(DA)) {
+ // If it is a preserving def, do not update the set of intervening defs.
+ T = getAllReachedUses(RefRR, DA, DefRRs);
+ } else {
+ RegisterAggr NewDefRRs = DefRRs;
+ NewDefRRs.insert(DR);
+ T = getAllReachedUses(RefRR, DA, NewDefRRs);
+ }
+ Uses.insert(T.begin(), T.end());
+ }
+ return Uses;
+}
+
+void Liveness::computePhiInfo() {
+ RealUseMap.clear();
+
+ NodeList Phis;
+ NodeAddr<FuncNode*> FA = DFG.getFunc();
+ NodeList Blocks = FA.Addr->members(DFG);
+ for (NodeAddr<BlockNode*> BA : Blocks) {
+ auto Ps = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
+ Phis.insert(Phis.end(), Ps.begin(), Ps.end());
+ }
+
+ // phi use -> (map: reaching phi -> set of registers defined in between)
+ std::map<NodeId,std::map<NodeId,RegisterAggr>> PhiUp;
+ std::vector<NodeId> PhiUQ; // Work list of phis for upward propagation.
+ std::map<NodeId,RegisterAggr> PhiDRs; // Phi -> registers defined by it.
+
+ // Go over all phis.
+ for (NodeAddr<PhiNode*> PhiA : Phis) {
+ // Go over all defs and collect the reached uses that are non-phi uses
+ // (i.e. the "real uses").
+ RefMap &RealUses = RealUseMap[PhiA.Id];
+ NodeList PhiRefs = PhiA.Addr->members(DFG);
+
+ // Have a work queue of defs whose reached uses need to be found.
+ // For each def, add to the queue all reached (non-phi) defs.
+ SetVector<NodeId> DefQ;
+ NodeSet PhiDefs;
+ RegisterAggr DRs(PRI);
+ for (NodeAddr<RefNode*> R : PhiRefs) {
+ if (!DFG.IsRef<NodeAttrs::Def>(R))
+ continue;
+ DRs.insert(R.Addr->getRegRef(DFG));
+ DefQ.insert(R.Id);
+ PhiDefs.insert(R.Id);
+ }
+ PhiDRs.insert(std::make_pair(PhiA.Id, DRs));
+
+ // Collect the super-set of all possible reached uses. This set will
+ // contain all uses reached from this phi, either directly from the
+ // phi defs, or (recursively) via non-phi defs reached by the phi defs.
+ // This set of uses will later be trimmed to only contain these uses that
+ // are actually reached by the phi defs.
+ for (unsigned i = 0; i < DefQ.size(); ++i) {
+ NodeAddr<DefNode*> DA = DFG.addr<DefNode*>(DefQ[i]);
+ // Visit all reached uses. Phi defs should not really have the "dead"
+ // flag set, but check it anyway for consistency.
+ bool IsDead = DA.Addr->getFlags() & NodeAttrs::Dead;
+ NodeId UN = !IsDead ? DA.Addr->getReachedUse() : 0;
+ while (UN != 0) {
+ NodeAddr<UseNode*> A = DFG.addr<UseNode*>(UN);
+ uint16_t F = A.Addr->getFlags();
+ if ((F & (NodeAttrs::Undef | NodeAttrs::PhiRef)) == 0) {
+ RegisterRef R = PRI.normalize(A.Addr->getRegRef(DFG));
+ RealUses[R.Reg].insert({A.Id,R.Mask});
+ }
+ UN = A.Addr->getSibling();
+ }
+ // Visit all reached defs, and add them to the queue. These defs may
+ // override some of the uses collected here, but that will be handled
+ // later.
+ NodeId DN = DA.Addr->getReachedDef();
+ while (DN != 0) {
+ NodeAddr<DefNode*> A = DFG.addr<DefNode*>(DN);
+ for (auto T : DFG.getRelatedRefs(A.Addr->getOwner(DFG), A)) {
+ uint16_t Flags = NodeAddr<DefNode*>(T).Addr->getFlags();
+ // Must traverse the reached-def chain. Consider:
+ // def(D0) -> def(R0) -> def(R0) -> use(D0)
+ // The reachable use of D0 passes through a def of R0.
+ if (!(Flags & NodeAttrs::PhiRef))
+ DefQ.insert(T.Id);
+ }
+ DN = A.Addr->getSibling();
+ }
+ }
+ // Filter out these uses that appear to be reachable, but really
+ // are not. For example:
+ //
+ // R1:0 = d1
+ // = R1:0 u2 Reached by d1.
+ // R0 = d3
+ // = R1:0 u4 Still reached by d1: indirectly through
+ // the def d3.
+ // R1 = d5
+ // = R1:0 u6 Not reached by d1 (covered collectively
+ // by d3 and d5), but following reached
+ // defs and uses from d1 will lead here.
+ for (auto UI = RealUses.begin(), UE = RealUses.end(); UI != UE; ) {
+ // For each reached register UI->first, there is a set UI->second, of
+ // uses of it. For each such use, check if it is reached by this phi,
+ // i.e. check if the set of its reaching uses intersects the set of
+ // this phi's defs.
+ NodeRefSet Uses = UI->second;
+ UI->second.clear();
+ for (std::pair<NodeId,LaneBitmask> I : Uses) {
+ auto UA = DFG.addr<UseNode*>(I.first);
+ // Undef flag is checked above.
+ assert((UA.Addr->getFlags() & NodeAttrs::Undef) == 0);
+ RegisterRef R(UI->first, I.second);
+ // Calculate the exposed part of the reached use.
+ RegisterAggr Covered(PRI);
+ for (NodeAddr<DefNode*> DA : getAllReachingDefs(R, UA)) {
+ if (PhiDefs.count(DA.Id))
+ break;
+ Covered.insert(DA.Addr->getRegRef(DFG));
+ }
+ if (RegisterRef RC = Covered.clearIn(R)) {
+ // We are updating the map for register UI->first, so we need
+ // to map RC to be expressed in terms of that register.
+ RegisterRef S = PRI.mapTo(RC, UI->first);
+ UI->second.insert({I.first, S.Mask});
+ }
+ }
+ UI = UI->second.empty() ? RealUses.erase(UI) : std::next(UI);
+ }
+
+ // If this phi reaches some "real" uses, add it to the queue for upward
+ // propagation.
+ if (!RealUses.empty())
+ PhiUQ.push_back(PhiA.Id);
+
+ // Go over all phi uses and check if the reaching def is another phi.
+ // Collect the phis that are among the reaching defs of these uses.
+ // While traversing the list of reaching defs for each phi use, accumulate
+ // the set of registers defined between this phi (PhiA) and the owner phi
+ // of the reaching def.
+ NodeSet SeenUses;
+
+ for (auto I : PhiRefs) {
+ if (!DFG.IsRef<NodeAttrs::Use>(I) || SeenUses.count(I.Id))
+ continue;
+ NodeAddr<PhiUseNode*> PUA = I;
+ if (PUA.Addr->getReachingDef() == 0)
+ continue;
+
+ RegisterRef UR = PUA.Addr->getRegRef(DFG);
+ NodeList Ds = getAllReachingDefs(UR, PUA, true, false, NoRegs);
+ RegisterAggr DefRRs(PRI);
+
+ for (NodeAddr<DefNode*> D : Ds) {
+ if (D.Addr->getFlags() & NodeAttrs::PhiRef) {
+ NodeId RP = D.Addr->getOwner(DFG).Id;
+ std::map<NodeId,RegisterAggr> &M = PhiUp[PUA.Id];
+ auto F = M.find(RP);
+ if (F == M.end())
+ M.insert(std::make_pair(RP, DefRRs));
+ else
+ F->second.insert(DefRRs);
+ }
+ DefRRs.insert(D.Addr->getRegRef(DFG));
+ }
+
+ for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PhiA, PUA))
+ SeenUses.insert(T.Id);
+ }
+ }
+
+ if (Trace) {
+ dbgs() << "Phi-up-to-phi map with intervening defs:\n";
+ for (auto I : PhiUp) {
+ dbgs() << "phi " << Print<NodeId>(I.first, DFG) << " -> {";
+ for (auto R : I.second)
+ dbgs() << ' ' << Print<NodeId>(R.first, DFG)
+ << Print<RegisterAggr>(R.second, DFG);
+ dbgs() << " }\n";
+ }
+ }
+
+ // Propagate the reached registers up in the phi chain.
+ //
+ // The following type of situation needs careful handling:
+ //
+ // phi d1<R1:0> (1)
+ // |
+ // ... d2<R1>
+ // |
+ // phi u3<R1:0> (2)
+ // |
+ // ... u4<R1>
+ //
+ // The phi node (2) defines a register pair R1:0, and reaches a "real"
+ // use u4 of just R1. The same phi node is also known to reach (upwards)
+ // the phi node (1). However, the use u4 is not reached by phi (1),
+ // because of the intervening definition d2 of R1. The data flow between
+ // phis (1) and (2) is restricted to R1:0 minus R1, i.e. R0.
+ //
+ // When propagating uses up the phi chains, get the all reaching defs
+ // for a given phi use, and traverse the list until the propagated ref
+ // is covered, or until reaching the final phi. Only assume that the
+ // reference reaches the phi in the latter case.
+
+ for (unsigned i = 0; i < PhiUQ.size(); ++i) {
+ auto PA = DFG.addr<PhiNode*>(PhiUQ[i]);
+ NodeList PUs = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG);
+ RefMap &RUM = RealUseMap[PA.Id];
+
+ for (NodeAddr<UseNode*> UA : PUs) {
+ std::map<NodeId,RegisterAggr> &PUM = PhiUp[UA.Id];
+ RegisterRef UR = PRI.normalize(UA.Addr->getRegRef(DFG));
+ for (const std::pair<const NodeId, RegisterAggr> &P : PUM) {
+ bool Changed = false;
+ const RegisterAggr &MidDefs = P.second;
+
+ // Collect the set PropUp of uses that are reached by the current
+ // phi PA, and are not covered by any intervening def between the
+ // currently visited use UA and the upward phi P.
+
+ if (MidDefs.hasCoverOf(UR))
+ continue;
+
+ // General algorithm:
+ // for each (R,U) : U is use node of R, U is reached by PA
+ // if MidDefs does not cover (R,U)
+ // then add (R-MidDefs,U) to RealUseMap[P]
+ //
+ for (const std::pair<const RegisterId, NodeRefSet> &T : RUM) {
+ RegisterRef R(T.first);
+ // The current phi (PA) could be a phi for a regmask. It could
+ // reach a whole variety of uses that are not related to the
+ // specific upward phi (P.first).
+ const RegisterAggr &DRs = PhiDRs.at(P.first);
+ if (!DRs.hasAliasOf(R))
+ continue;
+ R = PRI.mapTo(DRs.intersectWith(R), T.first);
+ for (std::pair<NodeId,LaneBitmask> V : T.second) {
+ LaneBitmask M = R.Mask & V.second;
+ if (M.none())
+ continue;
+ if (RegisterRef SS = MidDefs.clearIn(RegisterRef(R.Reg, M))) {
+ NodeRefSet &RS = RealUseMap[P.first][SS.Reg];
+ Changed |= RS.insert({V.first,SS.Mask}).second;
+ }
+ }
+ }
+
+ if (Changed)
+ PhiUQ.push_back(P.first);
+ }
+ }
+ }
+
+ if (Trace) {
+ dbgs() << "Real use map:\n";
+ for (auto I : RealUseMap) {
+ dbgs() << "phi " << Print<NodeId>(I.first, DFG);
+ NodeAddr<PhiNode*> PA = DFG.addr<PhiNode*>(I.first);
+ NodeList Ds = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Def>, DFG);
+ if (!Ds.empty()) {
+ RegisterRef RR = NodeAddr<DefNode*>(Ds[0]).Addr->getRegRef(DFG);
+ dbgs() << '<' << Print<RegisterRef>(RR, DFG) << '>';
+ } else {
+ dbgs() << "<noreg>";
+ }
+ dbgs() << " -> " << Print<RefMap>(I.second, DFG) << '\n';
+ }
+ }
+}
+
+void Liveness::computeLiveIns() {
+ // Populate the node-to-block map. This speeds up the calculations
+ // significantly.
+ NBMap.clear();
+ for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) {
+ MachineBasicBlock *BB = BA.Addr->getCode();
+ for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) {
+ for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG))
+ NBMap.insert(std::make_pair(RA.Id, BB));
+ NBMap.insert(std::make_pair(IA.Id, BB));
+ }
+ }
+
+ MachineFunction &MF = DFG.getMF();
+
+ // Compute IDF first, then the inverse.
+ decltype(IIDF) IDF;
+ for (MachineBasicBlock &B : MF) {
+ auto F1 = MDF.find(&B);
+ if (F1 == MDF.end())
+ continue;
+ SetVector<MachineBasicBlock*> IDFB(F1->second.begin(), F1->second.end());
+ for (unsigned i = 0; i < IDFB.size(); ++i) {
+ auto F2 = MDF.find(IDFB[i]);
+ if (F2 != MDF.end())
+ IDFB.insert(F2->second.begin(), F2->second.end());
+ }
+ // Add B to the IDF(B). This will put B in the IIDF(B).
+ IDFB.insert(&B);
+ IDF[&B].insert(IDFB.begin(), IDFB.end());
+ }
+
+ for (auto I : IDF)
+ for (auto S : I.second)
+ IIDF[S].insert(I.first);
+
+ computePhiInfo();
+
+ NodeAddr<FuncNode*> FA = DFG.getFunc();
+ NodeList Blocks = FA.Addr->members(DFG);
+
+ // Build the phi live-on-entry map.
+ for (NodeAddr<BlockNode*> BA : Blocks) {
+ MachineBasicBlock *MB = BA.Addr->getCode();
+ RefMap &LON = PhiLON[MB];
+ for (auto P : BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG))
+ for (const RefMap::value_type &S : RealUseMap[P.Id])
+ LON[S.first].insert(S.second.begin(), S.second.end());
+ }
+
+ if (Trace) {
+ dbgs() << "Phi live-on-entry map:\n";
+ for (auto &I : PhiLON)
+ dbgs() << "block #" << I.first->getNumber() << " -> "
+ << Print<RefMap>(I.second, DFG) << '\n';
+ }
+
+ // Build the phi live-on-exit map. Each phi node has some set of reached
+ // "real" uses. Propagate this set backwards into the block predecessors
+ // through the reaching defs of the corresponding phi uses.
+ for (NodeAddr<BlockNode*> BA : Blocks) {
+ NodeList Phis = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
+ for (NodeAddr<PhiNode*> PA : Phis) {
+ RefMap &RUs = RealUseMap[PA.Id];
+ if (RUs.empty())
+ continue;
+
+ NodeSet SeenUses;
+ for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
+ if (!SeenUses.insert(U.Id).second)
+ continue;
+ NodeAddr<PhiUseNode*> PUA = U;
+ if (PUA.Addr->getReachingDef() == 0)
+ continue;
+
+ // Each phi has some set (possibly empty) of reached "real" uses,
+ // that is, uses that are part of the compiled program. Such a use
+ // may be located in some farther block, but following a chain of
+ // reaching defs will eventually lead to this phi.
+ // Any chain of reaching defs may fork at a phi node, but there
+ // will be a path upwards that will lead to this phi. Now, this
+ // chain will need to fork at this phi, since some of the reached
+ // uses may have definitions joining in from multiple predecessors.
+ // For each reached "real" use, identify the set of reaching defs
+ // coming from each predecessor P, and add them to PhiLOX[P].
+ //
+ auto PrA = DFG.addr<BlockNode*>(PUA.Addr->getPredecessor());
+ RefMap &LOX = PhiLOX[PrA.Addr->getCode()];
+
+ for (const std::pair<const RegisterId, NodeRefSet> &RS : RUs) {
+ // We need to visit each individual use.
+ for (std::pair<NodeId,LaneBitmask> P : RS.second) {
+ // Create a register ref corresponding to the use, and find
+ // all reaching defs starting from the phi use, and treating
+ // all related shadows as a single use cluster.
+ RegisterRef S(RS.first, P.second);
+ NodeList Ds = getAllReachingDefs(S, PUA, true, false, NoRegs);
+ for (NodeAddr<DefNode*> D : Ds) {
+ // Calculate the mask corresponding to the visited def.
+ RegisterAggr TA(PRI);
+ TA.insert(D.Addr->getRegRef(DFG)).intersect(S);
+ LaneBitmask TM = TA.makeRegRef().Mask;
+ LOX[S.Reg].insert({D.Id, TM});
+ }
+ }
+ }
+
+ for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PA, PUA))
+ SeenUses.insert(T.Id);
+ } // for U : phi uses
+ } // for P : Phis
+ } // for B : Blocks
+
+ if (Trace) {
+ dbgs() << "Phi live-on-exit map:\n";
+ for (auto &I : PhiLOX)
+ dbgs() << "block #" << I.first->getNumber() << " -> "
+ << Print<RefMap>(I.second, DFG) << '\n';
+ }
+
+ RefMap LiveIn;
+ traverse(&MF.front(), LiveIn);
+
+ // Add function live-ins to the live-in set of the function entry block.
+ LiveMap[&MF.front()].insert(DFG.getLiveIns());
+
+ if (Trace) {
+ // Dump the liveness map
+ for (MachineBasicBlock &B : MF) {
+ std::vector<RegisterRef> LV;
+ for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I)
+ LV.push_back(RegisterRef(I->PhysReg, I->LaneMask));
+ llvm::sort(LV);
+ dbgs() << printMBBReference(B) << "\t rec = {";
+ for (auto I : LV)
+ dbgs() << ' ' << Print<RegisterRef>(I, DFG);
+ dbgs() << " }\n";
+ //dbgs() << "\tcomp = " << Print<RegisterAggr>(LiveMap[&B], DFG) << '\n';
+
+ LV.clear();
+ const RegisterAggr &LG = LiveMap[&B];
+ for (auto I = LG.rr_begin(), E = LG.rr_end(); I != E; ++I)
+ LV.push_back(*I);
+ llvm::sort(LV);
+ dbgs() << "\tcomp = {";
+ for (auto I : LV)
+ dbgs() << ' ' << Print<RegisterRef>(I, DFG);
+ dbgs() << " }\n";
+
+ }
+ }
+}
+
+void Liveness::resetLiveIns() {
+ for (auto &B : DFG.getMF()) {
+ // Remove all live-ins.
+ std::vector<unsigned> T;
+ for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I)
+ T.push_back(I->PhysReg);
+ for (auto I : T)
+ B.removeLiveIn(I);
+ // Add the newly computed live-ins.
+ const RegisterAggr &LiveIns = LiveMap[&B];
+ for (auto I = LiveIns.rr_begin(), E = LiveIns.rr_end(); I != E; ++I) {
+ RegisterRef R = *I;
+ B.addLiveIn({MCPhysReg(R.Reg), R.Mask});
+ }
+ }
+}
+
+void Liveness::resetKills() {
+ for (auto &B : DFG.getMF())
+ resetKills(&B);
+}
+
+void Liveness::resetKills(MachineBasicBlock *B) {
+ auto CopyLiveIns = [this] (MachineBasicBlock *B, BitVector &LV) -> void {
+ for (auto I : B->liveins()) {
+ MCSubRegIndexIterator S(I.PhysReg, &TRI);
+ if (!S.isValid()) {
+ LV.set(I.PhysReg);
+ continue;
+ }
+ do {
+ LaneBitmask M = TRI.getSubRegIndexLaneMask(S.getSubRegIndex());
+ if ((M & I.LaneMask).any())
+ LV.set(S.getSubReg());
+ ++S;
+ } while (S.isValid());
+ }
+ };
+
+ BitVector LiveIn(TRI.getNumRegs()), Live(TRI.getNumRegs());
+ CopyLiveIns(B, LiveIn);
+ for (auto SI : B->successors())
+ CopyLiveIns(SI, Live);
+
+ for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) {
+ MachineInstr *MI = &*I;
+ if (MI->isDebugInstr())
+ continue;
+
+ MI->clearKillInfo();
+ for (auto &Op : MI->operands()) {
+ // An implicit def of a super-register may not necessarily start a
+ // live range of it, since an implicit use could be used to keep parts
+ // of it live. Instead of analyzing the implicit operands, ignore
+ // implicit defs.
+ if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
+ continue;
+ Register R = Op.getReg();
+ if (!Register::isPhysicalRegister(R))
+ continue;
+ for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
+ Live.reset(*SR);
+ }
+ for (auto &Op : MI->operands()) {
+ if (!Op.isReg() || !Op.isUse() || Op.isUndef())
+ continue;
+ Register R = Op.getReg();
+ if (!Register::isPhysicalRegister(R))
+ continue;
+ bool IsLive = false;
+ for (MCRegAliasIterator AR(R, &TRI, true); AR.isValid(); ++AR) {
+ if (!Live[*AR])
+ continue;
+ IsLive = true;
+ break;
+ }
+ if (!IsLive)
+ Op.setIsKill(true);
+ for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
+ Live.set(*SR);
+ }
+ }
+}
+
+// Helper function to obtain the basic block containing the reaching def
+// of the given use.
+MachineBasicBlock *Liveness::getBlockWithRef(NodeId RN) const {
+ auto F = NBMap.find(RN);
+ if (F != NBMap.end())
+ return F->second;
+ llvm_unreachable("Node id not in map");
+}
+
+void Liveness::traverse(MachineBasicBlock *B, RefMap &LiveIn) {
+ // The LiveIn map, for each (physical) register, contains the set of live
+ // reaching defs of that register that are live on entry to the associated
+ // block.
+
+ // The summary of the traversal algorithm:
+ //
+ // R is live-in in B, if there exists a U(R), such that rdef(R) dom B
+ // and (U \in IDF(B) or B dom U).
+ //
+ // for (C : children) {
+ // LU = {}
+ // traverse(C, LU)
+ // LiveUses += LU
+ // }
+ //
+ // LiveUses -= Defs(B);
+ // LiveUses += UpwardExposedUses(B);
+ // for (C : IIDF[B])
+ // for (U : LiveUses)
+ // if (Rdef(U) dom C)
+ // C.addLiveIn(U)
+ //
+
+ // Go up the dominator tree (depth-first).
+ MachineDomTreeNode *N = MDT.getNode(B);
+ for (auto I : *N) {
+ RefMap L;
+ MachineBasicBlock *SB = I->getBlock();
+ traverse(SB, L);
+
+ for (auto S : L)
+ LiveIn[S.first].insert(S.second.begin(), S.second.end());
+ }
+
+ if (Trace) {
+ dbgs() << "\n-- " << printMBBReference(*B) << ": " << __func__
+ << " after recursion into: {";
+ for (auto I : *N)
+ dbgs() << ' ' << I->getBlock()->getNumber();
+ dbgs() << " }\n";
+ dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
+ dbgs() << " Local: " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
+ }
+
+ // Add reaching defs of phi uses that are live on exit from this block.
+ RefMap &PUs = PhiLOX[B];
+ for (auto &S : PUs)
+ LiveIn[S.first].insert(S.second.begin(), S.second.end());
+
+ if (Trace) {
+ dbgs() << "after LOX\n";
+ dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
+ dbgs() << " Local: " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
+ }
+
+ // The LiveIn map at this point has all defs that are live-on-exit from B,
+ // as if they were live-on-entry to B. First, we need to filter out all
+ // defs that are present in this block. Then we will add reaching defs of
+ // all upward-exposed uses.
+
+ // To filter out the defs, first make a copy of LiveIn, and then re-populate
+ // LiveIn with the defs that should remain.
+ RefMap LiveInCopy = LiveIn;
+ LiveIn.clear();
+
+ for (const std::pair<const RegisterId, NodeRefSet> &LE : LiveInCopy) {
+ RegisterRef LRef(LE.first);
+ NodeRefSet &NewDefs = LiveIn[LRef.Reg]; // To be filled.
+ const NodeRefSet &OldDefs = LE.second;
+ for (NodeRef OR : OldDefs) {
+ // R is a def node that was live-on-exit
+ auto DA = DFG.addr<DefNode*>(OR.first);
+ NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG);
+ NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
+ if (B != BA.Addr->getCode()) {
+ // Defs from a different block need to be preserved. Defs from this
+ // block will need to be processed further, except for phi defs, the
+ // liveness of which is handled through the PhiLON/PhiLOX maps.
+ NewDefs.insert(OR);
+ continue;
+ }
+
+ // Defs from this block need to stop the liveness from being
+ // propagated upwards. This only applies to non-preserving defs,
+ // and to the parts of the register actually covered by those defs.
+ // (Note that phi defs should always be preserving.)
+ RegisterAggr RRs(PRI);
+ LRef.Mask = OR.second;
+
+ if (!DFG.IsPreservingDef(DA)) {
+ assert(!(IA.Addr->getFlags() & NodeAttrs::Phi));
+ // DA is a non-phi def that is live-on-exit from this block, and
+ // that is also located in this block. LRef is a register ref
+ // whose use this def reaches. If DA covers LRef, then no part
+ // of LRef is exposed upwards.A
+ if (RRs.insert(DA.Addr->getRegRef(DFG)).hasCoverOf(LRef))
+ continue;
+ }
+
+ // DA itself was not sufficient to cover LRef. In general, it is
+ // the last in a chain of aliased defs before the exit from this block.
+ // There could be other defs in this block that are a part of that
+ // chain. Check that now: accumulate the registers from these defs,
+ // and if they all together cover LRef, it is not live-on-entry.
+ for (NodeAddr<DefNode*> TA : getAllReachingDefs(DA)) {
+ // DefNode -> InstrNode -> BlockNode.
+ NodeAddr<InstrNode*> ITA = TA.Addr->getOwner(DFG);
+ NodeAddr<BlockNode*> BTA = ITA.Addr->getOwner(DFG);
+ // Reaching defs are ordered in the upward direction.
+ if (BTA.Addr->getCode() != B) {
+ // We have reached past the beginning of B, and the accumulated
+ // registers are not covering LRef. The first def from the
+ // upward chain will be live.
+ // Subtract all accumulated defs (RRs) from LRef.
+ RegisterRef T = RRs.clearIn(LRef);
+ assert(T);
+ NewDefs.insert({TA.Id,T.Mask});
+ break;
+ }
+
+ // TA is in B. Only add this def to the accumulated cover if it is
+ // not preserving.
+ if (!(TA.Addr->getFlags() & NodeAttrs::Preserving))
+ RRs.insert(TA.Addr->getRegRef(DFG));
+ // If this is enough to cover LRef, then stop.
+ if (RRs.hasCoverOf(LRef))
+ break;
+ }
+ }
+ }
+
+ emptify(LiveIn);
+
+ if (Trace) {
+ dbgs() << "after defs in block\n";
+ dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
+ dbgs() << " Local: " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
+ }
+
+ // Scan the block for upward-exposed uses and add them to the tracking set.
+ for (auto I : DFG.getFunc().Addr->findBlock(B, DFG).Addr->members(DFG)) {
+ NodeAddr<InstrNode*> IA = I;
+ if (IA.Addr->getKind() != NodeAttrs::Stmt)
+ continue;
+ for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) {
+ if (UA.Addr->getFlags() & NodeAttrs::Undef)
+ continue;
+ RegisterRef RR = PRI.normalize(UA.Addr->getRegRef(DFG));
+ for (NodeAddr<DefNode*> D : getAllReachingDefs(UA))
+ if (getBlockWithRef(D.Id) != B)
+ LiveIn[RR.Reg].insert({D.Id,RR.Mask});
+ }
+ }
+
+ if (Trace) {
+ dbgs() << "after uses in block\n";
+ dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
+ dbgs() << " Local: " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
+ }
+
+ // Phi uses should not be propagated up the dominator tree, since they
+ // are not dominated by their corresponding reaching defs.
+ RegisterAggr &Local = LiveMap[B];
+ RefMap &LON = PhiLON[B];
+ for (auto &R : LON) {
+ LaneBitmask M;
+ for (auto P : R.second)
+ M |= P.second;
+ Local.insert(RegisterRef(R.first,M));
+ }
+
+ if (Trace) {
+ dbgs() << "after phi uses in block\n";
+ dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
+ dbgs() << " Local: " << Print<RegisterAggr>(Local, DFG) << '\n';
+ }
+
+ for (auto C : IIDF[B]) {
+ RegisterAggr &LiveC = LiveMap[C];
+ for (const std::pair<const RegisterId, NodeRefSet> &S : LiveIn)
+ for (auto R : S.second)
+ if (MDT.properlyDominates(getBlockWithRef(R.first), C))
+ LiveC.insert(RegisterRef(S.first, R.second));
+ }
+}
+
+void Liveness::emptify(RefMap &M) {
+ for (auto I = M.begin(), E = M.end(); I != E; )
+ I = I->second.empty() ? M.erase(I) : std::next(I);
+}
diff --git a/llvm/lib/CodeGen/RDFRegisters.cpp b/llvm/lib/CodeGen/RDFRegisters.cpp
new file mode 100644
index 00000000000..bd8661816e7
--- /dev/null
+++ b/llvm/lib/CodeGen/RDFRegisters.cpp
@@ -0,0 +1,380 @@
+//===- RDFRegisters.cpp ---------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/BitVector.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/RDFRegisters.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/MC/LaneBitmask.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cassert>
+#include <cstdint>
+#include <set>
+#include <utility>
+
+using namespace llvm;
+using namespace rdf;
+
+PhysicalRegisterInfo::PhysicalRegisterInfo(const TargetRegisterInfo &tri,
+ const MachineFunction &mf)
+ : TRI(tri) {
+ RegInfos.resize(TRI.getNumRegs());
+
+ BitVector BadRC(TRI.getNumRegs());
+ for (const TargetRegisterClass *RC : TRI.regclasses()) {
+ for (MCPhysReg R : *RC) {
+ RegInfo &RI = RegInfos[R];
+ if (RI.RegClass != nullptr && !BadRC[R]) {
+ if (RC->LaneMask != RI.RegClass->LaneMask) {
+ BadRC.set(R);
+ RI.RegClass = nullptr;
+ }
+ } else
+ RI.RegClass = RC;
+ }
+ }
+
+ UnitInfos.resize(TRI.getNumRegUnits());
+
+ for (uint32_t U = 0, NU = TRI.getNumRegUnits(); U != NU; ++U) {
+ if (UnitInfos[U].Reg != 0)
+ continue;
+ MCRegUnitRootIterator R(U, &TRI);
+ assert(R.isValid());
+ RegisterId F = *R;
+ ++R;
+ if (R.isValid()) {
+ UnitInfos[U].Mask = LaneBitmask::getAll();
+ UnitInfos[U].Reg = F;
+ } else {
+ for (MCRegUnitMaskIterator I(F, &TRI); I.isValid(); ++I) {
+ std::pair<uint32_t,LaneBitmask> P = *I;
+ UnitInfo &UI = UnitInfos[P.first];
+ UI.Reg = F;
+ if (P.second.any()) {
+ UI.Mask = P.second;
+ } else {
+ if (const TargetRegisterClass *RC = RegInfos[F].RegClass)
+ UI.Mask = RC->LaneMask;
+ else
+ UI.Mask = LaneBitmask::getAll();
+ }
+ }
+ }
+ }
+
+ for (const uint32_t *RM : TRI.getRegMasks())
+ RegMasks.insert(RM);
+ for (const MachineBasicBlock &B : mf)
+ for (const MachineInstr &In : B)
+ for (const MachineOperand &Op : In.operands())
+ if (Op.isRegMask())
+ RegMasks.insert(Op.getRegMask());
+
+ MaskInfos.resize(RegMasks.size()+1);
+ for (uint32_t M = 1, NM = RegMasks.size(); M <= NM; ++M) {
+ BitVector PU(TRI.getNumRegUnits());
+ const uint32_t *MB = RegMasks.get(M);
+ for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i) {
+ if (!(MB[i/32] & (1u << (i%32))))
+ continue;
+ for (MCRegUnitIterator U(i, &TRI); U.isValid(); ++U)
+ PU.set(*U);
+ }
+ MaskInfos[M].Units = PU.flip();
+ }
+}
+
+RegisterRef PhysicalRegisterInfo::normalize(RegisterRef RR) const {
+ return RR;
+}
+
+std::set<RegisterId> PhysicalRegisterInfo::getAliasSet(RegisterId Reg) const {
+ // Do not include RR in the alias set.
+ std::set<RegisterId> AS;
+ assert(isRegMaskId(Reg) || Register::isPhysicalRegister(Reg));
+ if (isRegMaskId(Reg)) {
+ // XXX SLOW
+ const uint32_t *MB = getRegMaskBits(Reg);
+ for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i) {
+ if (MB[i/32] & (1u << (i%32)))
+ continue;
+ AS.insert(i);
+ }
+ for (const uint32_t *RM : RegMasks) {
+ RegisterId MI = getRegMaskId(RM);
+ if (MI != Reg && aliasMM(RegisterRef(Reg), RegisterRef(MI)))
+ AS.insert(MI);
+ }
+ return AS;
+ }
+
+ for (MCRegAliasIterator AI(Reg, &TRI, false); AI.isValid(); ++AI)
+ AS.insert(*AI);
+ for (const uint32_t *RM : RegMasks) {
+ RegisterId MI = getRegMaskId(RM);
+ if (aliasRM(RegisterRef(Reg), RegisterRef(MI)))
+ AS.insert(MI);
+ }
+ return AS;
+}
+
+bool PhysicalRegisterInfo::aliasRR(RegisterRef RA, RegisterRef RB) const {
+ assert(Register::isPhysicalRegister(RA.Reg));
+ assert(Register::isPhysicalRegister(RB.Reg));
+
+ MCRegUnitMaskIterator UMA(RA.Reg, &TRI);
+ MCRegUnitMaskIterator UMB(RB.Reg, &TRI);
+ // Reg units are returned in the numerical order.
+ while (UMA.isValid() && UMB.isValid()) {
+ // Skip units that are masked off in RA.
+ std::pair<RegisterId,LaneBitmask> PA = *UMA;
+ if (PA.second.any() && (PA.second & RA.Mask).none()) {
+ ++UMA;
+ continue;
+ }
+ // Skip units that are masked off in RB.
+ std::pair<RegisterId,LaneBitmask> PB = *UMB;
+ if (PB.second.any() && (PB.second & RB.Mask).none()) {
+ ++UMB;
+ continue;
+ }
+
+ if (PA.first == PB.first)
+ return true;
+ if (PA.first < PB.first)
+ ++UMA;
+ else if (PB.first < PA.first)
+ ++UMB;
+ }
+ return false;
+}
+
+bool PhysicalRegisterInfo::aliasRM(RegisterRef RR, RegisterRef RM) const {
+ assert(Register::isPhysicalRegister(RR.Reg) && isRegMaskId(RM.Reg));
+ const uint32_t *MB = getRegMaskBits(RM.Reg);
+ bool Preserved = MB[RR.Reg/32] & (1u << (RR.Reg%32));
+ // If the lane mask information is "full", e.g. when the given lane mask
+ // is a superset of the lane mask from the register class, check the regmask
+ // bit directly.
+ if (RR.Mask == LaneBitmask::getAll())
+ return !Preserved;
+ const TargetRegisterClass *RC = RegInfos[RR.Reg].RegClass;
+ if (RC != nullptr && (RR.Mask & RC->LaneMask) == RC->LaneMask)
+ return !Preserved;
+
+ // Otherwise, check all subregisters whose lane mask overlaps the given
+ // mask. For each such register, if it is preserved by the regmask, then
+ // clear the corresponding bits in the given mask. If at the end, all
+ // bits have been cleared, the register does not alias the regmask (i.e.
+ // is it preserved by it).
+ LaneBitmask M = RR.Mask;
+ for (MCSubRegIndexIterator SI(RR.Reg, &TRI); SI.isValid(); ++SI) {
+ LaneBitmask SM = TRI.getSubRegIndexLaneMask(SI.getSubRegIndex());
+ if ((SM & RR.Mask).none())
+ continue;
+ unsigned SR = SI.getSubReg();
+ if (!(MB[SR/32] & (1u << (SR%32))))
+ continue;
+ // The subregister SR is preserved.
+ M &= ~SM;
+ if (M.none())
+ return false;
+ }
+
+ return true;
+}
+
+bool PhysicalRegisterInfo::aliasMM(RegisterRef RM, RegisterRef RN) const {
+ assert(isRegMaskId(RM.Reg) && isRegMaskId(RN.Reg));
+ unsigned NumRegs = TRI.getNumRegs();
+ const uint32_t *BM = getRegMaskBits(RM.Reg);
+ const uint32_t *BN = getRegMaskBits(RN.Reg);
+
+ for (unsigned w = 0, nw = NumRegs/32; w != nw; ++w) {
+ // Intersect the negations of both words. Disregard reg=0,
+ // i.e. 0th bit in the 0th word.
+ uint32_t C = ~BM[w] & ~BN[w];
+ if (w == 0)
+ C &= ~1;
+ if (C)
+ return true;
+ }
+
+ // Check the remaining registers in the last word.
+ unsigned TailRegs = NumRegs % 32;
+ if (TailRegs == 0)
+ return false;
+ unsigned TW = NumRegs / 32;
+ uint32_t TailMask = (1u << TailRegs) - 1;
+ if (~BM[TW] & ~BN[TW] & TailMask)
+ return true;
+
+ return false;
+}
+
+RegisterRef PhysicalRegisterInfo::mapTo(RegisterRef RR, unsigned R) const {
+ if (RR.Reg == R)
+ return RR;
+ if (unsigned Idx = TRI.getSubRegIndex(R, RR.Reg))
+ return RegisterRef(R, TRI.composeSubRegIndexLaneMask(Idx, RR.Mask));
+ if (unsigned Idx = TRI.getSubRegIndex(RR.Reg, R)) {
+ const RegInfo &RI = RegInfos[R];
+ LaneBitmask RCM = RI.RegClass ? RI.RegClass->LaneMask
+ : LaneBitmask::getAll();
+ LaneBitmask M = TRI.reverseComposeSubRegIndexLaneMask(Idx, RR.Mask);
+ return RegisterRef(R, M & RCM);
+ }
+ llvm_unreachable("Invalid arguments: unrelated registers?");
+}
+
+bool RegisterAggr::hasAliasOf(RegisterRef RR) const {
+ if (PhysicalRegisterInfo::isRegMaskId(RR.Reg))
+ return Units.anyCommon(PRI.getMaskUnits(RR.Reg));
+
+ for (MCRegUnitMaskIterator U(RR.Reg, &PRI.getTRI()); U.isValid(); ++U) {
+ std::pair<uint32_t,LaneBitmask> P = *U;
+ if (P.second.none() || (P.second & RR.Mask).any())
+ if (Units.test(P.first))
+ return true;
+ }
+ return false;
+}
+
+bool RegisterAggr::hasCoverOf(RegisterRef RR) const {
+ if (PhysicalRegisterInfo::isRegMaskId(RR.Reg)) {
+ BitVector T(PRI.getMaskUnits(RR.Reg));
+ return T.reset(Units).none();
+ }
+
+ for (MCRegUnitMaskIterator U(RR.Reg, &PRI.getTRI()); U.isValid(); ++U) {
+ std::pair<uint32_t,LaneBitmask> P = *U;
+ if (P.second.none() || (P.second & RR.Mask).any())
+ if (!Units.test(P.first))
+ return false;
+ }
+ return true;
+}
+
+RegisterAggr &RegisterAggr::insert(RegisterRef RR) {
+ if (PhysicalRegisterInfo::isRegMaskId(RR.Reg)) {
+ Units |= PRI.getMaskUnits(RR.Reg);
+ return *this;
+ }
+
+ for (MCRegUnitMaskIterator U(RR.Reg, &PRI.getTRI()); U.isValid(); ++U) {
+ std::pair<uint32_t,LaneBitmask> P = *U;
+ if (P.second.none() || (P.second & RR.Mask).any())
+ Units.set(P.first);
+ }
+ return *this;
+}
+
+RegisterAggr &RegisterAggr::insert(const RegisterAggr &RG) {
+ Units |= RG.Units;
+ return *this;
+}
+
+RegisterAggr &RegisterAggr::intersect(RegisterRef RR) {
+ return intersect(RegisterAggr(PRI).insert(RR));
+}
+
+RegisterAggr &RegisterAggr::intersect(const RegisterAggr &RG) {
+ Units &= RG.Units;
+ return *this;
+}
+
+RegisterAggr &RegisterAggr::clear(RegisterRef RR) {
+ return clear(RegisterAggr(PRI).insert(RR));
+}
+
+RegisterAggr &RegisterAggr::clear(const RegisterAggr &RG) {
+ Units.reset(RG.Units);
+ return *this;
+}
+
+RegisterRef RegisterAggr::intersectWith(RegisterRef RR) const {
+ RegisterAggr T(PRI);
+ T.insert(RR).intersect(*this);
+ if (T.empty())
+ return RegisterRef();
+ RegisterRef NR = T.makeRegRef();
+ assert(NR);
+ return NR;
+}
+
+RegisterRef RegisterAggr::clearIn(RegisterRef RR) const {
+ return RegisterAggr(PRI).insert(RR).clear(*this).makeRegRef();
+}
+
+RegisterRef RegisterAggr::makeRegRef() const {
+ int U = Units.find_first();
+ if (U < 0)
+ return RegisterRef();
+
+ auto AliasedRegs = [this] (uint32_t Unit, BitVector &Regs) {
+ for (MCRegUnitRootIterator R(Unit, &PRI.getTRI()); R.isValid(); ++R)
+ for (MCSuperRegIterator S(*R, &PRI.getTRI(), true); S.isValid(); ++S)
+ Regs.set(*S);
+ };
+
+ // Find the set of all registers that are aliased to all the units
+ // in this aggregate.
+
+ // Get all the registers aliased to the first unit in the bit vector.
+ BitVector Regs(PRI.getTRI().getNumRegs());
+ AliasedRegs(U, Regs);
+ U = Units.find_next(U);
+
+ // For each other unit, intersect it with the set of all registers
+ // aliased that unit.
+ while (U >= 0) {
+ BitVector AR(PRI.getTRI().getNumRegs());
+ AliasedRegs(U, AR);
+ Regs &= AR;
+ U = Units.find_next(U);
+ }
+
+ // If there is at least one register remaining, pick the first one,
+ // and consolidate the masks of all of its units contained in this
+ // aggregate.
+
+ int F = Regs.find_first();
+ if (F <= 0)
+ return RegisterRef();
+
+ LaneBitmask M;
+ for (MCRegUnitMaskIterator I(F, &PRI.getTRI()); I.isValid(); ++I) {
+ std::pair<uint32_t,LaneBitmask> P = *I;
+ if (Units.test(P.first))
+ M |= P.second.none() ? LaneBitmask::getAll() : P.second;
+ }
+ return RegisterRef(F, M);
+}
+
+void RegisterAggr::print(raw_ostream &OS) const {
+ OS << '{';
+ for (int U = Units.find_first(); U >= 0; U = Units.find_next(U))
+ OS << ' ' << printRegUnit(U, &PRI.getTRI());
+ OS << " }";
+}
+
+RegisterAggr::rr_iterator::rr_iterator(const RegisterAggr &RG,
+ bool End)
+ : Owner(&RG) {
+ for (int U = RG.Units.find_first(); U >= 0; U = RG.Units.find_next(U)) {
+ RegisterRef R = RG.PRI.getRefForUnit(U);
+ Masks[R.Reg] |= R.Mask;
+ }
+ Pos = End ? Masks.end() : Masks.begin();
+ Index = End ? Masks.size() : 0;
+}
OpenPOWER on IntegriCloud