diff options
Diffstat (limited to 'llvm/lib/Analysis')
| -rw-r--r-- | llvm/lib/Analysis/ValueTracking.cpp | 50 | 
1 files changed, 46 insertions, 4 deletions
diff --git a/llvm/lib/Analysis/ValueTracking.cpp b/llvm/lib/Analysis/ValueTracking.cpp index e80ee65abde..f2740a6ceb4 100644 --- a/llvm/lib/Analysis/ValueTracking.cpp +++ b/llvm/lib/Analysis/ValueTracking.cpp @@ -201,9 +201,36 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,      ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1);      ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,                        Depth+1); -    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");  -    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");  -     +    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); +    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); + +    bool isKnownNegative = false; +    bool isKnownNonNegative = false; +    // If the multiplication is known not to overflow, compute the sign bit. +    if (Mask.isNegative() && cast<BinaryOperator>(I)->hasNoSignedWrap()) { +      Value *Op1 = I->getOperand(1), *Op2 = I->getOperand(0); +      if (Op1 == Op2) { +        // The product of a number with itself is non-negative. +        isKnownNonNegative = true; +      } else { +        bool isKnownNonNegative1 = KnownZero.isNegative(); +        bool isKnownNonNegative2 = KnownZero2.isNegative(); +        bool isKnownNegative1 = KnownOne.isNegative(); +        bool isKnownNegative2 = KnownOne2.isNegative(); +        // The product of two numbers with the same sign is non-negative. +        isKnownNonNegative = (isKnownNegative1 && isKnownNegative2) || +          (isKnownNonNegative1 && isKnownNonNegative2); +        // The product of a negative number and a non-negative number is either +        // negative or zero. +        isKnownNegative = (isKnownNegative1 && isKnownNonNegative2 && +                           isKnownNonZero(Op2, TD, Depth)) || +                          (isKnownNegative2 && isKnownNonNegative1 && +                           isKnownNonZero(Op1, TD, Depth)); +        assert(!(isKnownNegative && isKnownNonNegative) && +               "Sign bit both zero and one?"); +      } +    } +      // If low bits are zero in either operand, output low known-0 bits.      // Also compute a conserative estimate for high known-0 bits.      // More trickiness is possible, but this is sufficient for the @@ -220,6 +247,12 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,      KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |                  APInt::getHighBitsSet(BitWidth, LeadZ);      KnownZero &= Mask; + +    if (isKnownNonNegative) +      KnownZero.setBit(BitWidth - 1); +    else if (isKnownNegative) +      KnownOne.setBit(BitWidth - 1); +      return;    }    case Instruction::UDiv: { @@ -767,7 +800,7 @@ bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {    }    // The remaining tests are all recursive, so bail out if we hit the limit. -  if (Depth++ == MaxDepth) +  if (Depth++ >= MaxDepth)      return false;    unsigned BitWidth = getBitWidth(V->getType(), TD); @@ -851,6 +884,15 @@ bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {      if (YKnownNonNegative && isPowerOfTwo(X, TD, Depth))        return true;    } +  // X * Y. +  else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { +    BinaryOperator *BO = cast<BinaryOperator>(V); +    // If X and Y are non-zero then so is X * Y as long as the multiplication +    // does not overflow. +    if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && +        isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth)) +      return true; +  }    // (C ? X : Y) != 0 if X != 0 and Y != 0.    else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {      if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&  | 

