diff options
Diffstat (limited to 'llvm/lib/Analysis/ValueTracking.cpp')
-rw-r--r-- | llvm/lib/Analysis/ValueTracking.cpp | 561 |
1 files changed, 457 insertions, 104 deletions
diff --git a/llvm/lib/Analysis/ValueTracking.cpp b/llvm/lib/Analysis/ValueTracking.cpp index 6409b85b1a0..92db3772008 100644 --- a/llvm/lib/Analysis/ValueTracking.cpp +++ b/llvm/lib/Analysis/ValueTracking.cpp @@ -13,6 +13,7 @@ //===----------------------------------------------------------------------===// #include "llvm/Analysis/ValueTracking.h" +#include "llvm/Analysis/AssumptionTracker.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/MemoryBuiltins.h" @@ -20,6 +21,7 @@ #include "llvm/IR/ConstantRange.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" +#include "llvm/IR/Dominators.h" #include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalVariable.h" @@ -46,17 +48,154 @@ static unsigned getBitWidth(Type *Ty, const DataLayout *TD) { return TD ? TD->getPointerTypeSizeInBits(Ty) : 0; } +// Many of these functions have internal versions that take an assumption +// exclusion set. This is because of the potential for mutual recursion to +// cause computeKnownBits to repeatedly visit the same assume intrinsic. The +// classic case of this is assume(x = y), which will attempt to determine +// bits in x from bits in y, which will attempt to determine bits in y from +// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call +// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and +// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on. +typedef SmallPtrSet<const Value *, 8> ExclInvsSet; + +// Simplifying using an assume can only be done in a particular control-flow +// context (the context instruction provides that context). If an assume and +// the context instruction are not in the same block then the DT helps in +// figuring out if we can use it. +struct Query { + ExclInvsSet ExclInvs; + AssumptionTracker *AT; + const Instruction *CxtI; + const DominatorTree *DT; + + Query(AssumptionTracker *AT = nullptr, const Instruction *CxtI = nullptr, + const DominatorTree *DT = nullptr) + : AT(AT), CxtI(CxtI), DT(DT) {} + + Query(const Query &Q, const Value *NewExcl) + : ExclInvs(Q.ExclInvs), AT(Q.AT), CxtI(Q.CxtI), DT(Q.DT) { + ExclInvs.insert(NewExcl); + } +}; + +// Given the provided Value and, potentially, a context instruction, returned +// the preferred context instruction (if any). +static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { + // If we've been provided with a context instruction, then use that (provided + // it has been inserted). + if (CxtI && CxtI->getParent()) + return CxtI; + + // If the value is really an already-inserted instruction, then use that. + CxtI = dyn_cast<Instruction>(V); + if (CxtI && CxtI->getParent()) + return CxtI; + + return nullptr; +} + +static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, + const DataLayout *TD, unsigned Depth, + const Query &Q); + +void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, + const DataLayout *TD, unsigned Depth, + AssumptionTracker *AT, const Instruction *CxtI, + const DominatorTree *DT) { + ::computeKnownBits(V, KnownZero, KnownOne, TD, Depth, + Query(AT, safeCxtI(V, CxtI), DT)); +} + +static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, + const DataLayout *TD, unsigned Depth, + const Query &Q); + +void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, + const DataLayout *TD, unsigned Depth, + AssumptionTracker *AT, const Instruction *CxtI, + const DominatorTree *DT) { + ::ComputeSignBit(V, KnownZero, KnownOne, TD, Depth, + Query(AT, safeCxtI(V, CxtI), DT)); +} + +static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, + const Query &Q); + +bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, + AssumptionTracker *AT, + const Instruction *CxtI, + const DominatorTree *DT) { + return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, + Query(AT, safeCxtI(V, CxtI), DT)); +} + +static bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth, + const Query &Q); + +bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth, + AssumptionTracker *AT, const Instruction *CxtI, + const DominatorTree *DT) { + return ::isKnownNonZero(V, TD, Depth, Query(AT, safeCxtI(V, CxtI), DT)); +} + +static bool MaskedValueIsZero(Value *V, const APInt &Mask, + const DataLayout *TD, unsigned Depth, + const Query &Q); + +bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, + const DataLayout *TD, unsigned Depth, + AssumptionTracker *AT, const Instruction *CxtI, + const DominatorTree *DT) { + return ::MaskedValueIsZero(V, Mask, TD, Depth, + Query(AT, safeCxtI(V, CxtI), DT)); +} + +static unsigned ComputeNumSignBits(Value *V, const DataLayout *TD, + unsigned Depth, const Query &Q); + +unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD, + unsigned Depth, AssumptionTracker *AT, + const Instruction *CxtI, + const DominatorTree *DT) { + return ::ComputeNumSignBits(V, TD, Depth, Query(AT, safeCxtI(V, CxtI), DT)); +} + static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2, APInt &KnownOne2, - const DataLayout *TD, unsigned Depth) { + const DataLayout *TD, unsigned Depth, + const Query &Q) { + if (!Add) { + if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { + // We know that the top bits of C-X are clear if X contains less bits + // than C (i.e. no wrap-around can happen). For example, 20-X is + // positive if we can prove that X is >= 0 and < 16. + if (!CLHS->getValue().isNegative()) { + unsigned BitWidth = KnownZero.getBitWidth(); + unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); + // NLZ can't be BitWidth with no sign bit + APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); + computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1, Q); + + // If all of the MaskV bits are known to be zero, then we know the + // output top bits are zero, because we now know that the output is + // from [0-C]. + if ((KnownZero2 & MaskV) == MaskV) { + unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); + // Top bits known zero. + KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); + } + } + } + } + unsigned BitWidth = KnownZero.getBitWidth(); // If an initial sequence of bits in the result is not needed, the // corresponding bits in the operands are not needed. APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); - llvm::computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1); - llvm::computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1); + computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1, Q); + computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1, Q); // Carry in a 1 for a subtract, rather than a 0. APInt CarryIn(BitWidth, 0); @@ -104,10 +243,11 @@ static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2, APInt &KnownOne2, - const DataLayout *TD, unsigned Depth) { + const DataLayout *TD, unsigned Depth, + const Query &Q) { unsigned BitWidth = KnownZero.getBitWidth(); - computeKnownBits(Op1, KnownZero, KnownOne, TD, Depth+1); - computeKnownBits(Op0, KnownZero2, KnownOne2, TD, Depth+1); + computeKnownBits(Op1, KnownZero, KnownOne, TD, Depth+1, Q); + computeKnownBits(Op0, KnownZero2, KnownOne2, TD, Depth+1, Q); bool isKnownNegative = false; bool isKnownNonNegative = false; @@ -128,9 +268,9 @@ static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW, // negative or zero. if (!isKnownNonNegative) isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && - isKnownNonZero(Op0, TD, Depth)) || + isKnownNonZero(Op0, TD, Depth, Q)) || (isKnownNegativeOp0 && isKnownNonNegativeOp1 && - isKnownNonZero(Op1, TD, Depth)); + isKnownNonZero(Op1, TD, Depth, Q)); } } @@ -182,6 +322,198 @@ void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros); } +static bool isEphemeralValueOf(Instruction *I, const Value *E) { + SmallVector<const Value *, 16> WorkSet(1, I); + SmallPtrSet<const Value *, 32> Visited; + SmallPtrSet<const Value *, 16> EphValues; + + while (!WorkSet.empty()) { + const Value *V = WorkSet.pop_back_val(); + if (!Visited.insert(V)) + continue; + + // If all uses of this value are ephemeral, then so is this value. + bool FoundNEUse = false; + for (const User *I : V->users()) + if (!EphValues.count(I)) { + FoundNEUse = true; + break; + } + + if (!FoundNEUse) { + if (V == E) + return true; + + EphValues.insert(V); + if (const User *U = dyn_cast<User>(V)) + for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); + J != JE; ++J) { + if (isSafeToSpeculativelyExecute(*J)) + WorkSet.push_back(*J); + } + } + } + + return false; +} + +// Is this an intrinsic that cannot be speculated but also cannot trap? +static bool isAssumeLikeIntrinsic(const Instruction *I) { + if (const CallInst *CI = dyn_cast<CallInst>(I)) + if (Function *F = CI->getCalledFunction()) + switch (F->getIntrinsicID()) { + default: break; + // FIXME: This list is repeated from NoTTI::getIntrinsicCost. + case Intrinsic::assume: + case Intrinsic::dbg_declare: + case Intrinsic::dbg_value: + case Intrinsic::invariant_start: + case Intrinsic::invariant_end: + case Intrinsic::lifetime_start: + case Intrinsic::lifetime_end: + case Intrinsic::objectsize: + case Intrinsic::ptr_annotation: + case Intrinsic::var_annotation: + return true; + } + + return false; +} + +static bool isValidAssumeForContext(Value *V, const Query &Q, + const DataLayout *DL) { + Instruction *Inv = cast<Instruction>(V); + + // There are two restrictions on the use of an assume: + // 1. The assume must dominate the context (or the control flow must + // reach the assume whenever it reaches the context). + // 2. The context must not be in the assume's set of ephemeral values + // (otherwise we will use the assume to prove that the condition + // feeding the assume is trivially true, thus causing the removal of + // the assume). + + if (Q.DT) { + if (Q.DT->dominates(Inv, Q.CxtI)) { + return true; + } else if (Inv->getParent() == Q.CxtI->getParent()) { + // The context comes first, but they're both in the same block. Make sure + // there is nothing in between that might interrupt the control flow. + for (BasicBlock::const_iterator I = + std::next(BasicBlock::const_iterator(Q.CxtI)), + IE(Inv); I != IE; ++I) + if (!isSafeToSpeculativelyExecute(I, DL) && + !isAssumeLikeIntrinsic(I)) + return false; + + return !isEphemeralValueOf(Inv, Q.CxtI); + } + + return false; + } + + // When we don't have a DT, we do a limited search... + if (Inv->getParent() == Q.CxtI->getParent()->getSinglePredecessor()) { + return true; + } else if (Inv->getParent() == Q.CxtI->getParent()) { + // Search forward from the assume until we reach the context (or the end + // of the block); the common case is that the assume will come first. + for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)), + IE = Inv->getParent()->end(); I != IE; ++I) + if (I == Q.CxtI) + return true; + + // The context must come first... + for (BasicBlock::const_iterator I = + std::next(BasicBlock::const_iterator(Q.CxtI)), + IE(Inv); I != IE; ++I) + if (!isSafeToSpeculativelyExecute(I, DL) && + !isAssumeLikeIntrinsic(I)) + return false; + + return !isEphemeralValueOf(Inv, Q.CxtI); + } + + return false; +} + +bool llvm::isValidAssumeForContext(const Instruction *I, + const Instruction *CxtI, + const DataLayout *DL, + const DominatorTree *DT) { + return ::isValidAssumeForContext(const_cast<Instruction*>(I), + Query(nullptr, CxtI, DT), DL); +} + +template<typename LHS, typename RHS> +inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>, + CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>> +m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { + return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L)); +} + +template<typename LHS, typename RHS> +inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>, + BinaryOp_match<RHS, LHS, Instruction::And>> +m_c_And(const LHS &L, const RHS &R) { + return m_CombineOr(m_And(L, R), m_And(R, L)); +} + +static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero, + APInt &KnownOne, + const DataLayout *DL, + unsigned Depth, const Query &Q) { + // Use of assumptions is context-sensitive. If we don't have a context, we + // cannot use them! + if (!Q.AT || !Q.CxtI) + return; + + unsigned BitWidth = KnownZero.getBitWidth(); + + Function *F = const_cast<Function*>(Q.CxtI->getParent()->getParent()); + for (auto &CI : Q.AT->assumptions(F)) { + CallInst *I = CI; + if (Q.ExclInvs.count(I)) + continue; + + if (match(I, m_Intrinsic<Intrinsic::assume>(m_Specific(V))) && + isValidAssumeForContext(I, Q, DL)) { + assert(BitWidth == 1 && "assume operand is not i1?"); + KnownZero.clearAllBits(); + KnownOne.setAllBits(); + return; + } + + Value *A, *B; + auto m_V = m_CombineOr(m_Specific(V), + m_CombineOr(m_PtrToInt(m_Specific(V)), + m_BitCast(m_Specific(V)))); + + CmpInst::Predicate Pred; + // assume(v = a) + if (match(I, m_Intrinsic<Intrinsic::assume>( + m_c_ICmp(Pred, m_V, m_Value(A)))) && + Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) { + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); + KnownZero |= RHSKnownZero; + KnownOne |= RHSKnownOne; + // assume(v & b = a) + } else if (match(I, m_Intrinsic<Intrinsic::assume>( + m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A)))) && + Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) { + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); + APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); + computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I)); + + // For those bits in the mask that are known to be one, we can propagate + // known bits from the RHS to V. + KnownZero |= RHSKnownZero & MaskKnownOne; + KnownOne |= RHSKnownOne & MaskKnownOne; + } + } +} + /// Determine which bits of V are known to be either zero or one and return /// them in the KnownZero/KnownOne bit sets. /// @@ -197,8 +529,9 @@ void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, /// where V is a vector, known zero, and known one values are the /// same width as the vector element, and the bit is set only if it is true /// for all of the elements in the vector. -void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, - const DataLayout *TD, unsigned Depth) { +void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, + const DataLayout *TD, unsigned Depth, + const Query &Q) { assert(V && "No Value?"); assert(Depth <= MaxDepth && "Limit Search Depth"); unsigned BitWidth = KnownZero.getBitWidth(); @@ -274,7 +607,7 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, if (GA->mayBeOverridden()) { KnownZero.clearAllBits(); KnownOne.clearAllBits(); } else { - computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1); + computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1, Q); } return; } @@ -291,6 +624,10 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, if (Align) KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); + + // Don't give up yet... there might be an assumption that provides more + // information... + computeKnownBitsFromAssume(V, KnownZero, KnownOne, TD, Depth, Q); return; } @@ -300,6 +637,9 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, if (Depth == MaxDepth) return; // Limit search depth. + // Check whether a nearby assume intrinsic can determine some known bits. + computeKnownBitsFromAssume(V, KnownZero, KnownOne, TD, Depth, Q); + Operator *I = dyn_cast<Operator>(V); if (!I) return; @@ -312,8 +652,8 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, break; case Instruction::And: { // If either the LHS or the RHS are Zero, the result is zero. - computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1); - computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); + computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q); + computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q); // Output known-1 bits are only known if set in both the LHS & RHS. KnownOne &= KnownOne2; @@ -322,8 +662,8 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, break; } case Instruction::Or: { - computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1); - computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); + computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q); + computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q); // Output known-0 bits are only known if clear in both the LHS & RHS. KnownZero &= KnownZero2; @@ -332,8 +672,8 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, break; } case Instruction::Xor: { - computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1); - computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); + computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q); + computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q); // Output known-0 bits are known if clear or set in both the LHS & RHS. APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); @@ -345,19 +685,20 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, case Instruction::Mul: { bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, - KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth); + KnownZero, KnownOne, KnownZero2, KnownOne2, TD, + Depth, Q); break; } case Instruction::UDiv: { // For the purposes of computing leading zeros we can conservatively // treat a udiv as a logical right shift by the power of 2 known to // be less than the denominator. - computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); + computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q); unsigned LeadZ = KnownZero2.countLeadingOnes(); KnownOne2.clearAllBits(); KnownZero2.clearAllBits(); - computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1); + computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q); unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); if (RHSUnknownLeadingOnes != BitWidth) LeadZ = std::min(BitWidth, @@ -367,9 +708,8 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, break; } case Instruction::Select: - computeKnownBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1); - computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, - Depth+1); + computeKnownBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1, Q); + computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q); // Only known if known in both the LHS and RHS. KnownOne &= KnownOne2; @@ -405,7 +745,7 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, assert(SrcBitWidth && "SrcBitWidth can't be zero"); KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); - computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); + computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q); KnownZero = KnownZero.zextOrTrunc(BitWidth); KnownOne = KnownOne.zextOrTrunc(BitWidth); // Any top bits are known to be zero. @@ -419,7 +759,7 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, // TODO: For now, not handling conversions like: // (bitcast i64 %x to <2 x i32>) !I->getType()->isVectorTy()) { - computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); + computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q); break; } break; @@ -430,7 +770,7 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, KnownZero = KnownZero.trunc(SrcBitWidth); KnownOne = KnownOne.trunc(SrcBitWidth); - computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); + computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q); KnownZero = KnownZero.zext(BitWidth); KnownOne = KnownOne.zext(BitWidth); @@ -446,7 +786,7 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); - computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); + computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q); KnownZero <<= ShiftAmt; KnownOne <<= ShiftAmt; KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 @@ -460,7 +800,7 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); // Unsigned shift right. - computeKnownBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1); + computeKnownBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1, Q); KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); // high bits known zero. @@ -475,7 +815,7 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); // Signed shift right. - computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); + computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q); KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); @@ -491,14 +831,14 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, KnownZero, KnownOne, KnownZero2, KnownOne2, TD, - Depth); + Depth, Q); break; } case Instruction::Add: { bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, KnownZero, KnownOne, KnownZero2, KnownOne2, TD, - Depth); + Depth, Q); break; } case Instruction::SRem: @@ -506,7 +846,8 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, APInt RA = Rem->getValue().abs(); if (RA.isPowerOf2()) { APInt LowBits = RA - 1; - computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); + computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, + Depth+1, Q); // The low bits of the first operand are unchanged by the srem. KnownZero = KnownZero2 & LowBits; @@ -531,7 +872,7 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, if (KnownZero.isNonNegative()) { APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD, - Depth+1); + Depth+1, Q); // If it's known zero, our sign bit is also zero. if (LHSKnownZero.isNegative()) KnownZero.setBit(BitWidth - 1); @@ -544,7 +885,7 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, if (RA.isPowerOf2()) { APInt LowBits = (RA - 1); computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, - Depth+1); + Depth+1, Q); KnownZero |= ~LowBits; KnownOne &= LowBits; break; @@ -553,8 +894,8 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, // Since the result is less than or equal to either operand, any leading // zero bits in either operand must also exist in the result. - computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); - computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1); + computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q); + computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q); unsigned Leaders = std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes()); @@ -578,7 +919,7 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, // to determine if we can prove known low zero bits. APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD, - Depth+1); + Depth+1, Q); unsigned TrailZ = LocalKnownZero.countTrailingOnes(); gep_type_iterator GTI = gep_type_begin(I); @@ -614,7 +955,7 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1; LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); - computeKnownBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1); + computeKnownBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1, Q); TrailZ = std::min(TrailZ, unsigned(countTrailingZeros(TypeSize) + LocalKnownZero.countTrailingOnes())); @@ -656,11 +997,11 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, break; // Ok, we have a PHI of the form L op= R. Check for low // zero bits. - computeKnownBits(R, KnownZero2, KnownOne2, TD, Depth+1); + computeKnownBits(R, KnownZero2, KnownOne2, TD, Depth+1, Q); // We need to take the minimum number of known bits APInt KnownZero3(KnownZero), KnownOne3(KnownOne); - computeKnownBits(L, KnownZero3, KnownOne3, TD, Depth+1); + computeKnownBits(L, KnownZero3, KnownOne3, TD, Depth+1, Q); KnownZero = APInt::getLowBitsSet(BitWidth, std::min(KnownZero2.countTrailingOnes(), @@ -692,7 +1033,7 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, // Recurse, but cap the recursion to one level, because we don't // want to waste time spinning around in loops. computeKnownBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD, - MaxDepth-1); + MaxDepth-1, Q); KnownZero &= KnownZero2; KnownOne &= KnownOne2; // If all bits have been ruled out, there's no need to check @@ -744,19 +1085,19 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, case Intrinsic::sadd_with_overflow: computeKnownBitsAddSub(true, II->getArgOperand(0), II->getArgOperand(1), false, KnownZero, - KnownOne, KnownZero2, KnownOne2, TD, Depth); + KnownOne, KnownZero2, KnownOne2, TD, Depth, Q); break; case Intrinsic::usub_with_overflow: case Intrinsic::ssub_with_overflow: computeKnownBitsAddSub(false, II->getArgOperand(0), II->getArgOperand(1), false, KnownZero, - KnownOne, KnownZero2, KnownOne2, TD, Depth); + KnownOne, KnownZero2, KnownOne2, TD, Depth, Q); break; case Intrinsic::umul_with_overflow: case Intrinsic::smul_with_overflow: computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, KnownZero, KnownOne, - KnownZero2, KnownOne2, TD, Depth); + KnownZero2, KnownOne2, TD, Depth, Q); break; } } @@ -768,8 +1109,9 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, /// ComputeSignBit - Determine whether the sign bit is known to be zero or /// one. Convenience wrapper around computeKnownBits. -void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, - const DataLayout *TD, unsigned Depth) { +void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, + const DataLayout *TD, unsigned Depth, + const Query &Q) { unsigned BitWidth = getBitWidth(V->getType(), TD); if (!BitWidth) { KnownZero = false; @@ -778,7 +1120,7 @@ void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, } APInt ZeroBits(BitWidth, 0); APInt OneBits(BitWidth, 0); - computeKnownBits(V, ZeroBits, OneBits, TD, Depth); + computeKnownBits(V, ZeroBits, OneBits, TD, Depth, Q); KnownOne = OneBits[BitWidth - 1]; KnownZero = ZeroBits[BitWidth - 1]; } @@ -787,7 +1129,8 @@ void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, /// bit set when defined. For vectors return true if every element is known to /// be a power of two when defined. Supports values with integer or pointer /// types and vectors of integers. -bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) { +bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, + const Query &Q) { if (Constant *C = dyn_cast<Constant>(V)) { if (C->isNullValue()) return OrZero; @@ -814,19 +1157,20 @@ bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) { // A shift of a power of two is a power of two or zero. if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || match(V, m_Shr(m_Value(X), m_Value())))) - return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth); + return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth, Q); if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) - return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth); + return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); if (SelectInst *SI = dyn_cast<SelectInst>(V)) - return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth) && - isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth); + return + isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && + isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { // A power of two and'd with anything is a power of two or zero. - if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth) || - isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth)) + if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth, Q) || + isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth, Q)) return true; // X & (-X) is always a power of two or zero. if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) @@ -841,19 +1185,19 @@ bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) { if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { if (match(X, m_And(m_Specific(Y), m_Value())) || match(X, m_And(m_Value(), m_Specific(Y)))) - if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth)) + if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) return true; if (match(Y, m_And(m_Specific(X), m_Value())) || match(Y, m_And(m_Value(), m_Specific(X)))) - if (isKnownToBeAPowerOfTwo(X, OrZero, Depth)) + if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) return true; unsigned BitWidth = V->getType()->getScalarSizeInBits(); APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); - computeKnownBits(X, LHSZeroBits, LHSOneBits, nullptr, Depth); + computeKnownBits(X, LHSZeroBits, LHSOneBits, nullptr, Depth, Q); APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); - computeKnownBits(Y, RHSZeroBits, RHSOneBits, nullptr, Depth); + computeKnownBits(Y, RHSZeroBits, RHSOneBits, nullptr, Depth, Q); // If i8 V is a power of two or zero: // ZeroBits: 1 1 1 0 1 1 1 1 // ~ZeroBits: 0 0 0 1 0 0 0 0 @@ -870,7 +1214,8 @@ bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) { // copying a sign bit (sdiv int_min, 2). if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { - return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, Depth); + return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, + Depth, Q); } return false; @@ -883,7 +1228,7 @@ bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) { /// /// Currently this routine does not support vector GEPs. static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL, - unsigned Depth) { + unsigned Depth, const Query &Q) { if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) return false; @@ -892,7 +1237,7 @@ static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL, // If the base pointer is non-null, we cannot walk to a null address with an // inbounds GEP in address space zero. - if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth)) + if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q)) return true; // Past this, if we don't have DataLayout, we can't do much. @@ -935,7 +1280,7 @@ static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL, if (Depth++ >= MaxDepth) continue; - if (isKnownNonZero(GTI.getOperand(), DL, Depth)) + if (isKnownNonZero(GTI.getOperand(), DL, Depth, Q)) return true; } @@ -946,7 +1291,8 @@ static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL, /// when defined. For vectors return true if every element is known to be /// non-zero when defined. Supports values with integer or pointer type and /// vectors of integers. -bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) { +bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth, + const Query &Q) { if (Constant *C = dyn_cast<Constant>(V)) { if (C->isNullValue()) return false; @@ -966,7 +1312,7 @@ bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) { if (isKnownNonNull(V)) return true; if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) - if (isGEPKnownNonNull(GEP, TD, Depth)) + if (isGEPKnownNonNull(GEP, TD, Depth, Q)) return true; } @@ -975,11 +1321,12 @@ bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) { // X | Y != 0 if X != 0 or Y != 0. Value *X = nullptr, *Y = nullptr; if (match(V, m_Or(m_Value(X), m_Value(Y)))) - return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth); + return isKnownNonZero(X, TD, Depth, Q) || + isKnownNonZero(Y, TD, Depth, Q); // ext X != 0 if X != 0. if (isa<SExtInst>(V) || isa<ZExtInst>(V)) - return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth); + return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth, Q); // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined // if the lowest bit is shifted off the end. @@ -987,11 +1334,11 @@ bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) { // shl nuw can't remove any non-zero bits. OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); if (BO->hasNoUnsignedWrap()) - return isKnownNonZero(X, TD, Depth); + return isKnownNonZero(X, TD, Depth, Q); APInt KnownZero(BitWidth, 0); APInt KnownOne(BitWidth, 0); - computeKnownBits(X, KnownZero, KnownOne, TD, Depth); + computeKnownBits(X, KnownZero, KnownOne, TD, Depth, Q); if (KnownOne[0]) return true; } @@ -1001,28 +1348,29 @@ bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) { // shr exact can only shift out zero bits. PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); if (BO->isExact()) - return isKnownNonZero(X, TD, Depth); + return isKnownNonZero(X, TD, Depth, Q); bool XKnownNonNegative, XKnownNegative; - ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); + ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth, Q); if (XKnownNegative) return true; } // div exact can only produce a zero if the dividend is zero. else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { - return isKnownNonZero(X, TD, Depth); + return isKnownNonZero(X, TD, Depth, Q); } // X + Y. else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { bool XKnownNonNegative, XKnownNegative; bool YKnownNonNegative, YKnownNegative; - ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); - ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth); + ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth, Q); + ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth, Q); // If X and Y are both non-negative (as signed values) then their sum is not // zero unless both X and Y are zero. if (XKnownNonNegative && YKnownNonNegative) - if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth)) + if (isKnownNonZero(X, TD, Depth, Q) || + isKnownNonZero(Y, TD, Depth, Q)) return true; // If X and Y are both negative (as signed values) then their sum is not @@ -1033,20 +1381,22 @@ bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) { APInt Mask = APInt::getSignedMaxValue(BitWidth); // The sign bit of X is set. If some other bit is set then X is not equal // to INT_MIN. - computeKnownBits(X, KnownZero, KnownOne, TD, Depth); + computeKnownBits(X, KnownZero, KnownOne, TD, Depth, Q); if ((KnownOne & Mask) != 0) return true; // The sign bit of Y is set. If some other bit is set then Y is not equal // to INT_MIN. - computeKnownBits(Y, KnownZero, KnownOne, TD, Depth); + computeKnownBits(Y, KnownZero, KnownOne, TD, Depth, Q); if ((KnownOne & Mask) != 0) return true; } // The sum of a non-negative number and a power of two is not zero. - if (XKnownNonNegative && isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth)) + if (XKnownNonNegative && + isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth, Q)) return true; - if (YKnownNonNegative && isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth)) + if (YKnownNonNegative && + isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth, Q)) return true; } // X * Y. @@ -1055,20 +1405,21 @@ bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) { // If X and Y are non-zero then so is X * Y as long as the multiplication // does not overflow. if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && - isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth)) + isKnownNonZero(X, TD, Depth, Q) && + isKnownNonZero(Y, TD, Depth, Q)) return true; } // (C ? X : Y) != 0 if X != 0 and Y != 0. else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { - if (isKnownNonZero(SI->getTrueValue(), TD, Depth) && - isKnownNonZero(SI->getFalseValue(), TD, Depth)) + if (isKnownNonZero(SI->getTrueValue(), TD, Depth, Q) && + isKnownNonZero(SI->getFalseValue(), TD, Depth, Q)) return true; } if (!BitWidth) return false; APInt KnownZero(BitWidth, 0); APInt KnownOne(BitWidth, 0); - computeKnownBits(V, KnownZero, KnownOne, TD, Depth); + computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q); return KnownOne != 0; } @@ -1081,10 +1432,11 @@ bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) { /// where V is a vector, the mask, known zero, and known one values are the /// same width as the vector element, and the bit is set only if it is true /// for all of the elements in the vector. -bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, - const DataLayout *TD, unsigned Depth) { +bool MaskedValueIsZero(Value *V, const APInt &Mask, + const DataLayout *TD, unsigned Depth, + const Query &Q) { APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); - computeKnownBits(V, KnownZero, KnownOne, TD, Depth); + computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q); return (KnownZero & Mask) == Mask; } @@ -1098,8 +1450,8 @@ bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, /// /// 'Op' must have a scalar integer type. /// -unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD, - unsigned Depth) { +unsigned ComputeNumSignBits(Value *V, const DataLayout *TD, + unsigned Depth, const Query &Q) { assert((TD || V->getType()->isIntOrIntVectorTy()) && "ComputeNumSignBits requires a DataLayout object to operate " "on non-integer values!"); @@ -1120,10 +1472,10 @@ unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD, default: break; case Instruction::SExt: Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); - return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp; + return ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q) + Tmp; case Instruction::AShr: { - Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); + Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q); // ashr X, C -> adds C sign bits. Vectors too. const APInt *ShAmt; if (match(U->getOperand(1), m_APInt(ShAmt))) { @@ -1136,7 +1488,7 @@ unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD, const APInt *ShAmt; if (match(U->getOperand(1), m_APInt(ShAmt))) { // shl destroys sign bits. - Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); + Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q); Tmp2 = ShAmt->getZExtValue(); if (Tmp2 >= TyBits || // Bad shift. Tmp2 >= Tmp) break; // Shifted all sign bits out. @@ -1148,9 +1500,9 @@ unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD, case Instruction::Or: case Instruction::Xor: // NOT is handled here. // Logical binary ops preserve the number of sign bits at the worst. - Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); + Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q); if (Tmp != 1) { - Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); + Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q); FirstAnswer = std::min(Tmp, Tmp2); // We computed what we know about the sign bits as our first // answer. Now proceed to the generic code that uses @@ -1159,22 +1511,22 @@ unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD, break; case Instruction::Select: - Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); + Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q); if (Tmp == 1) return 1; // Early out. - Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1); + Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1, Q); return std::min(Tmp, Tmp2); case Instruction::Add: // Add can have at most one carry bit. Thus we know that the output // is, at worst, one more bit than the inputs. - Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); + Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q); if (Tmp == 1) return 1; // Early out. // Special case decrementing a value (ADD X, -1): if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1))) if (CRHS->isAllOnesValue()) { APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); - computeKnownBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1); + computeKnownBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q); // If the input is known to be 0 or 1, the output is 0/-1, which is all // sign bits set. @@ -1187,19 +1539,19 @@ unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD, return Tmp; } - Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); + Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q); if (Tmp2 == 1) return 1; return std::min(Tmp, Tmp2)-1; case Instruction::Sub: - Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); + Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q); if (Tmp2 == 1) return 1; // Handle NEG. if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0))) if (CLHS->isNullValue()) { APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); - computeKnownBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1); + computeKnownBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q); // If the input is known to be 0 or 1, the output is 0/-1, which is all // sign bits set. if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) @@ -1215,7 +1567,7 @@ unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD, // Sub can have at most one carry bit. Thus we know that the output // is, at worst, one more bit than the inputs. - Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); + Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q); if (Tmp == 1) return 1; // Early out. return std::min(Tmp, Tmp2)-1; @@ -1226,11 +1578,12 @@ unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD, // Take the minimum of all incoming values. This can't infinitely loop // because of our depth threshold. - Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1); + Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1, Q); for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { if (Tmp == 1) return Tmp; Tmp = std::min(Tmp, - ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1)); + ComputeNumSignBits(PN->getIncomingValue(i), TD, + Depth+1, Q)); } return Tmp; } @@ -1245,7 +1598,7 @@ unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD, // use this information. APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); APInt Mask; - computeKnownBits(V, KnownZero, KnownOne, TD, Depth); + computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q); if (KnownZero.isNegative()) { // sign bit is 0 Mask = KnownZero; @@ -1881,7 +2234,7 @@ llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) { } else { // See if InstructionSimplify knows any relevant tricks. if (Instruction *I = dyn_cast<Instruction>(V)) - // TODO: Acquire a DominatorTree and use it. + // TODO: Acquire a DominatorTree and AssumptionTracker and use them. if (Value *Simplified = SimplifyInstruction(I, TD, nullptr)) { V = Simplified; continue; |