diff options
Diffstat (limited to 'llvm/lib/Analysis/ValueTracking.cpp')
-rw-r--r-- | llvm/lib/Analysis/ValueTracking.cpp | 210 |
1 files changed, 2 insertions, 208 deletions
diff --git a/llvm/lib/Analysis/ValueTracking.cpp b/llvm/lib/Analysis/ValueTracking.cpp index a6211ece22e..5c26bc8ceeb 100644 --- a/llvm/lib/Analysis/ValueTracking.cpp +++ b/llvm/lib/Analysis/ValueTracking.cpp @@ -45,25 +45,6 @@ using namespace llvm::PatternMatch; const unsigned MaxDepth = 6; -/// Enable an experimental feature to leverage information about dominating -/// conditions to compute known bits. The individual options below control how -/// hard we search. The defaults are chosen to be fairly aggressive. If you -/// run into compile time problems when testing, scale them back and report -/// your findings. -static cl::opt<bool> EnableDomConditions("value-tracking-dom-conditions", - cl::Hidden, cl::init(false)); - -// This is expensive, so we only do it for the top level query value. -// (TODO: evaluate cost vs profit, consider higher thresholds) -static cl::opt<unsigned> DomConditionsMaxDepth("dom-conditions-max-depth", - cl::Hidden, cl::init(1)); - -/// How many dominating blocks should be scanned looking for dominating -/// conditions? -static cl::opt<unsigned> DomConditionsMaxDomBlocks("dom-conditions-dom-blocks", - cl::Hidden, - cl::init(20)); - // Controls the number of uses of the value searched for possible // dominating comparisons. static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", @@ -546,187 +527,6 @@ m_c_Xor(const LHS &L, const RHS &R) { return m_CombineOr(m_Xor(L, R), m_Xor(R, L)); } -/// Compute known bits in 'V' under the assumption that the condition 'Cmp' is -/// true (at the context instruction.) This is mostly a utility function for -/// the prototype dominating conditions reasoning below. -static void computeKnownBitsFromTrueCondition(Value *V, ICmpInst *Cmp, - APInt &KnownZero, - APInt &KnownOne, - unsigned Depth, const Query &Q) { - Value *LHS = Cmp->getOperand(0); - Value *RHS = Cmp->getOperand(1); - // TODO: We could potentially be more aggressive here. This would be worth - // evaluating. If we can, explore commoning this code with the assume - // handling logic. - if (LHS != V && RHS != V) - return; - - const unsigned BitWidth = KnownZero.getBitWidth(); - - switch (Cmp->getPredicate()) { - default: - // We know nothing from this condition - break; - // TODO: implement unsigned bound from below (known one bits) - // TODO: common condition check implementations with assumes - // TODO: implement other patterns from assume (e.g. V & B == A) - case ICmpInst::ICMP_SGT: - if (LHS == V) { - APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); - computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q); - if (KnownOneTemp.isAllOnesValue() || KnownZeroTemp.isNegative()) { - // We know that the sign bit is zero. - KnownZero |= APInt::getSignBit(BitWidth); - } - } - break; - case ICmpInst::ICMP_EQ: - { - APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); - if (LHS == V) - computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q); - else if (RHS == V) - computeKnownBits(LHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q); - else - llvm_unreachable("missing use?"); - KnownZero |= KnownZeroTemp; - KnownOne |= KnownOneTemp; - } - break; - case ICmpInst::ICMP_ULE: - if (LHS == V) { - APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); - computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q); - // The known zero bits carry over - unsigned SignBits = KnownZeroTemp.countLeadingOnes(); - KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits); - } - break; - case ICmpInst::ICMP_ULT: - if (LHS == V) { - APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); - computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q); - // Whatever high bits in rhs are zero are known to be zero (if rhs is a - // power of 2, then one more). - unsigned SignBits = KnownZeroTemp.countLeadingOnes(); - if (isKnownToBeAPowerOfTwo(RHS, false, Depth + 1, Query(Q, Cmp))) - SignBits++; - KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits); - } - break; - }; -} - -/// Compute known bits in 'V' from conditions which are known to be true along -/// all paths leading to the context instruction. In particular, look for -/// cases where one branch of an interesting condition dominates the context -/// instruction. This does not do general dataflow. -/// NOTE: This code is EXPERIMENTAL and currently off by default. -static void computeKnownBitsFromDominatingCondition(Value *V, APInt &KnownZero, - APInt &KnownOne, - unsigned Depth, - const Query &Q) { - // Need both the dominator tree and the query location to do anything useful - if (!Q.DT || !Q.CxtI) - return; - Instruction *Cxt = const_cast<Instruction *>(Q.CxtI); - // The context instruction might be in a statically unreachable block. If - // so, asking dominator queries may yield suprising results. (e.g. the block - // may not have a dom tree node) - if (!Q.DT->isReachableFromEntry(Cxt->getParent())) - return; - - // Avoid useless work - if (auto VI = dyn_cast<Instruction>(V)) - if (VI->getParent() == Cxt->getParent()) - return; - - // Note: We currently implement two options. It's not clear which of these - // will survive long term, we need data for that. - // Option 1 - Try walking the dominator tree looking for conditions which - // might apply. This works well for local conditions (loop guards, etc..), - // but not as well for things far from the context instruction (presuming a - // low max blocks explored). If we can set an high enough limit, this would - // be all we need. - // Option 2 - We restrict out search to those conditions which are uses of - // the value we're interested in. This is independent of dom structure, - // but is slightly less powerful without looking through lots of use chains. - // It does handle conditions far from the context instruction (e.g. early - // function exits on entry) really well though. - - // Option 1 - Search the dom tree - unsigned NumBlocksExplored = 0; - BasicBlock *Current = Cxt->getParent(); - while (true) { - // Stop searching if we've gone too far up the chain - if (NumBlocksExplored >= DomConditionsMaxDomBlocks) - break; - NumBlocksExplored++; - - if (!Q.DT->getNode(Current)->getIDom()) - break; - Current = Q.DT->getNode(Current)->getIDom()->getBlock(); - if (!Current) - // found function entry - break; - - BranchInst *BI = dyn_cast<BranchInst>(Current->getTerminator()); - if (!BI || BI->isUnconditional()) - continue; - ICmpInst *Cmp = dyn_cast<ICmpInst>(BI->getCondition()); - if (!Cmp) - continue; - - // We're looking for conditions that are guaranteed to hold at the context - // instruction. Finding a condition where one path dominates the context - // isn't enough because both the true and false cases could merge before - // the context instruction we're actually interested in. Instead, we need - // to ensure that the taken *edge* dominates the context instruction. We - // know that the edge must be reachable since we started from a reachable - // block. - BasicBlock *BB0 = BI->getSuccessor(0); - BasicBlockEdge Edge(BI->getParent(), BB0); - if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent())) - continue; - - computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, Depth, Q); - } - - // Option 2 - Search the other uses of V - unsigned NumUsesExplored = 0; - for (auto U : V->users()) { - // Avoid massive lists - if (NumUsesExplored >= DomConditionsMaxUses) - break; - NumUsesExplored++; - // Consider only compare instructions uniquely controlling a branch - ICmpInst *Cmp = dyn_cast<ICmpInst>(U); - if (!Cmp) - continue; - - if (DomConditionsSingleCmpUse && !Cmp->hasOneUse()) - continue; - - for (auto *CmpU : Cmp->users()) { - BranchInst *BI = dyn_cast<BranchInst>(CmpU); - if (!BI || BI->isUnconditional()) - continue; - // We're looking for conditions that are guaranteed to hold at the - // context instruction. Finding a condition where one path dominates - // the context isn't enough because both the true and false cases could - // merge before the context instruction we're actually interested in. - // Instead, we need to ensure that the taken *edge* dominates the context - // instruction. - BasicBlock *BB0 = BI->getSuccessor(0); - BasicBlockEdge Edge(BI->getParent(), BB0); - if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent())) - continue; - - computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, Depth, Q); - } - } -} - static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero, APInt &KnownOne, unsigned Depth, const Query &Q) { @@ -1657,18 +1457,12 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); } - // computeKnownBitsFromAssume and computeKnownBitsFromDominatingCondition - // strictly refines KnownZero and KnownOne. Therefore, we run them after - // computeKnownBitsFromOperator. + // computeKnownBitsFromAssume strictly refines KnownZero and + // KnownOne. Therefore, we run them after computeKnownBitsFromOperator. // Check whether a nearby assume intrinsic can determine some known bits. computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q); - // Check whether there's a dominating condition which implies something about - // this value at the given context. - if (EnableDomConditions && Depth <= DomConditionsMaxDepth) - computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, Depth, Q); - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); } |