diff options
Diffstat (limited to 'llvm/lib/Analysis/IPA/InlineCost.cpp')
| -rw-r--r-- | llvm/lib/Analysis/IPA/InlineCost.cpp | 1237 | 
1 files changed, 1237 insertions, 0 deletions
| diff --git a/llvm/lib/Analysis/IPA/InlineCost.cpp b/llvm/lib/Analysis/IPA/InlineCost.cpp new file mode 100644 index 00000000000..cd211c408d6 --- /dev/null +++ b/llvm/lib/Analysis/IPA/InlineCost.cpp @@ -0,0 +1,1237 @@ +//===- InlineCost.cpp - Cost analysis for inliner -------------------------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements inline cost analysis. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "inline-cost" +#include "llvm/Analysis/InlineCost.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Operator.h" +#include "llvm/InstVisitor.h" +#include "llvm/Support/CallSite.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/GetElementPtrTypeIterator.h" +#include "llvm/Support/raw_ostream.h" + +using namespace llvm; + +STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed"); + +namespace { + +class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> { +  typedef InstVisitor<CallAnalyzer, bool> Base; +  friend class InstVisitor<CallAnalyzer, bool>; + +  // DataLayout if available, or null. +  const DataLayout *const TD; + +  /// The TargetTransformInfo available for this compilation. +  const TargetTransformInfo &TTI; + +  // The called function. +  Function &F; + +  int Threshold; +  int Cost; + +  bool IsCallerRecursive; +  bool IsRecursiveCall; +  bool ExposesReturnsTwice; +  bool HasDynamicAlloca; +  bool ContainsNoDuplicateCall; + +  /// Number of bytes allocated statically by the callee. +  uint64_t AllocatedSize; +  unsigned NumInstructions, NumVectorInstructions; +  int FiftyPercentVectorBonus, TenPercentVectorBonus; +  int VectorBonus; + +  // While we walk the potentially-inlined instructions, we build up and +  // maintain a mapping of simplified values specific to this callsite. The +  // idea is to propagate any special information we have about arguments to +  // this call through the inlinable section of the function, and account for +  // likely simplifications post-inlining. The most important aspect we track +  // is CFG altering simplifications -- when we prove a basic block dead, that +  // can cause dramatic shifts in the cost of inlining a function. +  DenseMap<Value *, Constant *> SimplifiedValues; + +  // Keep track of the values which map back (through function arguments) to +  // allocas on the caller stack which could be simplified through SROA. +  DenseMap<Value *, Value *> SROAArgValues; + +  // The mapping of caller Alloca values to their accumulated cost savings. If +  // we have to disable SROA for one of the allocas, this tells us how much +  // cost must be added. +  DenseMap<Value *, int> SROAArgCosts; + +  // Keep track of values which map to a pointer base and constant offset. +  DenseMap<Value *, std::pair<Value *, APInt> > ConstantOffsetPtrs; + +  // Custom simplification helper routines. +  bool isAllocaDerivedArg(Value *V); +  bool lookupSROAArgAndCost(Value *V, Value *&Arg, +                            DenseMap<Value *, int>::iterator &CostIt); +  void disableSROA(DenseMap<Value *, int>::iterator CostIt); +  void disableSROA(Value *V); +  void accumulateSROACost(DenseMap<Value *, int>::iterator CostIt, +                          int InstructionCost); +  bool handleSROACandidate(bool IsSROAValid, +                           DenseMap<Value *, int>::iterator CostIt, +                           int InstructionCost); +  bool isGEPOffsetConstant(GetElementPtrInst &GEP); +  bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset); +  bool simplifyCallSite(Function *F, CallSite CS); +  ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V); + +  // Custom analysis routines. +  bool analyzeBlock(BasicBlock *BB); + +  // Disable several entry points to the visitor so we don't accidentally use +  // them by declaring but not defining them here. +  void visit(Module *);     void visit(Module &); +  void visit(Function *);   void visit(Function &); +  void visit(BasicBlock *); void visit(BasicBlock &); + +  // Provide base case for our instruction visit. +  bool visitInstruction(Instruction &I); + +  // Our visit overrides. +  bool visitAlloca(AllocaInst &I); +  bool visitPHI(PHINode &I); +  bool visitGetElementPtr(GetElementPtrInst &I); +  bool visitBitCast(BitCastInst &I); +  bool visitPtrToInt(PtrToIntInst &I); +  bool visitIntToPtr(IntToPtrInst &I); +  bool visitCastInst(CastInst &I); +  bool visitUnaryInstruction(UnaryInstruction &I); +  bool visitICmp(ICmpInst &I); +  bool visitSub(BinaryOperator &I); +  bool visitBinaryOperator(BinaryOperator &I); +  bool visitLoad(LoadInst &I); +  bool visitStore(StoreInst &I); +  bool visitExtractValue(ExtractValueInst &I); +  bool visitInsertValue(InsertValueInst &I); +  bool visitCallSite(CallSite CS); + +public: +  CallAnalyzer(const DataLayout *TD, const TargetTransformInfo &TTI, +               Function &Callee, int Threshold) +      : TD(TD), TTI(TTI), F(Callee), Threshold(Threshold), Cost(0), +        IsCallerRecursive(false), IsRecursiveCall(false), +        ExposesReturnsTwice(false), HasDynamicAlloca(false), +        ContainsNoDuplicateCall(false), AllocatedSize(0), NumInstructions(0), +        NumVectorInstructions(0), FiftyPercentVectorBonus(0), +        TenPercentVectorBonus(0), VectorBonus(0), NumConstantArgs(0), +        NumConstantOffsetPtrArgs(0), NumAllocaArgs(0), NumConstantPtrCmps(0), +        NumConstantPtrDiffs(0), NumInstructionsSimplified(0), +        SROACostSavings(0), SROACostSavingsLost(0) {} + +  bool analyzeCall(CallSite CS); + +  int getThreshold() { return Threshold; } +  int getCost() { return Cost; } + +  // Keep a bunch of stats about the cost savings found so we can print them +  // out when debugging. +  unsigned NumConstantArgs; +  unsigned NumConstantOffsetPtrArgs; +  unsigned NumAllocaArgs; +  unsigned NumConstantPtrCmps; +  unsigned NumConstantPtrDiffs; +  unsigned NumInstructionsSimplified; +  unsigned SROACostSavings; +  unsigned SROACostSavingsLost; + +  void dump(); +}; + +} // namespace + +/// \brief Test whether the given value is an Alloca-derived function argument. +bool CallAnalyzer::isAllocaDerivedArg(Value *V) { +  return SROAArgValues.count(V); +} + +/// \brief Lookup the SROA-candidate argument and cost iterator which V maps to. +/// Returns false if V does not map to a SROA-candidate. +bool CallAnalyzer::lookupSROAArgAndCost( +    Value *V, Value *&Arg, DenseMap<Value *, int>::iterator &CostIt) { +  if (SROAArgValues.empty() || SROAArgCosts.empty()) +    return false; + +  DenseMap<Value *, Value *>::iterator ArgIt = SROAArgValues.find(V); +  if (ArgIt == SROAArgValues.end()) +    return false; + +  Arg = ArgIt->second; +  CostIt = SROAArgCosts.find(Arg); +  return CostIt != SROAArgCosts.end(); +} + +/// \brief Disable SROA for the candidate marked by this cost iterator. +/// +/// This marks the candidate as no longer viable for SROA, and adds the cost +/// savings associated with it back into the inline cost measurement. +void CallAnalyzer::disableSROA(DenseMap<Value *, int>::iterator CostIt) { +  // If we're no longer able to perform SROA we need to undo its cost savings +  // and prevent subsequent analysis. +  Cost += CostIt->second; +  SROACostSavings -= CostIt->second; +  SROACostSavingsLost += CostIt->second; +  SROAArgCosts.erase(CostIt); +} + +/// \brief If 'V' maps to a SROA candidate, disable SROA for it. +void CallAnalyzer::disableSROA(Value *V) { +  Value *SROAArg; +  DenseMap<Value *, int>::iterator CostIt; +  if (lookupSROAArgAndCost(V, SROAArg, CostIt)) +    disableSROA(CostIt); +} + +/// \brief Accumulate the given cost for a particular SROA candidate. +void CallAnalyzer::accumulateSROACost(DenseMap<Value *, int>::iterator CostIt, +                                      int InstructionCost) { +  CostIt->second += InstructionCost; +  SROACostSavings += InstructionCost; +} + +/// \brief Helper for the common pattern of handling a SROA candidate. +/// Either accumulates the cost savings if the SROA remains valid, or disables +/// SROA for the candidate. +bool CallAnalyzer::handleSROACandidate(bool IsSROAValid, +                                       DenseMap<Value *, int>::iterator CostIt, +                                       int InstructionCost) { +  if (IsSROAValid) { +    accumulateSROACost(CostIt, InstructionCost); +    return true; +  } + +  disableSROA(CostIt); +  return false; +} + +/// \brief Check whether a GEP's indices are all constant. +/// +/// Respects any simplified values known during the analysis of this callsite. +bool CallAnalyzer::isGEPOffsetConstant(GetElementPtrInst &GEP) { +  for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I) +    if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I)) +      return false; + +  return true; +} + +/// \brief Accumulate a constant GEP offset into an APInt if possible. +/// +/// Returns false if unable to compute the offset for any reason. Respects any +/// simplified values known during the analysis of this callsite. +bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) { +  if (!TD) +    return false; + +  unsigned IntPtrWidth = TD->getPointerSizeInBits(); +  assert(IntPtrWidth == Offset.getBitWidth()); + +  for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); +       GTI != GTE; ++GTI) { +    ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); +    if (!OpC) +      if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand())) +        OpC = dyn_cast<ConstantInt>(SimpleOp); +    if (!OpC) +      return false; +    if (OpC->isZero()) continue; + +    // Handle a struct index, which adds its field offset to the pointer. +    if (StructType *STy = dyn_cast<StructType>(*GTI)) { +      unsigned ElementIdx = OpC->getZExtValue(); +      const StructLayout *SL = TD->getStructLayout(STy); +      Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx)); +      continue; +    } + +    APInt TypeSize(IntPtrWidth, TD->getTypeAllocSize(GTI.getIndexedType())); +    Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize; +  } +  return true; +} + +bool CallAnalyzer::visitAlloca(AllocaInst &I) { +  // FIXME: Check whether inlining will turn a dynamic alloca into a static +  // alloca, and handle that case. + +  // Accumulate the allocated size. +  if (I.isStaticAlloca()) { +    Type *Ty = I.getAllocatedType(); +    AllocatedSize += (TD ? TD->getTypeAllocSize(Ty) : +                      Ty->getPrimitiveSizeInBits()); +  } + +  // We will happily inline static alloca instructions. +  if (I.isStaticAlloca()) +    return Base::visitAlloca(I); + +  // FIXME: This is overly conservative. Dynamic allocas are inefficient for +  // a variety of reasons, and so we would like to not inline them into +  // functions which don't currently have a dynamic alloca. This simply +  // disables inlining altogether in the presence of a dynamic alloca. +  HasDynamicAlloca = true; +  return false; +} + +bool CallAnalyzer::visitPHI(PHINode &I) { +  // FIXME: We should potentially be tracking values through phi nodes, +  // especially when they collapse to a single value due to deleted CFG edges +  // during inlining. + +  // FIXME: We need to propagate SROA *disabling* through phi nodes, even +  // though we don't want to propagate it's bonuses. The idea is to disable +  // SROA if it *might* be used in an inappropriate manner. + +  // Phi nodes are always zero-cost. +  return true; +} + +bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) { +  Value *SROAArg; +  DenseMap<Value *, int>::iterator CostIt; +  bool SROACandidate = lookupSROAArgAndCost(I.getPointerOperand(), +                                            SROAArg, CostIt); + +  // Try to fold GEPs of constant-offset call site argument pointers. This +  // requires target data and inbounds GEPs. +  if (TD && I.isInBounds()) { +    // Check if we have a base + offset for the pointer. +    Value *Ptr = I.getPointerOperand(); +    std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Ptr); +    if (BaseAndOffset.first) { +      // Check if the offset of this GEP is constant, and if so accumulate it +      // into Offset. +      if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) { +        // Non-constant GEPs aren't folded, and disable SROA. +        if (SROACandidate) +          disableSROA(CostIt); +        return false; +      } + +      // Add the result as a new mapping to Base + Offset. +      ConstantOffsetPtrs[&I] = BaseAndOffset; + +      // Also handle SROA candidates here, we already know that the GEP is +      // all-constant indexed. +      if (SROACandidate) +        SROAArgValues[&I] = SROAArg; + +      return true; +    } +  } + +  if (isGEPOffsetConstant(I)) { +    if (SROACandidate) +      SROAArgValues[&I] = SROAArg; + +    // Constant GEPs are modeled as free. +    return true; +  } + +  // Variable GEPs will require math and will disable SROA. +  if (SROACandidate) +    disableSROA(CostIt); +  return false; +} + +bool CallAnalyzer::visitBitCast(BitCastInst &I) { +  // Propagate constants through bitcasts. +  Constant *COp = dyn_cast<Constant>(I.getOperand(0)); +  if (!COp) +    COp = SimplifiedValues.lookup(I.getOperand(0)); +  if (COp) +    if (Constant *C = ConstantExpr::getBitCast(COp, I.getType())) { +      SimplifiedValues[&I] = C; +      return true; +    } + +  // Track base/offsets through casts +  std::pair<Value *, APInt> BaseAndOffset +    = ConstantOffsetPtrs.lookup(I.getOperand(0)); +  // Casts don't change the offset, just wrap it up. +  if (BaseAndOffset.first) +    ConstantOffsetPtrs[&I] = BaseAndOffset; + +  // Also look for SROA candidates here. +  Value *SROAArg; +  DenseMap<Value *, int>::iterator CostIt; +  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) +    SROAArgValues[&I] = SROAArg; + +  // Bitcasts are always zero cost. +  return true; +} + +bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) { +  // Propagate constants through ptrtoint. +  Constant *COp = dyn_cast<Constant>(I.getOperand(0)); +  if (!COp) +    COp = SimplifiedValues.lookup(I.getOperand(0)); +  if (COp) +    if (Constant *C = ConstantExpr::getPtrToInt(COp, I.getType())) { +      SimplifiedValues[&I] = C; +      return true; +    } + +  // Track base/offset pairs when converted to a plain integer provided the +  // integer is large enough to represent the pointer. +  unsigned IntegerSize = I.getType()->getScalarSizeInBits(); +  if (TD && IntegerSize >= TD->getPointerSizeInBits()) { +    std::pair<Value *, APInt> BaseAndOffset +      = ConstantOffsetPtrs.lookup(I.getOperand(0)); +    if (BaseAndOffset.first) +      ConstantOffsetPtrs[&I] = BaseAndOffset; +  } + +  // This is really weird. Technically, ptrtoint will disable SROA. However, +  // unless that ptrtoint is *used* somewhere in the live basic blocks after +  // inlining, it will be nuked, and SROA should proceed. All of the uses which +  // would block SROA would also block SROA if applied directly to a pointer, +  // and so we can just add the integer in here. The only places where SROA is +  // preserved either cannot fire on an integer, or won't in-and-of themselves +  // disable SROA (ext) w/o some later use that we would see and disable. +  Value *SROAArg; +  DenseMap<Value *, int>::iterator CostIt; +  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) +    SROAArgValues[&I] = SROAArg; + +  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I); +} + +bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) { +  // Propagate constants through ptrtoint. +  Constant *COp = dyn_cast<Constant>(I.getOperand(0)); +  if (!COp) +    COp = SimplifiedValues.lookup(I.getOperand(0)); +  if (COp) +    if (Constant *C = ConstantExpr::getIntToPtr(COp, I.getType())) { +      SimplifiedValues[&I] = C; +      return true; +    } + +  // Track base/offset pairs when round-tripped through a pointer without +  // modifications provided the integer is not too large. +  Value *Op = I.getOperand(0); +  unsigned IntegerSize = Op->getType()->getScalarSizeInBits(); +  if (TD && IntegerSize <= TD->getPointerSizeInBits()) { +    std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op); +    if (BaseAndOffset.first) +      ConstantOffsetPtrs[&I] = BaseAndOffset; +  } + +  // "Propagate" SROA here in the same manner as we do for ptrtoint above. +  Value *SROAArg; +  DenseMap<Value *, int>::iterator CostIt; +  if (lookupSROAArgAndCost(Op, SROAArg, CostIt)) +    SROAArgValues[&I] = SROAArg; + +  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I); +} + +bool CallAnalyzer::visitCastInst(CastInst &I) { +  // Propagate constants through ptrtoint. +  Constant *COp = dyn_cast<Constant>(I.getOperand(0)); +  if (!COp) +    COp = SimplifiedValues.lookup(I.getOperand(0)); +  if (COp) +    if (Constant *C = ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) { +      SimplifiedValues[&I] = C; +      return true; +    } + +  // Disable SROA in the face of arbitrary casts we don't whitelist elsewhere. +  disableSROA(I.getOperand(0)); + +  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I); +} + +bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) { +  Value *Operand = I.getOperand(0); +  Constant *Ops[1] = { dyn_cast<Constant>(Operand) }; +  if (Ops[0] || (Ops[0] = SimplifiedValues.lookup(Operand))) +    if (Constant *C = ConstantFoldInstOperands(I.getOpcode(), I.getType(), +                                               Ops, TD)) { +      SimplifiedValues[&I] = C; +      return true; +    } + +  // Disable any SROA on the argument to arbitrary unary operators. +  disableSROA(Operand); + +  return false; +} + +bool CallAnalyzer::visitICmp(ICmpInst &I) { +  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); +  // First try to handle simplified comparisons. +  if (!isa<Constant>(LHS)) +    if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS)) +      LHS = SimpleLHS; +  if (!isa<Constant>(RHS)) +    if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS)) +      RHS = SimpleRHS; +  if (Constant *CLHS = dyn_cast<Constant>(LHS)) +    if (Constant *CRHS = dyn_cast<Constant>(RHS)) +      if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) { +        SimplifiedValues[&I] = C; +        return true; +      } + +  // Otherwise look for a comparison between constant offset pointers with +  // a common base. +  Value *LHSBase, *RHSBase; +  APInt LHSOffset, RHSOffset; +  llvm::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); +  if (LHSBase) { +    llvm::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); +    if (RHSBase && LHSBase == RHSBase) { +      // We have common bases, fold the icmp to a constant based on the +      // offsets. +      Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); +      Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); +      if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) { +        SimplifiedValues[&I] = C; +        ++NumConstantPtrCmps; +        return true; +      } +    } +  } + +  // If the comparison is an equality comparison with null, we can simplify it +  // for any alloca-derived argument. +  if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1))) +    if (isAllocaDerivedArg(I.getOperand(0))) { +      // We can actually predict the result of comparisons between an +      // alloca-derived value and null. Note that this fires regardless of +      // SROA firing. +      bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE; +      SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType()) +                                        : ConstantInt::getFalse(I.getType()); +      return true; +    } + +  // Finally check for SROA candidates in comparisons. +  Value *SROAArg; +  DenseMap<Value *, int>::iterator CostIt; +  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) { +    if (isa<ConstantPointerNull>(I.getOperand(1))) { +      accumulateSROACost(CostIt, InlineConstants::InstrCost); +      return true; +    } + +    disableSROA(CostIt); +  } + +  return false; +} + +bool CallAnalyzer::visitSub(BinaryOperator &I) { +  // Try to handle a special case: we can fold computing the difference of two +  // constant-related pointers. +  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); +  Value *LHSBase, *RHSBase; +  APInt LHSOffset, RHSOffset; +  llvm::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); +  if (LHSBase) { +    llvm::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); +    if (RHSBase && LHSBase == RHSBase) { +      // We have common bases, fold the subtract to a constant based on the +      // offsets. +      Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); +      Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); +      if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) { +        SimplifiedValues[&I] = C; +        ++NumConstantPtrDiffs; +        return true; +      } +    } +  } + +  // Otherwise, fall back to the generic logic for simplifying and handling +  // instructions. +  return Base::visitSub(I); +} + +bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) { +  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); +  if (!isa<Constant>(LHS)) +    if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS)) +      LHS = SimpleLHS; +  if (!isa<Constant>(RHS)) +    if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS)) +      RHS = SimpleRHS; +  Value *SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, TD); +  if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) { +    SimplifiedValues[&I] = C; +    return true; +  } + +  // Disable any SROA on arguments to arbitrary, unsimplified binary operators. +  disableSROA(LHS); +  disableSROA(RHS); + +  return false; +} + +bool CallAnalyzer::visitLoad(LoadInst &I) { +  Value *SROAArg; +  DenseMap<Value *, int>::iterator CostIt; +  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) { +    if (I.isSimple()) { +      accumulateSROACost(CostIt, InlineConstants::InstrCost); +      return true; +    } + +    disableSROA(CostIt); +  } + +  return false; +} + +bool CallAnalyzer::visitStore(StoreInst &I) { +  Value *SROAArg; +  DenseMap<Value *, int>::iterator CostIt; +  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) { +    if (I.isSimple()) { +      accumulateSROACost(CostIt, InlineConstants::InstrCost); +      return true; +    } + +    disableSROA(CostIt); +  } + +  return false; +} + +bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) { +  // Constant folding for extract value is trivial. +  Constant *C = dyn_cast<Constant>(I.getAggregateOperand()); +  if (!C) +    C = SimplifiedValues.lookup(I.getAggregateOperand()); +  if (C) { +    SimplifiedValues[&I] = ConstantExpr::getExtractValue(C, I.getIndices()); +    return true; +  } + +  // SROA can look through these but give them a cost. +  return false; +} + +bool CallAnalyzer::visitInsertValue(InsertValueInst &I) { +  // Constant folding for insert value is trivial. +  Constant *AggC = dyn_cast<Constant>(I.getAggregateOperand()); +  if (!AggC) +    AggC = SimplifiedValues.lookup(I.getAggregateOperand()); +  Constant *InsertedC = dyn_cast<Constant>(I.getInsertedValueOperand()); +  if (!InsertedC) +    InsertedC = SimplifiedValues.lookup(I.getInsertedValueOperand()); +  if (AggC && InsertedC) { +    SimplifiedValues[&I] = ConstantExpr::getInsertValue(AggC, InsertedC, +                                                        I.getIndices()); +    return true; +  } + +  // SROA can look through these but give them a cost. +  return false; +} + +/// \brief Try to simplify a call site. +/// +/// Takes a concrete function and callsite and tries to actually simplify it by +/// analyzing the arguments and call itself with instsimplify. Returns true if +/// it has simplified the callsite to some other entity (a constant), making it +/// free. +bool CallAnalyzer::simplifyCallSite(Function *F, CallSite CS) { +  // FIXME: Using the instsimplify logic directly for this is inefficient +  // because we have to continually rebuild the argument list even when no +  // simplifications can be performed. Until that is fixed with remapping +  // inside of instsimplify, directly constant fold calls here. +  if (!canConstantFoldCallTo(F)) +    return false; + +  // Try to re-map the arguments to constants. +  SmallVector<Constant *, 4> ConstantArgs; +  ConstantArgs.reserve(CS.arg_size()); +  for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); +       I != E; ++I) { +    Constant *C = dyn_cast<Constant>(*I); +    if (!C) +      C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(*I)); +    if (!C) +      return false; // This argument doesn't map to a constant. + +    ConstantArgs.push_back(C); +  } +  if (Constant *C = ConstantFoldCall(F, ConstantArgs)) { +    SimplifiedValues[CS.getInstruction()] = C; +    return true; +  } + +  return false; +} + +bool CallAnalyzer::visitCallSite(CallSite CS) { +  if (CS.isCall() && cast<CallInst>(CS.getInstruction())->canReturnTwice() && +      !F.getAttributes().hasAttribute(AttributeSet::FunctionIndex, +                                      Attribute::ReturnsTwice)) { +    // This aborts the entire analysis. +    ExposesReturnsTwice = true; +    return false; +  } +  if (CS.isCall() && +      cast<CallInst>(CS.getInstruction())->hasFnAttr(Attribute::NoDuplicate)) +    ContainsNoDuplicateCall = true; + +  if (Function *F = CS.getCalledFunction()) { +    // When we have a concrete function, first try to simplify it directly. +    if (simplifyCallSite(F, CS)) +      return true; + +    // Next check if it is an intrinsic we know about. +    // FIXME: Lift this into part of the InstVisitor. +    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) { +      switch (II->getIntrinsicID()) { +      default: +        return Base::visitCallSite(CS); + +      case Intrinsic::memset: +      case Intrinsic::memcpy: +      case Intrinsic::memmove: +        // SROA can usually chew through these intrinsics, but they aren't free. +        return false; +      } +    } + +    if (F == CS.getInstruction()->getParent()->getParent()) { +      // This flag will fully abort the analysis, so don't bother with anything +      // else. +      IsRecursiveCall = true; +      return false; +    } + +    if (!callIsSmall(CS)) { +      // We account for the average 1 instruction per call argument setup +      // here. +      Cost += CS.arg_size() * InlineConstants::InstrCost; + +      // Everything other than inline ASM will also have a significant cost +      // merely from making the call. +      if (!isa<InlineAsm>(CS.getCalledValue())) +        Cost += InlineConstants::CallPenalty; +    } + +    return Base::visitCallSite(CS); +  } + +  // Otherwise we're in a very special case -- an indirect function call. See +  // if we can be particularly clever about this. +  Value *Callee = CS.getCalledValue(); + +  // First, pay the price of the argument setup. We account for the average +  // 1 instruction per call argument setup here. +  Cost += CS.arg_size() * InlineConstants::InstrCost; + +  // Next, check if this happens to be an indirect function call to a known +  // function in this inline context. If not, we've done all we can. +  Function *F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee)); +  if (!F) +    return Base::visitCallSite(CS); + +  // If we have a constant that we are calling as a function, we can peer +  // through it and see the function target. This happens not infrequently +  // during devirtualization and so we want to give it a hefty bonus for +  // inlining, but cap that bonus in the event that inlining wouldn't pan +  // out. Pretend to inline the function, with a custom threshold. +  CallAnalyzer CA(TD, TTI, *F, InlineConstants::IndirectCallThreshold); +  if (CA.analyzeCall(CS)) { +    // We were able to inline the indirect call! Subtract the cost from the +    // bonus we want to apply, but don't go below zero. +    Cost -= std::max(0, InlineConstants::IndirectCallThreshold - CA.getCost()); +  } + +  return Base::visitCallSite(CS); +} + +bool CallAnalyzer::visitInstruction(Instruction &I) { +  // Some instructions are free. All of the free intrinsics can also be +  // handled by SROA, etc. +  if (TargetTransformInfo::TCC_Free == TTI.getUserCost(&I)) +    return true; + +  // We found something we don't understand or can't handle. Mark any SROA-able +  // values in the operand list as no longer viable. +  for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI) +    disableSROA(*OI); + +  return false; +} + + +/// \brief Analyze a basic block for its contribution to the inline cost. +/// +/// This method walks the analyzer over every instruction in the given basic +/// block and accounts for their cost during inlining at this callsite. It +/// aborts early if the threshold has been exceeded or an impossible to inline +/// construct has been detected. It returns false if inlining is no longer +/// viable, and true if inlining remains viable. +bool CallAnalyzer::analyzeBlock(BasicBlock *BB) { +  for (BasicBlock::iterator I = BB->begin(), E = llvm::prior(BB->end()); +       I != E; ++I) { +    ++NumInstructions; +    if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy()) +      ++NumVectorInstructions; + +    // If the instruction simplified to a constant, there is no cost to this +    // instruction. Visit the instructions using our InstVisitor to account for +    // all of the per-instruction logic. The visit tree returns true if we +    // consumed the instruction in any way, and false if the instruction's base +    // cost should count against inlining. +    if (Base::visit(I)) +      ++NumInstructionsSimplified; +    else +      Cost += InlineConstants::InstrCost; + +    // If the visit this instruction detected an uninlinable pattern, abort. +    if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca) +      return false; + +    // If the caller is a recursive function then we don't want to inline +    // functions which allocate a lot of stack space because it would increase +    // the caller stack usage dramatically. +    if (IsCallerRecursive && +        AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) +      return false; + +    if (NumVectorInstructions > NumInstructions/2) +      VectorBonus = FiftyPercentVectorBonus; +    else if (NumVectorInstructions > NumInstructions/10) +      VectorBonus = TenPercentVectorBonus; +    else +      VectorBonus = 0; + +    // Check if we've past the threshold so we don't spin in huge basic +    // blocks that will never inline. +    if (Cost > (Threshold + VectorBonus)) +      return false; +  } + +  return true; +} + +/// \brief Compute the base pointer and cumulative constant offsets for V. +/// +/// This strips all constant offsets off of V, leaving it the base pointer, and +/// accumulates the total constant offset applied in the returned constant. It +/// returns 0 if V is not a pointer, and returns the constant '0' if there are +/// no constant offsets applied. +ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) { +  if (!TD || !V->getType()->isPointerTy()) +    return 0; + +  unsigned IntPtrWidth = TD->getPointerSizeInBits(); +  APInt Offset = APInt::getNullValue(IntPtrWidth); + +  // Even though we don't look through PHI nodes, we could be called on an +  // instruction in an unreachable block, which may be on a cycle. +  SmallPtrSet<Value *, 4> Visited; +  Visited.insert(V); +  do { +    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { +      if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset)) +        return 0; +      V = GEP->getPointerOperand(); +    } else if (Operator::getOpcode(V) == Instruction::BitCast) { +      V = cast<Operator>(V)->getOperand(0); +    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { +      if (GA->mayBeOverridden()) +        break; +      V = GA->getAliasee(); +    } else { +      break; +    } +    assert(V->getType()->isPointerTy() && "Unexpected operand type!"); +  } while (Visited.insert(V)); + +  Type *IntPtrTy = TD->getIntPtrType(V->getContext()); +  return cast<ConstantInt>(ConstantInt::get(IntPtrTy, Offset)); +} + +/// \brief Analyze a call site for potential inlining. +/// +/// Returns true if inlining this call is viable, and false if it is not +/// viable. It computes the cost and adjusts the threshold based on numerous +/// factors and heuristics. If this method returns false but the computed cost +/// is below the computed threshold, then inlining was forcibly disabled by +/// some artifact of the routine. +bool CallAnalyzer::analyzeCall(CallSite CS) { +  ++NumCallsAnalyzed; + +  // Track whether the post-inlining function would have more than one basic +  // block. A single basic block is often intended for inlining. Balloon the +  // threshold by 50% until we pass the single-BB phase. +  bool SingleBB = true; +  int SingleBBBonus = Threshold / 2; +  Threshold += SingleBBBonus; + +  // Perform some tweaks to the cost and threshold based on the direct +  // callsite information. + +  // We want to more aggressively inline vector-dense kernels, so up the +  // threshold, and we'll lower it if the % of vector instructions gets too +  // low. +  assert(NumInstructions == 0); +  assert(NumVectorInstructions == 0); +  FiftyPercentVectorBonus = Threshold; +  TenPercentVectorBonus = Threshold / 2; + +  // Give out bonuses per argument, as the instructions setting them up will +  // be gone after inlining. +  for (unsigned I = 0, E = CS.arg_size(); I != E; ++I) { +    if (TD && CS.isByValArgument(I)) { +      // We approximate the number of loads and stores needed by dividing the +      // size of the byval type by the target's pointer size. +      PointerType *PTy = cast<PointerType>(CS.getArgument(I)->getType()); +      unsigned TypeSize = TD->getTypeSizeInBits(PTy->getElementType()); +      unsigned PointerSize = TD->getPointerSizeInBits(); +      // Ceiling division. +      unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize; + +      // If it generates more than 8 stores it is likely to be expanded as an +      // inline memcpy so we take that as an upper bound. Otherwise we assume +      // one load and one store per word copied. +      // FIXME: The maxStoresPerMemcpy setting from the target should be used +      // here instead of a magic number of 8, but it's not available via +      // DataLayout. +      NumStores = std::min(NumStores, 8U); + +      Cost -= 2 * NumStores * InlineConstants::InstrCost; +    } else { +      // For non-byval arguments subtract off one instruction per call +      // argument. +      Cost -= InlineConstants::InstrCost; +    } +  } + +  // If there is only one call of the function, and it has internal linkage, +  // the cost of inlining it drops dramatically. +  bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneUse() && +    &F == CS.getCalledFunction(); +  if (OnlyOneCallAndLocalLinkage) +    Cost += InlineConstants::LastCallToStaticBonus; + +  // If the instruction after the call, or if the normal destination of the +  // invoke is an unreachable instruction, the function is noreturn. As such, +  // there is little point in inlining this unless there is literally zero +  // cost. +  Instruction *Instr = CS.getInstruction(); +  if (InvokeInst *II = dyn_cast<InvokeInst>(Instr)) { +    if (isa<UnreachableInst>(II->getNormalDest()->begin())) +      Threshold = 1; +  } else if (isa<UnreachableInst>(++BasicBlock::iterator(Instr))) +    Threshold = 1; + +  // If this function uses the coldcc calling convention, prefer not to inline +  // it. +  if (F.getCallingConv() == CallingConv::Cold) +    Cost += InlineConstants::ColdccPenalty; + +  // Check if we're done. This can happen due to bonuses and penalties. +  if (Cost > Threshold) +    return false; + +  if (F.empty()) +    return true; + +  Function *Caller = CS.getInstruction()->getParent()->getParent(); +  // Check if the caller function is recursive itself. +  for (Value::use_iterator U = Caller->use_begin(), E = Caller->use_end(); +       U != E; ++U) { +    CallSite Site(cast<Value>(*U)); +    if (!Site) +      continue; +    Instruction *I = Site.getInstruction(); +    if (I->getParent()->getParent() == Caller) { +      IsCallerRecursive = true; +      break; +    } +  } + +  // Track whether we've seen a return instruction. The first return +  // instruction is free, as at least one will usually disappear in inlining. +  bool HasReturn = false; + +  // Populate our simplified values by mapping from function arguments to call +  // arguments with known important simplifications. +  CallSite::arg_iterator CAI = CS.arg_begin(); +  for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end(); +       FAI != FAE; ++FAI, ++CAI) { +    assert(CAI != CS.arg_end()); +    if (Constant *C = dyn_cast<Constant>(CAI)) +      SimplifiedValues[FAI] = C; + +    Value *PtrArg = *CAI; +    if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) { +      ConstantOffsetPtrs[FAI] = std::make_pair(PtrArg, C->getValue()); + +      // We can SROA any pointer arguments derived from alloca instructions. +      if (isa<AllocaInst>(PtrArg)) { +        SROAArgValues[FAI] = PtrArg; +        SROAArgCosts[PtrArg] = 0; +      } +    } +  } +  NumConstantArgs = SimplifiedValues.size(); +  NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size(); +  NumAllocaArgs = SROAArgValues.size(); + +  // The worklist of live basic blocks in the callee *after* inlining. We avoid +  // adding basic blocks of the callee which can be proven to be dead for this +  // particular call site in order to get more accurate cost estimates. This +  // requires a somewhat heavyweight iteration pattern: we need to walk the +  // basic blocks in a breadth-first order as we insert live successors. To +  // accomplish this, prioritizing for small iterations because we exit after +  // crossing our threshold, we use a small-size optimized SetVector. +  typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>, +                                  SmallPtrSet<BasicBlock *, 16> > BBSetVector; +  BBSetVector BBWorklist; +  BBWorklist.insert(&F.getEntryBlock()); +  // Note that we *must not* cache the size, this loop grows the worklist. +  for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { +    // Bail out the moment we cross the threshold. This means we'll under-count +    // the cost, but only when undercounting doesn't matter. +    if (Cost > (Threshold + VectorBonus)) +      break; + +    BasicBlock *BB = BBWorklist[Idx]; +    if (BB->empty()) +      continue; + +    // Handle the terminator cost here where we can track returns and other +    // function-wide constructs. +    TerminatorInst *TI = BB->getTerminator(); + +    // We never want to inline functions that contain an indirectbr.  This is +    // incorrect because all the blockaddress's (in static global initializers +    // for example) would be referring to the original function, and this +    // indirect jump would jump from the inlined copy of the function into the  +    // original function which is extremely undefined behavior. +    // FIXME: This logic isn't really right; we can safely inline functions +    // with indirectbr's as long as no other function or global references the +    // blockaddress of a block within the current function.  And as a QOI issue, +    // if someone is using a blockaddress without an indirectbr, and that +    // reference somehow ends up in another function or global, we probably +    // don't want to inline this function. +    if (isa<IndirectBrInst>(TI)) +      return false; + +    if (!HasReturn && isa<ReturnInst>(TI)) +      HasReturn = true; +    else +      Cost += InlineConstants::InstrCost; + +    // Analyze the cost of this block. If we blow through the threshold, this +    // returns false, and we can bail on out. +    if (!analyzeBlock(BB)) { +      if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca) +        return false; + +      // If the caller is a recursive function then we don't want to inline +      // functions which allocate a lot of stack space because it would increase +      // the caller stack usage dramatically. +      if (IsCallerRecursive && +          AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) +        return false; + +      break; +    } + +    // Add in the live successors by first checking whether we have terminator +    // that may be simplified based on the values simplified by this call. +    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { +      if (BI->isConditional()) { +        Value *Cond = BI->getCondition(); +        if (ConstantInt *SimpleCond +              = dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { +          BBWorklist.insert(BI->getSuccessor(SimpleCond->isZero() ? 1 : 0)); +          continue; +        } +      } +    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { +      Value *Cond = SI->getCondition(); +      if (ConstantInt *SimpleCond +            = dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { +        BBWorklist.insert(SI->findCaseValue(SimpleCond).getCaseSuccessor()); +        continue; +      } +    } + +    // If we're unable to select a particular successor, just count all of +    // them. +    for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize; +         ++TIdx) +      BBWorklist.insert(TI->getSuccessor(TIdx)); + +    // If we had any successors at this point, than post-inlining is likely to +    // have them as well. Note that we assume any basic blocks which existed +    // due to branches or switches which folded above will also fold after +    // inlining. +    if (SingleBB && TI->getNumSuccessors() > 1) { +      // Take off the bonus we applied to the threshold. +      Threshold -= SingleBBBonus; +      SingleBB = false; +    } +  } + +  // If this is a noduplicate call, we can still inline as long as  +  // inlining this would cause the removal of the caller (so the instruction +  // is not actually duplicated, just moved). +  if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall) +    return false; + +  Threshold += VectorBonus; + +  return Cost < Threshold; +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +/// \brief Dump stats about this call's analysis. +void CallAnalyzer::dump() { +#define DEBUG_PRINT_STAT(x) llvm::dbgs() << "      " #x ": " << x << "\n" +  DEBUG_PRINT_STAT(NumConstantArgs); +  DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs); +  DEBUG_PRINT_STAT(NumAllocaArgs); +  DEBUG_PRINT_STAT(NumConstantPtrCmps); +  DEBUG_PRINT_STAT(NumConstantPtrDiffs); +  DEBUG_PRINT_STAT(NumInstructionsSimplified); +  DEBUG_PRINT_STAT(SROACostSavings); +  DEBUG_PRINT_STAT(SROACostSavingsLost); +  DEBUG_PRINT_STAT(ContainsNoDuplicateCall); +#undef DEBUG_PRINT_STAT +} +#endif + +INITIALIZE_PASS_BEGIN(InlineCostAnalysis, "inline-cost", "Inline Cost Analysis", +                      true, true) +INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) +INITIALIZE_PASS_END(InlineCostAnalysis, "inline-cost", "Inline Cost Analysis", +                    true, true) + +char InlineCostAnalysis::ID = 0; + +InlineCostAnalysis::InlineCostAnalysis() : CallGraphSCCPass(ID), TD(0) {} + +InlineCostAnalysis::~InlineCostAnalysis() {} + +void InlineCostAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { +  AU.setPreservesAll(); +  AU.addRequired<TargetTransformInfo>(); +  CallGraphSCCPass::getAnalysisUsage(AU); +} + +bool InlineCostAnalysis::runOnSCC(CallGraphSCC &SCC) { +  TD = getAnalysisIfAvailable<DataLayout>(); +  TTI = &getAnalysis<TargetTransformInfo>(); +  return false; +} + +InlineCost InlineCostAnalysis::getInlineCost(CallSite CS, int Threshold) { +  return getInlineCost(CS, CS.getCalledFunction(), Threshold); +} + +InlineCost InlineCostAnalysis::getInlineCost(CallSite CS, Function *Callee, +                                             int Threshold) { +  // Cannot inline indirect calls. +  if (!Callee) +    return llvm::InlineCost::getNever(); + +  // Calls to functions with always-inline attributes should be inlined +  // whenever possible. +  if (Callee->getAttributes().hasAttribute(AttributeSet::FunctionIndex, +                                           Attribute::AlwaysInline)) { +    if (isInlineViable(*Callee)) +      return llvm::InlineCost::getAlways(); +    return llvm::InlineCost::getNever(); +  } + +  // Don't inline functions which can be redefined at link-time to mean +  // something else.  Don't inline functions marked noinline or call sites +  // marked noinline. +  if (Callee->mayBeOverridden() || +      Callee->getAttributes().hasAttribute(AttributeSet::FunctionIndex, +                                           Attribute::NoInline) || +      CS.isNoInline()) +    return llvm::InlineCost::getNever(); + +  DEBUG(llvm::dbgs() << "      Analyzing call of " << Callee->getName() +        << "...\n"); + +  CallAnalyzer CA(TD, *TTI, *Callee, Threshold); +  bool ShouldInline = CA.analyzeCall(CS); + +  DEBUG(CA.dump()); + +  // Check if there was a reason to force inlining or no inlining. +  if (!ShouldInline && CA.getCost() < CA.getThreshold()) +    return InlineCost::getNever(); +  if (ShouldInline && CA.getCost() >= CA.getThreshold()) +    return InlineCost::getAlways(); + +  return llvm::InlineCost::get(CA.getCost(), CA.getThreshold()); +} + +bool InlineCostAnalysis::isInlineViable(Function &F) { +  bool ReturnsTwice = +    F.getAttributes().hasAttribute(AttributeSet::FunctionIndex, +                                   Attribute::ReturnsTwice); +  for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) { +    // Disallow inlining of functions which contain an indirect branch. +    if (isa<IndirectBrInst>(BI->getTerminator())) +      return false; + +    for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; +         ++II) { +      CallSite CS(II); +      if (!CS) +        continue; + +      // Disallow recursive calls. +      if (&F == CS.getCalledFunction()) +        return false; + +      // Disallow calls which expose returns-twice to a function not previously +      // attributed as such. +      if (!ReturnsTwice && CS.isCall() && +          cast<CallInst>(CS.getInstruction())->canReturnTwice()) +        return false; +    } +  } + +  return true; +} | 

