diff options
Diffstat (limited to 'llvm/lib/Analysis/DataStructure')
| -rw-r--r-- | llvm/lib/Analysis/DataStructure/IPModRef.cpp | 447 | ||||
| -rw-r--r-- | llvm/lib/Analysis/DataStructure/MemoryDepAnalysis.cpp | 500 |
2 files changed, 947 insertions, 0 deletions
diff --git a/llvm/lib/Analysis/DataStructure/IPModRef.cpp b/llvm/lib/Analysis/DataStructure/IPModRef.cpp new file mode 100644 index 00000000000..5e3652765ba --- /dev/null +++ b/llvm/lib/Analysis/DataStructure/IPModRef.cpp @@ -0,0 +1,447 @@ +//===- IPModRef.cpp - Compute IP Mod/Ref information ------------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// See high-level comments in include/llvm/Analysis/IPModRef.h +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/IPModRef.h" +#include "llvm/Analysis/DataStructure.h" +#include "llvm/Analysis/DSGraph.h" +#include "llvm/Module.h" +#include "llvm/Function.h" +#include "llvm/iMemory.h" +#include "llvm/iOther.h" +#include "Support/Statistic.h" +#include "Support/STLExtras.h" +#include "Support/StringExtras.h" +#include <vector> + +namespace llvm { + +//---------------------------------------------------------------------------- +// Private constants and data +//---------------------------------------------------------------------------- + +static RegisterAnalysis<IPModRef> +Z("ipmodref", "Interprocedural mod/ref analysis"); + + +//---------------------------------------------------------------------------- +// class ModRefInfo +//---------------------------------------------------------------------------- + +void ModRefInfo::print(std::ostream &O, + const std::string& sprefix) const +{ + O << sprefix << "Modified nodes = " << modNodeSet; + O << sprefix << "Referenced nodes = " << refNodeSet; +} + +void ModRefInfo::dump() const +{ + print(std::cerr); +} + +//---------------------------------------------------------------------------- +// class FunctionModRefInfo +//---------------------------------------------------------------------------- + + +// This constructor computes a node numbering for the TD graph. +// +FunctionModRefInfo::FunctionModRefInfo(const Function& func, + IPModRef& ipmro, + DSGraph* tdgClone) + : F(func), IPModRefObj(ipmro), + funcTDGraph(tdgClone), + funcModRefInfo(tdgClone->getGraphSize()) +{ + unsigned i = 0; + for (DSGraph::node_iterator NI = funcTDGraph->node_begin(), + E = funcTDGraph->node_end(); NI != E; ++NI) + NodeIds[*NI] = i++; +} + + +FunctionModRefInfo::~FunctionModRefInfo() +{ + for(std::map<const Instruction*, ModRefInfo*>::iterator + I=callSiteModRefInfo.begin(), E=callSiteModRefInfo.end(); I != E; ++I) + delete(I->second); + + // Empty map just to make problems easier to track down + callSiteModRefInfo.clear(); + + delete funcTDGraph; +} + +unsigned FunctionModRefInfo::getNodeId(const Value* value) const { + return getNodeId(funcTDGraph->getNodeForValue(const_cast<Value*>(value)) + .getNode()); +} + + + +// Compute Mod/Ref bit vectors for the entire function. +// These are simply copies of the Read/Write flags from the nodes of +// the top-down DS graph. +// +void FunctionModRefInfo::computeModRef(const Function &func) +{ + // Mark all nodes in the graph that are marked MOD as being mod + // and all those marked REF as being ref. + unsigned i = 0; + for (DSGraph::node_iterator NI = funcTDGraph->node_begin(), + E = funcTDGraph->node_end(); NI != E; ++NI, ++i) { + if ((*NI)->isModified()) funcModRefInfo.setNodeIsMod(i); + if ((*NI)->isRead()) funcModRefInfo.setNodeIsRef(i); + } + + // Compute the Mod/Ref info for all call sites within the function. + // The call sites are recorded in the TD graph. + const std::vector<DSCallSite>& callSites = funcTDGraph->getFunctionCalls(); + for (unsigned i = 0, N = callSites.size(); i < N; ++i) + computeModRef(callSites[i].getCallSite()); +} + + +// ResolveCallSiteModRefInfo - This method performs the following actions: +// +// 1. It clones the top-down graph for the current function +// 2. It clears all of the mod/ref bits in the cloned graph +// 3. It then merges the bottom-up graph(s) for the specified call-site into +// the clone (bringing new mod/ref bits). +// 4. It returns the clone, and a mapping of nodes from the original TDGraph to +// the cloned graph with Mod/Ref info for the callsite. +// +// NOTE: Because this clones a dsgraph and returns it, the caller is responsible +// for deleting the returned graph! +// NOTE: This method may return a null pointer if it is unable to determine the +// requested information (because the call site calls an external +// function or we cannot determine the complete set of functions invoked). +// +DSGraph* FunctionModRefInfo::ResolveCallSiteModRefInfo(CallSite CS, + hash_map<const DSNode*, DSNodeHandle> &NodeMap) +{ + // Step #0: Quick check if we are going to fail anyway: avoid + // all the graph cloning and map copying in steps #1 and #2. + // + if (const Function *F = CS.getCalledFunction()) { + if (F->isExternal()) + return 0; // We cannot compute Mod/Ref info for this callsite... + } else { + // Eventually, should check here if any callee is external. + // For now we are not handling this case anyway. + std::cerr << "IP Mod/Ref indirect call not implemented yet: " + << "Being conservative\n"; + return 0; // We cannot compute Mod/Ref info for this callsite... + } + + // Step #1: Clone the top-down graph... + DSGraph *Result = new DSGraph(*funcTDGraph, NodeMap); + + // Step #2: Clear Mod/Ref information... + Result->maskNodeTypes(~(DSNode::Modified | DSNode::Read)); + + // Step #3: clone the bottom up graphs for the callees into the caller graph + if (Function *F = CS.getCalledFunction()) + { + assert(!F->isExternal()); + + // Build up a DSCallSite for our invocation point here... + + // If the call returns a value, make sure to merge the nodes... + DSNodeHandle RetVal; + if (DS::isPointerType(CS.getInstruction()->getType())) + RetVal = Result->getNodeForValue(CS.getInstruction()); + + // Populate the arguments list... + std::vector<DSNodeHandle> Args; + for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); + I != E; ++I) + if (DS::isPointerType((*I)->getType())) + Args.push_back(Result->getNodeForValue(*I)); + + // Build the call site... + DSCallSite NCS(CS, RetVal, F, Args); + + // Perform the merging now of the graph for the callee, which will + // come with mod/ref bits set... + Result->mergeInGraph(NCS, *F, IPModRefObj.getBUDSGraph(*F), + DSGraph::StripAllocaBit + | DSGraph::DontCloneCallNodes + | DSGraph::DontCloneAuxCallNodes); + } + else + assert(0 && "See error message"); + + // Remove dead nodes aggressively to match the caller's original graph. + Result->removeDeadNodes(DSGraph::KeepUnreachableGlobals); + + // Step #4: Return the clone + the mapping (by ref) + return Result; +} + +// Compute Mod/Ref bit vectors for a single call site. +// These are copies of the Read/Write flags from the nodes of +// the graph produced by clearing all flags in the caller's TD graph +// and then inlining the callee's BU graph into the caller's TD graph. +// +void +FunctionModRefInfo::computeModRef(CallSite CS) +{ + // Allocate the mod/ref info for the call site. Bits automatically cleared. + ModRefInfo* callModRefInfo = new ModRefInfo(funcTDGraph->getGraphSize()); + callSiteModRefInfo[CS.getInstruction()] = callModRefInfo; + + // Get a copy of the graph for the callee with the callee inlined + hash_map<const DSNode*, DSNodeHandle> NodeMap; + DSGraph* csgp = ResolveCallSiteModRefInfo(CS, NodeMap); + if (!csgp) + { // Callee's side effects are unknown: mark all nodes Mod and Ref. + // Eventually this should only mark nodes visible to the callee, i.e., + // exclude stack variables not reachable from any outgoing argument + // or any global. + callModRefInfo->getModSet().set(); + callModRefInfo->getRefSet().set(); + return; + } + + // For all nodes in the graph, extract the mod/ref information + for (DSGraph::node_iterator NI = funcTDGraph->node_begin(), + E = funcTDGraph->node_end(); NI != E; ++NI) { + DSNode* csgNode = NodeMap[*NI].getNode(); + assert(csgNode && "Inlined and original graphs do not correspond!"); + if (csgNode->isModified()) + callModRefInfo->setNodeIsMod(getNodeId(*NI)); + if (csgNode->isRead()) + callModRefInfo->setNodeIsRef(getNodeId(*NI)); + } + + // Drop nodemap before we delete the graph... + NodeMap.clear(); + delete csgp; +} + + +class DSGraphPrintHelper { + const DSGraph& tdGraph; + std::vector<std::vector<const Value*> > knownValues; // identifiable objects + +public: + /*ctor*/ DSGraphPrintHelper(const FunctionModRefInfo& fmrInfo) + : tdGraph(fmrInfo.getFuncGraph()) + { + knownValues.resize(tdGraph.getGraphSize()); + + // For every identifiable value, save Value pointer in knownValues[i] + for (hash_map<Value*, DSNodeHandle>::const_iterator + I = tdGraph.getScalarMap().begin(), + E = tdGraph.getScalarMap().end(); I != E; ++I) + if (isa<GlobalValue>(I->first) || + isa<Argument>(I->first) || + isa<LoadInst>(I->first) || + isa<AllocaInst>(I->first) || + isa<MallocInst>(I->first)) + { + unsigned nodeId = fmrInfo.getNodeId(I->second.getNode()); + knownValues[nodeId].push_back(I->first); + } + } + + void printValuesInBitVec(std::ostream &O, const BitSetVector& bv) const + { + assert(bv.size() == knownValues.size()); + + if (bv.none()) + { // No bits are set: just say so and return + O << "\tNONE.\n"; + return; + } + + if (bv.all()) + { // All bits are set: just say so and return + O << "\tALL GRAPH NODES.\n"; + return; + } + + for (unsigned i=0, N=bv.size(); i < N; ++i) + if (bv.test(i)) + { + O << "\tNode# " << i << " : "; + if (! knownValues[i].empty()) + for (unsigned j=0, NV=knownValues[i].size(); j < NV; j++) + { + const Value* V = knownValues[i][j]; + + if (isa<GlobalValue>(V)) O << "(Global) "; + else if (isa<Argument>(V)) O << "(Target of FormalParm) "; + else if (isa<LoadInst>(V)) O << "(Target of LoadInst ) "; + else if (isa<AllocaInst>(V)) O << "(Target of AllocaInst) "; + else if (isa<MallocInst>(V)) O << "(Target of MallocInst) "; + + if (V->hasName()) O << V->getName(); + else if (isa<Instruction>(V)) O << *V; + else O << "(Value*) 0x" << (void*) V; + + O << std::string((j < NV-1)? "; " : "\n"); + } +#if 0 + else + tdGraph.getNodes()[i]->print(O, /*graph*/ NULL); +#endif + } + } +}; + + +// Print the results of the pass. +// Currently this just prints bit-vectors and is not very readable. +// +void FunctionModRefInfo::print(std::ostream &O) const +{ + DSGraphPrintHelper DPH(*this); + + O << "========== Mod/ref information for function " + << F.getName() << "========== \n\n"; + + // First: Print Globals and Locals modified anywhere in the function. + // + O << " -----Mod/Ref in the body of function " << F.getName()<< ":\n"; + + O << " --Objects modified in the function body:\n"; + DPH.printValuesInBitVec(O, funcModRefInfo.getModSet()); + + O << " --Objects referenced in the function body:\n"; + DPH.printValuesInBitVec(O, funcModRefInfo.getRefSet()); + + O << " --Mod and Ref vectors for the nodes listed above:\n"; + funcModRefInfo.print(O, "\t"); + + O << "\n"; + + // Second: Print Globals and Locals modified at each call site in function + // + for (std::map<const Instruction *, ModRefInfo*>::const_iterator + CI = callSiteModRefInfo.begin(), CE = callSiteModRefInfo.end(); + CI != CE; ++CI) + { + O << " ----Mod/Ref information for call site\n" << CI->first; + + O << " --Objects modified at call site:\n"; + DPH.printValuesInBitVec(O, CI->second->getModSet()); + + O << " --Objects referenced at call site:\n"; + DPH.printValuesInBitVec(O, CI->second->getRefSet()); + + O << " --Mod and Ref vectors for the nodes listed above:\n"; + CI->second->print(O, "\t"); + + O << "\n"; + } + + O << "\n"; +} + +void FunctionModRefInfo::dump() const +{ + print(std::cerr); +} + + +//---------------------------------------------------------------------------- +// class IPModRef: An interprocedural pass that computes IP Mod/Ref info. +//---------------------------------------------------------------------------- + +// Free the FunctionModRefInfo objects cached in funcToModRefInfoMap. +// +void IPModRef::releaseMemory() +{ + for(std::map<const Function*, FunctionModRefInfo*>::iterator + I=funcToModRefInfoMap.begin(), E=funcToModRefInfoMap.end(); I != E; ++I) + delete(I->second); + + // Clear map so memory is not re-released if we are called again + funcToModRefInfoMap.clear(); +} + +// Run the "interprocedural" pass on each function. This needs to do +// NO real interprocedural work because all that has been done the +// data structure analysis. +// +bool IPModRef::run(Module &theModule) +{ + M = &theModule; + + for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) + if (! FI->isExternal()) + getFuncInfo(*FI, /*computeIfMissing*/ true); + return true; +} + + +FunctionModRefInfo& IPModRef::getFuncInfo(const Function& func, + bool computeIfMissing) +{ + FunctionModRefInfo*& funcInfo = funcToModRefInfoMap[&func]; + assert (funcInfo != NULL || computeIfMissing); + if (funcInfo == NULL) + { // Create a new FunctionModRefInfo object. + // Clone the top-down graph and remove any dead nodes first, because + // otherwise original and merged graphs will not match. + // The memory for this graph clone will be freed by FunctionModRefInfo. + DSGraph* funcTDGraph = + new DSGraph(getAnalysis<TDDataStructures>().getDSGraph(func)); + funcTDGraph->removeDeadNodes(DSGraph::KeepUnreachableGlobals); + + funcInfo = new FunctionModRefInfo(func, *this, funcTDGraph); //auto-insert + funcInfo->computeModRef(func); // computes the mod/ref info + } + return *funcInfo; +} + +/// getBUDSGraph - This method returns the BU data structure graph for F through +/// the use of the BUDataStructures object. +/// +const DSGraph &IPModRef::getBUDSGraph(const Function &F) { + return getAnalysis<BUDataStructures>().getDSGraph(F); +} + + +// getAnalysisUsage - This pass requires top-down data structure graphs. +// It modifies nothing. +// +void IPModRef::getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + AU.addRequired<LocalDataStructures>(); + AU.addRequired<BUDataStructures>(); + AU.addRequired<TDDataStructures>(); +} + + +void IPModRef::print(std::ostream &O) const +{ + O << "\nRESULTS OF INTERPROCEDURAL MOD/REF ANALYSIS:\n\n"; + + for (std::map<const Function*, FunctionModRefInfo*>::const_iterator + mapI = funcToModRefInfoMap.begin(), mapE = funcToModRefInfoMap.end(); + mapI != mapE; ++mapI) + mapI->second->print(O); + + O << "\n"; +} + + +void IPModRef::dump() const +{ + print(std::cerr); +} + +} // End llvm namespace diff --git a/llvm/lib/Analysis/DataStructure/MemoryDepAnalysis.cpp b/llvm/lib/Analysis/DataStructure/MemoryDepAnalysis.cpp new file mode 100644 index 00000000000..97bc9816031 --- /dev/null +++ b/llvm/lib/Analysis/DataStructure/MemoryDepAnalysis.cpp @@ -0,0 +1,500 @@ +//===- MemoryDepAnalysis.cpp - Compute dep graph for memory ops -----------===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements a pass (MemoryDepAnalysis) that computes memory-based +// data dependences between instructions for each function in a module. +// Memory-based dependences occur due to load and store operations, but +// also the side-effects of call instructions. +// +// The result of this pass is a DependenceGraph for each function +// representing the memory-based data dependences between instructions. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/MemoryDepAnalysis.h" +#include "llvm/Module.h" +#include "llvm/iMemory.h" +#include "llvm/iOther.h" +#include "llvm/Analysis/IPModRef.h" +#include "llvm/Analysis/DataStructure.h" +#include "llvm/Analysis/DSGraph.h" +#include "llvm/Support/InstVisitor.h" +#include "llvm/Support/CFG.h" +#include "Support/SCCIterator.h" +#include "Support/Statistic.h" +#include "Support/STLExtras.h" +#include "Support/hash_map" +#include "Support/hash_set" + +namespace llvm { + +///-------------------------------------------------------------------------- +/// struct ModRefTable: +/// +/// A data structure that tracks ModRefInfo for instructions: +/// -- modRefMap is a map of Instruction* -> ModRefInfo for the instr. +/// -- definers is a vector of instructions that define any node +/// -- users is a vector of instructions that reference any node +/// -- numUsersBeforeDef is a vector indicating that the number of users +/// seen before definers[i] is numUsersBeforeDef[i]. +/// +/// numUsersBeforeDef[] effectively tells us the exact interleaving of +/// definers and users within the ModRefTable. +/// This is only maintained when constructing the table for one SCC, and +/// not copied over from one table to another since it is no longer useful. +///-------------------------------------------------------------------------- + +struct ModRefTable { + typedef hash_map<Instruction*, ModRefInfo> ModRefMap; + typedef ModRefMap::const_iterator const_map_iterator; + typedef ModRefMap:: iterator map_iterator; + typedef std::vector<Instruction*>::const_iterator const_ref_iterator; + typedef std::vector<Instruction*>:: iterator ref_iterator; + + ModRefMap modRefMap; + std::vector<Instruction*> definers; + std::vector<Instruction*> users; + std::vector<unsigned> numUsersBeforeDef; + + // Iterators to enumerate all the defining instructions + const_ref_iterator defsBegin() const { return definers.begin(); } + ref_iterator defsBegin() { return definers.begin(); } + const_ref_iterator defsEnd() const { return definers.end(); } + ref_iterator defsEnd() { return definers.end(); } + + // Iterators to enumerate all the user instructions + const_ref_iterator usersBegin() const { return users.begin(); } + ref_iterator usersBegin() { return users.begin(); } + const_ref_iterator usersEnd() const { return users.end(); } + ref_iterator usersEnd() { return users.end(); } + + // Iterator identifying the last user that was seen *before* a + // specified def. In particular, all users in the half-closed range + // [ usersBegin(), usersBeforeDef_End(defPtr) ) + // were seen *before* the specified def. All users in the half-closed range + // [ usersBeforeDef_End(defPtr), usersEnd() ) + // were seen *after* the specified def. + // + ref_iterator usersBeforeDef_End(const_ref_iterator defPtr) { + unsigned defIndex = (unsigned) (defPtr - defsBegin()); + assert(defIndex < numUsersBeforeDef.size()); + assert(usersBegin() + numUsersBeforeDef[defIndex] <= usersEnd()); + return usersBegin() + numUsersBeforeDef[defIndex]; + } + const_ref_iterator usersBeforeDef_End(const_ref_iterator defPtr) const { + return const_cast<ModRefTable*>(this)->usersBeforeDef_End(defPtr); + } + + // + // Modifier methods + // + void AddDef(Instruction* D) { + definers.push_back(D); + numUsersBeforeDef.push_back(users.size()); + } + void AddUse(Instruction* U) { + users.push_back(U); + } + void Insert(const ModRefTable& fromTable) { + modRefMap.insert(fromTable.modRefMap.begin(), fromTable.modRefMap.end()); + definers.insert(definers.end(), + fromTable.definers.begin(), fromTable.definers.end()); + users.insert(users.end(), + fromTable.users.begin(), fromTable.users.end()); + numUsersBeforeDef.clear(); /* fromTable.numUsersBeforeDef is ignored */ + } +}; + + +///-------------------------------------------------------------------------- +/// class ModRefInfoBuilder: +/// +/// A simple InstVisitor<> class that retrieves the Mod/Ref info for +/// Load/Store/Call instructions and inserts this information in +/// a ModRefTable. It also records all instructions that Mod any node +/// and all that use any node. +///-------------------------------------------------------------------------- + +class ModRefInfoBuilder : public InstVisitor<ModRefInfoBuilder> { + const DSGraph& funcGraph; + const FunctionModRefInfo& funcModRef; + struct ModRefTable& modRefTable; + + ModRefInfoBuilder(); // DO NOT IMPLEMENT + ModRefInfoBuilder(const ModRefInfoBuilder&); // DO NOT IMPLEMENT + void operator=(const ModRefInfoBuilder&); // DO NOT IMPLEMENT + +public: + ModRefInfoBuilder(const DSGraph& _funcGraph, + const FunctionModRefInfo& _funcModRef, + ModRefTable& _modRefTable) + : funcGraph(_funcGraph), funcModRef(_funcModRef), modRefTable(_modRefTable) + { + } + + // At a call instruction, retrieve the ModRefInfo using IPModRef results. + // Add the call to the defs list if it modifies any nodes and to the uses + // list if it refs any nodes. + // + void visitCallInst(CallInst& callInst) { + ModRefInfo safeModRef(funcGraph.getGraphSize()); + const ModRefInfo* callModRef = funcModRef.getModRefInfo(callInst); + if (callModRef == NULL) { + // call to external/unknown function: mark all nodes as Mod and Ref + safeModRef.getModSet().set(); + safeModRef.getRefSet().set(); + callModRef = &safeModRef; + } + + modRefTable.modRefMap.insert(std::make_pair(&callInst, + ModRefInfo(*callModRef))); + if (callModRef->getModSet().any()) + modRefTable.AddDef(&callInst); + if (callModRef->getRefSet().any()) + modRefTable.AddUse(&callInst); + } + + // At a store instruction, add to the mod set the single node pointed to + // by the pointer argument of the store. Interestingly, if there is no + // such node, that would be a null pointer reference! + void visitStoreInst(StoreInst& storeInst) { + const DSNodeHandle& ptrNode = + funcGraph.getNodeForValue(storeInst.getPointerOperand()); + if (const DSNode* target = ptrNode.getNode()) { + unsigned nodeId = funcModRef.getNodeId(target); + ModRefInfo& minfo = + modRefTable.modRefMap.insert( + std::make_pair(&storeInst, + ModRefInfo(funcGraph.getGraphSize()))).first->second; + minfo.setNodeIsMod(nodeId); + modRefTable.AddDef(&storeInst); + } else + std::cerr << "Warning: Uninitialized pointer reference!\n"; + } + + // At a load instruction, add to the ref set the single node pointed to + // by the pointer argument of the load. Interestingly, if there is no + // such node, that would be a null pointer reference! + void visitLoadInst(LoadInst& loadInst) { + const DSNodeHandle& ptrNode = + funcGraph.getNodeForValue(loadInst.getPointerOperand()); + if (const DSNode* target = ptrNode.getNode()) { + unsigned nodeId = funcModRef.getNodeId(target); + ModRefInfo& minfo = + modRefTable.modRefMap.insert( + std::make_pair(&loadInst, + ModRefInfo(funcGraph.getGraphSize()))).first->second; + minfo.setNodeIsRef(nodeId); + modRefTable.AddUse(&loadInst); + } else + std::cerr << "Warning: Uninitialized pointer reference!\n"; + } +}; + + +//---------------------------------------------------------------------------- +// class MemoryDepAnalysis: A dep. graph for load/store/call instructions +//---------------------------------------------------------------------------- + + +/// getAnalysisUsage - This does not modify anything. It uses the Top-Down DS +/// Graph and IPModRef. +/// +void MemoryDepAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + AU.addRequired<TDDataStructures>(); + AU.addRequired<IPModRef>(); +} + + +/// Basic dependence gathering algorithm, using scc_iterator on CFG: +/// +/// for every SCC S in the CFG in PostOrder on the SCC DAG +/// { +/// for every basic block BB in S in *postorder* +/// for every instruction I in BB in reverse +/// Add (I, ModRef[I]) to ModRefCurrent +/// if (Mod[I] != NULL) +/// Add I to DefSetCurrent: { I \in S : Mod[I] != NULL } +/// if (Ref[I] != NULL) +/// Add I to UseSetCurrent: { I : Ref[I] != NULL } +/// +/// for every def D in DefSetCurrent +/// +/// // NOTE: D comes after itself iff S contains a loop +/// if (HasLoop(S) && D & D) +/// Add output-dep: D -> D2 +/// +/// for every def D2 *after* D in DefSetCurrent +/// // NOTE: D2 comes before D in execution order +/// if (D & D2) +/// Add output-dep: D2 -> D +/// if (HasLoop(S)) +/// Add output-dep: D -> D2 +/// +/// for every use U in UseSetCurrent that was seen *before* D +/// // NOTE: U comes after D in execution order +/// if (U & D) +/// if (U != D || HasLoop(S)) +/// Add true-dep: D -> U +/// if (HasLoop(S)) +/// Add anti-dep: U -> D +/// +/// for every use U in UseSetCurrent that was seen *after* D +/// // NOTE: U comes before D in execution order +/// if (U & D) +/// if (U != D || HasLoop(S)) +/// Add anti-dep: U -> D +/// if (HasLoop(S)) +/// Add true-dep: D -> U +/// +/// for every def Dnext in DefSetAfter +/// // NOTE: Dnext comes after D in execution order +/// if (Dnext & D) +/// Add output-dep: D -> Dnext +/// +/// for every use Unext in UseSetAfter +/// // NOTE: Unext comes after D in execution order +/// if (Unext & D) +/// Add true-dep: D -> Unext +/// +/// for every use U in UseSetCurrent +/// for every def Dnext in DefSetAfter +/// // NOTE: Dnext comes after U in execution order +/// if (Dnext & D) +/// Add anti-dep: U -> Dnext +/// +/// Add ModRefCurrent to ModRefAfter: { (I, ModRef[I] ) } +/// Add DefSetCurrent to DefSetAfter: { I : Mod[I] != NULL } +/// Add UseSetCurrent to UseSetAfter: { I : Ref[I] != NULL } +/// } +/// +/// +void MemoryDepAnalysis::ProcessSCC(std::vector<BasicBlock*> &S, + ModRefTable& ModRefAfter, bool hasLoop) { + ModRefTable ModRefCurrent; + ModRefTable::ModRefMap& mapCurrent = ModRefCurrent.modRefMap; + ModRefTable::ModRefMap& mapAfter = ModRefAfter.modRefMap; + + // Builder class fills out a ModRefTable one instruction at a time. + // To use it, we just invoke it's visit function for each basic block: + // + // for each basic block BB in the SCC in *postorder* + // for each instruction I in BB in *reverse* + // ModRefInfoBuilder::visit(I) + // : Add (I, ModRef[I]) to ModRefCurrent.modRefMap + // : Add I to ModRefCurrent.definers if it defines any node + // : Add I to ModRefCurrent.users if it uses any node + // + ModRefInfoBuilder builder(*funcGraph, *funcModRef, ModRefCurrent); + for (std::vector<BasicBlock*>::iterator BI = S.begin(), BE = S.end(); + BI != BE; ++BI) + // Note: BBs in the SCC<> created by scc_iterator are in postorder. + for (BasicBlock::reverse_iterator II=(*BI)->rbegin(), IE=(*BI)->rend(); + II != IE; ++II) + builder.visit(*II); + + /// for every def D in DefSetCurrent + /// + for (ModRefTable::ref_iterator II=ModRefCurrent.defsBegin(), + IE=ModRefCurrent.defsEnd(); II != IE; ++II) + { + /// // NOTE: D comes after itself iff S contains a loop + /// if (HasLoop(S)) + /// Add output-dep: D -> D2 + if (hasLoop) + funcDepGraph->AddSimpleDependence(**II, **II, OutputDependence); + + /// for every def D2 *after* D in DefSetCurrent + /// // NOTE: D2 comes before D in execution order + /// if (D2 & D) + /// Add output-dep: D2 -> D + /// if (HasLoop(S)) + /// Add output-dep: D -> D2 + for (ModRefTable::ref_iterator JI=II+1; JI != IE; ++JI) + if (!Disjoint(mapCurrent.find(*II)->second.getModSet(), + mapCurrent.find(*JI)->second.getModSet())) + { + funcDepGraph->AddSimpleDependence(**JI, **II, OutputDependence); + if (hasLoop) + funcDepGraph->AddSimpleDependence(**II, **JI, OutputDependence); + } + + /// for every use U in UseSetCurrent that was seen *before* D + /// // NOTE: U comes after D in execution order + /// if (U & D) + /// if (U != D || HasLoop(S)) + /// Add true-dep: U -> D + /// if (HasLoop(S)) + /// Add anti-dep: D -> U + ModRefTable::ref_iterator JI=ModRefCurrent.usersBegin(); + ModRefTable::ref_iterator JE = ModRefCurrent.usersBeforeDef_End(II); + for ( ; JI != JE; ++JI) + if (!Disjoint(mapCurrent.find(*II)->second.getModSet(), + mapCurrent.find(*JI)->second.getRefSet())) + { + if (*II != *JI || hasLoop) + funcDepGraph->AddSimpleDependence(**II, **JI, TrueDependence); + if (hasLoop) + funcDepGraph->AddSimpleDependence(**JI, **II, AntiDependence); + } + + /// for every use U in UseSetCurrent that was seen *after* D + /// // NOTE: U comes before D in execution order + /// if (U & D) + /// if (U != D || HasLoop(S)) + /// Add anti-dep: U -> D + /// if (HasLoop(S)) + /// Add true-dep: D -> U + for (/*continue JI*/ JE = ModRefCurrent.usersEnd(); JI != JE; ++JI) + if (!Disjoint(mapCurrent.find(*II)->second.getModSet(), + mapCurrent.find(*JI)->second.getRefSet())) + { + if (*II != *JI || hasLoop) + funcDepGraph->AddSimpleDependence(**JI, **II, AntiDependence); + if (hasLoop) + funcDepGraph->AddSimpleDependence(**II, **JI, TrueDependence); + } + + /// for every def Dnext in DefSetPrev + /// // NOTE: Dnext comes after D in execution order + /// if (Dnext & D) + /// Add output-dep: D -> Dnext + for (ModRefTable::ref_iterator JI=ModRefAfter.defsBegin(), + JE=ModRefAfter.defsEnd(); JI != JE; ++JI) + if (!Disjoint(mapCurrent.find(*II)->second.getModSet(), + mapAfter.find(*JI)->second.getModSet())) + funcDepGraph->AddSimpleDependence(**II, **JI, OutputDependence); + + /// for every use Unext in UseSetAfter + /// // NOTE: Unext comes after D in execution order + /// if (Unext & D) + /// Add true-dep: D -> Unext + for (ModRefTable::ref_iterator JI=ModRefAfter.usersBegin(), + JE=ModRefAfter.usersEnd(); JI != JE; ++JI) + if (!Disjoint(mapCurrent.find(*II)->second.getModSet(), + mapAfter.find(*JI)->second.getRefSet())) + funcDepGraph->AddSimpleDependence(**II, **JI, TrueDependence); + } + + /// + /// for every use U in UseSetCurrent + /// for every def Dnext in DefSetAfter + /// // NOTE: Dnext comes after U in execution order + /// if (Dnext & D) + /// Add anti-dep: U -> Dnext + for (ModRefTable::ref_iterator II=ModRefCurrent.usersBegin(), + IE=ModRefCurrent.usersEnd(); II != IE; ++II) + for (ModRefTable::ref_iterator JI=ModRefAfter.defsBegin(), + JE=ModRefAfter.defsEnd(); JI != JE; ++JI) + if (!Disjoint(mapCurrent.find(*II)->second.getRefSet(), + mapAfter.find(*JI)->second.getModSet())) + funcDepGraph->AddSimpleDependence(**II, **JI, AntiDependence); + + /// Add ModRefCurrent to ModRefAfter: { (I, ModRef[I] ) } + /// Add DefSetCurrent to DefSetAfter: { I : Mod[I] != NULL } + /// Add UseSetCurrent to UseSetAfter: { I : Ref[I] != NULL } + ModRefAfter.Insert(ModRefCurrent); +} + + +/// Debugging support methods +/// +void MemoryDepAnalysis::print(std::ostream &O) const +{ + // TEMPORARY LOOP + for (hash_map<Function*, DependenceGraph*>::const_iterator + I = funcMap.begin(), E = funcMap.end(); I != E; ++I) + { + Function* func = I->first; + DependenceGraph* depGraph = I->second; + + O << "\n================================================================\n"; + O << "DEPENDENCE GRAPH FOR MEMORY OPERATIONS IN FUNCTION " << func->getName(); + O << "\n================================================================\n\n"; + depGraph->print(*func, O); + + } +} + + +/// +/// Run the pass on a function +/// +bool MemoryDepAnalysis::runOnFunction(Function &F) { + assert(!F.isExternal()); + + // Get the FunctionModRefInfo holding IPModRef results for this function. + // Use the TD graph recorded within the FunctionModRefInfo object, which + // may not be the same as the original TD graph computed by DS analysis. + // + funcModRef = &getAnalysis<IPModRef>().getFunctionModRefInfo(F); + funcGraph = &funcModRef->getFuncGraph(); + + // TEMPORARY: ptr to depGraph (later just becomes "this"). + assert(!funcMap.count(&F) && "Analyzing function twice?"); + funcDepGraph = funcMap[&F] = new DependenceGraph(); + + ModRefTable ModRefAfter; + + for (scc_iterator<Function*> I = scc_begin(&F), E = scc_end(&F); I != E; ++I) + ProcessSCC(*I, ModRefAfter, I.hasLoop()); + + return true; +} + + +//------------------------------------------------------------------------- +// TEMPORARY FUNCTIONS TO MAKE THIS A MODULE PASS --- +// These functions will go away once this class becomes a FunctionPass. +// + +// Driver function to compute dependence graphs for every function. +// This is temporary and will go away once this is a FunctionPass. +// +bool MemoryDepAnalysis::run(Module& M) +{ + for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI) + if (! FI->isExternal()) + runOnFunction(*FI); // automatically inserts each depGraph into funcMap + return true; +} + +// Release all the dependence graphs in the map. +void MemoryDepAnalysis::releaseMemory() +{ + for (hash_map<Function*, DependenceGraph*>::const_iterator + I = funcMap.begin(), E = funcMap.end(); I != E; ++I) + delete I->second; + funcMap.clear(); + + // Clear pointers because the pass constructor will not be invoked again. + funcDepGraph = NULL; + funcGraph = NULL; + funcModRef = NULL; +} + +MemoryDepAnalysis::~MemoryDepAnalysis() +{ + releaseMemory(); +} + +//----END TEMPORARY FUNCTIONS---------------------------------------------- + + +void MemoryDepAnalysis::dump() const +{ + this->print(std::cerr); +} + +static RegisterAnalysis<MemoryDepAnalysis> +Z("memdep", "Memory Dependence Analysis"); + + +} // End llvm namespace |

