diff options
Diffstat (limited to 'llvm/lib/Analysis/AliasAnalysis.cpp')
-rw-r--r-- | llvm/lib/Analysis/AliasAnalysis.cpp | 441 |
1 files changed, 234 insertions, 207 deletions
diff --git a/llvm/lib/Analysis/AliasAnalysis.cpp b/llvm/lib/Analysis/AliasAnalysis.cpp index 4d4a30290f4..26ab74bbb4e 100644 --- a/llvm/lib/Analysis/AliasAnalysis.cpp +++ b/llvm/lib/Analysis/AliasAnalysis.cpp @@ -25,9 +25,16 @@ //===----------------------------------------------------------------------===// #include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/BasicAliasAnalysis.h" #include "llvm/Analysis/CFG.h" +#include "llvm/Analysis/CFLAliasAnalysis.h" #include "llvm/Analysis/CaptureTracking.h" +#include "llvm/Analysis/GlobalsModRef.h" +#include "llvm/Analysis/ObjCARCAliasAnalysis.h" +#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" +#include "llvm/Analysis/ScopedNoAliasAA.h" #include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/TypeBasedAliasAnalysis.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/DataLayout.h" @@ -40,34 +47,72 @@ #include "llvm/Pass.h" using namespace llvm; -// Register the AliasAnalysis interface, providing a nice name to refer to. -INITIALIZE_ANALYSIS_GROUP(AliasAnalysis, "Alias Analysis", NoAA) -char AliasAnalysis::ID = 0; +/// Allow disabling BasicAA from the AA results. This is particularly useful +/// when testing to isolate a single AA implementation. +static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden, + cl::init(false)); + +AAResults::AAResults(AAResults &&Arg) : AAs(std::move(Arg.AAs)) { + for (auto &AA : AAs) + AA->setAAResults(this); +} + +AAResults &AAResults::operator=(AAResults &&Arg) { + AAs = std::move(Arg.AAs); + for (auto &AA : AAs) + AA->setAAResults(this); + return *this; +} + +AAResults::~AAResults() { +// FIXME; It would be nice to at least clear out the pointers back to this +// aggregation here, but we end up with non-nesting lifetimes in the legacy +// pass manager that prevent this from working. In the legacy pass manager +// we'll end up with dangling references here in some cases. +#if 0 + for (auto &AA : AAs) + AA->setAAResults(nullptr); +#endif +} //===----------------------------------------------------------------------===// // Default chaining methods //===----------------------------------------------------------------------===// -AliasResult AliasAnalysis::alias(const MemoryLocation &LocA, - const MemoryLocation &LocB) { - assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); - return AA->alias(LocA, LocB); +AliasResult AAResults::alias(const MemoryLocation &LocA, + const MemoryLocation &LocB) { + for (const auto &AA : AAs) { + auto Result = AA->alias(LocA, LocB); + if (Result != MayAlias) + return Result; + } + return MayAlias; } -bool AliasAnalysis::pointsToConstantMemory(const MemoryLocation &Loc, - bool OrLocal) { - assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); - return AA->pointsToConstantMemory(Loc, OrLocal); +bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc, + bool OrLocal) { + for (const auto &AA : AAs) + if (AA->pointsToConstantMemory(Loc, OrLocal)) + return true; + + return false; } -ModRefInfo AliasAnalysis::getArgModRefInfo(ImmutableCallSite CS, - unsigned ArgIdx) { - assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); - return AA->getArgModRefInfo(CS, ArgIdx); +ModRefInfo AAResults::getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) { + ModRefInfo Result = MRI_ModRef; + + for (const auto &AA : AAs) { + Result = ModRefInfo(Result & AA->getArgModRefInfo(CS, ArgIdx)); + + // Early-exit the moment we reach the bottom of the lattice. + if (Result == MRI_NoModRef) + return Result; + } + + return Result; } -ModRefInfo AliasAnalysis::getModRefInfo(Instruction *I, - ImmutableCallSite Call) { +ModRefInfo AAResults::getModRefInfo(Instruction *I, ImmutableCallSite Call) { // We may have two calls if (auto CS = ImmutableCallSite(I)) { // Check if the two calls modify the same memory @@ -84,177 +129,70 @@ ModRefInfo AliasAnalysis::getModRefInfo(Instruction *I, return MRI_NoModRef; } -ModRefInfo AliasAnalysis::getModRefInfo(ImmutableCallSite CS, - const MemoryLocation &Loc) { - assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); +ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS, + const MemoryLocation &Loc) { + ModRefInfo Result = MRI_ModRef; - auto MRB = getModRefBehavior(CS); - if (MRB == FMRB_DoesNotAccessMemory) - return MRI_NoModRef; + for (const auto &AA : AAs) { + Result = ModRefInfo(Result & AA->getModRefInfo(CS, Loc)); - ModRefInfo Mask = MRI_ModRef; - if (onlyReadsMemory(MRB)) - Mask = MRI_Ref; - - if (onlyAccessesArgPointees(MRB)) { - bool doesAlias = false; - ModRefInfo AllArgsMask = MRI_NoModRef; - if (doesAccessArgPointees(MRB)) { - for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end(); - AI != AE; ++AI) { - const Value *Arg = *AI; - if (!Arg->getType()->isPointerTy()) - continue; - unsigned ArgIdx = std::distance(CS.arg_begin(), AI); - MemoryLocation ArgLoc = - MemoryLocation::getForArgument(CS, ArgIdx, *TLI); - if (!isNoAlias(ArgLoc, Loc)) { - ModRefInfo ArgMask = getArgModRefInfo(CS, ArgIdx); - doesAlias = true; - AllArgsMask = ModRefInfo(AllArgsMask | ArgMask); - } - } - } - if (!doesAlias) - return MRI_NoModRef; - Mask = ModRefInfo(Mask & AllArgsMask); + // Early-exit the moment we reach the bottom of the lattice. + if (Result == MRI_NoModRef) + return Result; } - // If Loc is a constant memory location, the call definitely could not - // modify the memory location. - if ((Mask & MRI_Mod) && pointsToConstantMemory(Loc)) - Mask = ModRefInfo(Mask & ~MRI_Mod); - - // If this is the end of the chain, don't forward. - if (!AA) return Mask; - - // Otherwise, fall back to the next AA in the chain. But we can merge - // in any mask we've managed to compute. - return ModRefInfo(AA->getModRefInfo(CS, Loc) & Mask); + return Result; } -ModRefInfo AliasAnalysis::getModRefInfo(ImmutableCallSite CS1, - ImmutableCallSite CS2) { - assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); +ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS1, + ImmutableCallSite CS2) { + ModRefInfo Result = MRI_ModRef; - // If CS1 or CS2 are readnone, they don't interact. - auto CS1B = getModRefBehavior(CS1); - if (CS1B == FMRB_DoesNotAccessMemory) - return MRI_NoModRef; + for (const auto &AA : AAs) { + Result = ModRefInfo(Result & AA->getModRefInfo(CS1, CS2)); - auto CS2B = getModRefBehavior(CS2); - if (CS2B == FMRB_DoesNotAccessMemory) - return MRI_NoModRef; - - // If they both only read from memory, there is no dependence. - if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B)) - return MRI_NoModRef; - - ModRefInfo Mask = MRI_ModRef; - - // If CS1 only reads memory, the only dependence on CS2 can be - // from CS1 reading memory written by CS2. - if (onlyReadsMemory(CS1B)) - Mask = ModRefInfo(Mask & MRI_Ref); - - // If CS2 only access memory through arguments, accumulate the mod/ref - // information from CS1's references to the memory referenced by - // CS2's arguments. - if (onlyAccessesArgPointees(CS2B)) { - ModRefInfo R = MRI_NoModRef; - if (doesAccessArgPointees(CS2B)) { - for (ImmutableCallSite::arg_iterator - I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) { - const Value *Arg = *I; - if (!Arg->getType()->isPointerTy()) - continue; - unsigned CS2ArgIdx = std::distance(CS2.arg_begin(), I); - auto CS2ArgLoc = MemoryLocation::getForArgument(CS2, CS2ArgIdx, *TLI); - - // ArgMask indicates what CS2 might do to CS2ArgLoc, and the dependence of - // CS1 on that location is the inverse. - ModRefInfo ArgMask = getArgModRefInfo(CS2, CS2ArgIdx); - if (ArgMask == MRI_Mod) - ArgMask = MRI_ModRef; - else if (ArgMask == MRI_Ref) - ArgMask = MRI_Mod; - - R = ModRefInfo((R | (getModRefInfo(CS1, CS2ArgLoc) & ArgMask)) & Mask); - if (R == Mask) - break; - } - } - return R; + // Early-exit the moment we reach the bottom of the lattice. + if (Result == MRI_NoModRef) + return Result; } - // If CS1 only accesses memory through arguments, check if CS2 references - // any of the memory referenced by CS1's arguments. If not, return NoModRef. - if (onlyAccessesArgPointees(CS1B)) { - ModRefInfo R = MRI_NoModRef; - if (doesAccessArgPointees(CS1B)) { - for (ImmutableCallSite::arg_iterator - I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) { - const Value *Arg = *I; - if (!Arg->getType()->isPointerTy()) - continue; - unsigned CS1ArgIdx = std::distance(CS1.arg_begin(), I); - auto CS1ArgLoc = MemoryLocation::getForArgument(CS1, CS1ArgIdx, *TLI); - - // ArgMask indicates what CS1 might do to CS1ArgLoc; if CS1 might Mod - // CS1ArgLoc, then we care about either a Mod or a Ref by CS2. If CS1 - // might Ref, then we care only about a Mod by CS2. - ModRefInfo ArgMask = getArgModRefInfo(CS1, CS1ArgIdx); - ModRefInfo ArgR = getModRefInfo(CS2, CS1ArgLoc); - if (((ArgMask & MRI_Mod) != MRI_NoModRef && - (ArgR & MRI_ModRef) != MRI_NoModRef) || - ((ArgMask & MRI_Ref) != MRI_NoModRef && - (ArgR & MRI_Mod) != MRI_NoModRef)) - R = ModRefInfo((R | ArgMask) & Mask); - - if (R == Mask) - break; - } - } - return R; - } + return Result; +} - // If this is the end of the chain, don't forward. - if (!AA) return Mask; +FunctionModRefBehavior AAResults::getModRefBehavior(ImmutableCallSite CS) { + FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior; - // Otherwise, fall back to the next AA in the chain. But we can merge - // in any mask we've managed to compute. - return ModRefInfo(AA->getModRefInfo(CS1, CS2) & Mask); -} + for (const auto &AA : AAs) { + Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(CS)); -FunctionModRefBehavior AliasAnalysis::getModRefBehavior(ImmutableCallSite CS) { - assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); + // Early-exit the moment we reach the bottom of the lattice. + if (Result == FMRB_DoesNotAccessMemory) + return Result; + } - auto Min = FMRB_UnknownModRefBehavior; + return Result; +} - // Call back into the alias analysis with the other form of getModRefBehavior - // to see if it can give a better response. - if (const Function *F = CS.getCalledFunction()) - Min = getModRefBehavior(F); +FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) { + FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior; - // If this is the end of the chain, don't forward. - if (!AA) return Min; + for (const auto &AA : AAs) { + Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F)); - // Otherwise, fall back to the next AA in the chain. But we can merge - // in any result we've managed to compute. - return FunctionModRefBehavior(AA->getModRefBehavior(CS) & Min); -} + // Early-exit the moment we reach the bottom of the lattice. + if (Result == FMRB_DoesNotAccessMemory) + return Result; + } -FunctionModRefBehavior AliasAnalysis::getModRefBehavior(const Function *F) { - assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); - return AA->getModRefBehavior(F); + return Result; } //===----------------------------------------------------------------------===// -// AliasAnalysis non-virtual helper method implementation +// Helper method implementation //===----------------------------------------------------------------------===// -ModRefInfo AliasAnalysis::getModRefInfo(const LoadInst *L, - const MemoryLocation &Loc) { +ModRefInfo AAResults::getModRefInfo(const LoadInst *L, + const MemoryLocation &Loc) { // Be conservative in the face of volatile/atomic. if (!L->isUnordered()) return MRI_ModRef; @@ -268,8 +206,8 @@ ModRefInfo AliasAnalysis::getModRefInfo(const LoadInst *L, return MRI_Ref; } -ModRefInfo AliasAnalysis::getModRefInfo(const StoreInst *S, - const MemoryLocation &Loc) { +ModRefInfo AAResults::getModRefInfo(const StoreInst *S, + const MemoryLocation &Loc) { // Be conservative in the face of volatile/atomic. if (!S->isUnordered()) return MRI_ModRef; @@ -290,8 +228,8 @@ ModRefInfo AliasAnalysis::getModRefInfo(const StoreInst *S, return MRI_Mod; } -ModRefInfo AliasAnalysis::getModRefInfo(const VAArgInst *V, - const MemoryLocation &Loc) { +ModRefInfo AAResults::getModRefInfo(const VAArgInst *V, + const MemoryLocation &Loc) { if (Loc.Ptr) { // If the va_arg address cannot alias the pointer in question, then the @@ -309,8 +247,8 @@ ModRefInfo AliasAnalysis::getModRefInfo(const VAArgInst *V, return MRI_ModRef; } -ModRefInfo AliasAnalysis::getModRefInfo(const AtomicCmpXchgInst *CX, - const MemoryLocation &Loc) { +ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX, + const MemoryLocation &Loc) { // Acquire/Release cmpxchg has properties that matter for arbitrary addresses. if (CX->getSuccessOrdering() > Monotonic) return MRI_ModRef; @@ -322,8 +260,8 @@ ModRefInfo AliasAnalysis::getModRefInfo(const AtomicCmpXchgInst *CX, return MRI_ModRef; } -ModRefInfo AliasAnalysis::getModRefInfo(const AtomicRMWInst *RMW, - const MemoryLocation &Loc) { +ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW, + const MemoryLocation &Loc) { // Acquire/Release atomicrmw has properties that matter for arbitrary addresses. if (RMW->getOrdering() > Monotonic) return MRI_ModRef; @@ -343,14 +281,15 @@ ModRefInfo AliasAnalysis::getModRefInfo(const AtomicRMWInst *RMW, /// BasicAA isn't willing to spend linear time determining whether an alloca /// was captured before or after this particular call, while we are. However, /// with a smarter AA in place, this test is just wasting compile time. -ModRefInfo AliasAnalysis::callCapturesBefore(const Instruction *I, - const MemoryLocation &MemLoc, - DominatorTree *DT, - OrderedBasicBlock *OBB) { +ModRefInfo AAResults::callCapturesBefore(const Instruction *I, + const MemoryLocation &MemLoc, + DominatorTree *DT, + OrderedBasicBlock *OBB) { if (!DT) return MRI_ModRef; - const Value *Object = GetUnderlyingObject(MemLoc.Ptr, *DL); + const Value *Object = + GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout()); if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) || isa<Constant>(Object)) return MRI_ModRef; @@ -393,34 +332,11 @@ ModRefInfo AliasAnalysis::callCapturesBefore(const Instruction *I, return R; } -// AliasAnalysis destructor: DO NOT move this to the header file for -// AliasAnalysis or else clients of the AliasAnalysis class may not depend on -// the AliasAnalysis.o file in the current .a file, causing alias analysis -// support to not be included in the tool correctly! -// -AliasAnalysis::~AliasAnalysis() {} - -/// InitializeAliasAnalysis - Subclasses must call this method to initialize the -/// AliasAnalysis interface before any other methods are called. -/// -void AliasAnalysis::InitializeAliasAnalysis(Pass *P, const DataLayout *NewDL) { - DL = NewDL; - auto *TLIP = P->getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); - TLI = TLIP ? &TLIP->getTLI() : nullptr; - AA = &P->getAnalysis<AliasAnalysis>(); -} - -// getAnalysisUsage - All alias analysis implementations should invoke this -// directly (using AliasAnalysis::getAnalysisUsage(AU)). -void AliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { - AU.addRequired<AliasAnalysis>(); // All AA's chain -} - /// canBasicBlockModify - Return true if it is possible for execution of the /// specified basic block to modify the location Loc. /// -bool AliasAnalysis::canBasicBlockModify(const BasicBlock &BB, - const MemoryLocation &Loc) { +bool AAResults::canBasicBlockModify(const BasicBlock &BB, + const MemoryLocation &Loc) { return canInstructionRangeModRef(BB.front(), BB.back(), Loc, MRI_Mod); } @@ -429,10 +345,10 @@ bool AliasAnalysis::canBasicBlockModify(const BasicBlock &BB, /// mode) the location Loc. The instructions to consider are all /// of the instructions in the range of [I1,I2] INCLUSIVE. /// I1 and I2 must be in the same basic block. -bool AliasAnalysis::canInstructionRangeModRef(const Instruction &I1, - const Instruction &I2, - const MemoryLocation &Loc, - const ModRefInfo Mode) { +bool AAResults::canInstructionRangeModRef(const Instruction &I1, + const Instruction &I2, + const MemoryLocation &Loc, + const ModRefInfo Mode) { assert(I1.getParent() == I2.getParent() && "Instructions not in same basic block!"); BasicBlock::const_iterator I = &I1; @@ -445,6 +361,117 @@ bool AliasAnalysis::canInstructionRangeModRef(const Instruction &I1, return false; } +// Provide a definition for the root virtual destructor. +AAResults::Concept::~Concept() {} + +AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) { + initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); +} + +char AAResultsWrapperPass::ID = 0; + +INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa", + "Function Alias Analysis Results", false, true) +INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(CFLAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass) +INITIALIZE_PASS_END(AAResultsWrapperPass, "aa", + "Function Alias Analysis Results", false, true) + +FunctionPass *llvm::createAAResultsWrapperPass() { + return new AAResultsWrapperPass(); +} + +/// Run the wrapper pass to rebuild an aggregation over known AA passes. +/// +/// This is the legacy pass manager's interface to the new-style AA results +/// aggregation object. Because this is somewhat shoe-horned into the legacy +/// pass manager, we hard code all the specific alias analyses available into +/// it. While the particular set enabled is configured via commandline flags, +/// adding a new alias analysis to LLVM will require adding support for it to +/// this list. +bool AAResultsWrapperPass::runOnFunction(Function &F) { + // NB! This *must* be reset before adding new AA results to the new + // AAResults object because in the legacy pass manager, each instance + // of these will refer to the *same* immutable analyses, registering and + // unregistering themselves with them. We need to carefully tear down the + // previous object first, in this case replacing it with an empty one, before + // registering new results. + AAR.reset(new AAResults()); + + // BasicAA is always available for function analyses. Also, we add it first + // so that it can trump TBAA results when it proves MustAlias. + // FIXME: TBAA should have an explicit mode to support this and then we + // should reconsider the ordering here. + if (!DisableBasicAA) + AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult()); + + // Populate the results with the currently available AAs. + if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>()) + AAR->addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>()) + AAR->addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = + getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>()) + AAR->addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>()) + AAR->addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>()) + AAR->addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = getAnalysisIfAvailable<CFLAAWrapperPass>()) + AAR->addAAResult(WrapperPass->getResult()); + + // Analyses don't mutate the IR, so return false. + return false; +} + +void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + AU.addRequired<BasicAAWrapperPass>(); + + // We also need to mark all the alias analysis passes we will potentially + // probe in runOnFunction as used here to ensure the legacy pass manager + // preserves them. This hard coding of lists of alias analyses is specific to + // the legacy pass manager. + AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>(); + AU.addUsedIfAvailable<TypeBasedAAWrapperPass>(); + AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>(); + AU.addUsedIfAvailable<GlobalsAAWrapperPass>(); + AU.addUsedIfAvailable<SCEVAAWrapperPass>(); + AU.addUsedIfAvailable<CFLAAWrapperPass>(); +} + +AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F, + BasicAAResult &BAR) { + AAResults AAR; + + // Add in our explicitly constructed BasicAA results. + if (!DisableBasicAA) + AAR.addAAResult(BAR); + + // Populate the results with the other currently available AAs. + if (auto *WrapperPass = + P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>()) + AAR.addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>()) + AAR.addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = + P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>()) + AAR.addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>()) + AAR.addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = P.getAnalysisIfAvailable<SCEVAAWrapperPass>()) + AAR.addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAAWrapperPass>()) + AAR.addAAResult(WrapperPass->getResult()); + + return AAR; +} + /// isNoAliasCall - Return true if this pointer is returned by a noalias /// function. bool llvm::isNoAliasCall(const Value *V) { |