summaryrefslogtreecommitdiffstats
path: root/llvm/docs/tutorial/LangImpl05.rst
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/docs/tutorial/LangImpl05.rst')
-rw-r--r--llvm/docs/tutorial/LangImpl05.rst790
1 files changed, 790 insertions, 0 deletions
diff --git a/llvm/docs/tutorial/LangImpl05.rst b/llvm/docs/tutorial/LangImpl05.rst
new file mode 100644
index 00000000000..ae0935d9ba1
--- /dev/null
+++ b/llvm/docs/tutorial/LangImpl05.rst
@@ -0,0 +1,790 @@
+==================================================
+Kaleidoscope: Extending the Language: Control Flow
+==================================================
+
+.. contents::
+ :local:
+
+Chapter 5 Introduction
+======================
+
+Welcome to Chapter 5 of the "`Implementing a language with
+LLVM <index.html>`_" tutorial. Parts 1-4 described the implementation of
+the simple Kaleidoscope language and included support for generating
+LLVM IR, followed by optimizations and a JIT compiler. Unfortunately, as
+presented, Kaleidoscope is mostly useless: it has no control flow other
+than call and return. This means that you can't have conditional
+branches in the code, significantly limiting its power. In this episode
+of "build that compiler", we'll extend Kaleidoscope to have an
+if/then/else expression plus a simple 'for' loop.
+
+If/Then/Else
+============
+
+Extending Kaleidoscope to support if/then/else is quite straightforward.
+It basically requires adding support for this "new" concept to the
+lexer, parser, AST, and LLVM code emitter. This example is nice, because
+it shows how easy it is to "grow" a language over time, incrementally
+extending it as new ideas are discovered.
+
+Before we get going on "how" we add this extension, lets talk about
+"what" we want. The basic idea is that we want to be able to write this
+sort of thing:
+
+::
+
+ def fib(x)
+ if x < 3 then
+ 1
+ else
+ fib(x-1)+fib(x-2);
+
+In Kaleidoscope, every construct is an expression: there are no
+statements. As such, the if/then/else expression needs to return a value
+like any other. Since we're using a mostly functional form, we'll have
+it evaluate its conditional, then return the 'then' or 'else' value
+based on how the condition was resolved. This is very similar to the C
+"?:" expression.
+
+The semantics of the if/then/else expression is that it evaluates the
+condition to a boolean equality value: 0.0 is considered to be false and
+everything else is considered to be true. If the condition is true, the
+first subexpression is evaluated and returned, if the condition is
+false, the second subexpression is evaluated and returned. Since
+Kaleidoscope allows side-effects, this behavior is important to nail
+down.
+
+Now that we know what we "want", lets break this down into its
+constituent pieces.
+
+Lexer Extensions for If/Then/Else
+---------------------------------
+
+The lexer extensions are straightforward. First we add new enum values
+for the relevant tokens:
+
+.. code-block:: c++
+
+ // control
+ tok_if = -6,
+ tok_then = -7,
+ tok_else = -8,
+
+Once we have that, we recognize the new keywords in the lexer. This is
+pretty simple stuff:
+
+.. code-block:: c++
+
+ ...
+ if (IdentifierStr == "def")
+ return tok_def;
+ if (IdentifierStr == "extern")
+ return tok_extern;
+ if (IdentifierStr == "if")
+ return tok_if;
+ if (IdentifierStr == "then")
+ return tok_then;
+ if (IdentifierStr == "else")
+ return tok_else;
+ return tok_identifier;
+
+AST Extensions for If/Then/Else
+-------------------------------
+
+To represent the new expression we add a new AST node for it:
+
+.. code-block:: c++
+
+ /// IfExprAST - Expression class for if/then/else.
+ class IfExprAST : public ExprAST {
+ std::unique_ptr<ExprAST> Cond, Then, Else;
+
+ public:
+ IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
+ std::unique_ptr<ExprAST> Else)
+ : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
+ virtual Value *codegen();
+ };
+
+The AST node just has pointers to the various subexpressions.
+
+Parser Extensions for If/Then/Else
+----------------------------------
+
+Now that we have the relevant tokens coming from the lexer and we have
+the AST node to build, our parsing logic is relatively straightforward.
+First we define a new parsing function:
+
+.. code-block:: c++
+
+ /// ifexpr ::= 'if' expression 'then' expression 'else' expression
+ static std::unique_ptr<ExprAST> ParseIfExpr() {
+ getNextToken(); // eat the if.
+
+ // condition.
+ auto Cond = ParseExpression();
+ if (!Cond)
+ return nullptr;
+
+ if (CurTok != tok_then)
+ return LogError("expected then");
+ getNextToken(); // eat the then
+
+ auto Then = ParseExpression();
+ if (!Then)
+ return nullptr;
+
+ if (CurTok != tok_else)
+ return LogError("expected else");
+
+ getNextToken();
+
+ auto Else = ParseExpression();
+ if (!Else)
+ return nullptr;
+
+ return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
+ std::move(Else));
+ }
+
+Next we hook it up as a primary expression:
+
+.. code-block:: c++
+
+ static std::unique_ptr<ExprAST> ParsePrimary() {
+ switch (CurTok) {
+ default:
+ return LogError("unknown token when expecting an expression");
+ case tok_identifier:
+ return ParseIdentifierExpr();
+ case tok_number:
+ return ParseNumberExpr();
+ case '(':
+ return ParseParenExpr();
+ case tok_if:
+ return ParseIfExpr();
+ }
+ }
+
+LLVM IR for If/Then/Else
+------------------------
+
+Now that we have it parsing and building the AST, the final piece is
+adding LLVM code generation support. This is the most interesting part
+of the if/then/else example, because this is where it starts to
+introduce new concepts. All of the code above has been thoroughly
+described in previous chapters.
+
+To motivate the code we want to produce, lets take a look at a simple
+example. Consider:
+
+::
+
+ extern foo();
+ extern bar();
+ def baz(x) if x then foo() else bar();
+
+If you disable optimizations, the code you'll (soon) get from
+Kaleidoscope looks like this:
+
+.. code-block:: llvm
+
+ declare double @foo()
+
+ declare double @bar()
+
+ define double @baz(double %x) {
+ entry:
+ %ifcond = fcmp one double %x, 0.000000e+00
+ br i1 %ifcond, label %then, label %else
+
+ then: ; preds = %entry
+ %calltmp = call double @foo()
+ br label %ifcont
+
+ else: ; preds = %entry
+ %calltmp1 = call double @bar()
+ br label %ifcont
+
+ ifcont: ; preds = %else, %then
+ %iftmp = phi double [ %calltmp, %then ], [ %calltmp1, %else ]
+ ret double %iftmp
+ }
+
+To visualize the control flow graph, you can use a nifty feature of the
+LLVM '`opt <http://llvm.org/cmds/opt.html>`_' tool. If you put this LLVM
+IR into "t.ll" and run "``llvm-as < t.ll | opt -analyze -view-cfg``", `a
+window will pop up <../ProgrammersManual.html#viewing-graphs-while-debugging-code>`_ and you'll
+see this graph:
+
+.. figure:: LangImpl05-cfg.png
+ :align: center
+ :alt: Example CFG
+
+ Example CFG
+
+Another way to get this is to call "``F->viewCFG()``" or
+"``F->viewCFGOnly()``" (where F is a "``Function*``") either by
+inserting actual calls into the code and recompiling or by calling these
+in the debugger. LLVM has many nice features for visualizing various
+graphs.
+
+Getting back to the generated code, it is fairly simple: the entry block
+evaluates the conditional expression ("x" in our case here) and compares
+the result to 0.0 with the "``fcmp one``" instruction ('one' is "Ordered
+and Not Equal"). Based on the result of this expression, the code jumps
+to either the "then" or "else" blocks, which contain the expressions for
+the true/false cases.
+
+Once the then/else blocks are finished executing, they both branch back
+to the 'ifcont' block to execute the code that happens after the
+if/then/else. In this case the only thing left to do is to return to the
+caller of the function. The question then becomes: how does the code
+know which expression to return?
+
+The answer to this question involves an important SSA operation: the
+`Phi
+operation <http://en.wikipedia.org/wiki/Static_single_assignment_form>`_.
+If you're not familiar with SSA, `the wikipedia
+article <http://en.wikipedia.org/wiki/Static_single_assignment_form>`_
+is a good introduction and there are various other introductions to it
+available on your favorite search engine. The short version is that
+"execution" of the Phi operation requires "remembering" which block
+control came from. The Phi operation takes on the value corresponding to
+the input control block. In this case, if control comes in from the
+"then" block, it gets the value of "calltmp". If control comes from the
+"else" block, it gets the value of "calltmp1".
+
+At this point, you are probably starting to think "Oh no! This means my
+simple and elegant front-end will have to start generating SSA form in
+order to use LLVM!". Fortunately, this is not the case, and we strongly
+advise *not* implementing an SSA construction algorithm in your
+front-end unless there is an amazingly good reason to do so. In
+practice, there are two sorts of values that float around in code
+written for your average imperative programming language that might need
+Phi nodes:
+
+#. Code that involves user variables: ``x = 1; x = x + 1;``
+#. Values that are implicit in the structure of your AST, such as the
+ Phi node in this case.
+
+In `Chapter 7 <LangImpl7.html>`_ of this tutorial ("mutable variables"),
+we'll talk about #1 in depth. For now, just believe me that you don't
+need SSA construction to handle this case. For #2, you have the choice
+of using the techniques that we will describe for #1, or you can insert
+Phi nodes directly, if convenient. In this case, it is really
+easy to generate the Phi node, so we choose to do it directly.
+
+Okay, enough of the motivation and overview, lets generate code!
+
+Code Generation for If/Then/Else
+--------------------------------
+
+In order to generate code for this, we implement the ``codegen`` method
+for ``IfExprAST``:
+
+.. code-block:: c++
+
+ Value *IfExprAST::codegen() {
+ Value *CondV = Cond->codegen();
+ if (!CondV)
+ return nullptr;
+
+ // Convert condition to a bool by comparing equal to 0.0.
+ CondV = Builder.CreateFCmpONE(
+ CondV, ConstantFP::get(LLVMContext, APFloat(0.0)), "ifcond");
+
+This code is straightforward and similar to what we saw before. We emit
+the expression for the condition, then compare that value to zero to get
+a truth value as a 1-bit (bool) value.
+
+.. code-block:: c++
+
+ Function *TheFunction = Builder.GetInsertBlock()->getParent();
+
+ // Create blocks for the then and else cases. Insert the 'then' block at the
+ // end of the function.
+ BasicBlock *ThenBB =
+ BasicBlock::Create(LLVMContext, "then", TheFunction);
+ BasicBlock *ElseBB = BasicBlock::Create(LLVMContext, "else");
+ BasicBlock *MergeBB = BasicBlock::Create(LLVMContext, "ifcont");
+
+ Builder.CreateCondBr(CondV, ThenBB, ElseBB);
+
+This code creates the basic blocks that are related to the if/then/else
+statement, and correspond directly to the blocks in the example above.
+The first line gets the current Function object that is being built. It
+gets this by asking the builder for the current BasicBlock, and asking
+that block for its "parent" (the function it is currently embedded
+into).
+
+Once it has that, it creates three blocks. Note that it passes
+"TheFunction" into the constructor for the "then" block. This causes the
+constructor to automatically insert the new block into the end of the
+specified function. The other two blocks are created, but aren't yet
+inserted into the function.
+
+Once the blocks are created, we can emit the conditional branch that
+chooses between them. Note that creating new blocks does not implicitly
+affect the IRBuilder, so it is still inserting into the block that the
+condition went into. Also note that it is creating a branch to the
+"then" block and the "else" block, even though the "else" block isn't
+inserted into the function yet. This is all ok: it is the standard way
+that LLVM supports forward references.
+
+.. code-block:: c++
+
+ // Emit then value.
+ Builder.SetInsertPoint(ThenBB);
+
+ Value *ThenV = Then->codegen();
+ if (!ThenV)
+ return nullptr;
+
+ Builder.CreateBr(MergeBB);
+ // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
+ ThenBB = Builder.GetInsertBlock();
+
+After the conditional branch is inserted, we move the builder to start
+inserting into the "then" block. Strictly speaking, this call moves the
+insertion point to be at the end of the specified block. However, since
+the "then" block is empty, it also starts out by inserting at the
+beginning of the block. :)
+
+Once the insertion point is set, we recursively codegen the "then"
+expression from the AST. To finish off the "then" block, we create an
+unconditional branch to the merge block. One interesting (and very
+important) aspect of the LLVM IR is that it `requires all basic blocks
+to be "terminated" <../LangRef.html#functionstructure>`_ with a `control
+flow instruction <../LangRef.html#terminators>`_ such as return or
+branch. This means that all control flow, *including fall throughs* must
+be made explicit in the LLVM IR. If you violate this rule, the verifier
+will emit an error.
+
+The final line here is quite subtle, but is very important. The basic
+issue is that when we create the Phi node in the merge block, we need to
+set up the block/value pairs that indicate how the Phi will work.
+Importantly, the Phi node expects to have an entry for each predecessor
+of the block in the CFG. Why then, are we getting the current block when
+we just set it to ThenBB 5 lines above? The problem is that the "Then"
+expression may actually itself change the block that the Builder is
+emitting into if, for example, it contains a nested "if/then/else"
+expression. Because calling ``codegen()`` recursively could arbitrarily change
+the notion of the current block, we are required to get an up-to-date
+value for code that will set up the Phi node.
+
+.. code-block:: c++
+
+ // Emit else block.
+ TheFunction->getBasicBlockList().push_back(ElseBB);
+ Builder.SetInsertPoint(ElseBB);
+
+ Value *ElseV = Else->codegen();
+ if (!ElseV)
+ return nullptr;
+
+ Builder.CreateBr(MergeBB);
+ // codegen of 'Else' can change the current block, update ElseBB for the PHI.
+ ElseBB = Builder.GetInsertBlock();
+
+Code generation for the 'else' block is basically identical to codegen
+for the 'then' block. The only significant difference is the first line,
+which adds the 'else' block to the function. Recall previously that the
+'else' block was created, but not added to the function. Now that the
+'then' and 'else' blocks are emitted, we can finish up with the merge
+code:
+
+.. code-block:: c++
+
+ // Emit merge block.
+ TheFunction->getBasicBlockList().push_back(MergeBB);
+ Builder.SetInsertPoint(MergeBB);
+ PHINode *PN =
+ Builder.CreatePHI(Type::getDoubleTy(LLVMContext), 2, "iftmp");
+
+ PN->addIncoming(ThenV, ThenBB);
+ PN->addIncoming(ElseV, ElseBB);
+ return PN;
+ }
+
+The first two lines here are now familiar: the first adds the "merge"
+block to the Function object (it was previously floating, like the else
+block above). The second changes the insertion point so that newly
+created code will go into the "merge" block. Once that is done, we need
+to create the PHI node and set up the block/value pairs for the PHI.
+
+Finally, the CodeGen function returns the phi node as the value computed
+by the if/then/else expression. In our example above, this returned
+value will feed into the code for the top-level function, which will
+create the return instruction.
+
+Overall, we now have the ability to execute conditional code in
+Kaleidoscope. With this extension, Kaleidoscope is a fairly complete
+language that can calculate a wide variety of numeric functions. Next up
+we'll add another useful expression that is familiar from non-functional
+languages...
+
+'for' Loop Expression
+=====================
+
+Now that we know how to add basic control flow constructs to the
+language, we have the tools to add more powerful things. Lets add
+something more aggressive, a 'for' expression:
+
+::
+
+ extern putchard(char)
+ def printstar(n)
+ for i = 1, i < n, 1.0 in
+ putchard(42); # ascii 42 = '*'
+
+ # print 100 '*' characters
+ printstar(100);
+
+This expression defines a new variable ("i" in this case) which iterates
+from a starting value, while the condition ("i < n" in this case) is
+true, incrementing by an optional step value ("1.0" in this case). If
+the step value is omitted, it defaults to 1.0. While the loop is true,
+it executes its body expression. Because we don't have anything better
+to return, we'll just define the loop as always returning 0.0. In the
+future when we have mutable variables, it will get more useful.
+
+As before, lets talk about the changes that we need to Kaleidoscope to
+support this.
+
+Lexer Extensions for the 'for' Loop
+-----------------------------------
+
+The lexer extensions are the same sort of thing as for if/then/else:
+
+.. code-block:: c++
+
+ ... in enum Token ...
+ // control
+ tok_if = -6, tok_then = -7, tok_else = -8,
+ tok_for = -9, tok_in = -10
+
+ ... in gettok ...
+ if (IdentifierStr == "def")
+ return tok_def;
+ if (IdentifierStr == "extern")
+ return tok_extern;
+ if (IdentifierStr == "if")
+ return tok_if;
+ if (IdentifierStr == "then")
+ return tok_then;
+ if (IdentifierStr == "else")
+ return tok_else;
+ if (IdentifierStr == "for")
+ return tok_for;
+ if (IdentifierStr == "in")
+ return tok_in;
+ return tok_identifier;
+
+AST Extensions for the 'for' Loop
+---------------------------------
+
+The AST node is just as simple. It basically boils down to capturing the
+variable name and the constituent expressions in the node.
+
+.. code-block:: c++
+
+ /// ForExprAST - Expression class for for/in.
+ class ForExprAST : public ExprAST {
+ std::string VarName;
+ std::unique_ptr<ExprAST> Start, End, Step, Body;
+
+ public:
+ ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
+ std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
+ std::unique_ptr<ExprAST> Body)
+ : VarName(VarName), Start(std::move(Start)), End(std::move(End)),
+ Step(std::move(Step)), Body(std::move(Body)) {}
+ virtual Value *codegen();
+ };
+
+Parser Extensions for the 'for' Loop
+------------------------------------
+
+The parser code is also fairly standard. The only interesting thing here
+is handling of the optional step value. The parser code handles it by
+checking to see if the second comma is present. If not, it sets the step
+value to null in the AST node:
+
+.. code-block:: c++
+
+ /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
+ static std::unique_ptr<ExprAST> ParseForExpr() {
+ getNextToken(); // eat the for.
+
+ if (CurTok != tok_identifier)
+ return LogError("expected identifier after for");
+
+ std::string IdName = IdentifierStr;
+ getNextToken(); // eat identifier.
+
+ if (CurTok != '=')
+ return LogError("expected '=' after for");
+ getNextToken(); // eat '='.
+
+
+ auto Start = ParseExpression();
+ if (!Start)
+ return nullptr;
+ if (CurTok != ',')
+ return LogError("expected ',' after for start value");
+ getNextToken();
+
+ auto End = ParseExpression();
+ if (!End)
+ return nullptr;
+
+ // The step value is optional.
+ std::unique_ptr<ExprAST> Step;
+ if (CurTok == ',') {
+ getNextToken();
+ Step = ParseExpression();
+ if (!Step)
+ return nullptr;
+ }
+
+ if (CurTok != tok_in)
+ return LogError("expected 'in' after for");
+ getNextToken(); // eat 'in'.
+
+ auto Body = ParseExpression();
+ if (!Body)
+ return nullptr;
+
+ return llvm::make_unique<ForExprAST>(IdName, std::move(Start),
+ std::move(End), std::move(Step),
+ std::move(Body));
+ }
+
+LLVM IR for the 'for' Loop
+--------------------------
+
+Now we get to the good part: the LLVM IR we want to generate for this
+thing. With the simple example above, we get this LLVM IR (note that
+this dump is generated with optimizations disabled for clarity):
+
+.. code-block:: llvm
+
+ declare double @putchard(double)
+
+ define double @printstar(double %n) {
+ entry:
+ ; initial value = 1.0 (inlined into phi)
+ br label %loop
+
+ loop: ; preds = %loop, %entry
+ %i = phi double [ 1.000000e+00, %entry ], [ %nextvar, %loop ]
+ ; body
+ %calltmp = call double @putchard(double 4.200000e+01)
+ ; increment
+ %nextvar = fadd double %i, 1.000000e+00
+
+ ; termination test
+ %cmptmp = fcmp ult double %i, %n
+ %booltmp = uitofp i1 %cmptmp to double
+ %loopcond = fcmp one double %booltmp, 0.000000e+00
+ br i1 %loopcond, label %loop, label %afterloop
+
+ afterloop: ; preds = %loop
+ ; loop always returns 0.0
+ ret double 0.000000e+00
+ }
+
+This loop contains all the same constructs we saw before: a phi node,
+several expressions, and some basic blocks. Lets see how this fits
+together.
+
+Code Generation for the 'for' Loop
+----------------------------------
+
+The first part of codegen is very simple: we just output the start
+expression for the loop value:
+
+.. code-block:: c++
+
+ Value *ForExprAST::codegen() {
+ // Emit the start code first, without 'variable' in scope.
+ Value *StartVal = Start->codegen();
+ if (StartVal == 0) return 0;
+
+With this out of the way, the next step is to set up the LLVM basic
+block for the start of the loop body. In the case above, the whole loop
+body is one block, but remember that the body code itself could consist
+of multiple blocks (e.g. if it contains an if/then/else or a for/in
+expression).
+
+.. code-block:: c++
+
+ // Make the new basic block for the loop header, inserting after current
+ // block.
+ Function *TheFunction = Builder.GetInsertBlock()->getParent();
+ BasicBlock *PreheaderBB = Builder.GetInsertBlock();
+ BasicBlock *LoopBB =
+ BasicBlock::Create(LLVMContext, "loop", TheFunction);
+
+ // Insert an explicit fall through from the current block to the LoopBB.
+ Builder.CreateBr(LoopBB);
+
+This code is similar to what we saw for if/then/else. Because we will
+need it to create the Phi node, we remember the block that falls through
+into the loop. Once we have that, we create the actual block that starts
+the loop and create an unconditional branch for the fall-through between
+the two blocks.
+
+.. code-block:: c++
+
+ // Start insertion in LoopBB.
+ Builder.SetInsertPoint(LoopBB);
+
+ // Start the PHI node with an entry for Start.
+ PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(LLVMContext),
+ 2, VarName.c_str());
+ Variable->addIncoming(StartVal, PreheaderBB);
+
+Now that the "preheader" for the loop is set up, we switch to emitting
+code for the loop body. To begin with, we move the insertion point and
+create the PHI node for the loop induction variable. Since we already
+know the incoming value for the starting value, we add it to the Phi
+node. Note that the Phi will eventually get a second value for the
+backedge, but we can't set it up yet (because it doesn't exist!).
+
+.. code-block:: c++
+
+ // Within the loop, the variable is defined equal to the PHI node. If it
+ // shadows an existing variable, we have to restore it, so save it now.
+ Value *OldVal = NamedValues[VarName];
+ NamedValues[VarName] = Variable;
+
+ // Emit the body of the loop. This, like any other expr, can change the
+ // current BB. Note that we ignore the value computed by the body, but don't
+ // allow an error.
+ if (!Body->codegen())
+ return nullptr;
+
+Now the code starts to get more interesting. Our 'for' loop introduces a
+new variable to the symbol table. This means that our symbol table can
+now contain either function arguments or loop variables. To handle this,
+before we codegen the body of the loop, we add the loop variable as the
+current value for its name. Note that it is possible that there is a
+variable of the same name in the outer scope. It would be easy to make
+this an error (emit an error and return null if there is already an
+entry for VarName) but we choose to allow shadowing of variables. In
+order to handle this correctly, we remember the Value that we are
+potentially shadowing in ``OldVal`` (which will be null if there is no
+shadowed variable).
+
+Once the loop variable is set into the symbol table, the code
+recursively codegen's the body. This allows the body to use the loop
+variable: any references to it will naturally find it in the symbol
+table.
+
+.. code-block:: c++
+
+ // Emit the step value.
+ Value *StepVal = nullptr;
+ if (Step) {
+ StepVal = Step->codegen();
+ if (!StepVal)
+ return nullptr;
+ } else {
+ // If not specified, use 1.0.
+ StepVal = ConstantFP::get(LLVMContext, APFloat(1.0));
+ }
+
+ Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar");
+
+Now that the body is emitted, we compute the next value of the iteration
+variable by adding the step value, or 1.0 if it isn't present.
+'``NextVar``' will be the value of the loop variable on the next
+iteration of the loop.
+
+.. code-block:: c++
+
+ // Compute the end condition.
+ Value *EndCond = End->codegen();
+ if (!EndCond)
+ return nullptr;
+
+ // Convert condition to a bool by comparing equal to 0.0.
+ EndCond = Builder.CreateFCmpONE(
+ EndCond, ConstantFP::get(LLVMContext, APFloat(0.0)), "loopcond");
+
+Finally, we evaluate the exit value of the loop, to determine whether
+the loop should exit. This mirrors the condition evaluation for the
+if/then/else statement.
+
+.. code-block:: c++
+
+ // Create the "after loop" block and insert it.
+ BasicBlock *LoopEndBB = Builder.GetInsertBlock();
+ BasicBlock *AfterBB =
+ BasicBlock::Create(LLVMContext, "afterloop", TheFunction);
+
+ // Insert the conditional branch into the end of LoopEndBB.
+ Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
+
+ // Any new code will be inserted in AfterBB.
+ Builder.SetInsertPoint(AfterBB);
+
+With the code for the body of the loop complete, we just need to finish
+up the control flow for it. This code remembers the end block (for the
+phi node), then creates the block for the loop exit ("afterloop"). Based
+on the value of the exit condition, it creates a conditional branch that
+chooses between executing the loop again and exiting the loop. Any
+future code is emitted in the "afterloop" block, so it sets the
+insertion position to it.
+
+.. code-block:: c++
+
+ // Add a new entry to the PHI node for the backedge.
+ Variable->addIncoming(NextVar, LoopEndBB);
+
+ // Restore the unshadowed variable.
+ if (OldVal)
+ NamedValues[VarName] = OldVal;
+ else
+ NamedValues.erase(VarName);
+
+ // for expr always returns 0.0.
+ return Constant::getNullValue(Type::getDoubleTy(LLVMContext));
+ }
+
+The final code handles various cleanups: now that we have the "NextVar"
+value, we can add the incoming value to the loop PHI node. After that,
+we remove the loop variable from the symbol table, so that it isn't in
+scope after the for loop. Finally, code generation of the for loop
+always returns 0.0, so that is what we return from
+``ForExprAST::codegen()``.
+
+With this, we conclude the "adding control flow to Kaleidoscope" chapter
+of the tutorial. In this chapter we added two control flow constructs,
+and used them to motivate a couple of aspects of the LLVM IR that are
+important for front-end implementors to know. In the next chapter of our
+saga, we will get a bit crazier and add `user-defined
+operators <LangImpl6.html>`_ to our poor innocent language.
+
+Full Code Listing
+=================
+
+Here is the complete code listing for our running example, enhanced with
+the if/then/else and for expressions.. To build this example, use:
+
+.. code-block:: bash
+
+ # Compile
+ clang++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core mcjit native` -O3 -o toy
+ # Run
+ ./toy
+
+Here is the code:
+
+.. literalinclude:: ../../examples/Kaleidoscope/Chapter5/toy.cpp
+ :language: c++
+
+`Next: Extending the language: user-defined operators <LangImpl06.html>`_
+
OpenPOWER on IntegriCloud