summaryrefslogtreecommitdiffstats
path: root/lldb/tools/debugserver/source/MacOSX/arm
diff options
context:
space:
mode:
Diffstat (limited to 'lldb/tools/debugserver/source/MacOSX/arm')
-rw-r--r--lldb/tools/debugserver/source/MacOSX/arm/DNBArchImpl.cpp2610
-rw-r--r--lldb/tools/debugserver/source/MacOSX/arm/DNBArchImpl.h217
2 files changed, 2827 insertions, 0 deletions
diff --git a/lldb/tools/debugserver/source/MacOSX/arm/DNBArchImpl.cpp b/lldb/tools/debugserver/source/MacOSX/arm/DNBArchImpl.cpp
new file mode 100644
index 00000000000..6eec80cfd7a
--- /dev/null
+++ b/lldb/tools/debugserver/source/MacOSX/arm/DNBArchImpl.cpp
@@ -0,0 +1,2610 @@
+//===-- DNBArchImpl.cpp -----------------------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Created by Greg Clayton on 6/25/07.
+//
+//===----------------------------------------------------------------------===//
+
+#if defined (__arm__)
+
+#include "MacOSX/arm/DNBArchImpl.h"
+#include "MacOSX/MachProcess.h"
+#include "MacOSX/MachThread.h"
+#include "DNBBreakpoint.h"
+#include "DNBLog.h"
+#include "DNBRegisterInfo.h"
+#include "DNB.h"
+
+#include <sys/sysctl.h>
+
+// BCR address match type
+#define BCR_M_IMVA_MATCH ((uint32_t)(0u << 21))
+#define BCR_M_CONTEXT_ID_MATCH ((uint32_t)(1u << 21))
+#define BCR_M_IMVA_MISMATCH ((uint32_t)(2u << 21))
+#define BCR_M_RESERVED ((uint32_t)(3u << 21))
+
+// Link a BVR/BCR or WVR/WCR pair to another
+#define E_ENABLE_LINKING ((uint32_t)(1u << 20))
+
+// Byte Address Select
+#define BAS_IMVA_PLUS_0 ((uint32_t)(1u << 5))
+#define BAS_IMVA_PLUS_1 ((uint32_t)(1u << 6))
+#define BAS_IMVA_PLUS_2 ((uint32_t)(1u << 7))
+#define BAS_IMVA_PLUS_3 ((uint32_t)(1u << 8))
+#define BAS_IMVA_0_1 ((uint32_t)(3u << 5))
+#define BAS_IMVA_2_3 ((uint32_t)(3u << 7))
+#define BAS_IMVA_ALL ((uint32_t)(0xfu << 5))
+
+// Break only in priveleged or user mode
+#define S_RSVD ((uint32_t)(0u << 1))
+#define S_PRIV ((uint32_t)(1u << 1))
+#define S_USER ((uint32_t)(2u << 1))
+#define S_PRIV_USER ((S_PRIV) | (S_USER))
+
+#define BCR_ENABLE ((uint32_t)(1u))
+#define WCR_ENABLE ((uint32_t)(1u))
+
+// Watchpoint load/store
+#define WCR_LOAD ((uint32_t)(1u << 3))
+#define WCR_STORE ((uint32_t)(1u << 4))
+
+//#define DNB_ARCH_MACH_ARM_DEBUG_SW_STEP 1
+
+static const uint8_t g_arm_breakpoint_opcode[] = { 0xFE, 0xDE, 0xFF, 0xE7 };
+static const uint8_t g_thumb_breakpooint_opcode[] = { 0xFE, 0xDE };
+
+// ARM constants used during decoding
+#define REG_RD 0
+#define LDM_REGLIST 1
+#define PC_REG 15
+#define PC_REGLIST_BIT 0x8000
+
+// ARM conditions
+#define COND_EQ 0x0
+#define COND_NE 0x1
+#define COND_CS 0x2
+#define COND_HS 0x2
+#define COND_CC 0x3
+#define COND_LO 0x3
+#define COND_MI 0x4
+#define COND_PL 0x5
+#define COND_VS 0x6
+#define COND_VC 0x7
+#define COND_HI 0x8
+#define COND_LS 0x9
+#define COND_GE 0xA
+#define COND_LT 0xB
+#define COND_GT 0xC
+#define COND_LE 0xD
+#define COND_AL 0xE
+#define COND_UNCOND 0xF
+
+#define MASK_CPSR_T (1u << 5)
+#define MASK_CPSR_J (1u << 24)
+
+#define MNEMONIC_STRING_SIZE 32
+#define OPERAND_STRING_SIZE 128
+
+const uint8_t * const
+DNBArchMachARM::SoftwareBreakpointOpcode (nub_size_t byte_size)
+{
+ switch (byte_size)
+ {
+ case 2: return g_thumb_breakpooint_opcode;
+ case 4: return g_arm_breakpoint_opcode;
+ }
+ return NULL;
+}
+
+uint32_t
+DNBArchMachARM::GetCPUType()
+{
+ return CPU_TYPE_ARM;
+}
+
+uint64_t
+DNBArchMachARM::GetPC(uint64_t failValue)
+{
+ // Get program counter
+ if (GetGPRState(false) == KERN_SUCCESS)
+ return m_state.gpr.__pc;
+ return failValue;
+}
+
+kern_return_t
+DNBArchMachARM::SetPC(uint64_t value)
+{
+ // Get program counter
+ kern_return_t err = GetGPRState(false);
+ if (err == KERN_SUCCESS)
+ {
+ m_state.gpr.__pc = value;
+ err = SetGPRState();
+ }
+ return err == KERN_SUCCESS;
+}
+
+uint64_t
+DNBArchMachARM::GetSP(uint64_t failValue)
+{
+ // Get stack pointer
+ if (GetGPRState(false) == KERN_SUCCESS)
+ return m_state.gpr.__sp;
+ return failValue;
+}
+
+kern_return_t
+DNBArchMachARM::GetGPRState(bool force)
+{
+ int set = e_regSetGPR;
+ // Check if we have valid cached registers
+ if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
+ return KERN_SUCCESS;
+
+ // Read the registers from our thread
+ mach_msg_type_number_t count = ARM_THREAD_STATE_COUNT;
+ kern_return_t kret = ::thread_get_state(m_thread->ThreadID(), ARM_THREAD_STATE, (thread_state_t)&m_state.gpr, &count);
+ uint32_t *r = &m_state.gpr.__r[0];
+ DNBLogThreadedIf(LOG_THREAD, "thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x regs r0=%8.8x r1=%8.8x r2=%8.8x r3=%8.8x r4=%8.8x r5=%8.8x r6=%8.8x r7=%8.8x r8=%8.8x r9=%8.8x r10=%8.8x r11=%8.8x s12=%8.8x sp=%8.8x lr=%8.8x pc=%8.8x cpsr=%8.8x", m_thread->ThreadID(), ARM_THREAD_STATE, ARM_THREAD_STATE_COUNT, kret,
+ r[0], r[1], r[2], r[3], r[4], r[5], r[6], r[7], r[8], r[9], r[10], r[11], r[12], r[13], r[14], r[15], r[16]);
+ m_state.SetError(set, Read, kret);
+ return kret;
+}
+
+kern_return_t
+DNBArchMachARM::GetVFPState(bool force)
+{
+ int set = e_regSetVFP;
+ // Check if we have valid cached registers
+ if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
+ return KERN_SUCCESS;
+
+ // Read the registers from our thread
+ mach_msg_type_number_t count = ARM_VFP_STATE_COUNT;
+ kern_return_t kret = ::thread_get_state(m_thread->ThreadID(), ARM_VFP_STATE, (thread_state_t)&m_state.vfp, &count);
+ m_state.SetError(set, Read, kret);
+ return kret;
+}
+
+kern_return_t
+DNBArchMachARM::GetEXCState(bool force)
+{
+ int set = e_regSetEXC;
+ // Check if we have valid cached registers
+ if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
+ return KERN_SUCCESS;
+
+ // Read the registers from our thread
+ mach_msg_type_number_t count = ARM_EXCEPTION_STATE_COUNT;
+ kern_return_t kret = ::thread_get_state(m_thread->ThreadID(), ARM_EXCEPTION_STATE, (thread_state_t)&m_state.exc, &count);
+ m_state.SetError(set, Read, kret);
+ return kret;
+}
+
+static void
+DumpDBGState(const arm_debug_state_t& dbg)
+{
+ uint32_t i = 0;
+ for (i=0; i<16; i++)
+ DNBLogThreadedIf(LOG_STEP, "BVR%-2u/BCR%-2u = { 0x%8.8x, 0x%8.8x } WVR%-2u/WCR%-2u = { 0x%8.8x, 0x%8.8x }",
+ i, i, dbg.__bvr[i], dbg.__bcr[i],
+ i, i, dbg.__wvr[i], dbg.__wcr[i]);
+}
+
+kern_return_t
+DNBArchMachARM::GetDBGState(bool force)
+{
+ int set = e_regSetDBG;
+
+ // Check if we have valid cached registers
+ if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
+ return KERN_SUCCESS;
+
+ // Read the registers from our thread
+ mach_msg_type_number_t count = ARM_DEBUG_STATE_COUNT;
+ kern_return_t kret = ::thread_get_state(m_thread->ThreadID(), ARM_DEBUG_STATE, (thread_state_t)&m_state.dbg, &count);
+ m_state.SetError(set, Read, kret);
+ return kret;
+}
+
+kern_return_t
+DNBArchMachARM::SetGPRState()
+{
+ int set = e_regSetGPR;
+ kern_return_t kret = ::thread_set_state(m_thread->ThreadID(), ARM_THREAD_STATE, (thread_state_t)&m_state.gpr, ARM_THREAD_STATE_COUNT);
+ m_state.SetError(set, Write, kret); // Set the current write error for this register set
+ m_state.InvalidateRegisterSetState(set); // Invalidate the current register state in case registers are read back differently
+ return kret; // Return the error code
+}
+
+kern_return_t
+DNBArchMachARM::SetVFPState()
+{
+ int set = e_regSetVFP;
+ kern_return_t kret = ::thread_set_state (m_thread->ThreadID(), ARM_VFP_STATE, (thread_state_t)&m_state.vfp, ARM_VFP_STATE_COUNT);
+ m_state.SetError(set, Write, kret); // Set the current write error for this register set
+ m_state.InvalidateRegisterSetState(set); // Invalidate the current register state in case registers are read back differently
+ return kret; // Return the error code
+}
+
+kern_return_t
+DNBArchMachARM::SetEXCState()
+{
+ int set = e_regSetEXC;
+ kern_return_t kret = ::thread_set_state (m_thread->ThreadID(), ARM_EXCEPTION_STATE, (thread_state_t)&m_state.exc, ARM_EXCEPTION_STATE_COUNT);
+ m_state.SetError(set, Write, kret); // Set the current write error for this register set
+ m_state.InvalidateRegisterSetState(set); // Invalidate the current register state in case registers are read back differently
+ return kret; // Return the error code
+}
+
+kern_return_t
+DNBArchMachARM::SetDBGState()
+{
+ int set = e_regSetDBG;
+ kern_return_t kret = ::thread_set_state (m_thread->ThreadID(), ARM_DEBUG_STATE, (thread_state_t)&m_state.dbg, ARM_DEBUG_STATE_COUNT);
+ m_state.SetError(set, Write, kret); // Set the current write error for this register set
+ m_state.InvalidateRegisterSetState(set); // Invalidate the current register state in case registers are read back differently
+ return kret; // Return the error code
+}
+
+void
+DNBArchMachARM::ThreadWillResume()
+{
+ // Do we need to step this thread? If so, let the mach thread tell us so.
+ if (m_thread->IsStepping())
+ {
+ bool step_handled = false;
+ // This is the primary thread, let the arch do anything it needs
+ if (NumSupportedHardwareBreakpoints() > 0)
+ {
+#if defined (DNB_ARCH_MACH_ARM_DEBUG_SW_STEP)
+ bool half_step = m_hw_single_chained_step_addr != INVALID_NUB_ADDRESS;
+#endif
+ step_handled = EnableHardwareSingleStep(true) == KERN_SUCCESS;
+#if defined (DNB_ARCH_MACH_ARM_DEBUG_SW_STEP)
+ if (!half_step)
+ step_handled = false;
+#endif
+ }
+
+ if (!step_handled)
+ {
+ SetSingleStepSoftwareBreakpoints();
+ }
+ }
+}
+
+bool
+DNBArchMachARM::ThreadDidStop()
+{
+ bool success = true;
+
+ m_state.InvalidateRegisterSetState (e_regSetALL);
+
+ // Are we stepping a single instruction?
+ if (GetGPRState(true) == KERN_SUCCESS)
+ {
+ // We are single stepping, was this the primary thread?
+ if (m_thread->IsStepping())
+ {
+#if defined (DNB_ARCH_MACH_ARM_DEBUG_SW_STEP)
+ success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
+ // Hardware single step must work if we are going to test software
+ // single step functionality
+ assert(success);
+ if (m_hw_single_chained_step_addr == INVALID_NUB_ADDRESS && m_sw_single_step_next_pc != INVALID_NUB_ADDRESS)
+ {
+ uint32_t sw_step_next_pc = m_sw_single_step_next_pc & 0xFFFFFFFEu;
+ bool sw_step_next_pc_is_thumb = (m_sw_single_step_next_pc & 1) != 0;
+ bool actual_next_pc_is_thumb = (m_state.gpr.__cpsr & 0x20) != 0;
+ if (m_state.gpr.__pc != sw_step_next_pc)
+ {
+ DNBLogError("curr pc = 0x%8.8x - calculated single step target PC was incorrect: 0x%8.8x != 0x%8.8x", m_state.gpr.__pc, sw_step_next_pc, m_state.gpr.__pc);
+ exit(1);
+ }
+ if (actual_next_pc_is_thumb != sw_step_next_pc_is_thumb)
+ {
+ DNBLogError("curr pc = 0x%8.8x - calculated single step calculated mode mismatch: sw single mode = %s != %s",
+ m_state.gpr.__pc,
+ actual_next_pc_is_thumb ? "Thumb" : "ARM",
+ sw_step_next_pc_is_thumb ? "Thumb" : "ARM");
+ exit(1);
+ }
+ m_sw_single_step_next_pc = INVALID_NUB_ADDRESS;
+ }
+#else
+ // Are we software single stepping?
+ if (NUB_BREAK_ID_IS_VALID(m_sw_single_step_break_id) || m_sw_single_step_itblock_break_count)
+ {
+ // Remove any software single stepping breakpoints that we have set
+
+ // Do we have a normal software single step breakpoint?
+ if (NUB_BREAK_ID_IS_VALID(m_sw_single_step_break_id))
+ {
+ DNBLogThreadedIf(LOG_STEP, "%s: removing software single step breakpoint (breakID=%d)", __FUNCTION__, m_sw_single_step_break_id);
+ success = m_thread->Process()->DisableBreakpoint(m_sw_single_step_break_id, true);
+ m_sw_single_step_break_id = INVALID_NUB_BREAK_ID;
+ }
+
+ // Do we have any Thumb IT breakpoints?
+ if (m_sw_single_step_itblock_break_count > 0)
+ {
+ // See if we hit one of our Thumb IT breakpoints?
+ DNBBreakpoint *step_bp = m_thread->Process()->Breakpoints().FindByAddress(m_state.gpr.__pc);
+
+ if (step_bp)
+ {
+ // We did hit our breakpoint, tell the breakpoint it was
+ // hit so that it can run its callback routine and fixup
+ // the PC.
+ DNBLogThreadedIf(LOG_STEP, "%s: IT software single step breakpoint hit (breakID=%u)", __FUNCTION__, step_bp->GetID());
+ step_bp->BreakpointHit(m_thread->Process()->ProcessID(), m_thread->ThreadID());
+ }
+
+ // Remove all Thumb IT breakpoints
+ for (int i = 0; i < m_sw_single_step_itblock_break_count; i++)
+ {
+ if (NUB_BREAK_ID_IS_VALID(m_sw_single_step_itblock_break_id[i]))
+ {
+ DNBLogThreadedIf(LOG_STEP, "%s: removing IT software single step breakpoint (breakID=%d)", __FUNCTION__, m_sw_single_step_itblock_break_id[i]);
+ success = m_thread->Process()->DisableBreakpoint(m_sw_single_step_itblock_break_id[i], true);
+ m_sw_single_step_itblock_break_id[i] = INVALID_NUB_BREAK_ID;
+ }
+ }
+ m_sw_single_step_itblock_break_count = 0;
+
+ // Decode instructions up to the current PC to ensure the internal decoder state is valid for the IT block
+ // The decoder has to decode each instruction in the IT block even if it is not executed so that
+ // the fields are correctly updated
+ DecodeITBlockInstructions(m_state.gpr.__pc);
+ }
+
+ }
+ else
+ success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
+#endif
+ }
+ else
+ {
+ // The MachThread will automatically restore the suspend count
+ // in ThreadDidStop(), so we don't need to do anything here if
+ // we weren't the primary thread the last time
+ }
+ }
+ return success;
+}
+
+bool
+DNBArchMachARM::StepNotComplete ()
+{
+ if (m_hw_single_chained_step_addr != INVALID_NUB_ADDRESS)
+ {
+ kern_return_t kret = KERN_INVALID_ARGUMENT;
+ kret = GetGPRState(false);
+ if (kret == KERN_SUCCESS)
+ {
+ if (m_state.gpr.__pc == m_hw_single_chained_step_addr)
+ {
+ DNBLogThreadedIf(LOG_STEP, "Need to step some more at 0x%8.8x", m_hw_single_chained_step_addr);
+ return true;
+ }
+ }
+ }
+
+ m_hw_single_chained_step_addr = INVALID_NUB_ADDRESS;
+ return false;
+}
+
+
+void
+DNBArchMachARM::DecodeITBlockInstructions(nub_addr_t curr_pc)
+
+{
+ uint16_t opcode16;
+ uint32_t opcode32;
+ nub_addr_t next_pc_in_itblock;
+ nub_addr_t pc_in_itblock = m_last_decode_pc;
+
+ DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: last_decode_pc=0x%8.8x", __FUNCTION__, m_last_decode_pc);
+
+ // Decode IT block instruction from the instruction following the m_last_decoded_instruction at
+ // PC m_last_decode_pc upto and including the instruction at curr_pc
+ if (m_thread->Process()->Task().ReadMemory(pc_in_itblock, 2, &opcode16) == 2)
+ {
+ opcode32 = opcode16;
+ pc_in_itblock += 2;
+ // Check for 32 bit thumb opcode and read the upper 16 bits if needed
+ if (((opcode32 & 0xE000) == 0xE000) && opcode32 & 0x1800)
+ {
+ // Adjust 'next_pc_in_itblock' to point to the default next Thumb instruction for
+ // a 32 bit Thumb opcode
+ // Read bits 31:16 of a 32 bit Thumb opcode
+ if (m_thread->Process()->Task().ReadMemory(pc_in_itblock, 2, &opcode16) == 2)
+ {
+ pc_in_itblock += 2;
+ // 32 bit thumb opcode
+ opcode32 = (opcode32 << 16) | opcode16;
+ }
+ else
+ {
+ DNBLogError("%s: Unable to read opcode bits 31:16 for a 32 bit thumb opcode at pc=0x%8.8lx", __FUNCTION__, pc_in_itblock);
+ }
+ }
+ }
+ else
+ {
+ DNBLogError("%s: Error reading 16-bit Thumb instruction at pc=0x%8.8x", __FUNCTION__, pc_in_itblock);
+ }
+
+ DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: pc_in_itblock=0x%8.8x, curr_pc=0x%8.8x", __FUNCTION__, pc_in_itblock, curr_pc);
+
+ next_pc_in_itblock = pc_in_itblock;
+ while (next_pc_in_itblock <= curr_pc)
+ {
+ arm_error_t decodeError;
+
+ m_last_decode_pc = pc_in_itblock;
+ decodeError = DecodeInstructionUsingDisassembler(pc_in_itblock, m_state.gpr.__cpsr, &m_last_decode_arm, &m_last_decode_thumb, &next_pc_in_itblock);
+
+ pc_in_itblock = next_pc_in_itblock;
+ DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: next_pc_in_itblock=0x%8.8x", __FUNCTION__, next_pc_in_itblock);
+ }
+}
+
+
+// Set the single step bit in the processor status register.
+kern_return_t
+DNBArchMachARM::EnableHardwareSingleStep (bool enable)
+{
+ DNBError err;
+ DNBLogThreadedIf(LOG_STEP, "%s( enable = %d )", __FUNCTION__, enable);
+
+ err = GetGPRState(false);
+
+ if (err.Fail())
+ {
+ err.LogThreaded("%s: failed to read the GPR registers", __FUNCTION__);
+ return err.Error();
+ }
+
+ err = GetDBGState(false);
+
+ if (err.Fail())
+ {
+ err.LogThreaded("%s: failed to read the DBG registers", __FUNCTION__);
+ return err.Error();
+ }
+
+ const uint32_t i = 0;
+ if (enable)
+ {
+ m_hw_single_chained_step_addr = INVALID_NUB_ADDRESS;
+
+ // Save our previous state
+ m_dbg_save = m_state.dbg;
+ // Set a breakpoint that will stop when the PC doesn't match the current one!
+ m_state.dbg.__bvr[i] = m_state.gpr.__pc & 0xFFFFFFFCu; // Set the current PC as the breakpoint address
+ m_state.dbg.__bcr[i] = BCR_M_IMVA_MISMATCH | // Stop on address mismatch
+ S_USER | // Stop only in user mode
+ BCR_ENABLE; // Enable this breakpoint
+ if (m_state.gpr.__cpsr & 0x20)
+ {
+ // Thumb breakpoint
+ if (m_state.gpr.__pc & 2)
+ m_state.dbg.__bcr[i] |= BAS_IMVA_2_3;
+ else
+ m_state.dbg.__bcr[i] |= BAS_IMVA_0_1;
+
+ uint16_t opcode;
+ if (sizeof(opcode) == m_thread->Process()->Task().ReadMemory(m_state.gpr.__pc, sizeof(opcode), &opcode))
+ {
+ if (((opcode & 0xE000) == 0xE000) && opcode & 0x1800)
+ {
+ // 32 bit thumb opcode...
+ if (m_state.gpr.__pc & 2)
+ {
+ // We can't take care of a 32 bit thumb instruction single step
+ // with just IVA mismatching. We will need to chain an extra
+ // hardware single step in order to complete this single step...
+ m_hw_single_chained_step_addr = m_state.gpr.__pc + 2;
+ }
+ else
+ {
+ // Extend the number of bits to ignore for the mismatch
+ m_state.dbg.__bcr[i] |= BAS_IMVA_ALL;
+ }
+ }
+ }
+ }
+ else
+ {
+ // ARM breakpoint
+ m_state.dbg.__bcr[i] |= BAS_IMVA_ALL; // Stop when any address bits change
+ }
+
+ DNBLogThreadedIf(LOG_STEP, "%s: BVR%u=0x%8.8x BCR%u=0x%8.8x", __FUNCTION__, i, m_state.dbg.__bvr[i], i, m_state.dbg.__bcr[i]);
+
+ for (uint32_t j=i+1; j<16; ++j)
+ {
+ // Disable all others
+ m_state.dbg.__bvr[j] = 0;
+ m_state.dbg.__bcr[j] = 0;
+ }
+ }
+ else
+ {
+ // Just restore the state we had before we did single stepping
+ m_state.dbg = m_dbg_save;
+ }
+
+ return SetDBGState();
+}
+
+// return 1 if bit "BIT" is set in "value"
+static inline uint32_t bit(uint32_t value, uint32_t bit)
+{
+ return (value >> bit) & 1u;
+}
+
+// return the bitfield "value[msbit:lsbit]".
+static inline uint32_t bits(uint32_t value, uint32_t msbit, uint32_t lsbit)
+{
+ assert(msbit >= lsbit);
+ uint32_t shift_left = sizeof(value) * 8 - 1 - msbit;
+ value <<= shift_left; // shift anything above the msbit off of the unsigned edge
+ value >>= shift_left + lsbit; // shift it back again down to the lsbit (including undoing any shift from above)
+ return value; // return our result
+}
+
+bool
+DNBArchMachARM::ConditionPassed(uint8_t condition, uint32_t cpsr)
+{
+ uint32_t cpsr_n = bit(cpsr, 31); // Negative condition code flag
+ uint32_t cpsr_z = bit(cpsr, 30); // Zero condition code flag
+ uint32_t cpsr_c = bit(cpsr, 29); // Carry condition code flag
+ uint32_t cpsr_v = bit(cpsr, 28); // Overflow condition code flag
+
+ switch (condition) {
+ case COND_EQ: // (0x0)
+ if (cpsr_z == 1) return true;
+ break;
+ case COND_NE: // (0x1)
+ if (cpsr_z == 0) return true;
+ break;
+ case COND_CS: // (0x2)
+ if (cpsr_c == 1) return true;
+ break;
+ case COND_CC: // (0x3)
+ if (cpsr_c == 0) return true;
+ break;
+ case COND_MI: // (0x4)
+ if (cpsr_n == 1) return true;
+ break;
+ case COND_PL: // (0x5)
+ if (cpsr_n == 0) return true;
+ break;
+ case COND_VS: // (0x6)
+ if (cpsr_v == 1) return true;
+ break;
+ case COND_VC: // (0x7)
+ if (cpsr_v == 0) return true;
+ break;
+ case COND_HI: // (0x8)
+ if ((cpsr_c == 1) && (cpsr_z == 0)) return true;
+ break;
+ case COND_LS: // (0x9)
+ if ((cpsr_c == 0) || (cpsr_z == 1)) return true;
+ break;
+ case COND_GE: // (0xA)
+ if (cpsr_n == cpsr_v) return true;
+ break;
+ case COND_LT: // (0xB)
+ if (cpsr_n != cpsr_v) return true;
+ break;
+ case COND_GT: // (0xC)
+ if ((cpsr_z == 0) && (cpsr_n == cpsr_v)) return true;
+ break;
+ case COND_LE: // (0xD)
+ if ((cpsr_z == 1) || (cpsr_n != cpsr_v)) return true;
+ break;
+ default:
+ return true;
+ break;
+ }
+
+ return false;
+}
+
+bool
+DNBArchMachARM::ComputeNextPC(nub_addr_t currentPC, arm_decoded_instruction_t decodedInstruction, bool currentPCIsThumb, nub_addr_t *targetPC)
+{
+ nub_addr_t myTargetPC, addressWherePCLives;
+ pid_t mypid;
+
+ uint32_t cpsr_c = bit(m_state.gpr.__cpsr, 29); // Carry condition code flag
+
+ uint32_t firstOperand=0, secondOperand=0, shiftAmount=0, secondOperandAfterShift=0, immediateValue=0;
+ uint32_t halfwords=0, baseAddress=0, immediateOffset=0, addressOffsetFromRegister=0, addressOffsetFromRegisterAfterShift;
+ uint32_t baseAddressIndex=INVALID_NUB_HW_INDEX;
+ uint32_t firstOperandIndex=INVALID_NUB_HW_INDEX;
+ uint32_t secondOperandIndex=INVALID_NUB_HW_INDEX;
+ uint32_t addressOffsetFromRegisterIndex=INVALID_NUB_HW_INDEX;
+ uint32_t shiftRegisterIndex=INVALID_NUB_HW_INDEX;
+ uint16_t registerList16, registerList16NoPC;
+ uint8_t registerList8;
+ uint32_t numRegistersToLoad=0;
+
+ DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: instruction->code=%d", __FUNCTION__, decodedInstruction.instruction->code);
+
+ // Get the following in this switch statement:
+ // - firstOperand, secondOperand, immediateValue, shiftAmount: For arithmetic, logical and move instructions
+ // - baseAddress, immediateOffset, shiftAmount: For LDR
+ // - numRegistersToLoad: For LDM and POP instructions
+ switch (decodedInstruction.instruction->code)
+ {
+ // Arithmetic operations that can change the PC
+ case ARM_INST_ADC:
+ case ARM_INST_ADCS:
+ case ARM_INST_ADD:
+ case ARM_INST_ADDS:
+ case ARM_INST_AND:
+ case ARM_INST_ANDS:
+ case ARM_INST_ASR:
+ case ARM_INST_ASRS:
+ case ARM_INST_BIC:
+ case ARM_INST_BICS:
+ case ARM_INST_EOR:
+ case ARM_INST_EORS:
+ case ARM_INST_ORR:
+ case ARM_INST_ORRS:
+ case ARM_INST_RSB:
+ case ARM_INST_RSBS:
+ case ARM_INST_RSC:
+ case ARM_INST_RSCS:
+ case ARM_INST_SBC:
+ case ARM_INST_SBCS:
+ case ARM_INST_SUB:
+ case ARM_INST_SUBS:
+ switch (decodedInstruction.addressMode)
+ {
+ case ARM_ADDR_DATA_IMM:
+ if (decodedInstruction.numOperands != 3)
+ {
+ DNBLogError("Expected 3 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
+ return false;
+ }
+
+ if (decodedInstruction.op[0].value != PC_REG)
+ {
+ DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
+ return false;
+ }
+
+ // Get firstOperand register value (at index=1)
+ firstOperandIndex = decodedInstruction.op[1].value; // first operand register index
+ firstOperand = m_state.gpr.__r[firstOperandIndex];
+
+ // Get immediateValue (at index=2)
+ immediateValue = decodedInstruction.op[2].value;
+
+ break;
+
+ case ARM_ADDR_DATA_REG:
+ if (decodedInstruction.numOperands != 3)
+ {
+ DNBLogError("Expected 3 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
+ return false;
+ }
+
+ if (decodedInstruction.op[0].value != PC_REG)
+ {
+ DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
+ return false;
+ }
+
+ // Get firstOperand register value (at index=1)
+ firstOperandIndex = decodedInstruction.op[1].value; // first operand register index
+ firstOperand = m_state.gpr.__r[firstOperandIndex];
+
+ // Get secondOperand register value (at index=2)
+ secondOperandIndex = decodedInstruction.op[2].value; // second operand register index
+ secondOperand = m_state.gpr.__r[secondOperandIndex];
+
+ break;
+
+ case ARM_ADDR_DATA_SCALED_IMM:
+ if (decodedInstruction.numOperands != 4)
+ {
+ DNBLogError("Expected 4 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
+ return false;
+ }
+
+ if (decodedInstruction.op[0].value != PC_REG)
+ {
+ DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
+ return false;
+ }
+
+ // Get firstOperand register value (at index=1)
+ firstOperandIndex = decodedInstruction.op[1].value; // first operand register index
+ firstOperand = m_state.gpr.__r[firstOperandIndex];
+
+ // Get secondOperand register value (at index=2)
+ secondOperandIndex = decodedInstruction.op[2].value; // second operand register index
+ secondOperand = m_state.gpr.__r[secondOperandIndex];
+
+ // Get shiftAmount as immediate value (at index=3)
+ shiftAmount = decodedInstruction.op[3].value;
+
+ break;
+
+
+ case ARM_ADDR_DATA_SCALED_REG:
+ if (decodedInstruction.numOperands != 4)
+ {
+ DNBLogError("Expected 4 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
+ return false;
+ }
+
+ if (decodedInstruction.op[0].value != PC_REG)
+ {
+ DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
+ return false;
+ }
+
+ // Get firstOperand register value (at index=1)
+ firstOperandIndex = decodedInstruction.op[1].value; // first operand register index
+ firstOperand = m_state.gpr.__r[firstOperandIndex];
+
+ // Get secondOperand register value (at index=2)
+ secondOperandIndex = decodedInstruction.op[2].value; // second operand register index
+ secondOperand = m_state.gpr.__r[secondOperandIndex];
+
+ // Get shiftAmount from register (at index=3)
+ shiftRegisterIndex = decodedInstruction.op[3].value; // second operand register index
+ shiftAmount = m_state.gpr.__r[shiftRegisterIndex];
+
+ break;
+
+ case THUMB_ADDR_HR_HR:
+ if (decodedInstruction.numOperands != 2)
+ {
+ DNBLogError("Expected 2 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
+ return false;
+ }
+
+ if (decodedInstruction.op[0].value != PC_REG)
+ {
+ DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
+ return false;
+ }
+
+ // Get firstOperand register value (at index=0)
+ firstOperandIndex = decodedInstruction.op[0].value; // first operand register index
+ firstOperand = m_state.gpr.__r[firstOperandIndex];
+
+ // Get secondOperand register value (at index=1)
+ secondOperandIndex = decodedInstruction.op[1].value; // second operand register index
+ secondOperand = m_state.gpr.__r[secondOperandIndex];
+
+ break;
+
+ default:
+ break;
+ }
+ break;
+
+ // Logical shifts and move operations that can change the PC
+ case ARM_INST_LSL:
+ case ARM_INST_LSLS:
+ case ARM_INST_LSR:
+ case ARM_INST_LSRS:
+ case ARM_INST_MOV:
+ case ARM_INST_MOVS:
+ case ARM_INST_MVN:
+ case ARM_INST_MVNS:
+ case ARM_INST_ROR:
+ case ARM_INST_RORS:
+ case ARM_INST_RRX:
+ case ARM_INST_RRXS:
+ // In these cases, the firstOperand is always 0, as if it does not exist
+ switch (decodedInstruction.addressMode)
+ {
+ case ARM_ADDR_DATA_IMM:
+ if (decodedInstruction.numOperands != 2)
+ {
+ DNBLogError("Expected 2 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
+ return false;
+ }
+
+ if (decodedInstruction.op[0].value != PC_REG)
+ {
+ DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
+ return false;
+ }
+
+ // Get immediateValue (at index=1)
+ immediateValue = decodedInstruction.op[1].value;
+
+ break;
+
+ case ARM_ADDR_DATA_REG:
+ if (decodedInstruction.numOperands != 2)
+ {
+ DNBLogError("Expected 2 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
+ return false;
+ }
+
+ if (decodedInstruction.op[0].value != PC_REG)
+ {
+ DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
+ return false;
+ }
+
+ // Get secondOperand register value (at index=1)
+ secondOperandIndex = decodedInstruction.op[1].value; // second operand register index
+ secondOperand = m_state.gpr.__r[secondOperandIndex];
+
+ break;
+
+ case ARM_ADDR_DATA_SCALED_IMM:
+ if (decodedInstruction.numOperands != 3)
+ {
+ DNBLogError("Expected 4 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
+ return false;
+ }
+
+ if (decodedInstruction.op[0].value != PC_REG)
+ {
+ DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
+ return false;
+ }
+
+ // Get secondOperand register value (at index=1)
+ secondOperandIndex = decodedInstruction.op[2].value; // second operand register index
+ secondOperand = m_state.gpr.__r[secondOperandIndex];
+
+ // Get shiftAmount as immediate value (at index=2)
+ shiftAmount = decodedInstruction.op[2].value;
+
+ break;
+
+
+ case ARM_ADDR_DATA_SCALED_REG:
+ if (decodedInstruction.numOperands != 3)
+ {
+ DNBLogError("Expected 3 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
+ return false;
+ }
+
+ if (decodedInstruction.op[0].value != PC_REG)
+ {
+ DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
+ return false;
+ }
+
+ // Get secondOperand register value (at index=1)
+ secondOperandIndex = decodedInstruction.op[1].value; // second operand register index
+ secondOperand = m_state.gpr.__r[secondOperandIndex];
+
+ // Get shiftAmount from register (at index=2)
+ shiftRegisterIndex = decodedInstruction.op[2].value; // second operand register index
+ shiftAmount = m_state.gpr.__r[shiftRegisterIndex];
+
+ break;
+
+ case THUMB_ADDR_HR_HR:
+ if (decodedInstruction.numOperands != 2)
+ {
+ DNBLogError("Expected 2 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
+ return false;
+ }
+
+ if (decodedInstruction.op[0].value != PC_REG)
+ {
+ DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
+ return false;
+ }
+
+ // Get secondOperand register value (at index=1)
+ secondOperandIndex = decodedInstruction.op[1].value; // second operand register index
+ secondOperand = m_state.gpr.__r[secondOperandIndex];
+
+ break;
+
+ default:
+ break;
+ }
+
+ break;
+
+ // Simple branches, used to hop around within a routine
+ case ARM_INST_B:
+ *targetPC = decodedInstruction.targetPC; // Known targetPC
+ return true;
+ break;
+
+ // Branch-and-link, used to call ARM subroutines
+ case ARM_INST_BL:
+ *targetPC = decodedInstruction.targetPC; // Known targetPC
+ return true;
+ break;
+
+ // Branch-and-link with exchange, used to call opposite-mode subroutines
+ case ARM_INST_BLX:
+ if ((decodedInstruction.addressMode == ARM_ADDR_BRANCH_IMM) ||
+ (decodedInstruction.addressMode == THUMB_ADDR_UNCOND))
+ {
+ *targetPC = decodedInstruction.targetPC; // Known targetPC
+ return true;
+ }
+ else // addressMode == ARM_ADDR_BRANCH_REG
+ {
+ // Unknown target unless we're branching to the PC itself,
+ // although this may not work properly with BLX
+ if (decodedInstruction.op[REG_RD].value == PC_REG)
+ {
+ // this should (almost) never happen
+ *targetPC = decodedInstruction.targetPC; // Known targetPC
+ return true;
+ }
+
+ // Get the branch address and return
+ if (decodedInstruction.numOperands != 1)
+ {
+ DNBLogError("Expected 1 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
+ return false;
+ }
+
+ // Get branch address in register (at index=0)
+ *targetPC = m_state.gpr.__r[decodedInstruction.op[0].value];
+ return true;
+ }
+ break;
+
+ // Branch with exchange, used to hop to opposite-mode code
+ // Branch to Jazelle code, used to execute Java; included here since it
+ // acts just like BX unless the Jazelle unit is active and JPC is
+ // already loaded into it.
+ case ARM_INST_BX:
+ case ARM_INST_BXJ:
+ // Unknown target unless we're branching to the PC itself,
+ // although this can never switch to Thumb mode and is
+ // therefore pretty much useless
+ if (decodedInstruction.op[REG_RD].value == PC_REG)
+ {
+ // this should (almost) never happen
+ *targetPC = decodedInstruction.targetPC; // Known targetPC
+ return true;
+ }
+
+ // Get the branch address and return
+ if (decodedInstruction.numOperands != 1)
+ {
+ DNBLogError("Expected 1 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
+ return false;
+ }
+
+ // Get branch address in register (at index=0)
+ *targetPC = m_state.gpr.__r[decodedInstruction.op[0].value];
+ return true;
+ break;
+
+ // Compare and branch on zero/non-zero (Thumb-16 only)
+ // Unusual condition check built into the instruction
+ case ARM_INST_CBZ:
+ case ARM_INST_CBNZ:
+ // Branch address is known at compile time
+ // Get the branch address and return
+ if (decodedInstruction.numOperands != 2)
+ {
+ DNBLogError("Expected 2 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
+ return false;
+ }
+
+ // Get branch address as an immediate value (at index=1)
+ *targetPC = decodedInstruction.op[1].value;
+ return true;
+ break;
+
+ // Load register can be used to load PC, usually with a function pointer
+ case ARM_INST_LDR:
+ if (decodedInstruction.op[REG_RD].value != PC_REG)
+ {
+ DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
+ return false;
+ }
+ switch (decodedInstruction.addressMode)
+ {
+ case ARM_ADDR_LSWUB_IMM:
+ case ARM_ADDR_LSWUB_IMM_PRE:
+ case ARM_ADDR_LSWUB_IMM_POST:
+ if (decodedInstruction.numOperands != 3)
+ {
+ DNBLogError("Expected 3 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
+ return false;
+ }
+
+ // Get baseAddress from register (at index=1)
+ baseAddressIndex = decodedInstruction.op[1].value;
+ baseAddress = m_state.gpr.__r[baseAddressIndex];
+
+ // Get immediateOffset (at index=2)
+ immediateOffset = decodedInstruction.op[2].value;
+ break;
+
+ case ARM_ADDR_LSWUB_REG:
+ case ARM_ADDR_LSWUB_REG_PRE:
+ case ARM_ADDR_LSWUB_REG_POST:
+ if (decodedInstruction.numOperands != 3)
+ {
+ DNBLogError("Expected 3 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
+ return false;
+ }
+
+ // Get baseAddress from register (at index=1)
+ baseAddressIndex = decodedInstruction.op[1].value;
+ baseAddress = m_state.gpr.__r[baseAddressIndex];
+
+ // Get immediateOffset from register (at index=2)
+ addressOffsetFromRegisterIndex = decodedInstruction.op[2].value;
+ addressOffsetFromRegister = m_state.gpr.__r[addressOffsetFromRegisterIndex];
+
+ break;
+
+ case ARM_ADDR_LSWUB_SCALED:
+ case ARM_ADDR_LSWUB_SCALED_PRE:
+ case ARM_ADDR_LSWUB_SCALED_POST:
+ if (decodedInstruction.numOperands != 4)
+ {
+ DNBLogError("Expected 4 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
+ return false;
+ }
+
+ // Get baseAddress from register (at index=1)
+ baseAddressIndex = decodedInstruction.op[1].value;
+ baseAddress = m_state.gpr.__r[baseAddressIndex];
+
+ // Get immediateOffset from register (at index=2)
+ addressOffsetFromRegisterIndex = decodedInstruction.op[2].value;
+ addressOffsetFromRegister = m_state.gpr.__r[addressOffsetFromRegisterIndex];
+
+ // Get shiftAmount (at index=3)
+ shiftAmount = decodedInstruction.op[3].value;
+
+ break;
+
+ default:
+ break;
+ }
+ break;
+
+ // 32b load multiple operations can load the PC along with everything else,
+ // usually to return from a function call
+ case ARM_INST_LDMDA:
+ case ARM_INST_LDMDB:
+ case ARM_INST_LDMIA:
+ case ARM_INST_LDMIB:
+ if (decodedInstruction.op[LDM_REGLIST].value & PC_REGLIST_BIT)
+ {
+ if (decodedInstruction.numOperands != 2)
+ {
+ DNBLogError("Expected 2 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
+ return false;
+ }
+
+ // Get baseAddress from register (at index=0)
+ baseAddressIndex = decodedInstruction.op[0].value;
+ baseAddress = m_state.gpr.__r[baseAddressIndex];
+
+ // Get registerList from register (at index=1)
+ registerList16 = (uint16_t)decodedInstruction.op[1].value;
+
+ // Count number of registers to load in the multiple register list excluding the PC
+ registerList16NoPC = registerList16&0x3FFF; // exclude the PC
+ numRegistersToLoad=0;
+ for (int i = 0; i < 16; i++)
+ {
+ if (registerList16NoPC & 0x1) numRegistersToLoad++;
+ registerList16NoPC = registerList16NoPC >> 1;
+ }
+ }
+ else
+ {
+ DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
+ return false;
+ }
+ break;
+
+ // Normal 16-bit LD multiple can't touch R15, but POP can
+ case ARM_INST_POP: // Can also get the PC & updates SP
+ // Get baseAddress from SP (at index=0)
+ baseAddress = m_state.gpr.__sp;
+
+ if (decodedInstruction.thumb16b)
+ {
+ // Get registerList from register (at index=0)
+ registerList8 = (uint8_t)decodedInstruction.op[0].value;
+
+ // Count number of registers to load in the multiple register list
+ numRegistersToLoad=0;
+ for (int i = 0; i < 8; i++)
+ {
+ if (registerList8 & 0x1) numRegistersToLoad++;
+ registerList8 = registerList8 >> 1;
+ }
+ }
+ else
+ {
+ // Get registerList from register (at index=0)
+ registerList16 = (uint16_t)decodedInstruction.op[0].value;
+
+ // Count number of registers to load in the multiple register list excluding the PC
+ registerList16NoPC = registerList16&0x3FFF; // exclude the PC
+ numRegistersToLoad=0;
+ for (int i = 0; i < 16; i++)
+ {
+ if (registerList16NoPC & 0x1) numRegistersToLoad++;
+ registerList16NoPC = registerList16NoPC >> 1;
+ }
+ }
+ break;
+
+ // 16b TBB and TBH instructions load a jump address from a table
+ case ARM_INST_TBB:
+ case ARM_INST_TBH:
+ // Get baseAddress from register (at index=0)
+ baseAddressIndex = decodedInstruction.op[0].value;
+ baseAddress = m_state.gpr.__r[baseAddressIndex];
+
+ // Get immediateOffset from register (at index=1)
+ addressOffsetFromRegisterIndex = decodedInstruction.op[1].value;
+ addressOffsetFromRegister = m_state.gpr.__r[addressOffsetFromRegisterIndex];
+ break;
+
+ // ThumbEE branch-to-handler instructions: Jump to handlers at some offset
+ // from a special base pointer register (which is unknown at disassembly time)
+ case ARM_INST_HB:
+ case ARM_INST_HBP:
+// TODO: ARM_INST_HB, ARM_INST_HBP
+ break;
+
+ case ARM_INST_HBL:
+ case ARM_INST_HBLP:
+// TODO: ARM_INST_HBL, ARM_INST_HBLP
+ break;
+
+ // Breakpoint and software interrupt jump to interrupt handler (always ARM)
+ case ARM_INST_BKPT:
+ case ARM_INST_SMC:
+ case ARM_INST_SVC:
+
+ // Return from exception, obviously modifies PC [interrupt only!]
+ case ARM_INST_RFEDA:
+ case ARM_INST_RFEDB:
+ case ARM_INST_RFEIA:
+ case ARM_INST_RFEIB:
+
+ // Other instructions either can't change R15 or are "undefined" if you do,
+ // so no sane compiler should ever generate them & we don't care here.
+ // Also, R15 can only legally be used in a read-only manner for the
+ // various ARM addressing mode (to get PC-relative addressing of constants),
+ // but can NOT be used with any of the update modes.
+ default:
+ DNBLogError("%s should not be called for instruction code %d!", __FUNCTION__, decodedInstruction.instruction->code);
+ return false;
+ break;
+ }
+
+ // Adjust PC if PC is one of the input operands
+ if (baseAddressIndex == PC_REG)
+ {
+ if (currentPCIsThumb)
+ baseAddress += 4;
+ else
+ baseAddress += 8;
+ }
+
+ if (firstOperandIndex == PC_REG)
+ {
+ if (currentPCIsThumb)
+ firstOperand += 4;
+ else
+ firstOperand += 8;
+ }
+
+ if (secondOperandIndex == PC_REG)
+ {
+ if (currentPCIsThumb)
+ secondOperand += 4;
+ else
+ secondOperand += 8;
+ }
+
+ if (addressOffsetFromRegisterIndex == PC_REG)
+ {
+ if (currentPCIsThumb)
+ addressOffsetFromRegister += 4;
+ else
+ addressOffsetFromRegister += 8;
+ }
+
+ DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE,
+ "%s: firstOperand=%8.8x, secondOperand=%8.8x, immediateValue = %d, shiftAmount = %d, baseAddress = %8.8x, addressOffsetFromRegister = %8.8x, immediateOffset = %d, numRegistersToLoad = %d",
+ __FUNCTION__,
+ firstOperand,
+ secondOperand,
+ immediateValue,
+ shiftAmount,
+ baseAddress,
+ addressOffsetFromRegister,
+ immediateOffset,
+ numRegistersToLoad);
+
+
+ // Calculate following values after applying shiftAmount:
+ // - immediateOffsetAfterShift, secondOperandAfterShift
+
+ switch (decodedInstruction.scaleMode)
+ {
+ case ARM_SCALE_NONE:
+ addressOffsetFromRegisterAfterShift = addressOffsetFromRegister;
+ secondOperandAfterShift = secondOperand;
+ break;
+
+ case ARM_SCALE_LSL: // Logical shift left
+ addressOffsetFromRegisterAfterShift = addressOffsetFromRegister << shiftAmount;
+ secondOperandAfterShift = secondOperand << shiftAmount;
+ break;
+
+ case ARM_SCALE_LSR: // Logical shift right
+ addressOffsetFromRegisterAfterShift = addressOffsetFromRegister >> shiftAmount;
+ secondOperandAfterShift = secondOperand >> shiftAmount;
+ break;
+
+ case ARM_SCALE_ASR: // Arithmetic shift right
+ asm("mov %0, %1, asr %2" : "=r" (addressOffsetFromRegisterAfterShift) : "r" (addressOffsetFromRegister), "r" (shiftAmount));
+ asm("mov %0, %1, asr %2" : "=r" (secondOperandAfterShift) : "r" (secondOperand), "r" (shiftAmount));
+ break;
+
+ case ARM_SCALE_ROR: // Rotate right
+ asm("mov %0, %1, ror %2" : "=r" (addressOffsetFromRegisterAfterShift) : "r" (addressOffsetFromRegister), "r" (shiftAmount));
+ asm("mov %0, %1, ror %2" : "=r" (secondOperandAfterShift) : "r" (secondOperand), "r" (shiftAmount));
+ break;
+
+ case ARM_SCALE_RRX: // Rotate right, pulling in carry (1-bit shift only)
+ asm("mov %0, %1, rrx" : "=r" (addressOffsetFromRegisterAfterShift) : "r" (addressOffsetFromRegister));
+ asm("mov %0, %1, rrx" : "=r" (secondOperandAfterShift) : "r" (secondOperand));
+ break;
+ }
+
+ // Emulate instruction to calculate targetPC
+ // All branches are already handled in the first switch statement. A branch should not reach this switch
+ switch (decodedInstruction.instruction->code)
+ {
+ // Arithmetic operations that can change the PC
+ case ARM_INST_ADC:
+ case ARM_INST_ADCS:
+ // Add with Carry
+ *targetPC = firstOperand + (secondOperandAfterShift + immediateValue) + cpsr_c;
+ break;
+
+ case ARM_INST_ADD:
+ case ARM_INST_ADDS:
+ *targetPC = firstOperand + (secondOperandAfterShift + immediateValue);
+ break;
+
+ case ARM_INST_AND:
+ case ARM_INST_ANDS:
+ *targetPC = firstOperand & (secondOperandAfterShift + immediateValue);
+ break;
+
+ case ARM_INST_ASR:
+ case ARM_INST_ASRS:
+ asm("mov %0, %1, asr %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue));
+ *targetPC = myTargetPC;
+ break;
+
+ case ARM_INST_BIC:
+ case ARM_INST_BICS:
+ asm("bic %0, %1, %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue));
+ *targetPC = myTargetPC;
+ break;
+
+ case ARM_INST_EOR:
+ case ARM_INST_EORS:
+ asm("eor %0, %1, %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue));
+ *targetPC = myTargetPC;
+ break;
+
+ case ARM_INST_ORR:
+ case ARM_INST_ORRS:
+ asm("orr %0, %1, %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue));
+ *targetPC = myTargetPC;
+ break;
+
+ case ARM_INST_RSB:
+ case ARM_INST_RSBS:
+ asm("rsb %0, %1, %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue));
+ *targetPC = myTargetPC;
+ break;
+
+ case ARM_INST_RSC:
+ case ARM_INST_RSCS:
+ myTargetPC = secondOperandAfterShift - (firstOperand + !cpsr_c);
+ *targetPC = myTargetPC;
+ break;
+
+ case ARM_INST_SBC:
+ case ARM_INST_SBCS:
+ asm("sbc %0, %1, %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue + !cpsr_c));
+ *targetPC = myTargetPC;
+ break;
+
+ case ARM_INST_SUB:
+ case ARM_INST_SUBS:
+ asm("sub %0, %1, %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue));
+ *targetPC = myTargetPC;
+ break;
+
+ // Logical shifts and move operations that can change the PC
+ case ARM_INST_LSL:
+ case ARM_INST_LSLS:
+ case ARM_INST_LSR:
+ case ARM_INST_LSRS:
+ case ARM_INST_MOV:
+ case ARM_INST_MOVS:
+ case ARM_INST_ROR:
+ case ARM_INST_RORS:
+ case ARM_INST_RRX:
+ case ARM_INST_RRXS:
+ myTargetPC = secondOperandAfterShift + immediateValue;
+ *targetPC = myTargetPC;
+ break;
+
+ case ARM_INST_MVN:
+ case ARM_INST_MVNS:
+ myTargetPC = !(secondOperandAfterShift + immediateValue);
+ *targetPC = myTargetPC;
+ break;
+
+ // Load register can be used to load PC, usually with a function pointer
+ case ARM_INST_LDR:
+ switch (decodedInstruction.addressMode) {
+ case ARM_ADDR_LSWUB_IMM_POST:
+ case ARM_ADDR_LSWUB_REG_POST:
+ case ARM_ADDR_LSWUB_SCALED_POST:
+ addressWherePCLives = baseAddress;
+ break;
+
+ case ARM_ADDR_LSWUB_IMM:
+ case ARM_ADDR_LSWUB_REG:
+ case ARM_ADDR_LSWUB_SCALED:
+ case ARM_ADDR_LSWUB_IMM_PRE:
+ case ARM_ADDR_LSWUB_REG_PRE:
+ case ARM_ADDR_LSWUB_SCALED_PRE:
+ addressWherePCLives = baseAddress + (addressOffsetFromRegisterAfterShift + immediateOffset);
+ break;
+
+ default:
+ break;
+ }
+
+ mypid = m_thread->ProcessID();
+ if (DNBProcessMemoryRead(mypid, addressWherePCLives, sizeof(nub_addr_t), &myTargetPC) != sizeof(nub_addr_t))
+ {
+ DNBLogError("Could not read memory at %8.8x to get targetPC when processing the pop instruction!", addressWherePCLives);
+ return false;
+ }
+
+ *targetPC = myTargetPC;
+ break;
+
+ // 32b load multiple operations can load the PC along with everything else,
+ // usually to return from a function call
+ case ARM_INST_LDMDA:
+ mypid = m_thread->ProcessID();
+ addressWherePCLives = baseAddress;
+ if (DNBProcessMemoryRead(mypid, addressWherePCLives, sizeof(nub_addr_t), &myTargetPC) != sizeof(nub_addr_t))
+ {
+ DNBLogError("Could not read memory at %8.8x to get targetPC when processing the pop instruction!", addressWherePCLives);
+ return false;
+ }
+
+ *targetPC = myTargetPC;
+ break;
+
+ case ARM_INST_LDMDB:
+ mypid = m_thread->ProcessID();
+ addressWherePCLives = baseAddress - 4;
+ if (DNBProcessMemoryRead(mypid, addressWherePCLives, sizeof(nub_addr_t), &myTargetPC) != sizeof(nub_addr_t))
+ {
+ DNBLogError("Could not read memory at %8.8x to get targetPC when processing the pop instruction!", addressWherePCLives);
+ return false;
+ }
+
+ *targetPC = myTargetPC;
+ break;
+
+ case ARM_INST_LDMIB:
+ mypid = m_thread->ProcessID();
+ addressWherePCLives = baseAddress + numRegistersToLoad*4 + 4;
+ if (DNBProcessMemoryRead(mypid, addressWherePCLives, sizeof(nub_addr_t), &myTargetPC) != sizeof(nub_addr_t))
+ {
+ DNBLogError("Could not read memory at %8.8x to get targetPC when processing the pop instruction!", addressWherePCLives);
+ return false;
+ }
+
+ *targetPC = myTargetPC;
+ break;
+
+ case ARM_INST_LDMIA: // same as pop
+ // Normal 16-bit LD multiple can't touch R15, but POP can
+ case ARM_INST_POP: // Can also get the PC & updates SP
+ mypid = m_thread->ProcessID();
+ addressWherePCLives = baseAddress + numRegistersToLoad*4;
+ if (DNBProcessMemoryRead(mypid, addressWherePCLives, sizeof(nub_addr_t), &myTargetPC) != sizeof(nub_addr_t))
+ {
+ DNBLogError("Could not read memory at %8.8x to get targetPC when processing the pop instruction!", addressWherePCLives);
+ return false;
+ }
+
+ *targetPC = myTargetPC;
+ break;
+
+ // 16b TBB and TBH instructions load a jump address from a table
+ case ARM_INST_TBB:
+ mypid = m_thread->ProcessID();
+ addressWherePCLives = baseAddress + addressOffsetFromRegisterAfterShift;
+ if (DNBProcessMemoryRead(mypid, addressWherePCLives, 1, &halfwords) != 1)
+ {
+ DNBLogError("Could not read memory at %8.8x to get targetPC when processing the TBB instruction!", addressWherePCLives);
+ return false;
+ }
+ // add 4 to currentPC since we are in Thumb mode and then add 2*halfwords
+ *targetPC = (currentPC + 4) + 2*halfwords;
+ break;
+
+ case ARM_INST_TBH:
+ mypid = m_thread->ProcessID();
+ addressWherePCLives = ((baseAddress + (addressOffsetFromRegisterAfterShift << 1)) & ~0x1);
+ if (DNBProcessMemoryRead(mypid, addressWherePCLives, 2, &halfwords) != 2)
+ {
+ DNBLogError("Could not read memory at %8.8x to get targetPC when processing the TBH instruction!", addressWherePCLives);
+ return false;
+ }
+ // add 4 to currentPC since we are in Thumb mode and then add 2*halfwords
+ *targetPC = (currentPC + 4) + 2*halfwords;
+ break;
+
+ // ThumbEE branch-to-handler instructions: Jump to handlers at some offset
+ // from a special base pointer register (which is unknown at disassembly time)
+ case ARM_INST_HB:
+ case ARM_INST_HBP:
+ // TODO: ARM_INST_HB, ARM_INST_HBP
+ break;
+
+ case ARM_INST_HBL:
+ case ARM_INST_HBLP:
+ // TODO: ARM_INST_HBL, ARM_INST_HBLP
+ break;
+
+ // Breakpoint and software interrupt jump to interrupt handler (always ARM)
+ case ARM_INST_BKPT:
+ case ARM_INST_SMC:
+ case ARM_INST_SVC:
+ // TODO: ARM_INST_BKPT, ARM_INST_SMC, ARM_INST_SVC
+ break;
+
+ // Return from exception, obviously modifies PC [interrupt only!]
+ case ARM_INST_RFEDA:
+ case ARM_INST_RFEDB:
+ case ARM_INST_RFEIA:
+ case ARM_INST_RFEIB:
+ // TODO: ARM_INST_RFEDA, ARM_INST_RFEDB, ARM_INST_RFEIA, ARM_INST_RFEIB
+ break;
+
+ // Other instructions either can't change R15 or are "undefined" if you do,
+ // so no sane compiler should ever generate them & we don't care here.
+ // Also, R15 can only legally be used in a read-only manner for the
+ // various ARM addressing mode (to get PC-relative addressing of constants),
+ // but can NOT be used with any of the update modes.
+ default:
+ DNBLogError("%s should not be called for instruction code %d!", __FUNCTION__, decodedInstruction.instruction->code);
+ return false;
+ break;
+ }
+
+ return true;
+}
+
+void
+DNBArchMachARM::EvaluateNextInstructionForSoftwareBreakpointSetup(nub_addr_t currentPC, uint32_t cpsr, bool currentPCIsThumb, nub_addr_t *nextPC, bool *nextPCIsThumb)
+{
+ DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "DNBArchMachARM::EvaluateNextInstructionForSoftwareBreakpointSetup() called");
+
+ nub_addr_t targetPC = INVALID_NUB_ADDRESS;
+ uint32_t registerValue;
+ arm_error_t decodeError;
+ nub_addr_t currentPCInITBlock, nextPCInITBlock;
+ int i;
+ bool last_decoded_instruction_executes = true;
+
+ DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: default nextPC=0x%8.8x (%s)", __FUNCTION__, *nextPC, *nextPCIsThumb ? "Thumb" : "ARM");
+
+ // Update *nextPC and *nextPCIsThumb for special cases
+ if (m_last_decode_thumb.itBlockRemaining) // we are in an IT block
+ {
+ // Set the nextPC to the PC of the instruction which will execute in the IT block
+ // If none of the instruction execute in the IT block based on the condition flags,
+ // then point to the instruction immediately following the IT block
+ const int itBlockRemaining = m_last_decode_thumb.itBlockRemaining;
+ DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: itBlockRemaining=%8.8x", __FUNCTION__, itBlockRemaining);
+
+ // Determine the PC at which the next instruction resides
+ if (m_last_decode_arm.thumb16b)
+ currentPCInITBlock = currentPC + 2;
+ else
+ currentPCInITBlock = currentPC + 4;
+
+ for (i = 0; i < itBlockRemaining; i++)
+ {
+ DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: currentPCInITBlock=%8.8x", __FUNCTION__, currentPCInITBlock);
+ decodeError = DecodeInstructionUsingDisassembler(currentPCInITBlock, cpsr, &m_last_decode_arm, &m_last_decode_thumb, &nextPCInITBlock);
+
+ if (decodeError != ARM_SUCCESS)
+ DNBLogError("unable to disassemble instruction at 0x%8.8lx", currentPCInITBlock);
+
+ DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: condition=%d", __FUNCTION__, m_last_decode_arm.condition);
+ if (ConditionPassed(m_last_decode_arm.condition, cpsr))
+ {
+ DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Condition codes matched for instruction %d", __FUNCTION__, i);
+ break; // break from the for loop
+ }
+ else
+ {
+ DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Condition codes DID NOT matched for instruction %d", __FUNCTION__, i);
+ }
+
+ // update currentPC and nextPCInITBlock
+ currentPCInITBlock = nextPCInITBlock;
+ }
+
+ if (i == itBlockRemaining) // We came out of the IT block without executing any instructions
+ last_decoded_instruction_executes = false;
+
+ *nextPC = currentPCInITBlock;
+ DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: After IT block step-through: *nextPC=%8.8x", __FUNCTION__, *nextPC);
+ }
+
+ DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE,
+ "%s: cpsr = %8.8x, thumb16b = %d, thumb = %d, branch = %d, conditional = %d, knownTarget = %d, links = %d, canSwitchMode = %d, doesSwitchMode = %d",
+ __FUNCTION__,
+ cpsr,
+ m_last_decode_arm.thumb16b,
+ m_last_decode_arm.thumb,
+ m_last_decode_arm.branch,
+ m_last_decode_arm.conditional,
+ m_last_decode_arm.knownTarget,
+ m_last_decode_arm.links,
+ m_last_decode_arm.canSwitchMode,
+ m_last_decode_arm.doesSwitchMode);
+
+
+ if (last_decoded_instruction_executes && // Was this a conditional instruction that did execute?
+ m_last_decode_arm.branch && // Can this instruction change the PC?
+ (m_last_decode_arm.instruction->code != ARM_INST_SVC)) // If this instruction is not an SVC instruction
+ {
+ // Set targetPC. Compute if needed.
+ if (m_last_decode_arm.knownTarget)
+ {
+ // Fixed, known PC-relative
+ targetPC = m_last_decode_arm.targetPC;
+ }
+ else
+ {
+ // if targetPC is not known at compile time (PC-relative target), compute targetPC
+ if (!ComputeNextPC(currentPC, m_last_decode_arm, currentPCIsThumb, &targetPC))
+ {
+ DNBLogError("%s: Unable to compute targetPC for instruction at 0x%8.8lx", __FUNCTION__, currentPC);
+ targetPC = INVALID_NUB_ADDRESS;
+ }
+ }
+
+ DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: targetPC=0x%8.8x, cpsr=0x%8.8x, condition=0x%hhx", __FUNCTION__, targetPC, cpsr, m_last_decode_arm.condition);
+
+ // Refine nextPC computation
+ if ((m_last_decode_arm.instruction->code == ARM_INST_CBZ) ||
+ (m_last_decode_arm.instruction->code == ARM_INST_CBNZ))
+ {
+ // Compare and branch on zero/non-zero (Thumb-16 only)
+ // Unusual condition check built into the instruction
+ registerValue = m_state.gpr.__r[m_last_decode_arm.op[REG_RD].value];
+
+ if (m_last_decode_arm.instruction->code == ARM_INST_CBZ)
+ {
+ if (registerValue == 0)
+ *nextPC = targetPC;
+ }
+ else
+ {
+ if (registerValue != 0)
+ *nextPC = targetPC;
+ }
+ }
+ else if (m_last_decode_arm.conditional) // Is the change conditional on flag results?
+ {
+ if (ConditionPassed(m_last_decode_arm.condition, cpsr)) // conditions match
+ {
+ DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Condition matched!", __FUNCTION__);
+ *nextPC = targetPC;
+ }
+ else
+ {
+ DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Condition did not match!", __FUNCTION__);
+ }
+ }
+ else
+ {
+ *nextPC = targetPC;
+ }
+
+ // Refine nextPCIsThumb computation
+ if (m_last_decode_arm.doesSwitchMode)
+ {
+ *nextPCIsThumb = !currentPCIsThumb;
+ }
+ else if (m_last_decode_arm.canSwitchMode)
+ {
+ // Legal to switch ARM <--> Thumb mode with this branch
+ // dependent on bit[0] of targetPC
+ *nextPCIsThumb = (*nextPC & 1u) != 0;
+ }
+ else
+ {
+ *nextPCIsThumb = currentPCIsThumb;
+ }
+ }
+
+ DNBLogThreadedIf(LOG_STEP, "%s: calculated nextPC=0x%8.8x (%s)", __FUNCTION__, *nextPC, *nextPCIsThumb ? "Thumb" : "ARM");
+}
+
+
+arm_error_t
+DNBArchMachARM::DecodeInstructionUsingDisassembler(nub_addr_t curr_pc, uint32_t curr_cpsr, arm_decoded_instruction_t *decodedInstruction, thumb_static_data_t *thumbStaticData, nub_addr_t *next_pc)
+{
+
+ DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: pc=0x%8.8x, cpsr=0x%8.8x", __FUNCTION__, curr_pc, curr_cpsr);
+
+ const uint32_t isetstate_mask = MASK_CPSR_T | MASK_CPSR_J;
+ const uint32_t curr_isetstate = curr_cpsr & isetstate_mask;
+ uint32_t opcode32;
+ nub_addr_t nextPC = curr_pc;
+ arm_error_t decodeReturnCode = ARM_SUCCESS;
+
+ m_last_decode_pc = curr_pc;
+ DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: last_decode_pc=0x%8.8x", __FUNCTION__, m_last_decode_pc);
+
+ switch (curr_isetstate) {
+ case 0x0: // ARM Instruction
+ // Read the ARM opcode
+ if (m_thread->Process()->Task().ReadMemory(curr_pc, 4, &opcode32) != 4)
+ {
+ DNBLogError("unable to read opcode bits 31:0 for an ARM opcode at 0x%8.8lx", curr_pc);
+ decodeReturnCode = ARM_ERROR;
+ }
+ else
+ {
+ nextPC += 4;
+ decodeReturnCode = ArmDisassembler((uint64_t)curr_pc, opcode32, false, decodedInstruction, NULL, 0, NULL, 0);
+
+ if (decodeReturnCode != ARM_SUCCESS)
+ DNBLogError("Unable to decode ARM instruction 0x%8.8x at 0x%8.8lx", opcode32, curr_pc);
+ }
+ break;
+
+ case 0x20: // Thumb Instruction
+ uint16_t opcode16;
+ // Read the a 16 bit Thumb opcode
+ if (m_thread->Process()->Task().ReadMemory(curr_pc, 2, &opcode16) != 2)
+ {
+ DNBLogError("unable to read opcode bits 15:0 for a thumb opcode at 0x%8.8lx", curr_pc);
+ decodeReturnCode = ARM_ERROR;
+ }
+ else
+ {
+ nextPC += 2;
+ opcode32 = opcode16;
+
+ decodeReturnCode = ThumbDisassembler((uint64_t)curr_pc, opcode16, false, false, thumbStaticData, decodedInstruction, NULL, 0, NULL, 0);
+
+ switch (decodeReturnCode) {
+ case ARM_SKIP:
+ // 32 bit thumb opcode
+ nextPC += 2;
+ if (m_thread->Process()->Task().ReadMemory(curr_pc+2, 2, &opcode16) != 2)
+ {
+ DNBLogError("unable to read opcode bits 15:0 for a thumb opcode at 0x%8.8lx", curr_pc+2);
+ }
+ else
+ {
+ opcode32 = (opcode32 << 16) | opcode16;
+
+ decodeReturnCode = ThumbDisassembler((uint64_t)(curr_pc+2), opcode16, false, false, thumbStaticData, decodedInstruction, NULL, 0, NULL, 0);
+
+ if (decodeReturnCode != ARM_SUCCESS)
+ DNBLogError("Unable to decode 2nd half of Thumb instruction 0x%8.4hx at 0x%8.8lx", opcode16, curr_pc+2);
+ break;
+ }
+ break;
+
+ case ARM_SUCCESS:
+ // 16 bit thumb opcode; at this point we are done decoding the opcode
+ break;
+
+ default:
+ DNBLogError("Unable to decode Thumb instruction 0x%8.4hx at 0x%8.8lx", opcode16, curr_pc);
+ decodeReturnCode = ARM_ERROR;
+ break;
+ }
+ }
+ break;
+
+ default:
+ break;
+ }
+
+ if (next_pc)
+ *next_pc = nextPC;
+
+ return decodeReturnCode;
+}
+
+nub_bool_t
+DNBArchMachARM::BreakpointHit(nub_process_t pid, nub_thread_t tid, nub_break_t breakID, void *baton)
+{
+ nub_addr_t bkpt_pc = (nub_addr_t)baton;
+ DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s(pid = %i, tid = %4.4x, breakID = %u, baton = %p): Setting PC to 0x%8.8x", __FUNCTION__, pid, tid, breakID, baton, bkpt_pc);
+ return DNBThreadSetRegisterValueByID(pid, tid, REGISTER_SET_GENERIC, GENERIC_REGNUM_PC, bkpt_pc);
+}
+
+// Set the single step bit in the processor status register.
+kern_return_t
+DNBArchMachARM::SetSingleStepSoftwareBreakpoints()
+{
+ DNBError err;
+ err = GetGPRState(false);
+
+ if (err.Fail())
+ {
+ err.LogThreaded("%s: failed to read the GPR registers", __FUNCTION__);
+ return err.Error();
+ }
+
+ nub_addr_t curr_pc = m_state.gpr.__pc;
+ uint32_t curr_cpsr = m_state.gpr.__cpsr;
+ nub_addr_t next_pc = curr_pc;
+
+ bool curr_pc_is_thumb = (m_state.gpr.__cpsr & 0x20) != 0;
+ bool next_pc_is_thumb = curr_pc_is_thumb;
+
+ uint32_t curr_itstate = ((curr_cpsr & 0x6000000) >> 25) | ((curr_cpsr & 0xFC00) >> 8);
+ bool inITBlock = (curr_itstate & 0xF) ? 1 : 0;
+ bool lastInITBlock = ((curr_itstate & 0xF) == 0x8) ? 1 : 0;
+
+ DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: curr_pc=0x%8.8x (%s), curr_itstate=0x%x, inITBlock=%d, lastInITBlock=%d", __FUNCTION__, curr_pc, curr_pc_is_thumb ? "Thumb" : "ARM", curr_itstate, inITBlock, lastInITBlock);
+
+ // If the instruction is not in the IT block, then decode using the Disassembler and compute next_pc
+ if (!inITBlock)
+ {
+ DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Decoding an instruction NOT in the IT block", __FUNCTION__);
+
+ arm_error_t decodeReturnCode = DecodeInstructionUsingDisassembler(curr_pc, curr_cpsr, &m_last_decode_arm, &m_last_decode_thumb, &next_pc);
+
+ if (decodeReturnCode != ARM_SUCCESS)
+ {
+ err = KERN_INVALID_ARGUMENT;
+ DNBLogError("DNBArchMachARM::SetSingleStepSoftwareBreakpoints: Unable to disassemble instruction at 0x%8.8lx", curr_pc);
+ }
+ }
+ else
+ {
+ next_pc = curr_pc + ((m_last_decode_arm.thumb16b) ? 2 : 4);
+ }
+
+ // Instruction is NOT in the IT block OR
+ if (!inITBlock)
+ {
+ DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: normal instruction", __FUNCTION__);
+ EvaluateNextInstructionForSoftwareBreakpointSetup(curr_pc, m_state.gpr.__cpsr, curr_pc_is_thumb, &next_pc, &next_pc_is_thumb);
+ }
+ else if (inITBlock && !m_last_decode_arm.setsFlags)
+ {
+ DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: IT instruction that doesn't set flags", __FUNCTION__);
+ EvaluateNextInstructionForSoftwareBreakpointSetup(curr_pc, m_state.gpr.__cpsr, curr_pc_is_thumb, &next_pc, &next_pc_is_thumb);
+ }
+ else if (lastInITBlock && m_last_decode_arm.branch)
+ {
+ DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: IT instruction which last in the IT block and is a branch", __FUNCTION__);
+ EvaluateNextInstructionForSoftwareBreakpointSetup(curr_pc, m_state.gpr.__cpsr, curr_pc_is_thumb, &next_pc, &next_pc_is_thumb);
+ }
+ else
+ {
+ // Instruction is in IT block and can modify the CPSR flags
+ DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: IT instruction that sets flags", __FUNCTION__);
+
+ // NOTE: When this point of code is reached, the instruction at curr_pc has already been decoded
+ // inside the function ThreadDidStop(). Therefore m_last_decode_arm, m_last_decode_thumb
+ // reflect the decoded instruction at curr_pc
+
+ // If we find an instruction inside the IT block which will set/modify the condition flags (NZCV bits in CPSR),
+ // we set breakpoints at all remaining instructions inside the IT block starting from the instruction immediately
+ // following this one AND a breakpoint at the instruction immediately following the IT block. We do this because
+ // we cannot determine the next_pc until the instruction at which we are currently stopped executes. Hence we
+ // insert (m_last_decode_thumb.itBlockRemaining+1) 16-bit Thumb breakpoints at consecutive memory locations
+ // starting at addrOfNextInstructionInITBlock. We record these breakpoints in class variable m_sw_single_step_itblock_break_id[],
+ // and also record the total number of IT breakpoints set in the variable 'm_sw_single_step_itblock_break_count'.
+
+ // The instructions inside the IT block, which are replaced by the 16-bit Thumb breakpoints (opcode=0xDEFE)
+ // instructions, can be either Thumb-16 or Thumb-32. When a Thumb-32 instruction (say, inst#1) is replaced Thumb
+ // by a 16-bit breakpoint (OS only supports 16-bit breakpoints in Thumb mode and 32-bit breakpoints in ARM mode), the
+ // breakpoint for the next instruction (say instr#2) is saved in the upper half of this Thumb-32 (instr#1)
+ // instruction. Hence if the execution stops at Breakpoint2 corresponding to instr#2, the PC is offset by 16-bits.
+ // We therefore have to keep track of PC of each instruction in the IT block that is being replaced with the 16-bit
+ // Thumb breakpoint, to ensure that when the breakpoint is hit, the PC is adjusted to the correct value. We save
+ // the actual PC corresponding to each instruction in the IT block by associating a call back with each breakpoint
+ // we set and passing it as a baton. When the breakpoint hits and the callback routine is called, the routine
+ // adjusts the PC based on the baton that is passed to it.
+
+ nub_addr_t addrOfNextInstructionInITBlock, pcInITBlock, nextPCInITBlock, bpAddressInITBlock;
+ uint16_t opcode16;
+ uint32_t opcode32;
+
+ addrOfNextInstructionInITBlock = (m_last_decode_arm.thumb16b) ? curr_pc + 2 : curr_pc + 4;
+
+ pcInITBlock = addrOfNextInstructionInITBlock;
+
+ DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: itBlockRemaining=%d", __FUNCTION__, m_last_decode_thumb.itBlockRemaining);
+
+ m_sw_single_step_itblock_break_count = 0;
+ for (int i = 0; i <= m_last_decode_thumb.itBlockRemaining; i++)
+ {
+ if (NUB_BREAK_ID_IS_VALID(m_sw_single_step_itblock_break_id[i]))
+ {
+ DNBLogError("FunctionProfiler::SetSingleStepSoftwareBreakpoints(): Array m_sw_single_step_itblock_break_id should not contain any valid breakpoint IDs at this point. But found a valid breakID=%d at index=%d", m_sw_single_step_itblock_break_id[i], i);
+ }
+ else
+ {
+ nextPCInITBlock = pcInITBlock;
+ // Compute nextPCInITBlock based on opcode present at pcInITBlock
+ if (m_thread->Process()->Task().ReadMemory(pcInITBlock, 2, &opcode16) == 2)
+ {
+ opcode32 = opcode16;
+ nextPCInITBlock += 2;
+
+ // Check for 32 bit thumb opcode and read the upper 16 bits if needed
+ if (((opcode32 & 0xE000) == 0xE000) && (opcode32 & 0x1800))
+ {
+ // Adjust 'next_pc_in_itblock' to point to the default next Thumb instruction for
+ // a 32 bit Thumb opcode
+ // Read bits 31:16 of a 32 bit Thumb opcode
+ if (m_thread->Process()->Task().ReadMemory(pcInITBlock+2, 2, &opcode16) == 2)
+ {
+ // 32 bit thumb opcode
+ opcode32 = (opcode32 << 16) | opcode16;
+ nextPCInITBlock += 2;
+ }
+ else
+ {
+ DNBLogError("FunctionProfiler::SetSingleStepSoftwareBreakpoints(): Unable to read opcode bits 31:16 for a 32 bit thumb opcode at pc=0x%8.8lx", nextPCInITBlock);
+ }
+ }
+ }
+ else
+ {
+ DNBLogError("FunctionProfiler::SetSingleStepSoftwareBreakpoints(): Error reading 16-bit Thumb instruction at pc=0x%8.8x", nextPCInITBlock);
+ }
+
+
+ // Set breakpoint and associate a callback function with it
+ bpAddressInITBlock = addrOfNextInstructionInITBlock + 2*i;
+ DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Setting IT breakpoint[%d] at address: 0x%8.8x", __FUNCTION__, i, bpAddressInITBlock);
+
+ m_sw_single_step_itblock_break_id[i] = m_thread->Process()->CreateBreakpoint(bpAddressInITBlock, 2, false, m_thread->ThreadID());
+ if (!NUB_BREAK_ID_IS_VALID(m_sw_single_step_itblock_break_id[i]))
+ err = KERN_INVALID_ARGUMENT;
+ else
+ {
+ DNBLogThreadedIf(LOG_STEP, "%s: Set IT breakpoint[%i]=%d set at 0x%8.8x for instruction at 0x%8.8x", __FUNCTION__, i, m_sw_single_step_itblock_break_id[i], bpAddressInITBlock, pcInITBlock);
+
+ // Set the breakpoint callback for these special IT breakpoints
+ // so that if one of these breakpoints gets hit, it knows to
+ // update the PC to the original address of the conditional
+ // IT instruction.
+ DNBBreakpointSetCallback(m_thread->ProcessID(), m_sw_single_step_itblock_break_id[i], DNBArchMachARM::BreakpointHit, (void*)pcInITBlock);
+ m_sw_single_step_itblock_break_count++;
+ }
+ }
+
+ pcInITBlock = nextPCInITBlock;
+ }
+
+ DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Set %u IT software single breakpoints.", __FUNCTION__, m_sw_single_step_itblock_break_count);
+
+ }
+
+ DNBLogThreadedIf(LOG_STEP, "%s: next_pc=0x%8.8x (%s)", __FUNCTION__, next_pc, next_pc_is_thumb ? "Thumb" : "ARM");
+
+ if (next_pc & 0x1)
+ {
+ assert(next_pc_is_thumb);
+ }
+
+ if (next_pc_is_thumb)
+ {
+ next_pc &= ~0x1;
+ }
+ else
+ {
+ assert((next_pc & 0x3) == 0);
+ }
+
+ if (!inITBlock || (inITBlock && !m_last_decode_arm.setsFlags) || (lastInITBlock && m_last_decode_arm.branch))
+ {
+ err = KERN_SUCCESS;
+
+#if defined DNB_ARCH_MACH_ARM_DEBUG_SW_STEP
+ m_sw_single_step_next_pc = next_pc;
+ if (next_pc_is_thumb)
+ m_sw_single_step_next_pc |= 1; // Set bit zero if the next PC is expected to be Thumb
+#else
+ const DNBBreakpoint *bp = m_thread->Process()->Breakpoints().FindByAddress(next_pc);
+
+ if (bp == NULL)
+ {
+ m_sw_single_step_break_id = m_thread->Process()->CreateBreakpoint(next_pc, next_pc_is_thumb ? 2 : 4, false, m_thread->ThreadID());
+ if (!NUB_BREAK_ID_IS_VALID(m_sw_single_step_break_id))
+ err = KERN_INVALID_ARGUMENT;
+ DNBLogThreadedIf(LOG_STEP, "%s: software single step breakpoint with breakID=%d set at 0x%8.8x", __FUNCTION__, m_sw_single_step_break_id, next_pc);
+ }
+#endif
+ }
+
+ return err.Error();
+}
+
+uint32_t
+DNBArchMachARM::NumSupportedHardwareBreakpoints()
+{
+ // Set the init value to something that will let us know that we need to
+ // autodetect how many breakpoints are supported dynamically...
+ static uint32_t g_num_supported_hw_breakpoints = UINT_MAX;
+ if (g_num_supported_hw_breakpoints == UINT_MAX)
+ {
+ // Set this to zero in case we can't tell if there are any HW breakpoints
+ g_num_supported_hw_breakpoints = 0;
+
+ // Read the DBGDIDR to get the number of available hardware breakpoints
+ // However, in some of our current armv7 processors, hardware
+ // breakpoints/watchpoints were not properly connected. So detect those
+ // cases using a field in a sysctl. For now we are using "hw.cpusubtype"
+ // field to distinguish CPU architectures. This is a hack until we can
+ // get <rdar://problem/6372672> fixed, at which point we will switch to
+ // using a different sysctl string that will tell us how many BRPs
+ // are available to us directly without having to read DBGDIDR.
+ uint32_t register_DBGDIDR;
+
+ asm("mrc p14, 0, %0, c0, c0, 0" : "=r" (register_DBGDIDR));
+ uint32_t numBRPs = bits(register_DBGDIDR, 27, 24);
+ // Zero is reserved for the BRP count, so don't increment it if it is zero
+ if (numBRPs > 0)
+ numBRPs++;
+ DNBLogThreadedIf(LOG_THREAD, "DBGDIDR=0x%8.8x (number BRP pairs = %u)", register_DBGDIDR, numBRPs);
+
+ if (numBRPs > 0)
+ {
+ uint32_t cpusubtype;
+ size_t len;
+ len = sizeof(cpusubtype);
+ // TODO: remove this hack and change to using hw.optional.xx when implmented
+ if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &len, NULL, 0) == 0)
+ {
+ DNBLogThreadedIf(LOG_THREAD, "hw.cpusubtype=0x%d", cpusubtype);
+ if (cpusubtype == CPU_SUBTYPE_ARM_V7)
+ DNBLogThreadedIf(LOG_THREAD, "Hardware breakpoints disabled for armv7 (rdar://problem/6372672)");
+ else
+ g_num_supported_hw_breakpoints = numBRPs;
+ }
+ }
+
+ }
+ return g_num_supported_hw_breakpoints;
+}
+
+
+uint32_t
+DNBArchMachARM::NumSupportedHardwareWatchpoints()
+{
+ // Set the init value to something that will let us know that we need to
+ // autodetect how many watchpoints are supported dynamically...
+ static uint32_t g_num_supported_hw_watchpoints = UINT_MAX;
+ if (g_num_supported_hw_watchpoints == UINT_MAX)
+ {
+ // Set this to zero in case we can't tell if there are any HW breakpoints
+ g_num_supported_hw_watchpoints = 0;
+ // Read the DBGDIDR to get the number of available hardware breakpoints
+ // However, in some of our current armv7 processors, hardware
+ // breakpoints/watchpoints were not properly connected. So detect those
+ // cases using a field in a sysctl. For now we are using "hw.cpusubtype"
+ // field to distinguish CPU architectures. This is a hack until we can
+ // get <rdar://problem/6372672> fixed, at which point we will switch to
+ // using a different sysctl string that will tell us how many WRPs
+ // are available to us directly without having to read DBGDIDR.
+
+ uint32_t register_DBGDIDR;
+ asm("mrc p14, 0, %0, c0, c0, 0" : "=r" (register_DBGDIDR));
+ uint32_t numWRPs = bits(register_DBGDIDR, 31, 28) + 1;
+ DNBLogThreadedIf(LOG_THREAD, "DBGDIDR=0x%8.8x (number WRP pairs = %u)", register_DBGDIDR, numWRPs);
+
+ if (numWRPs > 0)
+ {
+ uint32_t cpusubtype;
+ size_t len;
+ len = sizeof(cpusubtype);
+ // TODO: remove this hack and change to using hw.optional.xx when implmented
+ if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &len, NULL, 0) == 0)
+ {
+ DNBLogThreadedIf(LOG_THREAD, "hw.cpusubtype=0x%d", cpusubtype);
+
+ if (cpusubtype == CPU_SUBTYPE_ARM_V7)
+ DNBLogThreadedIf(LOG_THREAD, "Hardware watchpoints disabled for armv7 (rdar://problem/6372672)");
+ else
+ g_num_supported_hw_watchpoints = numWRPs;
+ }
+ }
+
+ }
+ return g_num_supported_hw_watchpoints;
+}
+
+
+uint32_t
+DNBArchMachARM::EnableHardwareBreakpoint (nub_addr_t addr, nub_size_t size)
+{
+ // Make sure our address isn't bogus
+ if (addr & 1)
+ return INVALID_NUB_HW_INDEX;
+
+ kern_return_t kret = GetDBGState(false);
+
+ if (kret == KERN_SUCCESS)
+ {
+ const uint32_t num_hw_breakpoints = NumSupportedHardwareBreakpoints();
+ uint32_t i;
+ for (i=0; i<num_hw_breakpoints; ++i)
+ {
+ if ((m_state.dbg.__bcr[i] & BCR_ENABLE) == 0)
+ break; // We found an available hw breakpoint slot (in i)
+ }
+
+ // See if we found an available hw breakpoint slot above
+ if (i < num_hw_breakpoints)
+ {
+ // Make sure bits 1:0 are clear in our address
+ m_state.dbg.__bvr[i] = addr & ~((nub_addr_t)3);
+
+ if (size == 2 || addr & 2)
+ {
+ uint32_t byte_addr_select = (addr & 2) ? BAS_IMVA_2_3 : BAS_IMVA_0_1;
+
+ // We have a thumb breakpoint
+ // We have an ARM breakpoint
+ m_state.dbg.__bcr[i] = BCR_M_IMVA_MATCH | // Stop on address mismatch
+ byte_addr_select | // Set the correct byte address select so we only trigger on the correct opcode
+ S_USER | // Which modes should this breakpoint stop in?
+ BCR_ENABLE; // Enable this hardware breakpoint
+ DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint( addr = %8.8p, size = %u ) - BVR%u/BCR%u = 0x%8.8x / 0x%8.8x (Thumb)",
+ addr,
+ size,
+ i,
+ i,
+ m_state.dbg.__bvr[i],
+ m_state.dbg.__bcr[i]);
+ }
+ else if (size == 4)
+ {
+ // We have an ARM breakpoint
+ m_state.dbg.__bcr[i] = BCR_M_IMVA_MATCH | // Stop on address mismatch
+ BAS_IMVA_ALL | // Stop on any of the four bytes following the IMVA
+ S_USER | // Which modes should this breakpoint stop in?
+ BCR_ENABLE; // Enable this hardware breakpoint
+ DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint( addr = %8.8p, size = %u ) - BVR%u/BCR%u = 0x%8.8x / 0x%8.8x (ARM)",
+ addr,
+ size,
+ i,
+ i,
+ m_state.dbg.__bvr[i],
+ m_state.dbg.__bcr[i]);
+ }
+
+ kret = SetDBGState();
+ DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint() SetDBGState() => 0x%8.8x.", kret);
+
+ if (kret == KERN_SUCCESS)
+ return i;
+ }
+ else
+ {
+ DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint(addr = %8.8p, size = %u) => all hardware breakpoint resources are being used.", addr, size);
+ }
+ }
+
+ return INVALID_NUB_HW_INDEX;
+}
+
+bool
+DNBArchMachARM::DisableHardwareBreakpoint (uint32_t hw_index)
+{
+ kern_return_t kret = GetDBGState(false);
+
+ const uint32_t num_hw_points = NumSupportedHardwareBreakpoints();
+ if (kret == KERN_SUCCESS)
+ {
+ if (hw_index < num_hw_points)
+ {
+ m_state.dbg.__bcr[hw_index] = 0;
+ DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::SetHardwareBreakpoint( %u ) - BVR%u = 0x%8.8x BCR%u = 0x%8.8x",
+ hw_index,
+ hw_index,
+ m_state.dbg.__bvr[hw_index],
+ hw_index,
+ m_state.dbg.__bcr[hw_index]);
+
+ kret = SetDBGState();
+
+ if (kret == KERN_SUCCESS)
+ return true;
+ }
+ }
+ return false;
+}
+
+uint32_t
+DNBArchMachARM::EnableHardwareWatchpoint (nub_addr_t addr, nub_size_t size, bool read, bool write)
+{
+ DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint(addr = %8.8p, size = %u, read = %u, write = %u)", addr, size, read, write);
+
+ const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();
+
+ // Can't watch zero bytes
+ if (size == 0)
+ return INVALID_NUB_HW_INDEX;
+
+ // We must watch for either read or write
+ if (read == false && write == false)
+ return INVALID_NUB_HW_INDEX;
+
+ // Can't watch more than 4 bytes per WVR/WCR pair
+ if (size > 4)
+ return INVALID_NUB_HW_INDEX;
+
+ // We can only watch up to four bytes that follow a 4 byte aligned address
+ // per watchpoint register pair. Since we have at most so we can only watch
+ // until the next 4 byte boundary and we need to make sure we can properly
+ // encode this.
+ uint32_t addr_word_offset = addr % 4;
+ DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() - addr_word_offset = 0x%8.8x", addr_word_offset);
+
+ uint32_t byte_mask = ((1u << size) - 1u) << addr_word_offset;
+ DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() - byte_mask = 0x%8.8x", byte_mask);
+ if (byte_mask > 0xfu)
+ return INVALID_NUB_HW_INDEX;
+
+ // Read the debug state
+ kern_return_t kret = GetDBGState(false);
+
+ if (kret == KERN_SUCCESS)
+ {
+ // Check to make sure we have the needed hardware support
+ uint32_t i = 0;
+
+ for (i=0; i<num_hw_watchpoints; ++i)
+ {
+ if ((m_state.dbg.__wcr[i] & WCR_ENABLE) == 0)
+ break; // We found an available hw breakpoint slot (in i)
+ }
+
+ // See if we found an available hw breakpoint slot above
+ if (i < num_hw_watchpoints)
+ {
+ // Make the byte_mask into a valid Byte Address Select mask
+ uint32_t byte_address_select = byte_mask << 5;
+ // Make sure bits 1:0 are clear in our address
+ m_state.dbg.__wvr[i] = addr & ~((nub_addr_t)3);
+ m_state.dbg.__wcr[i] = byte_address_select | // Which bytes that follow the IMVA that we will watch
+ S_USER | // Stop only in user mode
+ (read ? WCR_LOAD : 0) | // Stop on read access?
+ (write ? WCR_STORE : 0) | // Stop on write access?
+ WCR_ENABLE; // Enable this watchpoint;
+
+ kret = SetDBGState();
+ DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() SetDBGState() => 0x%8.8x.", kret);
+
+ if (kret == KERN_SUCCESS)
+ return i;
+ }
+ else
+ {
+ DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint(): All hardware resources (%u) are in use.", num_hw_watchpoints);
+ }
+ }
+ return INVALID_NUB_HW_INDEX;
+}
+
+bool
+DNBArchMachARM::DisableHardwareWatchpoint (uint32_t hw_index)
+{
+ kern_return_t kret = GetDBGState(false);
+
+ const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
+ if (kret == KERN_SUCCESS)
+ {
+ if (hw_index < num_hw_points)
+ {
+ m_state.dbg.__wcr[hw_index] = 0;
+ DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ClearHardwareWatchpoint( %u ) - WVR%u = 0x%8.8x WCR%u = 0x%8.8x",
+ hw_index,
+ hw_index,
+ m_state.dbg.__wvr[hw_index],
+ hw_index,
+ m_state.dbg.__wcr[hw_index]);
+
+ kret = SetDBGState();
+
+ if (kret == KERN_SUCCESS)
+ return true;
+ }
+ }
+ return false;
+}
+
+//----------------------------------------------------------------------
+// Register information defintions for 32 bit ARMV6.
+//----------------------------------------------------------------------
+enum gpr_regnums
+{
+ e_regNumGPR_r0 = 0,
+ e_regNumGPR_r1,
+ e_regNumGPR_r2,
+ e_regNumGPR_r3,
+ e_regNumGPR_r4,
+ e_regNumGPR_r5,
+ e_regNumGPR_r6,
+ e_regNumGPR_r7,
+ e_regNumGPR_r8,
+ e_regNumGPR_r9,
+ e_regNumGPR_r10,
+ e_regNumGPR_r11,
+ e_regNumGPR_r12,
+ e_regNumGPR_sp,
+ e_regNumGPR_lr,
+ e_regNumGPR_pc,
+ e_regNumGPR_cpsr
+};
+
+// General purpose registers
+static DNBRegisterInfo g_gpr_registers[] =
+{
+ { "r0" , Uint, 4, Hex },
+ { "r1" , Uint, 4, Hex },
+ { "r2" , Uint, 4, Hex },
+ { "r3" , Uint, 4, Hex },
+ { "r4" , Uint, 4, Hex },
+ { "r5" , Uint, 4, Hex },
+ { "r6" , Uint, 4, Hex },
+ { "r7" , Uint, 4, Hex },
+ { "r8" , Uint, 4, Hex },
+ { "r9" , Uint, 4, Hex },
+ { "r10" , Uint, 4, Hex },
+ { "r11" , Uint, 4, Hex },
+ { "r12" , Uint, 4, Hex },
+ { "sp" , Uint, 4, Hex },
+ { "lr" , Uint, 4, Hex },
+ { "pc" , Uint, 4, Hex },
+ { "cpsr" , Uint, 4, Hex },
+};
+
+// Floating point registers
+static DNBRegisterInfo g_vfp_registers[] =
+{
+ { "s0" , IEEE754, 4, Float },
+ { "s1" , IEEE754, 4, Float },
+ { "s2" , IEEE754, 4, Float },
+ { "s3" , IEEE754, 4, Float },
+ { "s4" , IEEE754, 4, Float },
+ { "s5" , IEEE754, 4, Float },
+ { "s6" , IEEE754, 4, Float },
+ { "s7" , IEEE754, 4, Float },
+ { "s8" , IEEE754, 4, Float },
+ { "s9" , IEEE754, 4, Float },
+ { "s10" , IEEE754, 4, Float },
+ { "s11" , IEEE754, 4, Float },
+ { "s12" , IEEE754, 4, Float },
+ { "s13" , IEEE754, 4, Float },
+ { "s14" , IEEE754, 4, Float },
+ { "s15" , IEEE754, 4, Float },
+ { "s16" , IEEE754, 4, Float },
+ { "s17" , IEEE754, 4, Float },
+ { "s18" , IEEE754, 4, Float },
+ { "s19" , IEEE754, 4, Float },
+ { "s20" , IEEE754, 4, Float },
+ { "s21" , IEEE754, 4, Float },
+ { "s22" , IEEE754, 4, Float },
+ { "s23" , IEEE754, 4, Float },
+ { "s24" , IEEE754, 4, Float },
+ { "s25" , IEEE754, 4, Float },
+ { "s26" , IEEE754, 4, Float },
+ { "s27" , IEEE754, 4, Float },
+ { "s28" , IEEE754, 4, Float },
+ { "s29" , IEEE754, 4, Float },
+ { "s30" , IEEE754, 4, Float },
+ { "s31" , IEEE754, 4, Float },
+ { "fpscr" , Uint, 4, Hex }
+};
+
+// Exception registers
+
+static DNBRegisterInfo g_exc_registers[] =
+{
+ { "dar" , Uint, 4, Hex },
+ { "dsisr" , Uint, 4, Hex },
+ { "exception" , Uint, 4, Hex }
+};
+
+// Number of registers in each register set
+const size_t k_num_gpr_registers = sizeof(g_gpr_registers)/sizeof(DNBRegisterInfo);
+const size_t k_num_vfp_registers = sizeof(g_vfp_registers)/sizeof(DNBRegisterInfo);
+const size_t k_num_exc_registers = sizeof(g_exc_registers)/sizeof(DNBRegisterInfo);
+// Total number of registers for this architecture
+const size_t k_num_armv6_registers = k_num_gpr_registers + k_num_vfp_registers + k_num_exc_registers;
+
+//----------------------------------------------------------------------
+// Register set definitions. The first definitions at register set index
+// of zero is for all registers, followed by other registers sets. The
+// register information for the all register set need not be filled in.
+//----------------------------------------------------------------------
+static const DNBRegisterSetInfo g_reg_sets[] =
+{
+ { "ARMV6 Registers", NULL, k_num_armv6_registers },
+ { "General Purpose Registers", g_gpr_registers, k_num_gpr_registers },
+ { "Floating Point Registers", g_vfp_registers, k_num_vfp_registers },
+ { "Exception State Registers", g_exc_registers, k_num_exc_registers }
+};
+// Total number of register sets for this architecture
+const size_t k_num_register_sets = sizeof(g_reg_sets)/sizeof(DNBRegisterSetInfo);
+
+
+const DNBRegisterSetInfo *
+DNBArchMachARM::GetRegisterSetInfo(nub_size_t *num_reg_sets) const
+{
+ *num_reg_sets = k_num_register_sets;
+ return g_reg_sets;
+}
+
+bool
+DNBArchMachARM::GetRegisterValue(int set, int reg, DNBRegisterValue *value)
+{
+ if (set == REGISTER_SET_GENERIC)
+ {
+ switch (reg)
+ {
+ case GENERIC_REGNUM_PC: // Program Counter
+ set = e_regSetGPR;
+ reg = e_regNumGPR_pc;
+ break;
+
+ case GENERIC_REGNUM_SP: // Stack Pointer
+ set = e_regSetGPR;
+ reg = e_regNumGPR_sp;
+ break;
+
+ case GENERIC_REGNUM_FP: // Frame Pointer
+ set = e_regSetGPR;
+ reg = e_regNumGPR_r7; // is this the right reg?
+ break;
+
+ case GENERIC_REGNUM_RA: // Return Address
+ set = e_regSetGPR;
+ reg = e_regNumGPR_lr;
+ break;
+
+ case GENERIC_REGNUM_FLAGS: // Processor flags register
+ set = e_regSetGPR;
+ reg = e_regNumGPR_cpsr;
+ break;
+
+ default:
+ return false;
+ }
+ }
+
+ if (GetRegisterState(set, false) != KERN_SUCCESS)
+ return false;
+
+ const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
+ if (regInfo)
+ {
+ value->info = *regInfo;
+ switch (set)
+ {
+ case e_regSetGPR:
+ if (reg < k_num_gpr_registers)
+ {
+ value->value.uint32 = m_state.gpr.__r[reg];
+ return true;
+ }
+ break;
+
+ case e_regSetVFP:
+ if (reg < 32)
+ {
+ value->value.uint32 = m_state.vfp.__r[reg];
+ return true;
+ }
+ else if (reg == 32)
+ {
+ value->value.uint32 = m_state.vfp.__fpscr;
+ return true;
+ }
+ break;
+
+ case e_regSetEXC:
+ if (reg < k_num_exc_registers)
+ {
+ value->value.uint32 = (&m_state.exc.__exception)[reg];
+ return true;
+ }
+ break;
+ }
+ }
+ return false;
+}
+
+bool
+DNBArchMachARM::SetRegisterValue(int set, int reg, const DNBRegisterValue *value)
+{
+ if (set == REGISTER_SET_GENERIC)
+ {
+ switch (reg)
+ {
+ case GENERIC_REGNUM_PC: // Program Counter
+ set = e_regSetGPR;
+ reg = e_regNumGPR_pc;
+ break;
+
+ case GENERIC_REGNUM_SP: // Stack Pointer
+ set = e_regSetGPR;
+ reg = e_regNumGPR_sp;
+ break;
+
+ case GENERIC_REGNUM_FP: // Frame Pointer
+ set = e_regSetGPR;
+ reg = e_regNumGPR_r7;
+ break;
+
+ case GENERIC_REGNUM_RA: // Return Address
+ set = e_regSetGPR;
+ reg = e_regNumGPR_lr;
+ break;
+
+ case GENERIC_REGNUM_FLAGS: // Processor flags register
+ set = e_regSetGPR;
+ reg = e_regNumGPR_cpsr;
+ break;
+
+ default:
+ return false;
+ }
+ }
+
+ if (GetRegisterState(set, false) != KERN_SUCCESS)
+ return false;
+
+ bool success = false;
+ const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
+ if (regInfo)
+ {
+ switch (set)
+ {
+ case e_regSetGPR:
+ if (reg < k_num_gpr_registers)
+ {
+ m_state.gpr.__r[reg] = value->value.uint32;
+ success = true;
+ }
+ break;
+
+ case e_regSetVFP:
+ if (reg < 32)
+ {
+ m_state.vfp.__r[reg] = value->value.float64;
+ success = true;
+ }
+ else if (reg == 32)
+ {
+ m_state.vfp.__fpscr = value->value.uint32;
+ success = true;
+ }
+ break;
+
+ case e_regSetEXC:
+ if (reg < k_num_exc_registers)
+ {
+ (&m_state.exc.__exception)[reg] = value->value.uint32;
+ success = true;
+ }
+ break;
+ }
+
+ }
+ if (success)
+ return SetRegisterState(set) == KERN_SUCCESS;
+ return false;
+}
+
+kern_return_t
+DNBArchMachARM::GetRegisterState(int set, bool force)
+{
+ switch (set)
+ {
+ case e_regSetALL: return GetGPRState(force) |
+ GetVFPState(force) |
+ GetEXCState(force) |
+ GetDBGState(force);
+ case e_regSetGPR: return GetGPRState(force);
+ case e_regSetVFP: return GetVFPState(force);
+ case e_regSetEXC: return GetEXCState(force);
+ case e_regSetDBG: return GetDBGState(force);
+ default: break;
+ }
+ return KERN_INVALID_ARGUMENT;
+}
+
+kern_return_t
+DNBArchMachARM::SetRegisterState(int set)
+{
+ // Make sure we have a valid context to set.
+ kern_return_t err = GetRegisterState(set, false);
+ if (err != KERN_SUCCESS)
+ return err;
+
+ switch (set)
+ {
+ case e_regSetALL: return SetGPRState() |
+ SetVFPState() |
+ SetEXCState() |
+ SetDBGState();
+ case e_regSetGPR: return SetGPRState();
+ case e_regSetVFP: return SetVFPState();
+ case e_regSetEXC: return SetEXCState();
+ case e_regSetDBG: return SetDBGState();
+ default: break;
+ }
+ return KERN_INVALID_ARGUMENT;
+}
+
+bool
+DNBArchMachARM::RegisterSetStateIsValid (int set) const
+{
+ return m_state.RegsAreValid(set);
+}
+
+
+#endif // #if defined (__arm__)
+
diff --git a/lldb/tools/debugserver/source/MacOSX/arm/DNBArchImpl.h b/lldb/tools/debugserver/source/MacOSX/arm/DNBArchImpl.h
new file mode 100644
index 00000000000..f40c891ce98
--- /dev/null
+++ b/lldb/tools/debugserver/source/MacOSX/arm/DNBArchImpl.h
@@ -0,0 +1,217 @@
+//===-- DNBArchImpl.h -------------------------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Created by Greg Clayton on 6/25/07.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef __DebugNubArchMachARM_h__
+#define __DebugNubArchMachARM_h__
+
+#if defined (__arm__)
+
+#include "DNBArch.h"
+#include <ARMDisassembler/ARMDisassembler.h>
+
+class MachThread;
+
+class DNBArchMachARM : public DNBArchProtocol
+{
+public:
+ enum { kMaxNumThumbITBreakpoints = 4 };
+
+ DNBArchMachARM(MachThread *thread) :
+ m_thread(thread),
+ m_state(),
+ m_hw_single_chained_step_addr(INVALID_NUB_ADDRESS),
+ m_sw_single_step_next_pc(INVALID_NUB_ADDRESS),
+ m_sw_single_step_break_id(INVALID_NUB_BREAK_ID),
+ m_sw_single_step_itblock_break_count(0),
+ m_last_decode_pc(INVALID_NUB_ADDRESS)
+ {
+ memset(&m_dbg_save, 0, sizeof(m_dbg_save));
+ ThumbStaticsInit(&m_last_decode_thumb);
+ for (int i = 0; i < kMaxNumThumbITBreakpoints; i++)
+ m_sw_single_step_itblock_break_id[i] = INVALID_NUB_BREAK_ID;
+ }
+
+ virtual ~DNBArchMachARM()
+ {
+ }
+
+ virtual const DNBRegisterSetInfo *
+ GetRegisterSetInfo(nub_size_t *num_reg_sets) const;
+ virtual bool GetRegisterValue(int set, int reg, DNBRegisterValue *value);
+ virtual bool SetRegisterValue(int set, int reg, const DNBRegisterValue *value);
+
+ virtual kern_return_t GetRegisterState (int set, bool force);
+ virtual kern_return_t SetRegisterState (int set);
+ virtual bool RegisterSetStateIsValid (int set) const;
+
+ virtual uint64_t GetPC(uint64_t failValue); // Get program counter
+ virtual kern_return_t SetPC(uint64_t value);
+ virtual uint64_t GetSP(uint64_t failValue); // Get stack pointer
+ virtual void ThreadWillResume();
+ virtual bool ThreadDidStop();
+
+ static const uint8_t * const SoftwareBreakpointOpcode (nub_size_t byte_size);
+ static uint32_t GetCPUType();
+
+ virtual uint32_t NumSupportedHardwareBreakpoints();
+ virtual uint32_t NumSupportedHardwareWatchpoints();
+ virtual uint32_t EnableHardwareBreakpoint (nub_addr_t addr, nub_size_t size);
+ virtual uint32_t EnableHardwareWatchpoint (nub_addr_t addr, nub_size_t size, bool read, bool write);
+ virtual bool DisableHardwareBreakpoint (uint32_t hw_break_index);
+ virtual bool DisableHardwareWatchpoint (uint32_t hw_break_index);
+ virtual bool StepNotComplete ();
+
+protected:
+
+
+ kern_return_t EnableHardwareSingleStep (bool enable);
+ kern_return_t SetSingleStepSoftwareBreakpoints ();
+
+ bool ConditionPassed(uint8_t condition, uint32_t cpsr);
+ bool ComputeNextPC(nub_addr_t currentPC, arm_decoded_instruction_t decodedInstruction, bool currentPCIsThumb, nub_addr_t *targetPC);
+ void EvaluateNextInstructionForSoftwareBreakpointSetup(nub_addr_t currentPC, uint32_t cpsr, bool currentPCIsThumb, nub_addr_t *nextPC, bool *nextPCIsThumb);
+ void DecodeITBlockInstructions(nub_addr_t curr_pc);
+ arm_error_t DecodeInstructionUsingDisassembler(nub_addr_t curr_pc, uint32_t curr_cpsr, arm_decoded_instruction_t *decodedInstruction, thumb_static_data_t *thumbStaticData, nub_addr_t *next_pc);
+ static nub_bool_t BreakpointHit (nub_process_t pid, nub_thread_t tid, nub_break_t breakID, void *baton);
+
+ typedef enum RegisterSetTag
+ {
+ e_regSetALL = REGISTER_SET_ALL,
+ e_regSetGPR = ARM_THREAD_STATE,
+ e_regSetVFP = ARM_VFP_STATE,
+ e_regSetEXC = ARM_EXCEPTION_STATE,
+ e_regSetDBG = ARM_DEBUG_STATE,
+ kNumRegisterSets
+ } RegisterSet;
+
+ enum
+ {
+ Read = 0,
+ Write = 1,
+ kNumErrors = 2
+ };
+
+ struct State
+ {
+ arm_thread_state_t gpr;
+ arm_vfp_state_t vfp;
+ arm_exception_state_t exc;
+ arm_debug_state_t dbg;
+ kern_return_t gpr_errs[2]; // Read/Write errors
+ kern_return_t vfp_errs[2]; // Read/Write errors
+ kern_return_t exc_errs[2]; // Read/Write errors
+ kern_return_t dbg_errs[2]; // Read/Write errors
+ State()
+ {
+ uint32_t i;
+ for (i=0; i<kNumErrors; i++)
+ {
+ gpr_errs[i] = -1;
+ vfp_errs[i] = -1;
+ exc_errs[i] = -1;
+ dbg_errs[i] = -1;
+ }
+ }
+ void InvalidateRegisterSetState(int set)
+ {
+ SetError (set, Read, -1);
+ }
+ kern_return_t GetError (int set, uint32_t err_idx) const
+ {
+ if (err_idx < kNumErrors)
+ {
+ switch (set)
+ {
+ // When getting all errors, just OR all values together to see if
+ // we got any kind of error.
+ case e_regSetALL: return gpr_errs[err_idx] |
+ vfp_errs[err_idx] |
+ exc_errs[err_idx] |
+ dbg_errs[err_idx] ;
+ case e_regSetGPR: return gpr_errs[err_idx];
+ case e_regSetVFP: return vfp_errs[err_idx];
+ case e_regSetEXC: return exc_errs[err_idx];
+ case e_regSetDBG: return dbg_errs[err_idx];
+ default: break;
+ }
+ }
+ return -1;
+ }
+ bool SetError (int set, uint32_t err_idx, kern_return_t err)
+ {
+ if (err_idx < kNumErrors)
+ {
+ switch (set)
+ {
+ case e_regSetALL:
+ gpr_errs[err_idx] = err;
+ vfp_errs[err_idx] = err;
+ dbg_errs[err_idx] = err;
+ exc_errs[err_idx] = err;
+ return true;
+
+ case e_regSetGPR:
+ gpr_errs[err_idx] = err;
+ return true;
+
+ case e_regSetVFP:
+ vfp_errs[err_idx] = err;
+ return true;
+
+ case e_regSetEXC:
+ exc_errs[err_idx] = err;
+ return true;
+
+ case e_regSetDBG:
+ dbg_errs[err_idx] = err;
+ return true;
+ default: break;
+ }
+ }
+ return false;
+ }
+ bool RegsAreValid (int set) const
+ {
+ return GetError(set, Read) == KERN_SUCCESS;
+ }
+ };
+
+ kern_return_t GetGPRState (bool force);
+ kern_return_t GetVFPState (bool force);
+ kern_return_t GetEXCState (bool force);
+ kern_return_t GetDBGState (bool force);
+
+ kern_return_t SetGPRState ();
+ kern_return_t SetVFPState ();
+ kern_return_t SetEXCState ();
+ kern_return_t SetDBGState ();
+protected:
+ MachThread * m_thread;
+ State m_state;
+ arm_debug_state_t m_dbg_save;
+ nub_addr_t m_hw_single_chained_step_addr;
+ // Software single stepping support
+ nub_addr_t m_sw_single_step_next_pc;
+ nub_break_t m_sw_single_step_break_id;
+ nub_break_t m_sw_single_step_itblock_break_id[kMaxNumThumbITBreakpoints];
+ nub_addr_t m_sw_single_step_itblock_break_count;
+ // Disassembler state
+ thumb_static_data_t m_last_decode_thumb;
+ arm_decoded_instruction_t m_last_decode_arm;
+ nub_addr_t m_last_decode_pc;
+
+};
+
+typedef DNBArchMachARM DNBArch;
+#endif // #if defined (__arm__)
+#endif // #ifndef __DebugNubArchMachARM_h__
OpenPOWER on IntegriCloud