summaryrefslogtreecommitdiffstats
path: root/compiler-rt/lib/xray/xray_fdr_logging_impl.h
diff options
context:
space:
mode:
Diffstat (limited to 'compiler-rt/lib/xray/xray_fdr_logging_impl.h')
-rw-r--r--compiler-rt/lib/xray/xray_fdr_logging_impl.h486
1 files changed, 486 insertions, 0 deletions
diff --git a/compiler-rt/lib/xray/xray_fdr_logging_impl.h b/compiler-rt/lib/xray/xray_fdr_logging_impl.h
new file mode 100644
index 00000000000..a06b22df920
--- /dev/null
+++ b/compiler-rt/lib/xray/xray_fdr_logging_impl.h
@@ -0,0 +1,486 @@
+//===-- xray_fdr_logging_impl.h ---------------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is a part of XRay, a dynamic runtime instrumentation system.
+//
+// Here we implement the thread local state management and record i/o for Flight
+// Data Recorder mode for XRay, where we use compact structures to store records
+// in memory as well as when writing out the data to files.
+//
+//===----------------------------------------------------------------------===//
+#ifndef XRAY_XRAY_FDR_LOGGING_IMPL_H
+#define XRAY_XRAY_FDR_LOGGING_IMPL_H
+
+#include <cassert>
+#include <cstdint>
+#include <cstring>
+#include <memory>
+#include <sys/syscall.h>
+#include <unistd.h>
+
+#include "sanitizer_common/sanitizer_common.h"
+#include "xray/xray_log_interface.h"
+#include "xray_buffer_queue.h"
+#include "xray_defs.h"
+#include "xray_fdr_log_records.h"
+
+namespace __xray {
+
+/// We expose some of the state transitions when FDR logging mode is operating
+/// such that we can simulate a series of log events that may occur without
+/// and test with determinism without worrying about the real CPU time.
+///
+/// Because the code uses thread_local allocation extensively as part of its
+/// design, callers that wish to test events occuring on different threads
+/// will actually have to run them on different threads.
+///
+/// This also means that it is possible to break invariants maintained by
+/// cooperation with xray_fdr_logging class, so be careful and think twice.
+namespace __xray_fdr_internal {
+
+/// Writes the new buffer record and wallclock time that begin a buffer for a
+/// thread to MemPtr and increments MemPtr. Bypasses the thread local state
+// machine and writes directly to memory without checks.
+static void writeNewBufferPreamble(pid_t Tid, timespec TS, char *&MemPtr);
+
+/// Write a metadata record to switch to a new CPU to MemPtr and increments
+/// MemPtr. Bypasses the thread local state machine and writes directly to
+/// memory without checks.
+static void writeNewCPUIdMetadata(uint16_t CPU, uint64_t TSC, char *&MemPtr);
+
+/// Writes an EOB metadata record to MemPtr and increments MemPtr. Bypasses the
+/// thread local state machine and writes directly to memory without checks.
+static void writeEOBMetadata(char *&MemPtr);
+
+/// Writes a TSC Wrap metadata record to MemPtr and increments MemPtr. Bypasses
+/// the thread local state machine and directly writes to memory without checks.
+static void writeTSCWrapMetadata(uint64_t TSC, char *&MemPtr);
+
+/// Writes a Function Record to MemPtr and increments MemPtr. Bypasses the
+/// thread local state machine and writes the function record directly to
+/// memory.
+static void writeFunctionRecord(int FuncId, uint32_t TSCDelta,
+ XRayEntryType EntryType, char *&MemPtr);
+
+/// Sets up a new buffer in thread_local storage and writes a preamble. The
+/// wall_clock_reader function is used to populate the WallTimeRecord entry.
+static void setupNewBuffer(const BufferQueue::Buffer &Buffer,
+ int (*wall_clock_reader)(clockid_t,
+ struct timespec *));
+
+/// Called to record CPU time for a new CPU within the current thread.
+static void writeNewCPUIdMetadata(uint16_t CPU, uint64_t TSC);
+
+/// Called to close the buffer when the thread exhausts the buffer or when the
+/// thread exits (via a thread local variable destructor).
+static void writeEOBMetadata();
+
+/// TSC Wrap records are written when a TSC delta encoding scheme overflows.
+static void writeTSCWrapMetadata(uint64_t TSC);
+
+/// Here's where the meat of the processing happens. The writer captures
+/// function entry, exit and tail exit points with a time and will create
+/// TSCWrap, NewCPUId and Function records as necessary. The writer might
+/// walk backward through its buffer and erase trivial functions to avoid
+/// polluting the log and may use the buffer queue to obtain or release a
+/// buffer.
+static void
+processFunctionHook(int32_t FuncId, XRayEntryType Entry, uint64_t TSC,
+ unsigned char CPU,
+ int (*wall_clock_reader)(clockid_t, struct timespec *),
+ const std::atomic<XRayLogInitStatus> &LoggingStatus,
+ const std::shared_ptr<BufferQueue> &BQ);
+
+//-----------------------------------------------------------------------------|
+// The rest of the file is implementation. |
+//-----------------------------------------------------------------------------|
+// Functions are implemented in the header for inlining since we don't want |
+// to grow the stack when we've hijacked the binary for logging. |
+//-----------------------------------------------------------------------------|
+
+namespace {
+thread_local BufferQueue::Buffer Buffer;
+thread_local char *RecordPtr = nullptr;
+
+constexpr auto MetadataRecSize = sizeof(MetadataRecord);
+constexpr auto FunctionRecSize = sizeof(FunctionRecord);
+
+class ThreadExitBufferCleanup {
+ std::weak_ptr<BufferQueue> Buffers;
+ BufferQueue::Buffer &Buffer;
+
+public:
+ explicit ThreadExitBufferCleanup(std::weak_ptr<BufferQueue> BQ,
+ BufferQueue::Buffer &Buffer)
+ XRAY_NEVER_INSTRUMENT : Buffers(BQ),
+ Buffer(Buffer) {}
+
+ ~ThreadExitBufferCleanup() noexcept XRAY_NEVER_INSTRUMENT {
+ if (RecordPtr == nullptr)
+ return;
+
+ // We make sure that upon exit, a thread will write out the EOB
+ // MetadataRecord in the thread-local log, and also release the buffer to
+ // the queue.
+ assert((RecordPtr + MetadataRecSize) - static_cast<char *>(Buffer.Buffer) >=
+ static_cast<ptrdiff_t>(MetadataRecSize));
+ if (auto BQ = Buffers.lock()) {
+ writeEOBMetadata();
+ if (auto EC = BQ->releaseBuffer(Buffer))
+ Report("Failed to release buffer at %p; error=%s\n", Buffer.Buffer,
+ EC.message().c_str());
+ return;
+ }
+ }
+};
+
+class RecursionGuard {
+ bool &Running;
+ const bool Valid;
+
+public:
+ explicit RecursionGuard(bool &R) : Running(R), Valid(!R) {
+ if (Valid)
+ Running = true;
+ }
+
+ RecursionGuard(const RecursionGuard &) = delete;
+ RecursionGuard(RecursionGuard &&) = delete;
+ RecursionGuard &operator=(const RecursionGuard &) = delete;
+ RecursionGuard &operator=(RecursionGuard &&) = delete;
+
+ explicit operator bool() const { return Valid; }
+
+ ~RecursionGuard() noexcept {
+ if (Valid)
+ Running = false;
+ }
+};
+
+static inline bool loggingInitialized(
+ const std::atomic<XRayLogInitStatus> &LoggingStatus) XRAY_NEVER_INSTRUMENT {
+ return LoggingStatus.load(std::memory_order_acquire) ==
+ XRayLogInitStatus::XRAY_LOG_INITIALIZED;
+}
+
+} // namespace anonymous
+
+static inline void writeNewBufferPreamble(pid_t Tid, timespec TS,
+ char *&MemPtr) XRAY_NEVER_INSTRUMENT {
+ static constexpr int InitRecordsCount = 2;
+ std::aligned_storage<sizeof(MetadataRecord)>::type Records[InitRecordsCount];
+ {
+ // Write out a MetadataRecord to signify that this is the start of a new
+ // buffer, associated with a particular thread, with a new CPU. For the
+ // data, we have 15 bytes to squeeze as much information as we can. At this
+ // point we only write down the following bytes:
+ // - Thread ID (pid_t, 4 bytes)
+ auto &NewBuffer = *reinterpret_cast<MetadataRecord *>(&Records[0]);
+ NewBuffer.Type = uint8_t(RecordType::Metadata);
+ NewBuffer.RecordKind = uint8_t(MetadataRecord::RecordKinds::NewBuffer);
+ std::memcpy(&NewBuffer.Data, &Tid, sizeof(pid_t));
+ }
+ // Also write the WalltimeMarker record.
+ {
+ static_assert(sizeof(time_t) <= 8, "time_t needs to be at most 8 bytes");
+ auto &WalltimeMarker = *reinterpret_cast<MetadataRecord *>(&Records[1]);
+ WalltimeMarker.Type = uint8_t(RecordType::Metadata);
+ WalltimeMarker.RecordKind =
+ uint8_t(MetadataRecord::RecordKinds::WalltimeMarker);
+
+ // We only really need microsecond precision here, and enforce across
+ // platforms that we need 64-bit seconds and 32-bit microseconds encoded in
+ // the Metadata record.
+ int32_t Micros = TS.tv_nsec / 1000;
+ int64_t Seconds = TS.tv_sec;
+ std::memcpy(WalltimeMarker.Data, &Seconds, sizeof(Seconds));
+ std::memcpy(WalltimeMarker.Data + sizeof(Seconds), &Micros, sizeof(Micros));
+ }
+ std::memcpy(MemPtr, Records, sizeof(MetadataRecord) * InitRecordsCount);
+ MemPtr += sizeof(MetadataRecord) * InitRecordsCount;
+}
+
+static inline void setupNewBuffer(const BufferQueue::Buffer &Buffer,
+ int (*wall_clock_reader)(clockid_t,
+ struct timespec *))
+ XRAY_NEVER_INSTRUMENT {
+ RecordPtr = static_cast<char *>(Buffer.Buffer);
+ pid_t Tid = syscall(SYS_gettid);
+ timespec TS{0, 0};
+ // This is typically clock_gettime, but callers have injection ability.
+ wall_clock_reader(CLOCK_MONOTONIC, &TS);
+ writeNewBufferPreamble(Tid, TS, RecordPtr);
+}
+
+static inline void writeNewCPUIdMetadata(uint16_t CPU, uint64_t TSC,
+ char *&MemPtr) XRAY_NEVER_INSTRUMENT {
+ MetadataRecord NewCPUId;
+ NewCPUId.Type = uint8_t(RecordType::Metadata);
+ NewCPUId.RecordKind = uint8_t(MetadataRecord::RecordKinds::NewCPUId);
+
+ // The data for the New CPU will contain the following bytes:
+ // - CPU ID (uint16_t, 2 bytes)
+ // - Full TSC (uint64_t, 8 bytes)
+ // Total = 12 bytes.
+ std::memcpy(&NewCPUId.Data, &CPU, sizeof(CPU));
+ std::memcpy(&NewCPUId.Data[sizeof(CPU)], &TSC, sizeof(TSC));
+ std::memcpy(MemPtr, &NewCPUId, sizeof(MetadataRecord));
+ MemPtr += sizeof(MetadataRecord);
+}
+
+static inline void writeNewCPUIdMetadata(uint16_t CPU,
+ uint64_t TSC) XRAY_NEVER_INSTRUMENT {
+ writeNewCPUIdMetadata(CPU, TSC, RecordPtr);
+}
+
+static inline void writeEOBMetadata(char *&MemPtr) XRAY_NEVER_INSTRUMENT {
+ MetadataRecord EOBMeta;
+ EOBMeta.Type = uint8_t(RecordType::Metadata);
+ EOBMeta.RecordKind = uint8_t(MetadataRecord::RecordKinds::EndOfBuffer);
+ // For now we don't write any bytes into the Data field.
+ std::memcpy(MemPtr, &EOBMeta, sizeof(MetadataRecord));
+ MemPtr += sizeof(MetadataRecord);
+}
+
+static inline void writeEOBMetadata() XRAY_NEVER_INSTRUMENT {
+ writeEOBMetadata(RecordPtr);
+}
+
+static inline void writeTSCWrapMetadata(uint64_t TSC,
+ char *&MemPtr) XRAY_NEVER_INSTRUMENT {
+ MetadataRecord TSCWrap;
+ TSCWrap.Type = uint8_t(RecordType::Metadata);
+ TSCWrap.RecordKind = uint8_t(MetadataRecord::RecordKinds::TSCWrap);
+
+ // The data for the TSCWrap record contains the following bytes:
+ // - Full TSC (uint64_t, 8 bytes)
+ // Total = 8 bytes.
+ std::memcpy(&TSCWrap.Data, &TSC, sizeof(TSC));
+ std::memcpy(MemPtr, &TSCWrap, sizeof(MetadataRecord));
+ MemPtr += sizeof(MetadataRecord);
+}
+
+static inline void writeTSCWrapMetadata(uint64_t TSC) XRAY_NEVER_INSTRUMENT {
+ writeTSCWrapMetadata(TSC, RecordPtr);
+}
+
+static inline void writeFunctionRecord(int FuncId, uint32_t TSCDelta,
+ XRayEntryType EntryType,
+ char *&MemPtr) XRAY_NEVER_INSTRUMENT {
+ std::aligned_storage<sizeof(FunctionRecord), alignof(FunctionRecord)>::type
+ AlignedFuncRecordBuffer;
+ auto &FuncRecord =
+ *reinterpret_cast<FunctionRecord *>(&AlignedFuncRecordBuffer);
+ FuncRecord.Type = uint8_t(RecordType::Function);
+ // Only take 28 bits of the function id.
+ FuncRecord.FuncId = FuncId & ~(0x0F << 28);
+ FuncRecord.TSCDelta = TSCDelta;
+
+ switch (EntryType) {
+ case XRayEntryType::ENTRY:
+ case XRayEntryType::LOG_ARGS_ENTRY:
+ FuncRecord.RecordKind = uint8_t(FunctionRecord::RecordKinds::FunctionEnter);
+ break;
+ case XRayEntryType::EXIT:
+ FuncRecord.RecordKind = uint8_t(FunctionRecord::RecordKinds::FunctionExit);
+ break;
+ case XRayEntryType::TAIL:
+ FuncRecord.RecordKind =
+ uint8_t(FunctionRecord::RecordKinds::FunctionTailExit);
+ break;
+ }
+
+ std::memcpy(MemPtr, &AlignedFuncRecordBuffer, sizeof(FunctionRecord));
+ MemPtr += sizeof(FunctionRecord);
+}
+
+static inline void processFunctionHook(
+ int32_t FuncId, XRayEntryType Entry, uint64_t TSC, unsigned char CPU,
+ int (*wall_clock_reader)(clockid_t, struct timespec *),
+ const std::atomic<XRayLogInitStatus> &LoggingStatus,
+ const std::shared_ptr<BufferQueue> &BQ) XRAY_NEVER_INSTRUMENT {
+ // Bail out right away if logging is not initialized yet.
+ if (LoggingStatus.load(std::memory_order_acquire) !=
+ XRayLogInitStatus::XRAY_LOG_INITIALIZED)
+ return;
+
+ // We use a thread_local variable to keep track of which CPUs we've already
+ // run, and the TSC times for these CPUs. This allows us to stop repeating the
+ // CPU field in the function records.
+ //
+ // We assume that we'll support only 65536 CPUs for x86_64.
+ thread_local uint16_t CurrentCPU = std::numeric_limits<uint16_t>::max();
+ thread_local uint64_t LastTSC = 0;
+
+ // Make sure a thread that's ever called handleArg0 has a thread-local
+ // live reference to the buffer queue for this particular instance of
+ // FDRLogging, and that we're going to clean it up when the thread exits.
+ thread_local auto LocalBQ = BQ;
+ thread_local ThreadExitBufferCleanup Cleanup(LocalBQ, Buffer);
+
+ // Prevent signal handler recursion, so in case we're already in a log writing
+ // mode and the signal handler comes in (and is also instrumented) then we
+ // don't want to be clobbering potentially partial writes already happening in
+ // the thread. We use a simple thread_local latch to only allow one on-going
+ // handleArg0 to happen at any given time.
+ thread_local bool Running = false;
+ RecursionGuard Guard{Running};
+ if (!Guard) {
+ assert(Running == true && "RecursionGuard is buggy!");
+ return;
+ }
+
+ if (!loggingInitialized(LoggingStatus) || LocalBQ->finalizing()) {
+ writeEOBMetadata();
+ if (auto EC = BQ->releaseBuffer(Buffer)) {
+ Report("Failed to release buffer at %p; error=%s\n", Buffer.Buffer,
+ EC.message().c_str());
+ return;
+ }
+ RecordPtr = nullptr;
+ }
+
+ if (Buffer.Buffer == nullptr) {
+ if (auto EC = LocalBQ->getBuffer(Buffer)) {
+ auto LS = LoggingStatus.load(std::memory_order_acquire);
+ if (LS != XRayLogInitStatus::XRAY_LOG_FINALIZING &&
+ LS != XRayLogInitStatus::XRAY_LOG_FINALIZED)
+ Report("Failed to acquire a buffer; error=%s\n", EC.message().c_str());
+ return;
+ }
+
+ setupNewBuffer(Buffer, wall_clock_reader);
+ }
+
+ if (CurrentCPU == std::numeric_limits<uint16_t>::max()) {
+ // This means this is the first CPU this thread has ever run on. We set the
+ // current CPU and record this as the first TSC we've seen.
+ CurrentCPU = CPU;
+ writeNewCPUIdMetadata(CPU, TSC);
+ }
+
+ // Before we go setting up writing new function entries, we need to be really
+ // careful about the pointer math we're doing. This means we need to ensure
+ // that the record we are about to write is going to fit into the buffer,
+ // without overflowing the buffer.
+ //
+ // To do this properly, we use the following assumptions:
+ //
+ // - The least number of bytes we will ever write is 8
+ // (sizeof(FunctionRecord)) only if the delta between the previous entry
+ // and this entry is within 32 bits.
+ // - The most number of bytes we will ever write is 8 + 16 = 24. This is
+ // computed by:
+ //
+ // sizeof(FunctionRecord) + sizeof(MetadataRecord)
+ //
+ // These arise in the following cases:
+ //
+ // 1. When the delta between the TSC we get and the previous TSC for the
+ // same CPU is outside of the uint32_t range, we end up having to
+ // write a MetadataRecord to indicate a "tsc wrap" before the actual
+ // FunctionRecord.
+ // 2. When we learn that we've moved CPUs, we need to write a
+ // MetadataRecord to indicate a "cpu change", and thus write out the
+ // current TSC for that CPU before writing out the actual
+ // FunctionRecord.
+ // 3. When we learn about a new CPU ID, we need to write down a "new cpu
+ // id" MetadataRecord before writing out the actual FunctionRecord.
+ //
+ // - An End-of-Buffer (EOB) MetadataRecord is 16 bytes.
+ //
+ // So the math we need to do is to determine whether writing 24 bytes past the
+ // current pointer leaves us with enough bytes to write the EOB
+ // MetadataRecord. If we don't have enough space after writing as much as 24
+ // bytes in the end of the buffer, we need to write out the EOB, get a new
+ // Buffer, set it up properly before doing any further writing.
+ //
+ char *BufferStart = static_cast<char *>(Buffer.Buffer);
+ if ((RecordPtr + (MetadataRecSize + FunctionRecSize)) - BufferStart <
+ static_cast<ptrdiff_t>(MetadataRecSize)) {
+ writeEOBMetadata();
+ if (auto EC = LocalBQ->releaseBuffer(Buffer)) {
+ Report("Failed to release buffer at %p; error=%s\n", Buffer.Buffer,
+ EC.message().c_str());
+ return;
+ }
+ if (auto EC = LocalBQ->getBuffer(Buffer)) {
+ Report("Failed to acquire a buffer; error=%s\n", EC.message().c_str());
+ return;
+ }
+ setupNewBuffer(Buffer, wall_clock_reader);
+ }
+
+ // By this point, we are now ready to write at most 24 bytes (one metadata
+ // record and one function record).
+ BufferStart = static_cast<char *>(Buffer.Buffer);
+ assert((RecordPtr + (MetadataRecSize + FunctionRecSize)) - BufferStart >=
+ static_cast<ptrdiff_t>(MetadataRecSize) &&
+ "Misconfigured BufferQueue provided; Buffer size not large enough.");
+
+ // Here we compute the TSC Delta. There are a few interesting situations we
+ // need to account for:
+ //
+ // - The thread has migrated to a different CPU. If this is the case, then
+ // we write down the following records:
+ //
+ // 1. A 'NewCPUId' Metadata record.
+ // 2. A FunctionRecord with a 0 for the TSCDelta field.
+ //
+ // - The TSC delta is greater than the 32 bits we can store in a
+ // FunctionRecord. In this case we write down the following records:
+ //
+ // 1. A 'TSCWrap' Metadata record.
+ // 2. A FunctionRecord with a 0 for the TSCDelta field.
+ //
+ // - The TSC delta is representable within the 32 bits we can store in a
+ // FunctionRecord. In this case we write down just a FunctionRecord with
+ // the correct TSC delta.
+ //
+
+ uint32_t RecordTSCDelta = 0;
+ if (CPU != CurrentCPU) {
+ // We've moved to a new CPU.
+ writeNewCPUIdMetadata(CPU, TSC);
+ } else {
+ // If the delta is greater than the range for a uint32_t, then we write out
+ // the TSC wrap metadata entry with the full TSC, and the TSC for the
+ // function record be 0.
+ auto Delta = TSC - LastTSC;
+ if (Delta > (1ULL << 32) - 1)
+ writeTSCWrapMetadata(TSC);
+ else
+ RecordTSCDelta = Delta;
+ }
+
+ // We then update our "LastTSC" and "CurrentCPU" thread-local variables to aid
+ // us in future computations of this TSC delta value.
+ LastTSC = TSC;
+ CurrentCPU = CPU;
+
+ writeFunctionRecord(FuncId, RecordTSCDelta, Entry, RecordPtr);
+
+ // If we've exhausted the buffer by this time, we then release the buffer to
+ // make sure that other threads may start using this buffer.
+ if ((RecordPtr + MetadataRecSize) - BufferStart == MetadataRecSize) {
+ writeEOBMetadata();
+ if (auto EC = LocalBQ->releaseBuffer(Buffer)) {
+ Report("Failed releasing buffer at %p; error=%s\n", Buffer.Buffer,
+ EC.message().c_str());
+ return;
+ }
+ RecordPtr = nullptr;
+ }
+}
+
+} // namespace __xray_fdr_internal
+
+} // namespace __xray
+
+#endif // XRAY_XRAY_FDR_LOGGING_IMPL_H
OpenPOWER on IntegriCloud