diff options
Diffstat (limited to 'compiler-rt/lib/builtins/comparetf2.c')
-rw-r--r-- | compiler-rt/lib/builtins/comparetf2.c | 138 |
1 files changed, 70 insertions, 68 deletions
diff --git a/compiler-rt/lib/builtins/comparetf2.c b/compiler-rt/lib/builtins/comparetf2.c index f3fb22adebb..b82f5cbe4bc 100644 --- a/compiler-rt/lib/builtins/comparetf2.c +++ b/compiler-rt/lib/builtins/comparetf2.c @@ -40,42 +40,44 @@ #include "fp_lib.h" #if defined(CRT_HAS_128BIT) && defined(CRT_LDBL_128BIT) -enum LE_RESULT { - LE_LESS = -1, - LE_EQUAL = 0, - LE_GREATER = 1, - LE_UNORDERED = 1 -}; +enum LE_RESULT { LE_LESS = -1, LE_EQUAL = 0, LE_GREATER = 1, LE_UNORDERED = 1 }; COMPILER_RT_ABI enum LE_RESULT __letf2(fp_t a, fp_t b) { - const srep_t aInt = toRep(a); - const srep_t bInt = toRep(b); - const rep_t aAbs = aInt & absMask; - const rep_t bAbs = bInt & absMask; - - // If either a or b is NaN, they are unordered. - if (aAbs > infRep || bAbs > infRep) return LE_UNORDERED; - - // If a and b are both zeros, they are equal. - if ((aAbs | bAbs) == 0) return LE_EQUAL; - - // If at least one of a and b is positive, we get the same result comparing - // a and b as signed integers as we would with a floating-point compare. - if ((aInt & bInt) >= 0) { - if (aInt < bInt) return LE_LESS; - else if (aInt == bInt) return LE_EQUAL; - else return LE_GREATER; - } - else { - // Otherwise, both are negative, so we need to flip the sense of the - // comparison to get the correct result. (This assumes a twos- or ones- - // complement integer representation; if integers are represented in a - // sign-magnitude representation, then this flip is incorrect). - if (aInt > bInt) return LE_LESS; - else if (aInt == bInt) return LE_EQUAL; - else return LE_GREATER; - } + const srep_t aInt = toRep(a); + const srep_t bInt = toRep(b); + const rep_t aAbs = aInt & absMask; + const rep_t bAbs = bInt & absMask; + + // If either a or b is NaN, they are unordered. + if (aAbs > infRep || bAbs > infRep) + return LE_UNORDERED; + + // If a and b are both zeros, they are equal. + if ((aAbs | bAbs) == 0) + return LE_EQUAL; + + // If at least one of a and b is positive, we get the same result comparing + // a and b as signed integers as we would with a floating-point compare. + if ((aInt & bInt) >= 0) { + if (aInt < bInt) + return LE_LESS; + else if (aInt == bInt) + return LE_EQUAL; + else + return LE_GREATER; + } else { + // Otherwise, both are negative, so we need to flip the sense of the + // comparison to get the correct result. (This assumes a twos- or ones- + // complement integer representation; if integers are represented in a + // sign-magnitude representation, then this flip is incorrect). + if (aInt > bInt) + return LE_LESS; + else if (aInt == bInt) + return LE_EQUAL; + else + return LE_GREATER; + } } #if defined(__ELF__) @@ -84,54 +86,54 @@ FNALIAS(__cmptf2, __letf2); #endif enum GE_RESULT { - GE_LESS = -1, - GE_EQUAL = 0, - GE_GREATER = 1, - GE_UNORDERED = -1 // Note: different from LE_UNORDERED + GE_LESS = -1, + GE_EQUAL = 0, + GE_GREATER = 1, + GE_UNORDERED = -1 // Note: different from LE_UNORDERED }; COMPILER_RT_ABI enum GE_RESULT __getf2(fp_t a, fp_t b) { - const srep_t aInt = toRep(a); - const srep_t bInt = toRep(b); - const rep_t aAbs = aInt & absMask; - const rep_t bAbs = bInt & absMask; - - if (aAbs > infRep || bAbs > infRep) return GE_UNORDERED; - if ((aAbs | bAbs) == 0) return GE_EQUAL; - if ((aInt & bInt) >= 0) { - if (aInt < bInt) return GE_LESS; - else if (aInt == bInt) return GE_EQUAL; - else return GE_GREATER; - } else { - if (aInt > bInt) return GE_LESS; - else if (aInt == bInt) return GE_EQUAL; - else return GE_GREATER; - } + const srep_t aInt = toRep(a); + const srep_t bInt = toRep(b); + const rep_t aAbs = aInt & absMask; + const rep_t bAbs = bInt & absMask; + + if (aAbs > infRep || bAbs > infRep) + return GE_UNORDERED; + if ((aAbs | bAbs) == 0) + return GE_EQUAL; + if ((aInt & bInt) >= 0) { + if (aInt < bInt) + return GE_LESS; + else if (aInt == bInt) + return GE_EQUAL; + else + return GE_GREATER; + } else { + if (aInt > bInt) + return GE_LESS; + else if (aInt == bInt) + return GE_EQUAL; + else + return GE_GREATER; + } } COMPILER_RT_ABI int __unordtf2(fp_t a, fp_t b) { - const rep_t aAbs = toRep(a) & absMask; - const rep_t bAbs = toRep(b) & absMask; - return aAbs > infRep || bAbs > infRep; + const rep_t aAbs = toRep(a) & absMask; + const rep_t bAbs = toRep(b) & absMask; + return aAbs > infRep || bAbs > infRep; } // The following are alternative names for the preceding routines. -COMPILER_RT_ABI enum LE_RESULT __eqtf2(fp_t a, fp_t b) { - return __letf2(a, b); -} +COMPILER_RT_ABI enum LE_RESULT __eqtf2(fp_t a, fp_t b) { return __letf2(a, b); } -COMPILER_RT_ABI enum LE_RESULT __lttf2(fp_t a, fp_t b) { - return __letf2(a, b); -} +COMPILER_RT_ABI enum LE_RESULT __lttf2(fp_t a, fp_t b) { return __letf2(a, b); } -COMPILER_RT_ABI enum LE_RESULT __netf2(fp_t a, fp_t b) { - return __letf2(a, b); -} +COMPILER_RT_ABI enum LE_RESULT __netf2(fp_t a, fp_t b) { return __letf2(a, b); } -COMPILER_RT_ABI enum GE_RESULT __gttf2(fp_t a, fp_t b) { - return __getf2(a, b); -} +COMPILER_RT_ABI enum GE_RESULT __gttf2(fp_t a, fp_t b) { return __getf2(a, b); } #endif |