diff options
Diffstat (limited to 'clang/lib/Sema/SemaStmt.cpp')
-rw-r--r-- | clang/lib/Sema/SemaStmt.cpp | 821 |
1 files changed, 821 insertions, 0 deletions
diff --git a/clang/lib/Sema/SemaStmt.cpp b/clang/lib/Sema/SemaStmt.cpp new file mode 100644 index 00000000000..14b2fdf7d0e --- /dev/null +++ b/clang/lib/Sema/SemaStmt.cpp @@ -0,0 +1,821 @@ +//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements semantic analysis for statements. +// +//===----------------------------------------------------------------------===// + +#include "Sema.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/Expr.h" +#include "clang/AST/Stmt.h" +#include "clang/Parse/Scope.h" +#include "clang/Basic/TargetInfo.h" +#include "clang/Basic/Diagnostic.h" +#include "clang/Basic/LangOptions.h" +#include "llvm/ADT/SmallString.h" +using namespace clang; + +Sema::StmtResult Sema::ActOnExprStmt(ExprTy *expr) { + Expr *E = static_cast<Expr*>(expr); + assert(E && "ActOnExprStmt(): missing expression"); + return E; +} + + +Sema::StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc) { + return new NullStmt(SemiLoc); +} + +Sema::StmtResult Sema::ActOnDeclStmt(DeclTy *decl, SourceLocation StartLoc, + SourceLocation EndLoc) { + if (decl == 0) + return true; + + ScopedDecl *SD = cast<ScopedDecl>(static_cast<Decl *>(decl)); + return new DeclStmt(SD, StartLoc, EndLoc); +} + +Action::StmtResult +Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R, + StmtTy **elts, unsigned NumElts, bool isStmtExpr) { + Stmt **Elts = reinterpret_cast<Stmt**>(elts); + // If we're in C89 mode, check that we don't have any decls after stmts. If + // so, emit an extension diagnostic. + if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) { + // Note that __extension__ can be around a decl. + unsigned i = 0; + // Skip over all declarations. + for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i) + /*empty*/; + + // We found the end of the list or a statement. Scan for another declstmt. + for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i) + /*empty*/; + + if (i != NumElts) { + ScopedDecl *D = cast<DeclStmt>(Elts[i])->getDecl(); + Diag(D->getLocation(), diag::ext_mixed_decls_code); + } + } + // Warn about unused expressions in statements. + for (unsigned i = 0; i != NumElts; ++i) { + Expr *E = dyn_cast<Expr>(Elts[i]); + if (!E) continue; + + // Warn about expressions with unused results. + if (E->hasLocalSideEffect() || E->getType()->isVoidType()) + continue; + + // The last expr in a stmt expr really is used. + if (isStmtExpr && i == NumElts-1) + continue; + + /// DiagnoseDeadExpr - This expression is side-effect free and evaluated in + /// a context where the result is unused. Emit a diagnostic to warn about + /// this. + if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) + Diag(BO->getOperatorLoc(), diag::warn_unused_expr, + BO->getLHS()->getSourceRange(), BO->getRHS()->getSourceRange()); + else if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) + Diag(UO->getOperatorLoc(), diag::warn_unused_expr, + UO->getSubExpr()->getSourceRange()); + else + Diag(E->getExprLoc(), diag::warn_unused_expr, E->getSourceRange()); + } + + return new CompoundStmt(Elts, NumElts, L, R); +} + +Action::StmtResult +Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprTy *lhsval, + SourceLocation DotDotDotLoc, ExprTy *rhsval, + SourceLocation ColonLoc, StmtTy *subStmt) { + Stmt *SubStmt = static_cast<Stmt*>(subStmt); + Expr *LHSVal = ((Expr *)lhsval), *RHSVal = ((Expr *)rhsval); + assert((LHSVal != 0) && "missing expression in case statement"); + + SourceLocation ExpLoc; + // C99 6.8.4.2p3: The expression shall be an integer constant. + if (!LHSVal->isIntegerConstantExpr(Context, &ExpLoc)) { + Diag(ExpLoc, diag::err_case_label_not_integer_constant_expr, + LHSVal->getSourceRange()); + return SubStmt; + } + + // GCC extension: The expression shall be an integer constant. + if (RHSVal && !RHSVal->isIntegerConstantExpr(Context, &ExpLoc)) { + Diag(ExpLoc, diag::err_case_label_not_integer_constant_expr, + RHSVal->getSourceRange()); + RHSVal = 0; // Recover by just forgetting about it. + } + + if (SwitchStack.empty()) { + Diag(CaseLoc, diag::err_case_not_in_switch); + return SubStmt; + } + + CaseStmt *CS = new CaseStmt(LHSVal, RHSVal, SubStmt, CaseLoc); + SwitchStack.back()->addSwitchCase(CS); + return CS; +} + +Action::StmtResult +Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc, + StmtTy *subStmt, Scope *CurScope) { + Stmt *SubStmt = static_cast<Stmt*>(subStmt); + + if (SwitchStack.empty()) { + Diag(DefaultLoc, diag::err_default_not_in_switch); + return SubStmt; + } + + DefaultStmt *DS = new DefaultStmt(DefaultLoc, SubStmt); + SwitchStack.back()->addSwitchCase(DS); + + return DS; +} + +Action::StmtResult +Sema::ActOnLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II, + SourceLocation ColonLoc, StmtTy *subStmt) { + Stmt *SubStmt = static_cast<Stmt*>(subStmt); + // Look up the record for this label identifier. + LabelStmt *&LabelDecl = LabelMap[II]; + + // If not forward referenced or defined already, just create a new LabelStmt. + if (LabelDecl == 0) + return LabelDecl = new LabelStmt(IdentLoc, II, SubStmt); + + assert(LabelDecl->getID() == II && "Label mismatch!"); + + // Otherwise, this label was either forward reference or multiply defined. If + // multiply defined, reject it now. + if (LabelDecl->getSubStmt()) { + Diag(IdentLoc, diag::err_redefinition_of_label, LabelDecl->getName()); + Diag(LabelDecl->getIdentLoc(), diag::err_previous_definition); + return SubStmt; + } + + // Otherwise, this label was forward declared, and we just found its real + // definition. Fill in the forward definition and return it. + LabelDecl->setIdentLoc(IdentLoc); + LabelDecl->setSubStmt(SubStmt); + return LabelDecl; +} + +Action::StmtResult +Sema::ActOnIfStmt(SourceLocation IfLoc, ExprTy *CondVal, + StmtTy *ThenVal, SourceLocation ElseLoc, + StmtTy *ElseVal) { + Expr *condExpr = (Expr *)CondVal; + Stmt *thenStmt = (Stmt *)ThenVal; + + assert(condExpr && "ActOnIfStmt(): missing expression"); + + DefaultFunctionArrayConversion(condExpr); + QualType condType = condExpr->getType(); + + if (!condType->isScalarType()) // C99 6.8.4.1p1 + return Diag(IfLoc, diag::err_typecheck_statement_requires_scalar, + condType.getAsString(), condExpr->getSourceRange()); + + // Warn if the if block has a null body without an else value. + // this helps prevent bugs due to typos, such as + // if (condition); + // do_stuff(); + if (!ElseVal) { + if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt)) + Diag(stmt->getSemiLoc(), diag::warn_empty_if_body); + } + + return new IfStmt(IfLoc, condExpr, thenStmt, (Stmt*)ElseVal); +} + +Action::StmtResult +Sema::ActOnStartOfSwitchStmt(ExprTy *cond) { + Expr *Cond = static_cast<Expr*>(cond); + + // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr. + UsualUnaryConversions(Cond); + + SwitchStmt *SS = new SwitchStmt(Cond); + SwitchStack.push_back(SS); + return SS; +} + +/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have +/// the specified width and sign. If an overflow occurs, detect it and emit +/// the specified diagnostic. +void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val, + unsigned NewWidth, bool NewSign, + SourceLocation Loc, + unsigned DiagID) { + // Perform a conversion to the promoted condition type if needed. + if (NewWidth > Val.getBitWidth()) { + // If this is an extension, just do it. + llvm::APSInt OldVal(Val); + Val.extend(NewWidth); + + // If the input was signed and negative and the output is unsigned, + // warn. + if (!NewSign && OldVal.isSigned() && OldVal.isNegative()) + Diag(Loc, DiagID, OldVal.toString(), Val.toString()); + + Val.setIsSigned(NewSign); + } else if (NewWidth < Val.getBitWidth()) { + // If this is a truncation, check for overflow. + llvm::APSInt ConvVal(Val); + ConvVal.trunc(NewWidth); + ConvVal.setIsSigned(NewSign); + ConvVal.extend(Val.getBitWidth()); + ConvVal.setIsSigned(Val.isSigned()); + if (ConvVal != Val) + Diag(Loc, DiagID, Val.toString(), ConvVal.toString()); + + // Regardless of whether a diagnostic was emitted, really do the + // truncation. + Val.trunc(NewWidth); + Val.setIsSigned(NewSign); + } else if (NewSign != Val.isSigned()) { + // Convert the sign to match the sign of the condition. This can cause + // overflow as well: unsigned(INTMIN) + llvm::APSInt OldVal(Val); + Val.setIsSigned(NewSign); + + if (Val.isNegative()) // Sign bit changes meaning. + Diag(Loc, DiagID, OldVal.toString(), Val.toString()); + } +} + +namespace { + struct CaseCompareFunctor { + bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS, + const llvm::APSInt &RHS) { + return LHS.first < RHS; + } + bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS, + const std::pair<llvm::APSInt, CaseStmt*> &RHS) { + return LHS.first < RHS.first; + } + bool operator()(const llvm::APSInt &LHS, + const std::pair<llvm::APSInt, CaseStmt*> &RHS) { + return LHS < RHS.first; + } + }; +} + +/// CmpCaseVals - Comparison predicate for sorting case values. +/// +static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs, + const std::pair<llvm::APSInt, CaseStmt*>& rhs) { + if (lhs.first < rhs.first) + return true; + + if (lhs.first == rhs.first && + lhs.second->getCaseLoc().getRawEncoding() + < rhs.second->getCaseLoc().getRawEncoding()) + return true; + return false; +} + +Action::StmtResult +Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, StmtTy *Switch, + ExprTy *Body) { + Stmt *BodyStmt = (Stmt*)Body; + + SwitchStmt *SS = SwitchStack.back(); + assert(SS == (SwitchStmt*)Switch && "switch stack missing push/pop!"); + + SS->setBody(BodyStmt, SwitchLoc); + SwitchStack.pop_back(); + + Expr *CondExpr = SS->getCond(); + QualType CondType = CondExpr->getType(); + + if (!CondType->isIntegerType()) { // C99 6.8.4.2p1 + Diag(SwitchLoc, diag::err_typecheck_statement_requires_integer, + CondType.getAsString(), CondExpr->getSourceRange()); + return true; + } + + // Get the bitwidth of the switched-on value before promotions. We must + // convert the integer case values to this width before comparison. + unsigned CondWidth = static_cast<unsigned>(Context.getTypeSize(CondType)); + bool CondIsSigned = CondType->isSignedIntegerType(); + + // Accumulate all of the case values in a vector so that we can sort them + // and detect duplicates. This vector contains the APInt for the case after + // it has been converted to the condition type. + typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy; + CaseValsTy CaseVals; + + // Keep track of any GNU case ranges we see. The APSInt is the low value. + std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRanges; + + DefaultStmt *TheDefaultStmt = 0; + + bool CaseListIsErroneous = false; + + for (SwitchCase *SC = SS->getSwitchCaseList(); SC; + SC = SC->getNextSwitchCase()) { + + if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) { + if (TheDefaultStmt) { + Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined); + Diag(TheDefaultStmt->getDefaultLoc(), diag::err_first_label); + + // FIXME: Remove the default statement from the switch block so that + // we'll return a valid AST. This requires recursing down the + // AST and finding it, not something we are set up to do right now. For + // now, just lop the entire switch stmt out of the AST. + CaseListIsErroneous = true; + } + TheDefaultStmt = DS; + + } else { + CaseStmt *CS = cast<CaseStmt>(SC); + + // We already verified that the expression has a i-c-e value (C99 + // 6.8.4.2p3) - get that value now. + llvm::APSInt LoVal(32); + Expr *Lo = CS->getLHS(); + Lo->isIntegerConstantExpr(LoVal, Context); + + // Convert the value to the same width/sign as the condition. + ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned, + CS->getLHS()->getLocStart(), + diag::warn_case_value_overflow); + + // If the LHS is not the same type as the condition, insert an implicit + // cast. + ImpCastExprToType(Lo, CondType); + CS->setLHS(Lo); + + // If this is a case range, remember it in CaseRanges, otherwise CaseVals. + if (CS->getRHS()) + CaseRanges.push_back(std::make_pair(LoVal, CS)); + else + CaseVals.push_back(std::make_pair(LoVal, CS)); + } + } + + // Sort all the scalar case values so we can easily detect duplicates. + std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals); + + if (!CaseVals.empty()) { + for (unsigned i = 0, e = CaseVals.size()-1; i != e; ++i) { + if (CaseVals[i].first == CaseVals[i+1].first) { + // If we have a duplicate, report it. + Diag(CaseVals[i+1].second->getLHS()->getLocStart(), + diag::err_duplicate_case, CaseVals[i].first.toString()); + Diag(CaseVals[i].second->getLHS()->getLocStart(), + diag::err_duplicate_case_prev); + // FIXME: We really want to remove the bogus case stmt from the substmt, + // but we have no way to do this right now. + CaseListIsErroneous = true; + } + } + } + + // Detect duplicate case ranges, which usually don't exist at all in the first + // place. + if (!CaseRanges.empty()) { + // Sort all the case ranges by their low value so we can easily detect + // overlaps between ranges. + std::stable_sort(CaseRanges.begin(), CaseRanges.end()); + + // Scan the ranges, computing the high values and removing empty ranges. + std::vector<llvm::APSInt> HiVals; + for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) { + CaseStmt *CR = CaseRanges[i].second; + llvm::APSInt HiVal(32); + Expr *Hi = CR->getRHS(); + Hi->isIntegerConstantExpr(HiVal, Context); + + // Convert the value to the same width/sign as the condition. + ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned, + CR->getRHS()->getLocStart(), + diag::warn_case_value_overflow); + + // If the LHS is not the same type as the condition, insert an implicit + // cast. + ImpCastExprToType(Hi, CondType); + CR->setRHS(Hi); + + // If the low value is bigger than the high value, the case is empty. + if (CaseRanges[i].first > HiVal) { + Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range, + SourceRange(CR->getLHS()->getLocStart(), + CR->getRHS()->getLocEnd())); + CaseRanges.erase(CaseRanges.begin()+i); + --i, --e; + continue; + } + HiVals.push_back(HiVal); + } + + // Rescan the ranges, looking for overlap with singleton values and other + // ranges. Since the range list is sorted, we only need to compare case + // ranges with their neighbors. + for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) { + llvm::APSInt &CRLo = CaseRanges[i].first; + llvm::APSInt &CRHi = HiVals[i]; + CaseStmt *CR = CaseRanges[i].second; + + // Check to see whether the case range overlaps with any singleton cases. + CaseStmt *OverlapStmt = 0; + llvm::APSInt OverlapVal(32); + + // Find the smallest value >= the lower bound. If I is in the case range, + // then we have overlap. + CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(), + CaseVals.end(), CRLo, + CaseCompareFunctor()); + if (I != CaseVals.end() && I->first < CRHi) { + OverlapVal = I->first; // Found overlap with scalar. + OverlapStmt = I->second; + } + + // Find the smallest value bigger than the upper bound. + I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor()); + if (I != CaseVals.begin() && (I-1)->first >= CRLo) { + OverlapVal = (I-1)->first; // Found overlap with scalar. + OverlapStmt = (I-1)->second; + } + + // Check to see if this case stmt overlaps with the subsequent case range. + if (i && CRLo <= HiVals[i-1]) { + OverlapVal = HiVals[i-1]; // Found overlap with range. + OverlapStmt = CaseRanges[i-1].second; + } + + if (OverlapStmt) { + // If we have a duplicate, report it. + Diag(CR->getLHS()->getLocStart(), + diag::err_duplicate_case, OverlapVal.toString()); + Diag(OverlapStmt->getLHS()->getLocStart(), + diag::err_duplicate_case_prev); + // FIXME: We really want to remove the bogus case stmt from the substmt, + // but we have no way to do this right now. + CaseListIsErroneous = true; + } + } + } + + // FIXME: If the case list was broken is some way, we don't have a good system + // to patch it up. Instead, just return the whole substmt as broken. + if (CaseListIsErroneous) + return true; + + return SS; +} + +Action::StmtResult +Sema::ActOnWhileStmt(SourceLocation WhileLoc, ExprTy *Cond, StmtTy *Body) { + Expr *condExpr = (Expr *)Cond; + assert(condExpr && "ActOnWhileStmt(): missing expression"); + + DefaultFunctionArrayConversion(condExpr); + QualType condType = condExpr->getType(); + + if (!condType->isScalarType()) // C99 6.8.5p2 + return Diag(WhileLoc, diag::err_typecheck_statement_requires_scalar, + condType.getAsString(), condExpr->getSourceRange()); + + return new WhileStmt(condExpr, (Stmt*)Body, WhileLoc); +} + +Action::StmtResult +Sema::ActOnDoStmt(SourceLocation DoLoc, StmtTy *Body, + SourceLocation WhileLoc, ExprTy *Cond) { + Expr *condExpr = (Expr *)Cond; + assert(condExpr && "ActOnDoStmt(): missing expression"); + + DefaultFunctionArrayConversion(condExpr); + QualType condType = condExpr->getType(); + + if (!condType->isScalarType()) // C99 6.8.5p2 + return Diag(DoLoc, diag::err_typecheck_statement_requires_scalar, + condType.getAsString(), condExpr->getSourceRange()); + + return new DoStmt((Stmt*)Body, condExpr, DoLoc); +} + +Action::StmtResult +Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc, + StmtTy *first, ExprTy *second, ExprTy *third, + SourceLocation RParenLoc, StmtTy *body) { + Stmt *First = static_cast<Stmt*>(first); + Expr *Second = static_cast<Expr*>(second); + Expr *Third = static_cast<Expr*>(third); + Stmt *Body = static_cast<Stmt*>(body); + + if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) { + // C99 6.8.5p3: The declaration part of a 'for' statement shall only declare + // identifiers for objects having storage class 'auto' or 'register'. + for (ScopedDecl *D = DS->getDecl(); D; D = D->getNextDeclarator()) { + BlockVarDecl *BVD = dyn_cast<BlockVarDecl>(D); + if (BVD && !BVD->hasLocalStorage()) + BVD = 0; + if (BVD == 0) + Diag(dyn_cast<ScopedDecl>(D)->getLocation(), + diag::err_non_variable_decl_in_for); + // FIXME: mark decl erroneous! + } + } + if (Second) { + DefaultFunctionArrayConversion(Second); + QualType SecondType = Second->getType(); + + if (!SecondType->isScalarType()) // C99 6.8.5p2 + return Diag(ForLoc, diag::err_typecheck_statement_requires_scalar, + SecondType.getAsString(), Second->getSourceRange()); + } + return new ForStmt(First, Second, Third, Body, ForLoc); +} + +Action::StmtResult +Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc, + SourceLocation LParenLoc, + StmtTy *first, ExprTy *second, + SourceLocation RParenLoc, StmtTy *body) { + Stmt *First = static_cast<Stmt*>(first); + Expr *Second = static_cast<Expr*>(second); + Stmt *Body = static_cast<Stmt*>(body); + if (First) { + QualType FirstType; + if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) { + FirstType = cast<ValueDecl>(DS->getDecl())->getType(); + // C99 6.8.5p3: The declaration part of a 'for' statement shall only declare + // identifiers for objects having storage class 'auto' or 'register'. + ScopedDecl *D = DS->getDecl(); + BlockVarDecl *BVD = cast<BlockVarDecl>(D); + if (!BVD->hasLocalStorage()) + return Diag(BVD->getLocation(), diag::err_non_variable_decl_in_for); + if (D->getNextDeclarator()) + return Diag(D->getLocation(), diag::err_toomany_element_decls); + } + else + FirstType = static_cast<Expr*>(first)->getType(); + if (!isObjCObjectPointerType(FirstType)) + Diag(ForLoc, diag::err_selector_element_type, + FirstType.getAsString(), First->getSourceRange()); + } + if (Second) { + DefaultFunctionArrayConversion(Second); + QualType SecondType = Second->getType(); + if (!isObjCObjectPointerType(SecondType)) + Diag(ForLoc, diag::err_collection_expr_type, + SecondType.getAsString(), Second->getSourceRange()); + } + return new ObjCForCollectionStmt(First, Second, Body, ForLoc, RParenLoc); +} + +Action::StmtResult +Sema::ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc, + IdentifierInfo *LabelII) { + // Look up the record for this label identifier. + LabelStmt *&LabelDecl = LabelMap[LabelII]; + + // If we haven't seen this label yet, create a forward reference. + if (LabelDecl == 0) + LabelDecl = new LabelStmt(LabelLoc, LabelII, 0); + + return new GotoStmt(LabelDecl, GotoLoc, LabelLoc); +} + +Action::StmtResult +Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc,SourceLocation StarLoc, + ExprTy *DestExp) { + // FIXME: Verify that the operand is convertible to void*. + + return new IndirectGotoStmt((Expr*)DestExp); +} + +Action::StmtResult +Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) { + Scope *S = CurScope->getContinueParent(); + if (!S) { + // C99 6.8.6.2p1: A break shall appear only in or as a loop body. + Diag(ContinueLoc, diag::err_continue_not_in_loop); + return true; + } + + return new ContinueStmt(ContinueLoc); +} + +Action::StmtResult +Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) { + Scope *S = CurScope->getBreakParent(); + if (!S) { + // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body. + Diag(BreakLoc, diag::err_break_not_in_loop_or_switch); + return true; + } + + return new BreakStmt(BreakLoc); +} + + +Action::StmtResult +Sema::ActOnReturnStmt(SourceLocation ReturnLoc, ExprTy *rex) { + Expr *RetValExp = static_cast<Expr *>(rex); + QualType FnRetType = CurFunctionDecl ? CurFunctionDecl->getResultType() : + CurMethodDecl->getResultType(); + + if (FnRetType->isVoidType()) { + if (RetValExp) // C99 6.8.6.4p1 (ext_ since GCC warns) + Diag(ReturnLoc, diag::ext_return_has_expr, + (CurFunctionDecl ? CurFunctionDecl->getIdentifier()->getName() : + CurMethodDecl->getSelector().getName()), + RetValExp->getSourceRange()); + return new ReturnStmt(ReturnLoc, RetValExp); + } else { + if (!RetValExp) { + const char *funcName = CurFunctionDecl ? + CurFunctionDecl->getIdentifier()->getName() : + CurMethodDecl->getSelector().getName().c_str(); + if (getLangOptions().C99) // C99 6.8.6.4p1 (ext_ since GCC warns) + Diag(ReturnLoc, diag::ext_return_missing_expr, funcName); + else // C90 6.6.6.4p4 + Diag(ReturnLoc, diag::warn_return_missing_expr, funcName); + return new ReturnStmt(ReturnLoc, (Expr*)0); + } + } + // we have a non-void function with an expression, continue checking + QualType RetValType = RetValExp->getType(); + + // C99 6.8.6.4p3(136): The return statement is not an assignment. The + // overlap restriction of subclause 6.5.16.1 does not apply to the case of + // function return. + AssignConvertType ConvTy = CheckSingleAssignmentConstraints(FnRetType, + RetValExp); + if (DiagnoseAssignmentResult(ConvTy, ReturnLoc, FnRetType, + RetValType, RetValExp, "returning")) + return true; + + if (RetValExp) CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc); + + return new ReturnStmt(ReturnLoc, (Expr*)RetValExp); +} + +Sema::StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, + bool IsSimple, + bool IsVolatile, + unsigned NumOutputs, + unsigned NumInputs, + std::string *Names, + ExprTy **Constraints, + ExprTy **Exprs, + ExprTy *AsmString, + unsigned NumClobbers, + ExprTy **Clobbers, + SourceLocation RParenLoc) { + Expr *E = (Expr *)AsmString; + + for (unsigned i = 0; i < NumOutputs; i++) { + StringLiteral *Literal = cast<StringLiteral>((Expr *)Constraints[i]); + assert(!Literal->isWide() && + "Output constraint strings should not be wide!"); + + std::string OutputConstraint(Literal->getStrData(), + Literal->getByteLength()); + + TargetInfo::ConstraintInfo info; + if (!Context.Target.validateOutputConstraint(OutputConstraint.c_str(), + info)) { + // FIXME: We currently leak memory here. + Diag(Literal->getLocStart(), + diag::err_invalid_output_constraint_in_asm); + return true; + } + + // Check that the output exprs are valid lvalues. + Expr *OutputExpr = (Expr *)Exprs[i]; + Expr::isLvalueResult Result = OutputExpr->isLvalue(); + if (Result != Expr::LV_Valid) { + ParenExpr *PE = cast<ParenExpr>(OutputExpr); + + Diag(PE->getSubExpr()->getLocStart(), + diag::err_invalid_lvalue_in_asm_output, + PE->getSubExpr()->getSourceRange()); + + // FIXME: We currently leak memory here. + return true; + } + } + + for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) { + StringLiteral *Literal = cast<StringLiteral>((Expr *)Constraints[i]); + assert(!Literal->isWide() && + "Output constraint strings should not be wide!"); + + std::string InputConstraint(Literal->getStrData(), + Literal->getByteLength()); + + TargetInfo::ConstraintInfo info; + if (!Context.Target.validateInputConstraint(InputConstraint.c_str(), + NumOutputs, + info)) { + // FIXME: We currently leak memory here. + Diag(Literal->getLocStart(), + diag::err_invalid_input_constraint_in_asm); + return true; + } + + // Check that the input exprs aren't of type void. + Expr *InputExpr = (Expr *)Exprs[i]; + if (InputExpr->getType()->isVoidType()) { + ParenExpr *PE = cast<ParenExpr>(InputExpr); + + Diag(PE->getSubExpr()->getLocStart(), + diag::err_invalid_type_in_asm_input, + PE->getType().getAsString(), + PE->getSubExpr()->getSourceRange()); + + // FIXME: We currently leak memory here. + return true; + } + } + + // Check that the clobbers are valid. + for (unsigned i = 0; i < NumClobbers; i++) { + StringLiteral *Literal = cast<StringLiteral>((Expr *)Clobbers[i]); + assert(!Literal->isWide() && "Clobber strings should not be wide!"); + + llvm::SmallString<16> Clobber(Literal->getStrData(), + Literal->getStrData() + + Literal->getByteLength()); + + if (!Context.Target.isValidGCCRegisterName(Clobber.c_str())) { + Diag(Literal->getLocStart(), + diag::err_unknown_register_name_in_asm, + Clobber.c_str()); + + // FIXME: We currently leak memory here. + return true; + } + } + + return new AsmStmt(AsmLoc, + IsSimple, + IsVolatile, + NumOutputs, + NumInputs, + Names, + reinterpret_cast<StringLiteral**>(Constraints), + reinterpret_cast<Expr**>(Exprs), + cast<StringLiteral>(E), + NumClobbers, + reinterpret_cast<StringLiteral**>(Clobbers), + RParenLoc); +} + +Action::StmtResult +Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc, + SourceLocation RParen, StmtTy *Parm, + StmtTy *Body, StmtTy *CatchList) { + ObjCAtCatchStmt *CS = new ObjCAtCatchStmt(AtLoc, RParen, + static_cast<Stmt*>(Parm), static_cast<Stmt*>(Body), + static_cast<Stmt*>(CatchList)); + return CatchList ? CatchList : CS; +} + +Action::StmtResult +Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, StmtTy *Body) { + ObjCAtFinallyStmt *FS = new ObjCAtFinallyStmt(AtLoc, + static_cast<Stmt*>(Body)); + return FS; +} + +Action::StmtResult +Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, + StmtTy *Try, StmtTy *Catch, StmtTy *Finally) { + ObjCAtTryStmt *TS = new ObjCAtTryStmt(AtLoc, static_cast<Stmt*>(Try), + static_cast<Stmt*>(Catch), + static_cast<Stmt*>(Finally)); + return TS; +} + +Action::StmtResult +Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, StmtTy *Throw) { + ObjCAtThrowStmt *TS = new ObjCAtThrowStmt(AtLoc, static_cast<Stmt*>(Throw)); + return TS; +} + +Action::StmtResult +Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, ExprTy *SynchExpr, + StmtTy *SynchBody) { + ObjCAtSynchronizedStmt *SS = new ObjCAtSynchronizedStmt(AtLoc, + static_cast<Stmt*>(SynchExpr), static_cast<Stmt*>(SynchBody)); + return SS; +} + + |