summaryrefslogtreecommitdiffstats
path: root/clang/lib/Sema/SemaStmt.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'clang/lib/Sema/SemaStmt.cpp')
-rw-r--r--clang/lib/Sema/SemaStmt.cpp821
1 files changed, 821 insertions, 0 deletions
diff --git a/clang/lib/Sema/SemaStmt.cpp b/clang/lib/Sema/SemaStmt.cpp
new file mode 100644
index 00000000000..14b2fdf7d0e
--- /dev/null
+++ b/clang/lib/Sema/SemaStmt.cpp
@@ -0,0 +1,821 @@
+//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for statements.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Sema.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/Stmt.h"
+#include "clang/Parse/Scope.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Basic/LangOptions.h"
+#include "llvm/ADT/SmallString.h"
+using namespace clang;
+
+Sema::StmtResult Sema::ActOnExprStmt(ExprTy *expr) {
+ Expr *E = static_cast<Expr*>(expr);
+ assert(E && "ActOnExprStmt(): missing expression");
+ return E;
+}
+
+
+Sema::StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc) {
+ return new NullStmt(SemiLoc);
+}
+
+Sema::StmtResult Sema::ActOnDeclStmt(DeclTy *decl, SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ if (decl == 0)
+ return true;
+
+ ScopedDecl *SD = cast<ScopedDecl>(static_cast<Decl *>(decl));
+ return new DeclStmt(SD, StartLoc, EndLoc);
+}
+
+Action::StmtResult
+Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
+ StmtTy **elts, unsigned NumElts, bool isStmtExpr) {
+ Stmt **Elts = reinterpret_cast<Stmt**>(elts);
+ // If we're in C89 mode, check that we don't have any decls after stmts. If
+ // so, emit an extension diagnostic.
+ if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
+ // Note that __extension__ can be around a decl.
+ unsigned i = 0;
+ // Skip over all declarations.
+ for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
+ /*empty*/;
+
+ // We found the end of the list or a statement. Scan for another declstmt.
+ for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
+ /*empty*/;
+
+ if (i != NumElts) {
+ ScopedDecl *D = cast<DeclStmt>(Elts[i])->getDecl();
+ Diag(D->getLocation(), diag::ext_mixed_decls_code);
+ }
+ }
+ // Warn about unused expressions in statements.
+ for (unsigned i = 0; i != NumElts; ++i) {
+ Expr *E = dyn_cast<Expr>(Elts[i]);
+ if (!E) continue;
+
+ // Warn about expressions with unused results.
+ if (E->hasLocalSideEffect() || E->getType()->isVoidType())
+ continue;
+
+ // The last expr in a stmt expr really is used.
+ if (isStmtExpr && i == NumElts-1)
+ continue;
+
+ /// DiagnoseDeadExpr - This expression is side-effect free and evaluated in
+ /// a context where the result is unused. Emit a diagnostic to warn about
+ /// this.
+ if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
+ Diag(BO->getOperatorLoc(), diag::warn_unused_expr,
+ BO->getLHS()->getSourceRange(), BO->getRHS()->getSourceRange());
+ else if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
+ Diag(UO->getOperatorLoc(), diag::warn_unused_expr,
+ UO->getSubExpr()->getSourceRange());
+ else
+ Diag(E->getExprLoc(), diag::warn_unused_expr, E->getSourceRange());
+ }
+
+ return new CompoundStmt(Elts, NumElts, L, R);
+}
+
+Action::StmtResult
+Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprTy *lhsval,
+ SourceLocation DotDotDotLoc, ExprTy *rhsval,
+ SourceLocation ColonLoc, StmtTy *subStmt) {
+ Stmt *SubStmt = static_cast<Stmt*>(subStmt);
+ Expr *LHSVal = ((Expr *)lhsval), *RHSVal = ((Expr *)rhsval);
+ assert((LHSVal != 0) && "missing expression in case statement");
+
+ SourceLocation ExpLoc;
+ // C99 6.8.4.2p3: The expression shall be an integer constant.
+ if (!LHSVal->isIntegerConstantExpr(Context, &ExpLoc)) {
+ Diag(ExpLoc, diag::err_case_label_not_integer_constant_expr,
+ LHSVal->getSourceRange());
+ return SubStmt;
+ }
+
+ // GCC extension: The expression shall be an integer constant.
+ if (RHSVal && !RHSVal->isIntegerConstantExpr(Context, &ExpLoc)) {
+ Diag(ExpLoc, diag::err_case_label_not_integer_constant_expr,
+ RHSVal->getSourceRange());
+ RHSVal = 0; // Recover by just forgetting about it.
+ }
+
+ if (SwitchStack.empty()) {
+ Diag(CaseLoc, diag::err_case_not_in_switch);
+ return SubStmt;
+ }
+
+ CaseStmt *CS = new CaseStmt(LHSVal, RHSVal, SubStmt, CaseLoc);
+ SwitchStack.back()->addSwitchCase(CS);
+ return CS;
+}
+
+Action::StmtResult
+Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
+ StmtTy *subStmt, Scope *CurScope) {
+ Stmt *SubStmt = static_cast<Stmt*>(subStmt);
+
+ if (SwitchStack.empty()) {
+ Diag(DefaultLoc, diag::err_default_not_in_switch);
+ return SubStmt;
+ }
+
+ DefaultStmt *DS = new DefaultStmt(DefaultLoc, SubStmt);
+ SwitchStack.back()->addSwitchCase(DS);
+
+ return DS;
+}
+
+Action::StmtResult
+Sema::ActOnLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II,
+ SourceLocation ColonLoc, StmtTy *subStmt) {
+ Stmt *SubStmt = static_cast<Stmt*>(subStmt);
+ // Look up the record for this label identifier.
+ LabelStmt *&LabelDecl = LabelMap[II];
+
+ // If not forward referenced or defined already, just create a new LabelStmt.
+ if (LabelDecl == 0)
+ return LabelDecl = new LabelStmt(IdentLoc, II, SubStmt);
+
+ assert(LabelDecl->getID() == II && "Label mismatch!");
+
+ // Otherwise, this label was either forward reference or multiply defined. If
+ // multiply defined, reject it now.
+ if (LabelDecl->getSubStmt()) {
+ Diag(IdentLoc, diag::err_redefinition_of_label, LabelDecl->getName());
+ Diag(LabelDecl->getIdentLoc(), diag::err_previous_definition);
+ return SubStmt;
+ }
+
+ // Otherwise, this label was forward declared, and we just found its real
+ // definition. Fill in the forward definition and return it.
+ LabelDecl->setIdentLoc(IdentLoc);
+ LabelDecl->setSubStmt(SubStmt);
+ return LabelDecl;
+}
+
+Action::StmtResult
+Sema::ActOnIfStmt(SourceLocation IfLoc, ExprTy *CondVal,
+ StmtTy *ThenVal, SourceLocation ElseLoc,
+ StmtTy *ElseVal) {
+ Expr *condExpr = (Expr *)CondVal;
+ Stmt *thenStmt = (Stmt *)ThenVal;
+
+ assert(condExpr && "ActOnIfStmt(): missing expression");
+
+ DefaultFunctionArrayConversion(condExpr);
+ QualType condType = condExpr->getType();
+
+ if (!condType->isScalarType()) // C99 6.8.4.1p1
+ return Diag(IfLoc, diag::err_typecheck_statement_requires_scalar,
+ condType.getAsString(), condExpr->getSourceRange());
+
+ // Warn if the if block has a null body without an else value.
+ // this helps prevent bugs due to typos, such as
+ // if (condition);
+ // do_stuff();
+ if (!ElseVal) {
+ if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
+ Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
+ }
+
+ return new IfStmt(IfLoc, condExpr, thenStmt, (Stmt*)ElseVal);
+}
+
+Action::StmtResult
+Sema::ActOnStartOfSwitchStmt(ExprTy *cond) {
+ Expr *Cond = static_cast<Expr*>(cond);
+
+ // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
+ UsualUnaryConversions(Cond);
+
+ SwitchStmt *SS = new SwitchStmt(Cond);
+ SwitchStack.push_back(SS);
+ return SS;
+}
+
+/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
+/// the specified width and sign. If an overflow occurs, detect it and emit
+/// the specified diagnostic.
+void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
+ unsigned NewWidth, bool NewSign,
+ SourceLocation Loc,
+ unsigned DiagID) {
+ // Perform a conversion to the promoted condition type if needed.
+ if (NewWidth > Val.getBitWidth()) {
+ // If this is an extension, just do it.
+ llvm::APSInt OldVal(Val);
+ Val.extend(NewWidth);
+
+ // If the input was signed and negative and the output is unsigned,
+ // warn.
+ if (!NewSign && OldVal.isSigned() && OldVal.isNegative())
+ Diag(Loc, DiagID, OldVal.toString(), Val.toString());
+
+ Val.setIsSigned(NewSign);
+ } else if (NewWidth < Val.getBitWidth()) {
+ // If this is a truncation, check for overflow.
+ llvm::APSInt ConvVal(Val);
+ ConvVal.trunc(NewWidth);
+ ConvVal.setIsSigned(NewSign);
+ ConvVal.extend(Val.getBitWidth());
+ ConvVal.setIsSigned(Val.isSigned());
+ if (ConvVal != Val)
+ Diag(Loc, DiagID, Val.toString(), ConvVal.toString());
+
+ // Regardless of whether a diagnostic was emitted, really do the
+ // truncation.
+ Val.trunc(NewWidth);
+ Val.setIsSigned(NewSign);
+ } else if (NewSign != Val.isSigned()) {
+ // Convert the sign to match the sign of the condition. This can cause
+ // overflow as well: unsigned(INTMIN)
+ llvm::APSInt OldVal(Val);
+ Val.setIsSigned(NewSign);
+
+ if (Val.isNegative()) // Sign bit changes meaning.
+ Diag(Loc, DiagID, OldVal.toString(), Val.toString());
+ }
+}
+
+namespace {
+ struct CaseCompareFunctor {
+ bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
+ const llvm::APSInt &RHS) {
+ return LHS.first < RHS;
+ }
+ bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
+ const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
+ return LHS.first < RHS.first;
+ }
+ bool operator()(const llvm::APSInt &LHS,
+ const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
+ return LHS < RHS.first;
+ }
+ };
+}
+
+/// CmpCaseVals - Comparison predicate for sorting case values.
+///
+static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
+ const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
+ if (lhs.first < rhs.first)
+ return true;
+
+ if (lhs.first == rhs.first &&
+ lhs.second->getCaseLoc().getRawEncoding()
+ < rhs.second->getCaseLoc().getRawEncoding())
+ return true;
+ return false;
+}
+
+Action::StmtResult
+Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, StmtTy *Switch,
+ ExprTy *Body) {
+ Stmt *BodyStmt = (Stmt*)Body;
+
+ SwitchStmt *SS = SwitchStack.back();
+ assert(SS == (SwitchStmt*)Switch && "switch stack missing push/pop!");
+
+ SS->setBody(BodyStmt, SwitchLoc);
+ SwitchStack.pop_back();
+
+ Expr *CondExpr = SS->getCond();
+ QualType CondType = CondExpr->getType();
+
+ if (!CondType->isIntegerType()) { // C99 6.8.4.2p1
+ Diag(SwitchLoc, diag::err_typecheck_statement_requires_integer,
+ CondType.getAsString(), CondExpr->getSourceRange());
+ return true;
+ }
+
+ // Get the bitwidth of the switched-on value before promotions. We must
+ // convert the integer case values to this width before comparison.
+ unsigned CondWidth = static_cast<unsigned>(Context.getTypeSize(CondType));
+ bool CondIsSigned = CondType->isSignedIntegerType();
+
+ // Accumulate all of the case values in a vector so that we can sort them
+ // and detect duplicates. This vector contains the APInt for the case after
+ // it has been converted to the condition type.
+ typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
+ CaseValsTy CaseVals;
+
+ // Keep track of any GNU case ranges we see. The APSInt is the low value.
+ std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRanges;
+
+ DefaultStmt *TheDefaultStmt = 0;
+
+ bool CaseListIsErroneous = false;
+
+ for (SwitchCase *SC = SS->getSwitchCaseList(); SC;
+ SC = SC->getNextSwitchCase()) {
+
+ if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
+ if (TheDefaultStmt) {
+ Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
+ Diag(TheDefaultStmt->getDefaultLoc(), diag::err_first_label);
+
+ // FIXME: Remove the default statement from the switch block so that
+ // we'll return a valid AST. This requires recursing down the
+ // AST and finding it, not something we are set up to do right now. For
+ // now, just lop the entire switch stmt out of the AST.
+ CaseListIsErroneous = true;
+ }
+ TheDefaultStmt = DS;
+
+ } else {
+ CaseStmt *CS = cast<CaseStmt>(SC);
+
+ // We already verified that the expression has a i-c-e value (C99
+ // 6.8.4.2p3) - get that value now.
+ llvm::APSInt LoVal(32);
+ Expr *Lo = CS->getLHS();
+ Lo->isIntegerConstantExpr(LoVal, Context);
+
+ // Convert the value to the same width/sign as the condition.
+ ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
+ CS->getLHS()->getLocStart(),
+ diag::warn_case_value_overflow);
+
+ // If the LHS is not the same type as the condition, insert an implicit
+ // cast.
+ ImpCastExprToType(Lo, CondType);
+ CS->setLHS(Lo);
+
+ // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
+ if (CS->getRHS())
+ CaseRanges.push_back(std::make_pair(LoVal, CS));
+ else
+ CaseVals.push_back(std::make_pair(LoVal, CS));
+ }
+ }
+
+ // Sort all the scalar case values so we can easily detect duplicates.
+ std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
+
+ if (!CaseVals.empty()) {
+ for (unsigned i = 0, e = CaseVals.size()-1; i != e; ++i) {
+ if (CaseVals[i].first == CaseVals[i+1].first) {
+ // If we have a duplicate, report it.
+ Diag(CaseVals[i+1].second->getLHS()->getLocStart(),
+ diag::err_duplicate_case, CaseVals[i].first.toString());
+ Diag(CaseVals[i].second->getLHS()->getLocStart(),
+ diag::err_duplicate_case_prev);
+ // FIXME: We really want to remove the bogus case stmt from the substmt,
+ // but we have no way to do this right now.
+ CaseListIsErroneous = true;
+ }
+ }
+ }
+
+ // Detect duplicate case ranges, which usually don't exist at all in the first
+ // place.
+ if (!CaseRanges.empty()) {
+ // Sort all the case ranges by their low value so we can easily detect
+ // overlaps between ranges.
+ std::stable_sort(CaseRanges.begin(), CaseRanges.end());
+
+ // Scan the ranges, computing the high values and removing empty ranges.
+ std::vector<llvm::APSInt> HiVals;
+ for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
+ CaseStmt *CR = CaseRanges[i].second;
+ llvm::APSInt HiVal(32);
+ Expr *Hi = CR->getRHS();
+ Hi->isIntegerConstantExpr(HiVal, Context);
+
+ // Convert the value to the same width/sign as the condition.
+ ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
+ CR->getRHS()->getLocStart(),
+ diag::warn_case_value_overflow);
+
+ // If the LHS is not the same type as the condition, insert an implicit
+ // cast.
+ ImpCastExprToType(Hi, CondType);
+ CR->setRHS(Hi);
+
+ // If the low value is bigger than the high value, the case is empty.
+ if (CaseRanges[i].first > HiVal) {
+ Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range,
+ SourceRange(CR->getLHS()->getLocStart(),
+ CR->getRHS()->getLocEnd()));
+ CaseRanges.erase(CaseRanges.begin()+i);
+ --i, --e;
+ continue;
+ }
+ HiVals.push_back(HiVal);
+ }
+
+ // Rescan the ranges, looking for overlap with singleton values and other
+ // ranges. Since the range list is sorted, we only need to compare case
+ // ranges with their neighbors.
+ for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
+ llvm::APSInt &CRLo = CaseRanges[i].first;
+ llvm::APSInt &CRHi = HiVals[i];
+ CaseStmt *CR = CaseRanges[i].second;
+
+ // Check to see whether the case range overlaps with any singleton cases.
+ CaseStmt *OverlapStmt = 0;
+ llvm::APSInt OverlapVal(32);
+
+ // Find the smallest value >= the lower bound. If I is in the case range,
+ // then we have overlap.
+ CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
+ CaseVals.end(), CRLo,
+ CaseCompareFunctor());
+ if (I != CaseVals.end() && I->first < CRHi) {
+ OverlapVal = I->first; // Found overlap with scalar.
+ OverlapStmt = I->second;
+ }
+
+ // Find the smallest value bigger than the upper bound.
+ I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
+ if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
+ OverlapVal = (I-1)->first; // Found overlap with scalar.
+ OverlapStmt = (I-1)->second;
+ }
+
+ // Check to see if this case stmt overlaps with the subsequent case range.
+ if (i && CRLo <= HiVals[i-1]) {
+ OverlapVal = HiVals[i-1]; // Found overlap with range.
+ OverlapStmt = CaseRanges[i-1].second;
+ }
+
+ if (OverlapStmt) {
+ // If we have a duplicate, report it.
+ Diag(CR->getLHS()->getLocStart(),
+ diag::err_duplicate_case, OverlapVal.toString());
+ Diag(OverlapStmt->getLHS()->getLocStart(),
+ diag::err_duplicate_case_prev);
+ // FIXME: We really want to remove the bogus case stmt from the substmt,
+ // but we have no way to do this right now.
+ CaseListIsErroneous = true;
+ }
+ }
+ }
+
+ // FIXME: If the case list was broken is some way, we don't have a good system
+ // to patch it up. Instead, just return the whole substmt as broken.
+ if (CaseListIsErroneous)
+ return true;
+
+ return SS;
+}
+
+Action::StmtResult
+Sema::ActOnWhileStmt(SourceLocation WhileLoc, ExprTy *Cond, StmtTy *Body) {
+ Expr *condExpr = (Expr *)Cond;
+ assert(condExpr && "ActOnWhileStmt(): missing expression");
+
+ DefaultFunctionArrayConversion(condExpr);
+ QualType condType = condExpr->getType();
+
+ if (!condType->isScalarType()) // C99 6.8.5p2
+ return Diag(WhileLoc, diag::err_typecheck_statement_requires_scalar,
+ condType.getAsString(), condExpr->getSourceRange());
+
+ return new WhileStmt(condExpr, (Stmt*)Body, WhileLoc);
+}
+
+Action::StmtResult
+Sema::ActOnDoStmt(SourceLocation DoLoc, StmtTy *Body,
+ SourceLocation WhileLoc, ExprTy *Cond) {
+ Expr *condExpr = (Expr *)Cond;
+ assert(condExpr && "ActOnDoStmt(): missing expression");
+
+ DefaultFunctionArrayConversion(condExpr);
+ QualType condType = condExpr->getType();
+
+ if (!condType->isScalarType()) // C99 6.8.5p2
+ return Diag(DoLoc, diag::err_typecheck_statement_requires_scalar,
+ condType.getAsString(), condExpr->getSourceRange());
+
+ return new DoStmt((Stmt*)Body, condExpr, DoLoc);
+}
+
+Action::StmtResult
+Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
+ StmtTy *first, ExprTy *second, ExprTy *third,
+ SourceLocation RParenLoc, StmtTy *body) {
+ Stmt *First = static_cast<Stmt*>(first);
+ Expr *Second = static_cast<Expr*>(second);
+ Expr *Third = static_cast<Expr*>(third);
+ Stmt *Body = static_cast<Stmt*>(body);
+
+ if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
+ // C99 6.8.5p3: The declaration part of a 'for' statement shall only declare
+ // identifiers for objects having storage class 'auto' or 'register'.
+ for (ScopedDecl *D = DS->getDecl(); D; D = D->getNextDeclarator()) {
+ BlockVarDecl *BVD = dyn_cast<BlockVarDecl>(D);
+ if (BVD && !BVD->hasLocalStorage())
+ BVD = 0;
+ if (BVD == 0)
+ Diag(dyn_cast<ScopedDecl>(D)->getLocation(),
+ diag::err_non_variable_decl_in_for);
+ // FIXME: mark decl erroneous!
+ }
+ }
+ if (Second) {
+ DefaultFunctionArrayConversion(Second);
+ QualType SecondType = Second->getType();
+
+ if (!SecondType->isScalarType()) // C99 6.8.5p2
+ return Diag(ForLoc, diag::err_typecheck_statement_requires_scalar,
+ SecondType.getAsString(), Second->getSourceRange());
+ }
+ return new ForStmt(First, Second, Third, Body, ForLoc);
+}
+
+Action::StmtResult
+Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
+ SourceLocation LParenLoc,
+ StmtTy *first, ExprTy *second,
+ SourceLocation RParenLoc, StmtTy *body) {
+ Stmt *First = static_cast<Stmt*>(first);
+ Expr *Second = static_cast<Expr*>(second);
+ Stmt *Body = static_cast<Stmt*>(body);
+ if (First) {
+ QualType FirstType;
+ if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
+ FirstType = cast<ValueDecl>(DS->getDecl())->getType();
+ // C99 6.8.5p3: The declaration part of a 'for' statement shall only declare
+ // identifiers for objects having storage class 'auto' or 'register'.
+ ScopedDecl *D = DS->getDecl();
+ BlockVarDecl *BVD = cast<BlockVarDecl>(D);
+ if (!BVD->hasLocalStorage())
+ return Diag(BVD->getLocation(), diag::err_non_variable_decl_in_for);
+ if (D->getNextDeclarator())
+ return Diag(D->getLocation(), diag::err_toomany_element_decls);
+ }
+ else
+ FirstType = static_cast<Expr*>(first)->getType();
+ if (!isObjCObjectPointerType(FirstType))
+ Diag(ForLoc, diag::err_selector_element_type,
+ FirstType.getAsString(), First->getSourceRange());
+ }
+ if (Second) {
+ DefaultFunctionArrayConversion(Second);
+ QualType SecondType = Second->getType();
+ if (!isObjCObjectPointerType(SecondType))
+ Diag(ForLoc, diag::err_collection_expr_type,
+ SecondType.getAsString(), Second->getSourceRange());
+ }
+ return new ObjCForCollectionStmt(First, Second, Body, ForLoc, RParenLoc);
+}
+
+Action::StmtResult
+Sema::ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
+ IdentifierInfo *LabelII) {
+ // Look up the record for this label identifier.
+ LabelStmt *&LabelDecl = LabelMap[LabelII];
+
+ // If we haven't seen this label yet, create a forward reference.
+ if (LabelDecl == 0)
+ LabelDecl = new LabelStmt(LabelLoc, LabelII, 0);
+
+ return new GotoStmt(LabelDecl, GotoLoc, LabelLoc);
+}
+
+Action::StmtResult
+Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc,SourceLocation StarLoc,
+ ExprTy *DestExp) {
+ // FIXME: Verify that the operand is convertible to void*.
+
+ return new IndirectGotoStmt((Expr*)DestExp);
+}
+
+Action::StmtResult
+Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
+ Scope *S = CurScope->getContinueParent();
+ if (!S) {
+ // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
+ Diag(ContinueLoc, diag::err_continue_not_in_loop);
+ return true;
+ }
+
+ return new ContinueStmt(ContinueLoc);
+}
+
+Action::StmtResult
+Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
+ Scope *S = CurScope->getBreakParent();
+ if (!S) {
+ // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
+ Diag(BreakLoc, diag::err_break_not_in_loop_or_switch);
+ return true;
+ }
+
+ return new BreakStmt(BreakLoc);
+}
+
+
+Action::StmtResult
+Sema::ActOnReturnStmt(SourceLocation ReturnLoc, ExprTy *rex) {
+ Expr *RetValExp = static_cast<Expr *>(rex);
+ QualType FnRetType = CurFunctionDecl ? CurFunctionDecl->getResultType() :
+ CurMethodDecl->getResultType();
+
+ if (FnRetType->isVoidType()) {
+ if (RetValExp) // C99 6.8.6.4p1 (ext_ since GCC warns)
+ Diag(ReturnLoc, diag::ext_return_has_expr,
+ (CurFunctionDecl ? CurFunctionDecl->getIdentifier()->getName() :
+ CurMethodDecl->getSelector().getName()),
+ RetValExp->getSourceRange());
+ return new ReturnStmt(ReturnLoc, RetValExp);
+ } else {
+ if (!RetValExp) {
+ const char *funcName = CurFunctionDecl ?
+ CurFunctionDecl->getIdentifier()->getName() :
+ CurMethodDecl->getSelector().getName().c_str();
+ if (getLangOptions().C99) // C99 6.8.6.4p1 (ext_ since GCC warns)
+ Diag(ReturnLoc, diag::ext_return_missing_expr, funcName);
+ else // C90 6.6.6.4p4
+ Diag(ReturnLoc, diag::warn_return_missing_expr, funcName);
+ return new ReturnStmt(ReturnLoc, (Expr*)0);
+ }
+ }
+ // we have a non-void function with an expression, continue checking
+ QualType RetValType = RetValExp->getType();
+
+ // C99 6.8.6.4p3(136): The return statement is not an assignment. The
+ // overlap restriction of subclause 6.5.16.1 does not apply to the case of
+ // function return.
+ AssignConvertType ConvTy = CheckSingleAssignmentConstraints(FnRetType,
+ RetValExp);
+ if (DiagnoseAssignmentResult(ConvTy, ReturnLoc, FnRetType,
+ RetValType, RetValExp, "returning"))
+ return true;
+
+ if (RetValExp) CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
+
+ return new ReturnStmt(ReturnLoc, (Expr*)RetValExp);
+}
+
+Sema::StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc,
+ bool IsSimple,
+ bool IsVolatile,
+ unsigned NumOutputs,
+ unsigned NumInputs,
+ std::string *Names,
+ ExprTy **Constraints,
+ ExprTy **Exprs,
+ ExprTy *AsmString,
+ unsigned NumClobbers,
+ ExprTy **Clobbers,
+ SourceLocation RParenLoc) {
+ Expr *E = (Expr *)AsmString;
+
+ for (unsigned i = 0; i < NumOutputs; i++) {
+ StringLiteral *Literal = cast<StringLiteral>((Expr *)Constraints[i]);
+ assert(!Literal->isWide() &&
+ "Output constraint strings should not be wide!");
+
+ std::string OutputConstraint(Literal->getStrData(),
+ Literal->getByteLength());
+
+ TargetInfo::ConstraintInfo info;
+ if (!Context.Target.validateOutputConstraint(OutputConstraint.c_str(),
+ info)) {
+ // FIXME: We currently leak memory here.
+ Diag(Literal->getLocStart(),
+ diag::err_invalid_output_constraint_in_asm);
+ return true;
+ }
+
+ // Check that the output exprs are valid lvalues.
+ Expr *OutputExpr = (Expr *)Exprs[i];
+ Expr::isLvalueResult Result = OutputExpr->isLvalue();
+ if (Result != Expr::LV_Valid) {
+ ParenExpr *PE = cast<ParenExpr>(OutputExpr);
+
+ Diag(PE->getSubExpr()->getLocStart(),
+ diag::err_invalid_lvalue_in_asm_output,
+ PE->getSubExpr()->getSourceRange());
+
+ // FIXME: We currently leak memory here.
+ return true;
+ }
+ }
+
+ for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
+ StringLiteral *Literal = cast<StringLiteral>((Expr *)Constraints[i]);
+ assert(!Literal->isWide() &&
+ "Output constraint strings should not be wide!");
+
+ std::string InputConstraint(Literal->getStrData(),
+ Literal->getByteLength());
+
+ TargetInfo::ConstraintInfo info;
+ if (!Context.Target.validateInputConstraint(InputConstraint.c_str(),
+ NumOutputs,
+ info)) {
+ // FIXME: We currently leak memory here.
+ Diag(Literal->getLocStart(),
+ diag::err_invalid_input_constraint_in_asm);
+ return true;
+ }
+
+ // Check that the input exprs aren't of type void.
+ Expr *InputExpr = (Expr *)Exprs[i];
+ if (InputExpr->getType()->isVoidType()) {
+ ParenExpr *PE = cast<ParenExpr>(InputExpr);
+
+ Diag(PE->getSubExpr()->getLocStart(),
+ diag::err_invalid_type_in_asm_input,
+ PE->getType().getAsString(),
+ PE->getSubExpr()->getSourceRange());
+
+ // FIXME: We currently leak memory here.
+ return true;
+ }
+ }
+
+ // Check that the clobbers are valid.
+ for (unsigned i = 0; i < NumClobbers; i++) {
+ StringLiteral *Literal = cast<StringLiteral>((Expr *)Clobbers[i]);
+ assert(!Literal->isWide() && "Clobber strings should not be wide!");
+
+ llvm::SmallString<16> Clobber(Literal->getStrData(),
+ Literal->getStrData() +
+ Literal->getByteLength());
+
+ if (!Context.Target.isValidGCCRegisterName(Clobber.c_str())) {
+ Diag(Literal->getLocStart(),
+ diag::err_unknown_register_name_in_asm,
+ Clobber.c_str());
+
+ // FIXME: We currently leak memory here.
+ return true;
+ }
+ }
+
+ return new AsmStmt(AsmLoc,
+ IsSimple,
+ IsVolatile,
+ NumOutputs,
+ NumInputs,
+ Names,
+ reinterpret_cast<StringLiteral**>(Constraints),
+ reinterpret_cast<Expr**>(Exprs),
+ cast<StringLiteral>(E),
+ NumClobbers,
+ reinterpret_cast<StringLiteral**>(Clobbers),
+ RParenLoc);
+}
+
+Action::StmtResult
+Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
+ SourceLocation RParen, StmtTy *Parm,
+ StmtTy *Body, StmtTy *CatchList) {
+ ObjCAtCatchStmt *CS = new ObjCAtCatchStmt(AtLoc, RParen,
+ static_cast<Stmt*>(Parm), static_cast<Stmt*>(Body),
+ static_cast<Stmt*>(CatchList));
+ return CatchList ? CatchList : CS;
+}
+
+Action::StmtResult
+Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, StmtTy *Body) {
+ ObjCAtFinallyStmt *FS = new ObjCAtFinallyStmt(AtLoc,
+ static_cast<Stmt*>(Body));
+ return FS;
+}
+
+Action::StmtResult
+Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc,
+ StmtTy *Try, StmtTy *Catch, StmtTy *Finally) {
+ ObjCAtTryStmt *TS = new ObjCAtTryStmt(AtLoc, static_cast<Stmt*>(Try),
+ static_cast<Stmt*>(Catch),
+ static_cast<Stmt*>(Finally));
+ return TS;
+}
+
+Action::StmtResult
+Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, StmtTy *Throw) {
+ ObjCAtThrowStmt *TS = new ObjCAtThrowStmt(AtLoc, static_cast<Stmt*>(Throw));
+ return TS;
+}
+
+Action::StmtResult
+Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, ExprTy *SynchExpr,
+ StmtTy *SynchBody) {
+ ObjCAtSynchronizedStmt *SS = new ObjCAtSynchronizedStmt(AtLoc,
+ static_cast<Stmt*>(SynchExpr), static_cast<Stmt*>(SynchBody));
+ return SS;
+}
+
+
OpenPOWER on IntegriCloud