diff options
Diffstat (limited to 'clang/lib/Sema/SemaExpr.cpp')
-rw-r--r-- | clang/lib/Sema/SemaExpr.cpp | 2286 |
1 files changed, 2286 insertions, 0 deletions
diff --git a/clang/lib/Sema/SemaExpr.cpp b/clang/lib/Sema/SemaExpr.cpp new file mode 100644 index 00000000000..d756345c1a8 --- /dev/null +++ b/clang/lib/Sema/SemaExpr.cpp @@ -0,0 +1,2286 @@ +//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements semantic analysis for expressions. +// +//===----------------------------------------------------------------------===// + +#include "Sema.h" +#include "SemaUtil.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/Expr.h" +#include "clang/Parse/DeclSpec.h" +#include "clang/Lex/Preprocessor.h" +#include "clang/Lex/LiteralSupport.h" +#include "clang/Basic/SourceManager.h" +#include "clang/Basic/TargetInfo.h" +#include "llvm/ADT/OwningPtr.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/StringExtras.h" +using namespace clang; + +/// ActOnStringLiteral - The specified tokens were lexed as pasted string +/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string +/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from +/// multiple tokens. However, the common case is that StringToks points to one +/// string. +/// +Action::ExprResult +Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) { + assert(NumStringToks && "Must have at least one string!"); + + StringLiteralParser Literal(StringToks, NumStringToks, PP, Context.Target); + if (Literal.hadError) + return ExprResult(true); + + llvm::SmallVector<SourceLocation, 4> StringTokLocs; + for (unsigned i = 0; i != NumStringToks; ++i) + StringTokLocs.push_back(StringToks[i].getLocation()); + + // Verify that pascal strings aren't too large. + if (Literal.Pascal && Literal.GetStringLength() > 256) + return Diag(StringToks[0].getLocation(), diag::err_pascal_string_too_long, + SourceRange(StringToks[0].getLocation(), + StringToks[NumStringToks-1].getLocation())); + + QualType StrTy = Context.CharTy; + // FIXME: handle wchar_t + if (Literal.Pascal) StrTy = Context.UnsignedCharTy; + + // Get an array type for the string, according to C99 6.4.5. This includes + // the nul terminator character as well as the string length for pascal + // strings. + StrTy = Context.getConstantArrayType(StrTy, + llvm::APInt(32, Literal.GetStringLength()+1), + ArrayType::Normal, 0); + + // Pass &StringTokLocs[0], StringTokLocs.size() to factory! + return new StringLiteral(Literal.GetString(), Literal.GetStringLength(), + Literal.AnyWide, StrTy, + StringToks[0].getLocation(), + StringToks[NumStringToks-1].getLocation()); +} + + +/// ActOnIdentifierExpr - The parser read an identifier in expression context, +/// validate it per-C99 6.5.1. HasTrailingLParen indicates whether this +/// identifier is used in an function call context. +Sema::ExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc, + IdentifierInfo &II, + bool HasTrailingLParen) { + // Could be enum-constant or decl. + ScopedDecl *D = LookupScopedDecl(&II, Decl::IDNS_Ordinary, Loc, S); + if (D == 0) { + // Otherwise, this could be an implicitly declared function reference (legal + // in C90, extension in C99). + if (HasTrailingLParen && + // Not in C++. + !getLangOptions().CPlusPlus) + D = ImplicitlyDefineFunction(Loc, II, S); + else { + if (CurMethodDecl) { + ObjCInterfaceDecl *IFace = CurMethodDecl->getClassInterface(); + ObjCInterfaceDecl *clsDeclared; + if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(&II, clsDeclared)) { + IdentifierInfo &II = Context.Idents.get("self"); + ExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false); + return new ObjCIvarRefExpr(IV, IV->getType(), Loc, + static_cast<Expr*>(SelfExpr.Val), true, true); + } + } + // If this name wasn't predeclared and if this is not a function call, + // diagnose the problem. + return Diag(Loc, diag::err_undeclared_var_use, II.getName()); + } + } + if (ValueDecl *VD = dyn_cast<ValueDecl>(D)) { + // check if referencing an identifier with __attribute__((deprecated)). + if (VD->getAttr<DeprecatedAttr>()) + Diag(Loc, diag::warn_deprecated, VD->getName()); + + // Only create DeclRefExpr's for valid Decl's. + if (VD->isInvalidDecl()) + return true; + return new DeclRefExpr(VD, VD->getType(), Loc); + } + if (isa<TypedefDecl>(D)) + return Diag(Loc, diag::err_unexpected_typedef, II.getName()); + if (isa<ObjCInterfaceDecl>(D)) + return Diag(Loc, diag::err_unexpected_interface, II.getName()); + + assert(0 && "Invalid decl"); + abort(); +} + +Sema::ExprResult Sema::ActOnPreDefinedExpr(SourceLocation Loc, + tok::TokenKind Kind) { + PreDefinedExpr::IdentType IT; + + switch (Kind) { + default: assert(0 && "Unknown simple primary expr!"); + case tok::kw___func__: IT = PreDefinedExpr::Func; break; // [C99 6.4.2.2] + case tok::kw___FUNCTION__: IT = PreDefinedExpr::Function; break; + case tok::kw___PRETTY_FUNCTION__: IT = PreDefinedExpr::PrettyFunction; break; + } + + // Verify that this is in a function context. + if (CurFunctionDecl == 0 && CurMethodDecl == 0) + return Diag(Loc, diag::err_predef_outside_function); + + // Pre-defined identifiers are of type char[x], where x is the length of the + // string. + unsigned Length; + if (CurFunctionDecl) + Length = CurFunctionDecl->getIdentifier()->getLength(); + else + Length = CurMethodDecl->getSynthesizedMethodSize(); + + llvm::APInt LengthI(32, Length + 1); + QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const); + ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0); + return new PreDefinedExpr(Loc, ResTy, IT); +} + +Sema::ExprResult Sema::ActOnCharacterConstant(const Token &Tok) { + llvm::SmallString<16> CharBuffer; + CharBuffer.resize(Tok.getLength()); + const char *ThisTokBegin = &CharBuffer[0]; + unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin); + + CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength, + Tok.getLocation(), PP); + if (Literal.hadError()) + return ExprResult(true); + + QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy; + + return new CharacterLiteral(Literal.getValue(), type, Tok.getLocation()); +} + +Action::ExprResult Sema::ActOnNumericConstant(const Token &Tok) { + // fast path for a single digit (which is quite common). A single digit + // cannot have a trigraph, escaped newline, radix prefix, or type suffix. + if (Tok.getLength() == 1) { + const char *t = PP.getSourceManager().getCharacterData(Tok.getLocation()); + + unsigned IntSize =static_cast<unsigned>(Context.getTypeSize(Context.IntTy)); + return ExprResult(new IntegerLiteral(llvm::APInt(IntSize, *t-'0'), + Context.IntTy, + Tok.getLocation())); + } + llvm::SmallString<512> IntegerBuffer; + IntegerBuffer.resize(Tok.getLength()); + const char *ThisTokBegin = &IntegerBuffer[0]; + + // Get the spelling of the token, which eliminates trigraphs, etc. + unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin); + NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength, + Tok.getLocation(), PP); + if (Literal.hadError) + return ExprResult(true); + + Expr *Res; + + if (Literal.isFloatingLiteral()) { + QualType Ty; + const llvm::fltSemantics *Format; + + if (Literal.isFloat) { + Ty = Context.FloatTy; + Format = Context.Target.getFloatFormat(); + } else if (!Literal.isLong) { + Ty = Context.DoubleTy; + Format = Context.Target.getDoubleFormat(); + } else { + Ty = Context.LongDoubleTy; + Format = Context.Target.getLongDoubleFormat(); + } + + // isExact will be set by GetFloatValue(). + bool isExact = false; + + Res = new FloatingLiteral(Literal.GetFloatValue(*Format,&isExact), &isExact, + Ty, Tok.getLocation()); + + } else if (!Literal.isIntegerLiteral()) { + return ExprResult(true); + } else { + QualType t; + + // long long is a C99 feature. + if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x && + Literal.isLongLong) + Diag(Tok.getLocation(), diag::ext_longlong); + + // Get the value in the widest-possible width. + llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0); + + if (Literal.GetIntegerValue(ResultVal)) { + // If this value didn't fit into uintmax_t, warn and force to ull. + Diag(Tok.getLocation(), diag::warn_integer_too_large); + t = Context.UnsignedLongLongTy; + assert(Context.getTypeSize(t) == ResultVal.getBitWidth() && + "long long is not intmax_t?"); + } else { + // If this value fits into a ULL, try to figure out what else it fits into + // according to the rules of C99 6.4.4.1p5. + + // Octal, Hexadecimal, and integers with a U suffix are allowed to + // be an unsigned int. + bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10; + + // Check from smallest to largest, picking the smallest type we can. + if (!Literal.isLong && !Literal.isLongLong) { + // Are int/unsigned possibilities? + unsigned IntSize = + static_cast<unsigned>(Context.getTypeSize(Context.IntTy)); + // Does it fit in a unsigned int? + if (ResultVal.isIntN(IntSize)) { + // Does it fit in a signed int? + if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0) + t = Context.IntTy; + else if (AllowUnsigned) + t = Context.UnsignedIntTy; + } + + if (!t.isNull()) + ResultVal.trunc(IntSize); + } + + // Are long/unsigned long possibilities? + if (t.isNull() && !Literal.isLongLong) { + unsigned LongSize = + static_cast<unsigned>(Context.getTypeSize(Context.LongTy)); + + // Does it fit in a unsigned long? + if (ResultVal.isIntN(LongSize)) { + // Does it fit in a signed long? + if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0) + t = Context.LongTy; + else if (AllowUnsigned) + t = Context.UnsignedLongTy; + } + if (!t.isNull()) + ResultVal.trunc(LongSize); + } + + // Finally, check long long if needed. + if (t.isNull()) { + unsigned LongLongSize = + static_cast<unsigned>(Context.getTypeSize(Context.LongLongTy)); + + // Does it fit in a unsigned long long? + if (ResultVal.isIntN(LongLongSize)) { + // Does it fit in a signed long long? + if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0) + t = Context.LongLongTy; + else if (AllowUnsigned) + t = Context.UnsignedLongLongTy; + } + } + + // If we still couldn't decide a type, we probably have something that + // does not fit in a signed long long, but has no U suffix. + if (t.isNull()) { + Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed); + t = Context.UnsignedLongLongTy; + } + } + + Res = new IntegerLiteral(ResultVal, t, Tok.getLocation()); + } + + // If this is an imaginary literal, create the ImaginaryLiteral wrapper. + if (Literal.isImaginary) + Res = new ImaginaryLiteral(Res, Context.getComplexType(Res->getType())); + + return Res; +} + +Action::ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, + ExprTy *Val) { + Expr *e = (Expr *)Val; + assert((e != 0) && "ActOnParenExpr() missing expr"); + return new ParenExpr(L, R, e); +} + +/// The UsualUnaryConversions() function is *not* called by this routine. +/// See C99 6.3.2.1p[2-4] for more details. +QualType Sema::CheckSizeOfAlignOfOperand(QualType exprType, + SourceLocation OpLoc, bool isSizeof) { + // C99 6.5.3.4p1: + if (isa<FunctionType>(exprType) && isSizeof) + // alignof(function) is allowed. + Diag(OpLoc, diag::ext_sizeof_function_type); + else if (exprType->isVoidType()) + Diag(OpLoc, diag::ext_sizeof_void_type, isSizeof ? "sizeof" : "__alignof"); + else if (exprType->isIncompleteType()) { + Diag(OpLoc, isSizeof ? diag::err_sizeof_incomplete_type : + diag::err_alignof_incomplete_type, + exprType.getAsString()); + return QualType(); // error + } + // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. + return Context.getSizeType(); +} + +Action::ExprResult Sema:: +ActOnSizeOfAlignOfTypeExpr(SourceLocation OpLoc, bool isSizeof, + SourceLocation LPLoc, TypeTy *Ty, + SourceLocation RPLoc) { + // If error parsing type, ignore. + if (Ty == 0) return true; + + // Verify that this is a valid expression. + QualType ArgTy = QualType::getFromOpaquePtr(Ty); + + QualType resultType = CheckSizeOfAlignOfOperand(ArgTy, OpLoc, isSizeof); + + if (resultType.isNull()) + return true; + return new SizeOfAlignOfTypeExpr(isSizeof, ArgTy, resultType, OpLoc, RPLoc); +} + +QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc) { + DefaultFunctionArrayConversion(V); + + // These operators return the element type of a complex type. + if (const ComplexType *CT = V->getType()->getAsComplexType()) + return CT->getElementType(); + + // Otherwise they pass through real integer and floating point types here. + if (V->getType()->isArithmeticType()) + return V->getType(); + + // Reject anything else. + Diag(Loc, diag::err_realimag_invalid_type, V->getType().getAsString()); + return QualType(); +} + + + +Action::ExprResult Sema::ActOnPostfixUnaryOp(SourceLocation OpLoc, + tok::TokenKind Kind, + ExprTy *Input) { + UnaryOperator::Opcode Opc; + switch (Kind) { + default: assert(0 && "Unknown unary op!"); + case tok::plusplus: Opc = UnaryOperator::PostInc; break; + case tok::minusminus: Opc = UnaryOperator::PostDec; break; + } + QualType result = CheckIncrementDecrementOperand((Expr *)Input, OpLoc); + if (result.isNull()) + return true; + return new UnaryOperator((Expr *)Input, Opc, result, OpLoc); +} + +Action::ExprResult Sema:: +ActOnArraySubscriptExpr(ExprTy *Base, SourceLocation LLoc, + ExprTy *Idx, SourceLocation RLoc) { + Expr *LHSExp = static_cast<Expr*>(Base), *RHSExp = static_cast<Expr*>(Idx); + + // Perform default conversions. + DefaultFunctionArrayConversion(LHSExp); + DefaultFunctionArrayConversion(RHSExp); + + QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType(); + + // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent + // to the expression *((e1)+(e2)). This means the array "Base" may actually be + // in the subscript position. As a result, we need to derive the array base + // and index from the expression types. + Expr *BaseExpr, *IndexExpr; + QualType ResultType; + if (const PointerType *PTy = LHSTy->getAsPointerType()) { + BaseExpr = LHSExp; + IndexExpr = RHSExp; + // FIXME: need to deal with const... + ResultType = PTy->getPointeeType(); + } else if (const PointerType *PTy = RHSTy->getAsPointerType()) { + // Handle the uncommon case of "123[Ptr]". + BaseExpr = RHSExp; + IndexExpr = LHSExp; + // FIXME: need to deal with const... + ResultType = PTy->getPointeeType(); + } else if (const VectorType *VTy = LHSTy->getAsVectorType()) { + BaseExpr = LHSExp; // vectors: V[123] + IndexExpr = RHSExp; + + // Component access limited to variables (reject vec4.rg[1]). + if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr)) + return Diag(LLoc, diag::err_ocuvector_component_access, + SourceRange(LLoc, RLoc)); + // FIXME: need to deal with const... + ResultType = VTy->getElementType(); + } else { + return Diag(LHSExp->getLocStart(), diag::err_typecheck_subscript_value, + RHSExp->getSourceRange()); + } + // C99 6.5.2.1p1 + if (!IndexExpr->getType()->isIntegerType()) + return Diag(IndexExpr->getLocStart(), diag::err_typecheck_subscript, + IndexExpr->getSourceRange()); + + // C99 6.5.2.1p1: "shall have type "pointer to *object* type". In practice, + // the following check catches trying to index a pointer to a function (e.g. + // void (*)(int)). Functions are not objects in C99. + if (!ResultType->isObjectType()) + return Diag(BaseExpr->getLocStart(), + diag::err_typecheck_subscript_not_object, + BaseExpr->getType().getAsString(), BaseExpr->getSourceRange()); + + return new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc); +} + +QualType Sema:: +CheckOCUVectorComponent(QualType baseType, SourceLocation OpLoc, + IdentifierInfo &CompName, SourceLocation CompLoc) { + const OCUVectorType *vecType = baseType->getAsOCUVectorType(); + + // The vector accessor can't exceed the number of elements. + const char *compStr = CompName.getName(); + if (strlen(compStr) > vecType->getNumElements()) { + Diag(OpLoc, diag::err_ocuvector_component_exceeds_length, + baseType.getAsString(), SourceRange(CompLoc)); + return QualType(); + } + // The component names must come from the same set. + if (vecType->getPointAccessorIdx(*compStr) != -1) { + do + compStr++; + while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1); + } else if (vecType->getColorAccessorIdx(*compStr) != -1) { + do + compStr++; + while (*compStr && vecType->getColorAccessorIdx(*compStr) != -1); + } else if (vecType->getTextureAccessorIdx(*compStr) != -1) { + do + compStr++; + while (*compStr && vecType->getTextureAccessorIdx(*compStr) != -1); + } + + if (*compStr) { + // We didn't get to the end of the string. This means the component names + // didn't come from the same set *or* we encountered an illegal name. + Diag(OpLoc, diag::err_ocuvector_component_name_illegal, + std::string(compStr,compStr+1), SourceRange(CompLoc)); + return QualType(); + } + // Each component accessor can't exceed the vector type. + compStr = CompName.getName(); + while (*compStr) { + if (vecType->isAccessorWithinNumElements(*compStr)) + compStr++; + else + break; + } + if (*compStr) { + // We didn't get to the end of the string. This means a component accessor + // exceeds the number of elements in the vector. + Diag(OpLoc, diag::err_ocuvector_component_exceeds_length, + baseType.getAsString(), SourceRange(CompLoc)); + return QualType(); + } + // The component accessor looks fine - now we need to compute the actual type. + // The vector type is implied by the component accessor. For example, + // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc. + unsigned CompSize = strlen(CompName.getName()); + if (CompSize == 1) + return vecType->getElementType(); + + QualType VT = Context.getOCUVectorType(vecType->getElementType(), CompSize); + // Now look up the TypeDefDecl from the vector type. Without this, + // diagostics look bad. We want OCU vector types to appear built-in. + for (unsigned i = 0, e = OCUVectorDecls.size(); i != e; ++i) { + if (OCUVectorDecls[i]->getUnderlyingType() == VT) + return Context.getTypedefType(OCUVectorDecls[i]); + } + return VT; // should never get here (a typedef type should always be found). +} + +Action::ExprResult Sema:: +ActOnMemberReferenceExpr(ExprTy *Base, SourceLocation OpLoc, + tok::TokenKind OpKind, SourceLocation MemberLoc, + IdentifierInfo &Member) { + Expr *BaseExpr = static_cast<Expr *>(Base); + assert(BaseExpr && "no record expression"); + + // Perform default conversions. + DefaultFunctionArrayConversion(BaseExpr); + + QualType BaseType = BaseExpr->getType(); + assert(!BaseType.isNull() && "no type for member expression"); + + if (OpKind == tok::arrow) { + if (const PointerType *PT = BaseType->getAsPointerType()) + BaseType = PT->getPointeeType(); + else + return Diag(OpLoc, diag::err_typecheck_member_reference_arrow, + SourceRange(MemberLoc)); + } + // The base type is either a record or an OCUVectorType. + if (const RecordType *RTy = BaseType->getAsRecordType()) { + RecordDecl *RDecl = RTy->getDecl(); + if (RTy->isIncompleteType()) + return Diag(OpLoc, diag::err_typecheck_incomplete_tag, RDecl->getName(), + BaseExpr->getSourceRange()); + // The record definition is complete, now make sure the member is valid. + FieldDecl *MemberDecl = RDecl->getMember(&Member); + if (!MemberDecl) + return Diag(OpLoc, diag::err_typecheck_no_member, Member.getName(), + SourceRange(MemberLoc)); + + // Figure out the type of the member; see C99 6.5.2.3p3 + // FIXME: Handle address space modifiers + QualType MemberType = MemberDecl->getType(); + unsigned combinedQualifiers = + MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers(); + MemberType = MemberType.getQualifiedType(combinedQualifiers); + + return new MemberExpr(BaseExpr, OpKind==tok::arrow, MemberDecl, + MemberLoc, MemberType); + } else if (BaseType->isOCUVectorType() && OpKind == tok::period) { + // Component access limited to variables (reject vec4.rg.g). + if (!isa<DeclRefExpr>(BaseExpr)) + return Diag(OpLoc, diag::err_ocuvector_component_access, + SourceRange(MemberLoc)); + QualType ret = CheckOCUVectorComponent(BaseType, OpLoc, Member, MemberLoc); + if (ret.isNull()) + return true; + return new OCUVectorElementExpr(ret, BaseExpr, Member, MemberLoc); + } else if (BaseType->isObjCInterfaceType()) { + ObjCInterfaceDecl *IFace; + if (isa<ObjCInterfaceType>(BaseType.getCanonicalType())) + IFace = dyn_cast<ObjCInterfaceType>(BaseType)->getDecl(); + else + IFace = dyn_cast<ObjCQualifiedInterfaceType>(BaseType)->getDecl(); + ObjCInterfaceDecl *clsDeclared; + if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(&Member, clsDeclared)) + return new ObjCIvarRefExpr(IV, IV->getType(), MemberLoc, BaseExpr, + OpKind==tok::arrow); + } + return Diag(OpLoc, diag::err_typecheck_member_reference_structUnion, + SourceRange(MemberLoc)); +} + +/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments. +/// This provides the location of the left/right parens and a list of comma +/// locations. +Action::ExprResult Sema:: +ActOnCallExpr(ExprTy *fn, SourceLocation LParenLoc, + ExprTy **args, unsigned NumArgs, + SourceLocation *CommaLocs, SourceLocation RParenLoc) { + Expr *Fn = static_cast<Expr *>(fn); + Expr **Args = reinterpret_cast<Expr**>(args); + assert(Fn && "no function call expression"); + + // Make the call expr early, before semantic checks. This guarantees cleanup + // of arguments and function on error. + llvm::OwningPtr<CallExpr> TheCall(new CallExpr(Fn, Args, NumArgs, + Context.BoolTy, RParenLoc)); + + // Promote the function operand. + TheCall->setCallee(UsualUnaryConversions(Fn)); + + // C99 6.5.2.2p1 - "The expression that denotes the called function shall have + // type pointer to function". + const PointerType *PT = Fn->getType()->getAsPointerType(); + if (PT == 0) + return Diag(Fn->getLocStart(), diag::err_typecheck_call_not_function, + SourceRange(Fn->getLocStart(), RParenLoc)); + const FunctionType *FuncT = PT->getPointeeType()->getAsFunctionType(); + if (FuncT == 0) + return Diag(Fn->getLocStart(), diag::err_typecheck_call_not_function, + SourceRange(Fn->getLocStart(), RParenLoc)); + + // We know the result type of the call, set it. + TheCall->setType(FuncT->getResultType()); + + if (const FunctionTypeProto *Proto = dyn_cast<FunctionTypeProto>(FuncT)) { + // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by + // assignment, to the types of the corresponding parameter, ... + unsigned NumArgsInProto = Proto->getNumArgs(); + unsigned NumArgsToCheck = NumArgs; + + // If too few arguments are available, don't make the call. + if (NumArgs < NumArgsInProto) + return Diag(RParenLoc, diag::err_typecheck_call_too_few_args, + Fn->getSourceRange()); + + // If too many are passed and not variadic, error on the extras and drop + // them. + if (NumArgs > NumArgsInProto) { + if (!Proto->isVariadic()) { + Diag(Args[NumArgsInProto]->getLocStart(), + diag::err_typecheck_call_too_many_args, Fn->getSourceRange(), + SourceRange(Args[NumArgsInProto]->getLocStart(), + Args[NumArgs-1]->getLocEnd())); + // This deletes the extra arguments. + TheCall->setNumArgs(NumArgsInProto); + } + NumArgsToCheck = NumArgsInProto; + } + + // Continue to check argument types (even if we have too few/many args). + for (unsigned i = 0; i != NumArgsToCheck; i++) { + Expr *Arg = Args[i]; + QualType ProtoArgType = Proto->getArgType(i); + QualType ArgType = Arg->getType(); + + // Compute implicit casts from the operand to the formal argument type. + AssignConvertType ConvTy = + CheckSingleAssignmentConstraints(ProtoArgType, Arg); + TheCall->setArg(i, Arg); + + if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), ProtoArgType, + ArgType, Arg, "passing")) + return true; + } + + // If this is a variadic call, handle args passed through "...". + if (Proto->isVariadic()) { + // Promote the arguments (C99 6.5.2.2p7). + for (unsigned i = NumArgsInProto; i != NumArgs; i++) { + Expr *Arg = Args[i]; + DefaultArgumentPromotion(Arg); + TheCall->setArg(i, Arg); + } + } + } else { + assert(isa<FunctionTypeNoProto>(FuncT) && "Unknown FunctionType!"); + + // Promote the arguments (C99 6.5.2.2p6). + for (unsigned i = 0; i != NumArgs; i++) { + Expr *Arg = Args[i]; + DefaultArgumentPromotion(Arg); + TheCall->setArg(i, Arg); + } + } + + // Do special checking on direct calls to functions. + if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(Fn)) + if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(IcExpr->getSubExpr())) + if (FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl())) + if (CheckFunctionCall(FDecl, TheCall.get())) + return true; + + return TheCall.take(); +} + +Action::ExprResult Sema:: +ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty, + SourceLocation RParenLoc, ExprTy *InitExpr) { + assert((Ty != 0) && "ActOnCompoundLiteral(): missing type"); + QualType literalType = QualType::getFromOpaquePtr(Ty); + // FIXME: put back this assert when initializers are worked out. + //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression"); + Expr *literalExpr = static_cast<Expr*>(InitExpr); + + // FIXME: add more semantic analysis (C99 6.5.2.5). + if (CheckInitializerTypes(literalExpr, literalType)) + return true; + + bool isFileScope = !CurFunctionDecl && !CurMethodDecl; + if (isFileScope) { // 6.5.2.5p3 + if (CheckForConstantInitializer(literalExpr, literalType)) + return true; + } + return new CompoundLiteralExpr(LParenLoc, literalType, literalExpr, isFileScope); +} + +Action::ExprResult Sema:: +ActOnInitList(SourceLocation LBraceLoc, ExprTy **initlist, unsigned NumInit, + SourceLocation RBraceLoc) { + Expr **InitList = reinterpret_cast<Expr**>(initlist); + + // Semantic analysis for initializers is done by ActOnDeclarator() and + // CheckInitializer() - it requires knowledge of the object being intialized. + + InitListExpr *e = new InitListExpr(LBraceLoc, InitList, NumInit, RBraceLoc); + e->setType(Context.VoidTy); // FIXME: just a place holder for now. + return e; +} + +bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) { + assert(VectorTy->isVectorType() && "Not a vector type!"); + + if (Ty->isVectorType() || Ty->isIntegerType()) { + if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty)) + return Diag(R.getBegin(), + Ty->isVectorType() ? + diag::err_invalid_conversion_between_vectors : + diag::err_invalid_conversion_between_vector_and_integer, + VectorTy.getAsString().c_str(), + Ty.getAsString().c_str(), R); + } else + return Diag(R.getBegin(), + diag::err_invalid_conversion_between_vector_and_scalar, + VectorTy.getAsString().c_str(), + Ty.getAsString().c_str(), R); + + return false; +} + +Action::ExprResult Sema:: +ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty, + SourceLocation RParenLoc, ExprTy *Op) { + assert((Ty != 0) && (Op != 0) && "ActOnCastExpr(): missing type or expr"); + + Expr *castExpr = static_cast<Expr*>(Op); + QualType castType = QualType::getFromOpaquePtr(Ty); + + UsualUnaryConversions(castExpr); + + // C99 6.5.4p2: the cast type needs to be void or scalar and the expression + // type needs to be scalar. + if (!castType->isVoidType()) { // Cast to void allows any expr type. + if (!castType->isScalarType() && !castType->isVectorType()) + return Diag(LParenLoc, diag::err_typecheck_cond_expect_scalar, + castType.getAsString(), SourceRange(LParenLoc, RParenLoc)); + if (!castExpr->getType()->isScalarType() && + !castExpr->getType()->isVectorType()) + return Diag(castExpr->getLocStart(), + diag::err_typecheck_expect_scalar_operand, + castExpr->getType().getAsString(),castExpr->getSourceRange()); + + if (castExpr->getType()->isVectorType()) { + if (CheckVectorCast(SourceRange(LParenLoc, RParenLoc), + castExpr->getType(), castType)) + return true; + } else if (castType->isVectorType()) { + if (CheckVectorCast(SourceRange(LParenLoc, RParenLoc), + castType, castExpr->getType())) + return true; + } + } + return new CastExpr(castType, castExpr, LParenLoc); +} + +/// Note that lex is not null here, even if this is the gnu "x ?: y" extension. +/// In that case, lex = cond. +inline QualType Sema::CheckConditionalOperands( // C99 6.5.15 + Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) { + UsualUnaryConversions(cond); + UsualUnaryConversions(lex); + UsualUnaryConversions(rex); + QualType condT = cond->getType(); + QualType lexT = lex->getType(); + QualType rexT = rex->getType(); + + // first, check the condition. + if (!condT->isScalarType()) { // C99 6.5.15p2 + Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar, + condT.getAsString()); + return QualType(); + } + + // Now check the two expressions. + + // If both operands have arithmetic type, do the usual arithmetic conversions + // to find a common type: C99 6.5.15p3,5. + if (lexT->isArithmeticType() && rexT->isArithmeticType()) { + UsualArithmeticConversions(lex, rex); + return lex->getType(); + } + + // If both operands are the same structure or union type, the result is that + // type. + if (const RecordType *LHSRT = lexT->getAsRecordType()) { // C99 6.5.15p3 + if (const RecordType *RHSRT = rexT->getAsRecordType()) + if (LHSRT->getDecl() == RHSRT->getDecl()) + // "If both the operands have structure or union type, the result has + // that type." This implies that CV qualifiers are dropped. + return lexT.getUnqualifiedType(); + } + + // C99 6.5.15p5: "If both operands have void type, the result has void type." + if (lexT->isVoidType() && rexT->isVoidType()) + return lexT.getUnqualifiedType(); + + // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has + // the type of the other operand." + if (lexT->isPointerType() && rex->isNullPointerConstant(Context)) { + ImpCastExprToType(rex, lexT); // promote the null to a pointer. + return lexT; + } + if (rexT->isPointerType() && lex->isNullPointerConstant(Context)) { + ImpCastExprToType(lex, rexT); // promote the null to a pointer. + return rexT; + } + // Handle the case where both operands are pointers before we handle null + // pointer constants in case both operands are null pointer constants. + if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6 + if (const PointerType *RHSPT = rexT->getAsPointerType()) { + // get the "pointed to" types + QualType lhptee = LHSPT->getPointeeType(); + QualType rhptee = RHSPT->getPointeeType(); + + // ignore qualifiers on void (C99 6.5.15p3, clause 6) + if (lhptee->isVoidType() && + (rhptee->isObjectType() || rhptee->isIncompleteType())) { + // Figure out necessary qualifiers (C99 6.5.15p6) + QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers()); + QualType destType = Context.getPointerType(destPointee); + ImpCastExprToType(lex, destType); // add qualifiers if necessary + ImpCastExprToType(rex, destType); // promote to void* + return destType; + } + if (rhptee->isVoidType() && + (lhptee->isObjectType() || lhptee->isIncompleteType())) { + QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers()); + QualType destType = Context.getPointerType(destPointee); + ImpCastExprToType(lex, destType); // add qualifiers if necessary + ImpCastExprToType(rex, destType); // promote to void* + return destType; + } + + if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(), + rhptee.getUnqualifiedType())) { + Diag(questionLoc, diag::warn_typecheck_cond_incompatible_pointers, + lexT.getAsString(), rexT.getAsString(), + lex->getSourceRange(), rex->getSourceRange()); + // In this situation, we assume void* type. No especially good + // reason, but this is what gcc does, and we do have to pick + // to get a consistent AST. + QualType voidPtrTy = Context.getPointerType(Context.VoidTy); + ImpCastExprToType(lex, voidPtrTy); + ImpCastExprToType(rex, voidPtrTy); + return voidPtrTy; + } + // The pointer types are compatible. + // C99 6.5.15p6: If both operands are pointers to compatible types *or* to + // differently qualified versions of compatible types, the result type is + // a pointer to an appropriately qualified version of the *composite* + // type. + // FIXME: Need to return the composite type. + // FIXME: Need to add qualifiers + return lexT; + } + } + + // Otherwise, the operands are not compatible. + Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands, + lexT.getAsString(), rexT.getAsString(), + lex->getSourceRange(), rex->getSourceRange()); + return QualType(); +} + +/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null +/// in the case of a the GNU conditional expr extension. +Action::ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc, + SourceLocation ColonLoc, + ExprTy *Cond, ExprTy *LHS, + ExprTy *RHS) { + Expr *CondExpr = (Expr *) Cond; + Expr *LHSExpr = (Expr *) LHS, *RHSExpr = (Expr *) RHS; + + // If this is the gnu "x ?: y" extension, analyze the types as though the LHS + // was the condition. + bool isLHSNull = LHSExpr == 0; + if (isLHSNull) + LHSExpr = CondExpr; + + QualType result = CheckConditionalOperands(CondExpr, LHSExpr, + RHSExpr, QuestionLoc); + if (result.isNull()) + return true; + return new ConditionalOperator(CondExpr, isLHSNull ? 0 : LHSExpr, + RHSExpr, result); +} + +/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that +/// do not have a prototype. Arguments that have type float are promoted to +/// double. All other argument types are converted by UsualUnaryConversions(). +void Sema::DefaultArgumentPromotion(Expr *&Expr) { + QualType Ty = Expr->getType(); + assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type"); + + if (Ty == Context.FloatTy) + ImpCastExprToType(Expr, Context.DoubleTy); + else + UsualUnaryConversions(Expr); +} + +/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4). +void Sema::DefaultFunctionArrayConversion(Expr *&e) { + QualType t = e->getType(); + assert(!t.isNull() && "DefaultFunctionArrayConversion - missing type"); + + if (const ReferenceType *ref = t->getAsReferenceType()) { + ImpCastExprToType(e, ref->getReferenceeType()); // C++ [expr] + t = e->getType(); + } + if (t->isFunctionType()) + ImpCastExprToType(e, Context.getPointerType(t)); + else if (const ArrayType *ary = t->getAsArrayType()) { + // Make sure we don't lose qualifiers when dealing with typedefs. Example: + // typedef int arr[10]; + // void test2() { + // const arr b; + // b[4] = 1; + // } + QualType ELT = ary->getElementType(); + // FIXME: Handle ASQualType + ELT = ELT.getQualifiedType(t.getCVRQualifiers()|ELT.getCVRQualifiers()); + ImpCastExprToType(e, Context.getPointerType(ELT)); + } +} + +/// UsualUnaryConversions - Performs various conversions that are common to most +/// operators (C99 6.3). The conversions of array and function types are +/// sometimes surpressed. For example, the array->pointer conversion doesn't +/// apply if the array is an argument to the sizeof or address (&) operators. +/// In these instances, this routine should *not* be called. +Expr *Sema::UsualUnaryConversions(Expr *&Expr) { + QualType Ty = Expr->getType(); + assert(!Ty.isNull() && "UsualUnaryConversions - missing type"); + + if (const ReferenceType *Ref = Ty->getAsReferenceType()) { + ImpCastExprToType(Expr, Ref->getReferenceeType()); // C++ [expr] + Ty = Expr->getType(); + } + if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2 + ImpCastExprToType(Expr, Context.IntTy); + else + DefaultFunctionArrayConversion(Expr); + + return Expr; +} + +/// UsualArithmeticConversions - Performs various conversions that are common to +/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this +/// routine returns the first non-arithmetic type found. The client is +/// responsible for emitting appropriate error diagnostics. +/// FIXME: verify the conversion rules for "complex int" are consistent with GCC. +QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr, + bool isCompAssign) { + if (!isCompAssign) { + UsualUnaryConversions(lhsExpr); + UsualUnaryConversions(rhsExpr); + } + // For conversion purposes, we ignore any qualifiers. + // For example, "const float" and "float" are equivalent. + QualType lhs = lhsExpr->getType().getCanonicalType().getUnqualifiedType(); + QualType rhs = rhsExpr->getType().getCanonicalType().getUnqualifiedType(); + + // If both types are identical, no conversion is needed. + if (lhs == rhs) + return lhs; + + // If either side is a non-arithmetic type (e.g. a pointer), we are done. + // The caller can deal with this (e.g. pointer + int). + if (!lhs->isArithmeticType() || !rhs->isArithmeticType()) + return lhs; + + // At this point, we have two different arithmetic types. + + // Handle complex types first (C99 6.3.1.8p1). + if (lhs->isComplexType() || rhs->isComplexType()) { + // if we have an integer operand, the result is the complex type. + if (rhs->isIntegerType() || rhs->isComplexIntegerType()) { + // convert the rhs to the lhs complex type. + if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs); + return lhs; + } + if (lhs->isIntegerType() || lhs->isComplexIntegerType()) { + // convert the lhs to the rhs complex type. + if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs); + return rhs; + } + // This handles complex/complex, complex/float, or float/complex. + // When both operands are complex, the shorter operand is converted to the + // type of the longer, and that is the type of the result. This corresponds + // to what is done when combining two real floating-point operands. + // The fun begins when size promotion occur across type domains. + // From H&S 6.3.4: When one operand is complex and the other is a real + // floating-point type, the less precise type is converted, within it's + // real or complex domain, to the precision of the other type. For example, + // when combining a "long double" with a "double _Complex", the + // "double _Complex" is promoted to "long double _Complex". + int result = Context.compareFloatingType(lhs, rhs); + + if (result > 0) { // The left side is bigger, convert rhs. + rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs); + if (!isCompAssign) + ImpCastExprToType(rhsExpr, rhs); + } else if (result < 0) { // The right side is bigger, convert lhs. + lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs); + if (!isCompAssign) + ImpCastExprToType(lhsExpr, lhs); + } + // At this point, lhs and rhs have the same rank/size. Now, make sure the + // domains match. This is a requirement for our implementation, C99 + // does not require this promotion. + if (lhs != rhs) { // Domains don't match, we have complex/float mix. + if (lhs->isRealFloatingType()) { // handle "double, _Complex double". + if (!isCompAssign) + ImpCastExprToType(lhsExpr, rhs); + return rhs; + } else { // handle "_Complex double, double". + if (!isCompAssign) + ImpCastExprToType(rhsExpr, lhs); + return lhs; + } + } + return lhs; // The domain/size match exactly. + } + // Now handle "real" floating types (i.e. float, double, long double). + if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) { + // if we have an integer operand, the result is the real floating type. + if (rhs->isIntegerType() || rhs->isComplexIntegerType()) { + // convert rhs to the lhs floating point type. + if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs); + return lhs; + } + if (lhs->isIntegerType() || lhs->isComplexIntegerType()) { + // convert lhs to the rhs floating point type. + if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs); + return rhs; + } + // We have two real floating types, float/complex combos were handled above. + // Convert the smaller operand to the bigger result. + int result = Context.compareFloatingType(lhs, rhs); + + if (result > 0) { // convert the rhs + if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs); + return lhs; + } + if (result < 0) { // convert the lhs + if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs); // convert the lhs + return rhs; + } + assert(0 && "Sema::UsualArithmeticConversions(): illegal float comparison"); + } + if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) { + // Handle GCC complex int extension. + const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType(); + const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType(); + + if (lhsComplexInt && rhsComplexInt) { + if (Context.maxIntegerType(lhsComplexInt->getElementType(), + rhsComplexInt->getElementType()) == lhs) { + // convert the rhs + if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs); + return lhs; + } + if (!isCompAssign) + ImpCastExprToType(lhsExpr, rhs); // convert the lhs + return rhs; + } else if (lhsComplexInt && rhs->isIntegerType()) { + // convert the rhs to the lhs complex type. + if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs); + return lhs; + } else if (rhsComplexInt && lhs->isIntegerType()) { + // convert the lhs to the rhs complex type. + if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs); + return rhs; + } + } + // Finally, we have two differing integer types. + if (Context.maxIntegerType(lhs, rhs) == lhs) { // convert the rhs + if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs); + return lhs; + } + if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs); // convert the lhs + return rhs; +} + +// CheckPointerTypesForAssignment - This is a very tricky routine (despite +// being closely modeled after the C99 spec:-). The odd characteristic of this +// routine is it effectively iqnores the qualifiers on the top level pointee. +// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3]. +// FIXME: add a couple examples in this comment. +Sema::AssignConvertType +Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) { + QualType lhptee, rhptee; + + // get the "pointed to" type (ignoring qualifiers at the top level) + lhptee = lhsType->getAsPointerType()->getPointeeType(); + rhptee = rhsType->getAsPointerType()->getPointeeType(); + + // make sure we operate on the canonical type + lhptee = lhptee.getCanonicalType(); + rhptee = rhptee.getCanonicalType(); + + AssignConvertType ConvTy = Compatible; + + // C99 6.5.16.1p1: This following citation is common to constraints + // 3 & 4 (below). ...and the type *pointed to* by the left has all the + // qualifiers of the type *pointed to* by the right; + // FIXME: Handle ASQualType + if ((lhptee.getCVRQualifiers() & rhptee.getCVRQualifiers()) != + rhptee.getCVRQualifiers()) + ConvTy = CompatiblePointerDiscardsQualifiers; + + // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or + // incomplete type and the other is a pointer to a qualified or unqualified + // version of void... + if (lhptee->isVoidType()) { + if (rhptee->isObjectType() || rhptee->isIncompleteType()) + return ConvTy; + + // As an extension, we allow cast to/from void* to function pointer. + if (rhptee->isFunctionType()) + return FunctionVoidPointer; + } + + if (rhptee->isVoidType()) { + if (lhptee->isObjectType() || lhptee->isIncompleteType()) + return ConvTy; + + // As an extension, we allow cast to/from void* to function pointer. + if (lhptee->isFunctionType()) + return FunctionVoidPointer; + } + + // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or + // unqualified versions of compatible types, ... + if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(), + rhptee.getUnqualifiedType())) + return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers + return ConvTy; +} + +/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently +/// has code to accommodate several GCC extensions when type checking +/// pointers. Here are some objectionable examples that GCC considers warnings: +/// +/// int a, *pint; +/// short *pshort; +/// struct foo *pfoo; +/// +/// pint = pshort; // warning: assignment from incompatible pointer type +/// a = pint; // warning: assignment makes integer from pointer without a cast +/// pint = a; // warning: assignment makes pointer from integer without a cast +/// pint = pfoo; // warning: assignment from incompatible pointer type +/// +/// As a result, the code for dealing with pointers is more complex than the +/// C99 spec dictates. +/// Note: the warning above turn into errors when -pedantic-errors is enabled. +/// +Sema::AssignConvertType +Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) { + // Get canonical types. We're not formatting these types, just comparing + // them. + lhsType = lhsType.getCanonicalType(); + rhsType = rhsType.getCanonicalType(); + + if (lhsType.getUnqualifiedType() == rhsType.getUnqualifiedType()) + return Compatible; // Common case: fast path an exact match. + + if (lhsType->isReferenceType() || rhsType->isReferenceType()) { + if (Context.referenceTypesAreCompatible(lhsType, rhsType)) + return Compatible; + return Incompatible; + } + + if (lhsType->isObjCQualifiedIdType() + || rhsType->isObjCQualifiedIdType()) { + if (Context.ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType)) + return Compatible; + return Incompatible; + } + + if (lhsType->isVectorType() || rhsType->isVectorType()) { + // For OCUVector, allow vector splats; float -> <n x float> + if (const OCUVectorType *LV = lhsType->getAsOCUVectorType()) { + if (LV->getElementType().getTypePtr() == rhsType.getTypePtr()) + return Compatible; + } + + // If LHS and RHS are both vectors of integer or both vectors of floating + // point types, and the total vector length is the same, allow the + // conversion. This is a bitcast; no bits are changed but the result type + // is different. + if (getLangOptions().LaxVectorConversions && + lhsType->isVectorType() && rhsType->isVectorType()) { + if ((lhsType->isIntegerType() && rhsType->isIntegerType()) || + (lhsType->isRealFloatingType() && rhsType->isRealFloatingType())) { + if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType)) + return Compatible; + } + } + return Incompatible; + } + + if (lhsType->isArithmeticType() && rhsType->isArithmeticType()) + return Compatible; + + if (lhsType->isPointerType()) { + if (rhsType->isIntegerType()) + return IntToPointer; + + if (rhsType->isPointerType()) + return CheckPointerTypesForAssignment(lhsType, rhsType); + return Incompatible; + } + + if (rhsType->isPointerType()) { + // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer. + if ((lhsType->isIntegerType()) && (lhsType != Context.BoolTy)) + return PointerToInt; + + if (lhsType->isPointerType()) + return CheckPointerTypesForAssignment(lhsType, rhsType); + return Incompatible; + } + + if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) { + if (Context.tagTypesAreCompatible(lhsType, rhsType)) + return Compatible; + } + return Incompatible; +} + +Sema::AssignConvertType +Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) { + // C99 6.5.16.1p1: the left operand is a pointer and the right is + // a null pointer constant. + if ((lhsType->isPointerType() || lhsType->isObjCQualifiedIdType()) + && rExpr->isNullPointerConstant(Context)) { + ImpCastExprToType(rExpr, lhsType); + return Compatible; + } + // This check seems unnatural, however it is necessary to ensure the proper + // conversion of functions/arrays. If the conversion were done for all + // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary + // expressions that surpress this implicit conversion (&, sizeof). + // + // Suppress this for references: C99 8.5.3p5. FIXME: revisit when references + // are better understood. + if (!lhsType->isReferenceType()) + DefaultFunctionArrayConversion(rExpr); + + Sema::AssignConvertType result = + CheckAssignmentConstraints(lhsType, rExpr->getType()); + + // C99 6.5.16.1p2: The value of the right operand is converted to the + // type of the assignment expression. + if (rExpr->getType() != lhsType) + ImpCastExprToType(rExpr, lhsType); + return result; +} + +Sema::AssignConvertType +Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) { + return CheckAssignmentConstraints(lhsType, rhsType); +} + +QualType Sema::InvalidOperands(SourceLocation loc, Expr *&lex, Expr *&rex) { + Diag(loc, diag::err_typecheck_invalid_operands, + lex->getType().getAsString(), rex->getType().getAsString(), + lex->getSourceRange(), rex->getSourceRange()); + return QualType(); +} + +inline QualType Sema::CheckVectorOperands(SourceLocation loc, Expr *&lex, + Expr *&rex) { + QualType lhsType = lex->getType(), rhsType = rex->getType(); + + // make sure the vector types are identical. + if (lhsType == rhsType) + return lhsType; + + // if the lhs is an ocu vector and the rhs is a scalar of the same type, + // promote the rhs to the vector type. + if (const OCUVectorType *V = lhsType->getAsOCUVectorType()) { + if (V->getElementType().getCanonicalType().getTypePtr() + == rhsType.getCanonicalType().getTypePtr()) { + ImpCastExprToType(rex, lhsType); + return lhsType; + } + } + + // if the rhs is an ocu vector and the lhs is a scalar of the same type, + // promote the lhs to the vector type. + if (const OCUVectorType *V = rhsType->getAsOCUVectorType()) { + if (V->getElementType().getCanonicalType().getTypePtr() + == lhsType.getCanonicalType().getTypePtr()) { + ImpCastExprToType(lex, rhsType); + return rhsType; + } + } + + // You cannot convert between vector values of different size. + Diag(loc, diag::err_typecheck_vector_not_convertable, + lex->getType().getAsString(), rex->getType().getAsString(), + lex->getSourceRange(), rex->getSourceRange()); + return QualType(); +} + +inline QualType Sema::CheckMultiplyDivideOperands( + Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign) +{ + QualType lhsType = lex->getType(), rhsType = rex->getType(); + + if (lhsType->isVectorType() || rhsType->isVectorType()) + return CheckVectorOperands(loc, lex, rex); + + QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); + + if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType()) + return compType; + return InvalidOperands(loc, lex, rex); +} + +inline QualType Sema::CheckRemainderOperands( + Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign) +{ + QualType lhsType = lex->getType(), rhsType = rex->getType(); + + QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); + + if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType()) + return compType; + return InvalidOperands(loc, lex, rex); +} + +inline QualType Sema::CheckAdditionOperands( // C99 6.5.6 + Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign) +{ + if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) + return CheckVectorOperands(loc, lex, rex); + + QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); + + // handle the common case first (both operands are arithmetic). + if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType()) + return compType; + + if (lex->getType()->isPointerType() && rex->getType()->isIntegerType()) + return lex->getType(); + if (lex->getType()->isIntegerType() && rex->getType()->isPointerType()) + return rex->getType(); + return InvalidOperands(loc, lex, rex); +} + +inline QualType Sema::CheckSubtractionOperands( // C99 6.5.6 + Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign) +{ + if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) + return CheckVectorOperands(loc, lex, rex); + + QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); + + // Enforce type constraints: C99 6.5.6p3. + + // Handle the common case first (both operands are arithmetic). + if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType()) + return compType; + + // Either ptr - int or ptr - ptr. + if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) { + QualType lpointee = LHSPTy->getPointeeType(); + + // The LHS must be an object type, not incomplete, function, etc. + if (!lpointee->isObjectType()) { + // Handle the GNU void* extension. + if (lpointee->isVoidType()) { + Diag(loc, diag::ext_gnu_void_ptr, + lex->getSourceRange(), rex->getSourceRange()); + } else { + Diag(loc, diag::err_typecheck_sub_ptr_object, + lex->getType().getAsString(), lex->getSourceRange()); + return QualType(); + } + } + + // The result type of a pointer-int computation is the pointer type. + if (rex->getType()->isIntegerType()) + return lex->getType(); + + // Handle pointer-pointer subtractions. + if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) { + QualType rpointee = RHSPTy->getPointeeType(); + + // RHS must be an object type, unless void (GNU). + if (!rpointee->isObjectType()) { + // Handle the GNU void* extension. + if (rpointee->isVoidType()) { + if (!lpointee->isVoidType()) + Diag(loc, diag::ext_gnu_void_ptr, + lex->getSourceRange(), rex->getSourceRange()); + } else { + Diag(loc, diag::err_typecheck_sub_ptr_object, + rex->getType().getAsString(), rex->getSourceRange()); + return QualType(); + } + } + + // Pointee types must be compatible. + if (!Context.typesAreCompatible(lpointee.getUnqualifiedType(), + rpointee.getUnqualifiedType())) { + Diag(loc, diag::err_typecheck_sub_ptr_compatible, + lex->getType().getAsString(), rex->getType().getAsString(), + lex->getSourceRange(), rex->getSourceRange()); + return QualType(); + } + + return Context.getPointerDiffType(); + } + } + + return InvalidOperands(loc, lex, rex); +} + +inline QualType Sema::CheckShiftOperands( // C99 6.5.7 + Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign) { + // C99 6.5.7p2: Each of the operands shall have integer type. + if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType()) + return InvalidOperands(loc, lex, rex); + + // Shifts don't perform usual arithmetic conversions, they just do integer + // promotions on each operand. C99 6.5.7p3 + if (!isCompAssign) + UsualUnaryConversions(lex); + UsualUnaryConversions(rex); + + // "The type of the result is that of the promoted left operand." + return lex->getType(); +} + +inline QualType Sema::CheckCompareOperands( // C99 6.5.8 + Expr *&lex, Expr *&rex, SourceLocation loc, bool isRelational) +{ + // C99 6.5.8p3 / C99 6.5.9p4 + if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType()) + UsualArithmeticConversions(lex, rex); + else { + UsualUnaryConversions(lex); + UsualUnaryConversions(rex); + } + QualType lType = lex->getType(); + QualType rType = rex->getType(); + + // For non-floating point types, check for self-comparisons of the form + // x == x, x != x, x < x, etc. These always evaluate to a constant, and + // often indicate logic errors in the program. + if (!lType->isFloatingType()) { + if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens())) + if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens())) + if (DRL->getDecl() == DRR->getDecl()) + Diag(loc, diag::warn_selfcomparison); + } + + if (isRelational) { + if (lType->isRealType() && rType->isRealType()) + return Context.IntTy; + } else { + // Check for comparisons of floating point operands using != and ==. + if (lType->isFloatingType()) { + assert (rType->isFloatingType()); + CheckFloatComparison(loc,lex,rex); + } + + if (lType->isArithmeticType() && rType->isArithmeticType()) + return Context.IntTy; + } + + bool LHSIsNull = lex->isNullPointerConstant(Context); + bool RHSIsNull = rex->isNullPointerConstant(Context); + + // All of the following pointer related warnings are GCC extensions, except + // when handling null pointer constants. One day, we can consider making them + // errors (when -pedantic-errors is enabled). + if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2 + QualType lpointee = lType->getAsPointerType()->getPointeeType(); + QualType rpointee = rType->getAsPointerType()->getPointeeType(); + + if (!LHSIsNull && !RHSIsNull && // C99 6.5.9p2 + !lpointee->isVoidType() && !lpointee->isVoidType() && + !Context.typesAreCompatible(lpointee.getUnqualifiedType(), + rpointee.getUnqualifiedType())) { + Diag(loc, diag::ext_typecheck_comparison_of_distinct_pointers, + lType.getAsString(), rType.getAsString(), + lex->getSourceRange(), rex->getSourceRange()); + } + ImpCastExprToType(rex, lType); // promote the pointer to pointer + return Context.IntTy; + } + if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType()) + && Context.ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) { + ImpCastExprToType(rex, lType); + return Context.IntTy; + } + if (lType->isPointerType() && rType->isIntegerType()) { + if (!RHSIsNull) + Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer, + lType.getAsString(), rType.getAsString(), + lex->getSourceRange(), rex->getSourceRange()); + ImpCastExprToType(rex, lType); // promote the integer to pointer + return Context.IntTy; + } + if (lType->isIntegerType() && rType->isPointerType()) { + if (!LHSIsNull) + Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer, + lType.getAsString(), rType.getAsString(), + lex->getSourceRange(), rex->getSourceRange()); + ImpCastExprToType(lex, rType); // promote the integer to pointer + return Context.IntTy; + } + return InvalidOperands(loc, lex, rex); +} + +inline QualType Sema::CheckBitwiseOperands( + Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign) +{ + if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) + return CheckVectorOperands(loc, lex, rex); + + QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); + + if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType()) + return compType; + return InvalidOperands(loc, lex, rex); +} + +inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14] + Expr *&lex, Expr *&rex, SourceLocation loc) +{ + UsualUnaryConversions(lex); + UsualUnaryConversions(rex); + + if (lex->getType()->isScalarType() || rex->getType()->isScalarType()) + return Context.IntTy; + return InvalidOperands(loc, lex, rex); +} + +inline QualType Sema::CheckAssignmentOperands( // C99 6.5.16.1 + Expr *lex, Expr *&rex, SourceLocation loc, QualType compoundType) +{ + QualType lhsType = lex->getType(); + QualType rhsType = compoundType.isNull() ? rex->getType() : compoundType; + Expr::isModifiableLvalueResult mlval = lex->isModifiableLvalue(); + + switch (mlval) { // C99 6.5.16p2 + case Expr::MLV_Valid: + break; + case Expr::MLV_ConstQualified: + Diag(loc, diag::err_typecheck_assign_const, lex->getSourceRange()); + return QualType(); + case Expr::MLV_ArrayType: + Diag(loc, diag::err_typecheck_array_not_modifiable_lvalue, + lhsType.getAsString(), lex->getSourceRange()); + return QualType(); + case Expr::MLV_NotObjectType: + Diag(loc, diag::err_typecheck_non_object_not_modifiable_lvalue, + lhsType.getAsString(), lex->getSourceRange()); + return QualType(); + case Expr::MLV_InvalidExpression: + Diag(loc, diag::err_typecheck_expression_not_modifiable_lvalue, + lex->getSourceRange()); + return QualType(); + case Expr::MLV_IncompleteType: + case Expr::MLV_IncompleteVoidType: + Diag(loc, diag::err_typecheck_incomplete_type_not_modifiable_lvalue, + lhsType.getAsString(), lex->getSourceRange()); + return QualType(); + case Expr::MLV_DuplicateVectorComponents: + Diag(loc, diag::err_typecheck_duplicate_vector_components_not_mlvalue, + lex->getSourceRange()); + return QualType(); + } + + AssignConvertType ConvTy; + if (compoundType.isNull()) + ConvTy = CheckSingleAssignmentConstraints(lhsType, rex); + else + ConvTy = CheckCompoundAssignmentConstraints(lhsType, rhsType); + + if (DiagnoseAssignmentResult(ConvTy, loc, lhsType, rhsType, + rex, "assigning")) + return QualType(); + + // C99 6.5.16p3: The type of an assignment expression is the type of the + // left operand unless the left operand has qualified type, in which case + // it is the unqualified version of the type of the left operand. + // C99 6.5.16.1p2: In simple assignment, the value of the right operand + // is converted to the type of the assignment expression (above). + // C++ 5.17p1: the type of the assignment expression is that of its left + // oprdu. + return lhsType.getUnqualifiedType(); +} + +inline QualType Sema::CheckCommaOperands( // C99 6.5.17 + Expr *&lex, Expr *&rex, SourceLocation loc) { + UsualUnaryConversions(rex); + return rex->getType(); +} + +/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine +/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions. +QualType Sema::CheckIncrementDecrementOperand(Expr *op, SourceLocation OpLoc) { + QualType resType = op->getType(); + assert(!resType.isNull() && "no type for increment/decrement expression"); + + // C99 6.5.2.4p1: We allow complex as a GCC extension. + if (const PointerType *pt = resType->getAsPointerType()) { + if (!pt->getPointeeType()->isObjectType()) { // C99 6.5.2.4p2, 6.5.6p2 + Diag(OpLoc, diag::err_typecheck_arithmetic_incomplete_type, + resType.getAsString(), op->getSourceRange()); + return QualType(); + } + } else if (!resType->isRealType()) { + if (resType->isComplexType()) + // C99 does not support ++/-- on complex types. + Diag(OpLoc, diag::ext_integer_increment_complex, + resType.getAsString(), op->getSourceRange()); + else { + Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement, + resType.getAsString(), op->getSourceRange()); + return QualType(); + } + } + // At this point, we know we have a real, complex or pointer type. + // Now make sure the operand is a modifiable lvalue. + Expr::isModifiableLvalueResult mlval = op->isModifiableLvalue(); + if (mlval != Expr::MLV_Valid) { + // FIXME: emit a more precise diagnostic... + Diag(OpLoc, diag::err_typecheck_invalid_lvalue_incr_decr, + op->getSourceRange()); + return QualType(); + } + return resType; +} + +/// getPrimaryDecl - Helper function for CheckAddressOfOperand(). +/// This routine allows us to typecheck complex/recursive expressions +/// where the declaration is needed for type checking. Here are some +/// examples: &s.xx, &s.zz[1].yy, &(1+2), &(XX), &"123"[2]. +static ValueDecl *getPrimaryDecl(Expr *e) { + switch (e->getStmtClass()) { + case Stmt::DeclRefExprClass: + return cast<DeclRefExpr>(e)->getDecl(); + case Stmt::MemberExprClass: + // Fields cannot be declared with a 'register' storage class. + // &X->f is always ok, even if X is declared register. + if (cast<MemberExpr>(e)->isArrow()) + return 0; + return getPrimaryDecl(cast<MemberExpr>(e)->getBase()); + case Stmt::ArraySubscriptExprClass: { + // &X[4] and &4[X] is invalid if X is invalid and X is not a pointer. + + ValueDecl *VD = getPrimaryDecl(cast<ArraySubscriptExpr>(e)->getBase()); + if (!VD || VD->getType()->isPointerType()) + return 0; + else + return VD; + } + case Stmt::UnaryOperatorClass: + return getPrimaryDecl(cast<UnaryOperator>(e)->getSubExpr()); + case Stmt::ParenExprClass: + return getPrimaryDecl(cast<ParenExpr>(e)->getSubExpr()); + case Stmt::ImplicitCastExprClass: + // &X[4] when X is an array, has an implicit cast from array to pointer. + return getPrimaryDecl(cast<ImplicitCastExpr>(e)->getSubExpr()); + default: + return 0; + } +} + +/// CheckAddressOfOperand - The operand of & must be either a function +/// designator or an lvalue designating an object. If it is an lvalue, the +/// object cannot be declared with storage class register or be a bit field. +/// Note: The usual conversions are *not* applied to the operand of the & +/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue. +QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) { + if (getLangOptions().C99) { + // Implement C99-only parts of addressof rules. + if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) { + if (uOp->getOpcode() == UnaryOperator::Deref) + // Per C99 6.5.3.2, the address of a deref always returns a valid result + // (assuming the deref expression is valid). + return uOp->getSubExpr()->getType(); + } + // Technically, there should be a check for array subscript + // expressions here, but the result of one is always an lvalue anyway. + } + ValueDecl *dcl = getPrimaryDecl(op); + Expr::isLvalueResult lval = op->isLvalue(); + + if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1 + if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators + // FIXME: emit more specific diag... + Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof, + op->getSourceRange()); + return QualType(); + } + } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(op)) { // C99 6.5.3.2p1 + if (MemExpr->getMemberDecl()->isBitField()) { + Diag(OpLoc, diag::err_typecheck_address_of, + std::string("bit-field"), op->getSourceRange()); + return QualType(); + } + // Check for Apple extension for accessing vector components. + } else if (isa<ArraySubscriptExpr>(op) && + cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType()) { + Diag(OpLoc, diag::err_typecheck_address_of, + std::string("vector"), op->getSourceRange()); + return QualType(); + } else if (dcl) { // C99 6.5.3.2p1 + // We have an lvalue with a decl. Make sure the decl is not declared + // with the register storage-class specifier. + if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) { + if (vd->getStorageClass() == VarDecl::Register) { + Diag(OpLoc, diag::err_typecheck_address_of, + std::string("register variable"), op->getSourceRange()); + return QualType(); + } + } else + assert(0 && "Unknown/unexpected decl type"); + } + // If the operand has type "type", the result has type "pointer to type". + return Context.getPointerType(op->getType()); +} + +QualType Sema::CheckIndirectionOperand(Expr *op, SourceLocation OpLoc) { + UsualUnaryConversions(op); + QualType qType = op->getType(); + + if (const PointerType *PT = qType->getAsPointerType()) { + // Note that per both C89 and C99, this is always legal, even + // if ptype is an incomplete type or void. + // It would be possible to warn about dereferencing a + // void pointer, but it's completely well-defined, + // and such a warning is unlikely to catch any mistakes. + return PT->getPointeeType(); + } + Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer, + qType.getAsString(), op->getSourceRange()); + return QualType(); +} + +static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode( + tok::TokenKind Kind) { + BinaryOperator::Opcode Opc; + switch (Kind) { + default: assert(0 && "Unknown binop!"); + case tok::star: Opc = BinaryOperator::Mul; break; + case tok::slash: Opc = BinaryOperator::Div; break; + case tok::percent: Opc = BinaryOperator::Rem; break; + case tok::plus: Opc = BinaryOperator::Add; break; + case tok::minus: Opc = BinaryOperator::Sub; break; + case tok::lessless: Opc = BinaryOperator::Shl; break; + case tok::greatergreater: Opc = BinaryOperator::Shr; break; + case tok::lessequal: Opc = BinaryOperator::LE; break; + case tok::less: Opc = BinaryOperator::LT; break; + case tok::greaterequal: Opc = BinaryOperator::GE; break; + case tok::greater: Opc = BinaryOperator::GT; break; + case tok::exclaimequal: Opc = BinaryOperator::NE; break; + case tok::equalequal: Opc = BinaryOperator::EQ; break; + case tok::amp: Opc = BinaryOperator::And; break; + case tok::caret: Opc = BinaryOperator::Xor; break; + case tok::pipe: Opc = BinaryOperator::Or; break; + case tok::ampamp: Opc = BinaryOperator::LAnd; break; + case tok::pipepipe: Opc = BinaryOperator::LOr; break; + case tok::equal: Opc = BinaryOperator::Assign; break; + case tok::starequal: Opc = BinaryOperator::MulAssign; break; + case tok::slashequal: Opc = BinaryOperator::DivAssign; break; + case tok::percentequal: Opc = BinaryOperator::RemAssign; break; + case tok::plusequal: Opc = BinaryOperator::AddAssign; break; + case tok::minusequal: Opc = BinaryOperator::SubAssign; break; + case tok::lesslessequal: Opc = BinaryOperator::ShlAssign; break; + case tok::greatergreaterequal: Opc = BinaryOperator::ShrAssign; break; + case tok::ampequal: Opc = BinaryOperator::AndAssign; break; + case tok::caretequal: Opc = BinaryOperator::XorAssign; break; + case tok::pipeequal: Opc = BinaryOperator::OrAssign; break; + case tok::comma: Opc = BinaryOperator::Comma; break; + } + return Opc; +} + +static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode( + tok::TokenKind Kind) { + UnaryOperator::Opcode Opc; + switch (Kind) { + default: assert(0 && "Unknown unary op!"); + case tok::plusplus: Opc = UnaryOperator::PreInc; break; + case tok::minusminus: Opc = UnaryOperator::PreDec; break; + case tok::amp: Opc = UnaryOperator::AddrOf; break; + case tok::star: Opc = UnaryOperator::Deref; break; + case tok::plus: Opc = UnaryOperator::Plus; break; + case tok::minus: Opc = UnaryOperator::Minus; break; + case tok::tilde: Opc = UnaryOperator::Not; break; + case tok::exclaim: Opc = UnaryOperator::LNot; break; + case tok::kw_sizeof: Opc = UnaryOperator::SizeOf; break; + case tok::kw___alignof: Opc = UnaryOperator::AlignOf; break; + case tok::kw___real: Opc = UnaryOperator::Real; break; + case tok::kw___imag: Opc = UnaryOperator::Imag; break; + case tok::kw___extension__: Opc = UnaryOperator::Extension; break; + } + return Opc; +} + +// Binary Operators. 'Tok' is the token for the operator. +Action::ExprResult Sema::ActOnBinOp(SourceLocation TokLoc, tok::TokenKind Kind, + ExprTy *LHS, ExprTy *RHS) { + BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind); + Expr *lhs = (Expr *)LHS, *rhs = (Expr*)RHS; + + assert((lhs != 0) && "ActOnBinOp(): missing left expression"); + assert((rhs != 0) && "ActOnBinOp(): missing right expression"); + + QualType ResultTy; // Result type of the binary operator. + QualType CompTy; // Computation type for compound assignments (e.g. '+=') + + switch (Opc) { + default: + assert(0 && "Unknown binary expr!"); + case BinaryOperator::Assign: + ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, QualType()); + break; + case BinaryOperator::Mul: + case BinaryOperator::Div: + ResultTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc); + break; + case BinaryOperator::Rem: + ResultTy = CheckRemainderOperands(lhs, rhs, TokLoc); + break; + case BinaryOperator::Add: + ResultTy = CheckAdditionOperands(lhs, rhs, TokLoc); + break; + case BinaryOperator::Sub: + ResultTy = CheckSubtractionOperands(lhs, rhs, TokLoc); + break; + case BinaryOperator::Shl: + case BinaryOperator::Shr: + ResultTy = CheckShiftOperands(lhs, rhs, TokLoc); + break; + case BinaryOperator::LE: + case BinaryOperator::LT: + case BinaryOperator::GE: + case BinaryOperator::GT: + ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, true); + break; + case BinaryOperator::EQ: + case BinaryOperator::NE: + ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, false); + break; + case BinaryOperator::And: + case BinaryOperator::Xor: + case BinaryOperator::Or: + ResultTy = CheckBitwiseOperands(lhs, rhs, TokLoc); + break; + case BinaryOperator::LAnd: + case BinaryOperator::LOr: + ResultTy = CheckLogicalOperands(lhs, rhs, TokLoc); + break; + case BinaryOperator::MulAssign: + case BinaryOperator::DivAssign: + CompTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc, true); + if (!CompTy.isNull()) + ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy); + break; + case BinaryOperator::RemAssign: + CompTy = CheckRemainderOperands(lhs, rhs, TokLoc, true); + if (!CompTy.isNull()) + ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy); + break; + case BinaryOperator::AddAssign: + CompTy = CheckAdditionOperands(lhs, rhs, TokLoc, true); + if (!CompTy.isNull()) + ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy); + break; + case BinaryOperator::SubAssign: + CompTy = CheckSubtractionOperands(lhs, rhs, TokLoc, true); + if (!CompTy.isNull()) + ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy); + break; + case BinaryOperator::ShlAssign: + case BinaryOperator::ShrAssign: + CompTy = CheckShiftOperands(lhs, rhs, TokLoc, true); + if (!CompTy.isNull()) + ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy); + break; + case BinaryOperator::AndAssign: + case BinaryOperator::XorAssign: + case BinaryOperator::OrAssign: + CompTy = CheckBitwiseOperands(lhs, rhs, TokLoc, true); + if (!CompTy.isNull()) + ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy); + break; + case BinaryOperator::Comma: + ResultTy = CheckCommaOperands(lhs, rhs, TokLoc); + break; + } + if (ResultTy.isNull()) + return true; + if (CompTy.isNull()) + return new BinaryOperator(lhs, rhs, Opc, ResultTy, TokLoc); + else + return new CompoundAssignOperator(lhs, rhs, Opc, ResultTy, CompTy, TokLoc); +} + +// Unary Operators. 'Tok' is the token for the operator. +Action::ExprResult Sema::ActOnUnaryOp(SourceLocation OpLoc, tok::TokenKind Op, + ExprTy *input) { + Expr *Input = (Expr*)input; + UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op); + QualType resultType; + switch (Opc) { + default: + assert(0 && "Unimplemented unary expr!"); + case UnaryOperator::PreInc: + case UnaryOperator::PreDec: + resultType = CheckIncrementDecrementOperand(Input, OpLoc); + break; + case UnaryOperator::AddrOf: + resultType = CheckAddressOfOperand(Input, OpLoc); + break; + case UnaryOperator::Deref: + DefaultFunctionArrayConversion(Input); + resultType = CheckIndirectionOperand(Input, OpLoc); + break; + case UnaryOperator::Plus: + case UnaryOperator::Minus: + UsualUnaryConversions(Input); + resultType = Input->getType(); + if (!resultType->isArithmeticType()) // C99 6.5.3.3p1 + return Diag(OpLoc, diag::err_typecheck_unary_expr, + resultType.getAsString()); + break; + case UnaryOperator::Not: // bitwise complement + UsualUnaryConversions(Input); + resultType = Input->getType(); + // C99 6.5.3.3p1. We allow complex as a GCC extension. + if (!resultType->isIntegerType()) { + if (resultType->isComplexType()) + // C99 does not support '~' for complex conjugation. + Diag(OpLoc, diag::ext_integer_complement_complex, + resultType.getAsString()); + else + return Diag(OpLoc, diag::err_typecheck_unary_expr, + resultType.getAsString()); + } + break; + case UnaryOperator::LNot: // logical negation + // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5). + DefaultFunctionArrayConversion(Input); + resultType = Input->getType(); + if (!resultType->isScalarType()) // C99 6.5.3.3p1 + return Diag(OpLoc, diag::err_typecheck_unary_expr, + resultType.getAsString()); + // LNot always has type int. C99 6.5.3.3p5. + resultType = Context.IntTy; + break; + case UnaryOperator::SizeOf: + resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc, true); + break; + case UnaryOperator::AlignOf: + resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc, false); + break; + case UnaryOperator::Real: + case UnaryOperator::Imag: + resultType = CheckRealImagOperand(Input, OpLoc); + break; + case UnaryOperator::Extension: + resultType = Input->getType(); + break; + } + if (resultType.isNull()) + return true; + return new UnaryOperator(Input, Opc, resultType, OpLoc); +} + +/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo". +Sema::ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, + SourceLocation LabLoc, + IdentifierInfo *LabelII) { + // Look up the record for this label identifier. + LabelStmt *&LabelDecl = LabelMap[LabelII]; + + // If we haven't seen this label yet, create a forward reference. + if (LabelDecl == 0) + LabelDecl = new LabelStmt(LabLoc, LabelII, 0); + + // Create the AST node. The address of a label always has type 'void*'. + return new AddrLabelExpr(OpLoc, LabLoc, LabelDecl, + Context.getPointerType(Context.VoidTy)); +} + +Sema::ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtTy *substmt, + SourceLocation RPLoc) { // "({..})" + Stmt *SubStmt = static_cast<Stmt*>(substmt); + assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!"); + CompoundStmt *Compound = cast<CompoundStmt>(SubStmt); + + // FIXME: there are a variety of strange constraints to enforce here, for + // example, it is not possible to goto into a stmt expression apparently. + // More semantic analysis is needed. + + // FIXME: the last statement in the compount stmt has its value used. We + // should not warn about it being unused. + + // If there are sub stmts in the compound stmt, take the type of the last one + // as the type of the stmtexpr. + QualType Ty = Context.VoidTy; + + if (!Compound->body_empty()) + if (Expr *LastExpr = dyn_cast<Expr>(Compound->body_back())) + Ty = LastExpr->getType(); + + return new StmtExpr(Compound, Ty, LPLoc, RPLoc); +} + +Sema::ExprResult Sema::ActOnBuiltinOffsetOf(SourceLocation BuiltinLoc, + SourceLocation TypeLoc, + TypeTy *argty, + OffsetOfComponent *CompPtr, + unsigned NumComponents, + SourceLocation RPLoc) { + QualType ArgTy = QualType::getFromOpaquePtr(argty); + assert(!ArgTy.isNull() && "Missing type argument!"); + + // We must have at least one component that refers to the type, and the first + // one is known to be a field designator. Verify that the ArgTy represents + // a struct/union/class. + if (!ArgTy->isRecordType()) + return Diag(TypeLoc, diag::err_offsetof_record_type,ArgTy.getAsString()); + + // Otherwise, create a compound literal expression as the base, and + // iteratively process the offsetof designators. + Expr *Res = new CompoundLiteralExpr(SourceLocation(), ArgTy, 0, false); + + // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a + // GCC extension, diagnose them. + if (NumComponents != 1) + Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator, + SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd)); + + for (unsigned i = 0; i != NumComponents; ++i) { + const OffsetOfComponent &OC = CompPtr[i]; + if (OC.isBrackets) { + // Offset of an array sub-field. TODO: Should we allow vector elements? + const ArrayType *AT = Res->getType()->getAsArrayType(); + if (!AT) { + delete Res; + return Diag(OC.LocEnd, diag::err_offsetof_array_type, + Res->getType().getAsString()); + } + + // FIXME: C++: Verify that operator[] isn't overloaded. + + // C99 6.5.2.1p1 + Expr *Idx = static_cast<Expr*>(OC.U.E); + if (!Idx->getType()->isIntegerType()) + return Diag(Idx->getLocStart(), diag::err_typecheck_subscript, + Idx->getSourceRange()); + + Res = new ArraySubscriptExpr(Res, Idx, AT->getElementType(), OC.LocEnd); + continue; + } + + const RecordType *RC = Res->getType()->getAsRecordType(); + if (!RC) { + delete Res; + return Diag(OC.LocEnd, diag::err_offsetof_record_type, + Res->getType().getAsString()); + } + + // Get the decl corresponding to this. + RecordDecl *RD = RC->getDecl(); + FieldDecl *MemberDecl = RD->getMember(OC.U.IdentInfo); + if (!MemberDecl) + return Diag(BuiltinLoc, diag::err_typecheck_no_member, + OC.U.IdentInfo->getName(), + SourceRange(OC.LocStart, OC.LocEnd)); + + // FIXME: C++: Verify that MemberDecl isn't a static field. + // FIXME: Verify that MemberDecl isn't a bitfield. + // MemberDecl->getType() doesn't get the right qualifiers, but it doesn't + // matter here. + Res = new MemberExpr(Res, false, MemberDecl, OC.LocEnd, MemberDecl->getType()); + } + + return new UnaryOperator(Res, UnaryOperator::OffsetOf, Context.getSizeType(), + BuiltinLoc); +} + + +Sema::ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc, + TypeTy *arg1, TypeTy *arg2, + SourceLocation RPLoc) { + QualType argT1 = QualType::getFromOpaquePtr(arg1); + QualType argT2 = QualType::getFromOpaquePtr(arg2); + + assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)"); + + return new TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1, argT2,RPLoc); +} + +Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond, + ExprTy *expr1, ExprTy *expr2, + SourceLocation RPLoc) { + Expr *CondExpr = static_cast<Expr*>(cond); + Expr *LHSExpr = static_cast<Expr*>(expr1); + Expr *RHSExpr = static_cast<Expr*>(expr2); + + assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)"); + + // The conditional expression is required to be a constant expression. + llvm::APSInt condEval(32); + SourceLocation ExpLoc; + if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc)) + return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant, + CondExpr->getSourceRange()); + + // If the condition is > zero, then the AST type is the same as the LSHExpr. + QualType resType = condEval.getZExtValue() ? LHSExpr->getType() : + RHSExpr->getType(); + return new ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, RPLoc); +} + +/// ExprsMatchFnType - return true if the Exprs in array Args have +/// QualTypes that match the QualTypes of the arguments of the FnType. +/// The number of arguments has already been validated to match the number of +/// arguments in FnType. +static bool ExprsMatchFnType(Expr **Args, const FunctionTypeProto *FnType) { + unsigned NumParams = FnType->getNumArgs(); + for (unsigned i = 0; i != NumParams; ++i) + if (Args[i]->getType().getCanonicalType() != + FnType->getArgType(i).getCanonicalType()) + return false; + return true; +} + +Sema::ExprResult Sema::ActOnOverloadExpr(ExprTy **args, unsigned NumArgs, + SourceLocation *CommaLocs, + SourceLocation BuiltinLoc, + SourceLocation RParenLoc) { + // __builtin_overload requires at least 2 arguments + if (NumArgs < 2) + return Diag(RParenLoc, diag::err_typecheck_call_too_few_args, + SourceRange(BuiltinLoc, RParenLoc)); + + // The first argument is required to be a constant expression. It tells us + // the number of arguments to pass to each of the functions to be overloaded. + Expr **Args = reinterpret_cast<Expr**>(args); + Expr *NParamsExpr = Args[0]; + llvm::APSInt constEval(32); + SourceLocation ExpLoc; + if (!NParamsExpr->isIntegerConstantExpr(constEval, Context, &ExpLoc)) + return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant, + NParamsExpr->getSourceRange()); + + // Verify that the number of parameters is > 0 + unsigned NumParams = constEval.getZExtValue(); + if (NumParams == 0) + return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant, + NParamsExpr->getSourceRange()); + // Verify that we have at least 1 + NumParams arguments to the builtin. + if ((NumParams + 1) > NumArgs) + return Diag(RParenLoc, diag::err_typecheck_call_too_few_args, + SourceRange(BuiltinLoc, RParenLoc)); + + // Figure out the return type, by matching the args to one of the functions + // listed after the parameters. + OverloadExpr *OE = 0; + for (unsigned i = NumParams + 1; i < NumArgs; ++i) { + // UsualUnaryConversions will convert the function DeclRefExpr into a + // pointer to function. + Expr *Fn = UsualUnaryConversions(Args[i]); + FunctionTypeProto *FnType = 0; + if (const PointerType *PT = Fn->getType()->getAsPointerType()) { + QualType PointeeType = PT->getPointeeType().getCanonicalType(); + FnType = dyn_cast<FunctionTypeProto>(PointeeType); + } + + // The Expr type must be FunctionTypeProto, since FunctionTypeProto has no + // parameters, and the number of parameters must match the value passed to + // the builtin. + if (!FnType || (FnType->getNumArgs() != NumParams)) + return Diag(Fn->getExprLoc(), diag::err_overload_incorrect_fntype, + Fn->getSourceRange()); + + // Scan the parameter list for the FunctionType, checking the QualType of + // each parameter against the QualTypes of the arguments to the builtin. + // If they match, return a new OverloadExpr. + if (ExprsMatchFnType(Args+1, FnType)) { + if (OE) + return Diag(Fn->getExprLoc(), diag::err_overload_multiple_match, + OE->getFn()->getSourceRange()); + // Remember our match, and continue processing the remaining arguments + // to catch any errors. + OE = new OverloadExpr(Args, NumArgs, i, FnType->getResultType(), + BuiltinLoc, RParenLoc); + } + } + // Return the newly created OverloadExpr node, if we succeded in matching + // exactly one of the candidate functions. + if (OE) + return OE; + + // If we didn't find a matching function Expr in the __builtin_overload list + // the return an error. + std::string typeNames; + for (unsigned i = 0; i != NumParams; ++i) { + if (i != 0) typeNames += ", "; + typeNames += Args[i+1]->getType().getAsString(); + } + + return Diag(BuiltinLoc, diag::err_overload_no_match, typeNames, + SourceRange(BuiltinLoc, RParenLoc)); +} + +Sema::ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, + ExprTy *expr, TypeTy *type, + SourceLocation RPLoc) { + Expr *E = static_cast<Expr*>(expr); + QualType T = QualType::getFromOpaquePtr(type); + + InitBuiltinVaListType(); + + if (CheckAssignmentConstraints(Context.getBuiltinVaListType(), E->getType()) + != Compatible) + return Diag(E->getLocStart(), + diag::err_first_argument_to_va_arg_not_of_type_va_list, + E->getType().getAsString(), + E->getSourceRange()); + + // FIXME: Warn if a non-POD type is passed in. + + return new VAArgExpr(BuiltinLoc, E, T, RPLoc); +} + +bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy, + SourceLocation Loc, + QualType DstType, QualType SrcType, + Expr *SrcExpr, const char *Flavor) { + // Decode the result (notice that AST's are still created for extensions). + bool isInvalid = false; + unsigned DiagKind; + switch (ConvTy) { + default: assert(0 && "Unknown conversion type"); + case Compatible: return false; + case PointerToInt: + DiagKind = diag::ext_typecheck_convert_pointer_int; + break; + case IntToPointer: + DiagKind = diag::ext_typecheck_convert_int_pointer; + break; + case IncompatiblePointer: + DiagKind = diag::ext_typecheck_convert_incompatible_pointer; + break; + case FunctionVoidPointer: + DiagKind = diag::ext_typecheck_convert_pointer_void_func; + break; + case CompatiblePointerDiscardsQualifiers: + DiagKind = diag::ext_typecheck_convert_discards_qualifiers; + break; + case Incompatible: + DiagKind = diag::err_typecheck_convert_incompatible; + isInvalid = true; + break; + } + + Diag(Loc, DiagKind, DstType.getAsString(), SrcType.getAsString(), Flavor, + SrcExpr->getSourceRange()); + return isInvalid; +} + |