summaryrefslogtreecommitdiffstats
path: root/clang/lib/Sema/SemaExpr.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'clang/lib/Sema/SemaExpr.cpp')
-rw-r--r--clang/lib/Sema/SemaExpr.cpp2286
1 files changed, 2286 insertions, 0 deletions
diff --git a/clang/lib/Sema/SemaExpr.cpp b/clang/lib/Sema/SemaExpr.cpp
new file mode 100644
index 00000000000..d756345c1a8
--- /dev/null
+++ b/clang/lib/Sema/SemaExpr.cpp
@@ -0,0 +1,2286 @@
+//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for expressions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Sema.h"
+#include "SemaUtil.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Expr.h"
+#include "clang/Parse/DeclSpec.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Lex/LiteralSupport.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/ADT/OwningPtr.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringExtras.h"
+using namespace clang;
+
+/// ActOnStringLiteral - The specified tokens were lexed as pasted string
+/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
+/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
+/// multiple tokens. However, the common case is that StringToks points to one
+/// string.
+///
+Action::ExprResult
+Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
+ assert(NumStringToks && "Must have at least one string!");
+
+ StringLiteralParser Literal(StringToks, NumStringToks, PP, Context.Target);
+ if (Literal.hadError)
+ return ExprResult(true);
+
+ llvm::SmallVector<SourceLocation, 4> StringTokLocs;
+ for (unsigned i = 0; i != NumStringToks; ++i)
+ StringTokLocs.push_back(StringToks[i].getLocation());
+
+ // Verify that pascal strings aren't too large.
+ if (Literal.Pascal && Literal.GetStringLength() > 256)
+ return Diag(StringToks[0].getLocation(), diag::err_pascal_string_too_long,
+ SourceRange(StringToks[0].getLocation(),
+ StringToks[NumStringToks-1].getLocation()));
+
+ QualType StrTy = Context.CharTy;
+ // FIXME: handle wchar_t
+ if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
+
+ // Get an array type for the string, according to C99 6.4.5. This includes
+ // the nul terminator character as well as the string length for pascal
+ // strings.
+ StrTy = Context.getConstantArrayType(StrTy,
+ llvm::APInt(32, Literal.GetStringLength()+1),
+ ArrayType::Normal, 0);
+
+ // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
+ return new StringLiteral(Literal.GetString(), Literal.GetStringLength(),
+ Literal.AnyWide, StrTy,
+ StringToks[0].getLocation(),
+ StringToks[NumStringToks-1].getLocation());
+}
+
+
+/// ActOnIdentifierExpr - The parser read an identifier in expression context,
+/// validate it per-C99 6.5.1. HasTrailingLParen indicates whether this
+/// identifier is used in an function call context.
+Sema::ExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
+ IdentifierInfo &II,
+ bool HasTrailingLParen) {
+ // Could be enum-constant or decl.
+ ScopedDecl *D = LookupScopedDecl(&II, Decl::IDNS_Ordinary, Loc, S);
+ if (D == 0) {
+ // Otherwise, this could be an implicitly declared function reference (legal
+ // in C90, extension in C99).
+ if (HasTrailingLParen &&
+ // Not in C++.
+ !getLangOptions().CPlusPlus)
+ D = ImplicitlyDefineFunction(Loc, II, S);
+ else {
+ if (CurMethodDecl) {
+ ObjCInterfaceDecl *IFace = CurMethodDecl->getClassInterface();
+ ObjCInterfaceDecl *clsDeclared;
+ if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(&II, clsDeclared)) {
+ IdentifierInfo &II = Context.Idents.get("self");
+ ExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
+ return new ObjCIvarRefExpr(IV, IV->getType(), Loc,
+ static_cast<Expr*>(SelfExpr.Val), true, true);
+ }
+ }
+ // If this name wasn't predeclared and if this is not a function call,
+ // diagnose the problem.
+ return Diag(Loc, diag::err_undeclared_var_use, II.getName());
+ }
+ }
+ if (ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
+ // check if referencing an identifier with __attribute__((deprecated)).
+ if (VD->getAttr<DeprecatedAttr>())
+ Diag(Loc, diag::warn_deprecated, VD->getName());
+
+ // Only create DeclRefExpr's for valid Decl's.
+ if (VD->isInvalidDecl())
+ return true;
+ return new DeclRefExpr(VD, VD->getType(), Loc);
+ }
+ if (isa<TypedefDecl>(D))
+ return Diag(Loc, diag::err_unexpected_typedef, II.getName());
+ if (isa<ObjCInterfaceDecl>(D))
+ return Diag(Loc, diag::err_unexpected_interface, II.getName());
+
+ assert(0 && "Invalid decl");
+ abort();
+}
+
+Sema::ExprResult Sema::ActOnPreDefinedExpr(SourceLocation Loc,
+ tok::TokenKind Kind) {
+ PreDefinedExpr::IdentType IT;
+
+ switch (Kind) {
+ default: assert(0 && "Unknown simple primary expr!");
+ case tok::kw___func__: IT = PreDefinedExpr::Func; break; // [C99 6.4.2.2]
+ case tok::kw___FUNCTION__: IT = PreDefinedExpr::Function; break;
+ case tok::kw___PRETTY_FUNCTION__: IT = PreDefinedExpr::PrettyFunction; break;
+ }
+
+ // Verify that this is in a function context.
+ if (CurFunctionDecl == 0 && CurMethodDecl == 0)
+ return Diag(Loc, diag::err_predef_outside_function);
+
+ // Pre-defined identifiers are of type char[x], where x is the length of the
+ // string.
+ unsigned Length;
+ if (CurFunctionDecl)
+ Length = CurFunctionDecl->getIdentifier()->getLength();
+ else
+ Length = CurMethodDecl->getSynthesizedMethodSize();
+
+ llvm::APInt LengthI(32, Length + 1);
+ QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
+ ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
+ return new PreDefinedExpr(Loc, ResTy, IT);
+}
+
+Sema::ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
+ llvm::SmallString<16> CharBuffer;
+ CharBuffer.resize(Tok.getLength());
+ const char *ThisTokBegin = &CharBuffer[0];
+ unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
+
+ CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
+ Tok.getLocation(), PP);
+ if (Literal.hadError())
+ return ExprResult(true);
+
+ QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
+
+ return new CharacterLiteral(Literal.getValue(), type, Tok.getLocation());
+}
+
+Action::ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
+ // fast path for a single digit (which is quite common). A single digit
+ // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
+ if (Tok.getLength() == 1) {
+ const char *t = PP.getSourceManager().getCharacterData(Tok.getLocation());
+
+ unsigned IntSize =static_cast<unsigned>(Context.getTypeSize(Context.IntTy));
+ return ExprResult(new IntegerLiteral(llvm::APInt(IntSize, *t-'0'),
+ Context.IntTy,
+ Tok.getLocation()));
+ }
+ llvm::SmallString<512> IntegerBuffer;
+ IntegerBuffer.resize(Tok.getLength());
+ const char *ThisTokBegin = &IntegerBuffer[0];
+
+ // Get the spelling of the token, which eliminates trigraphs, etc.
+ unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
+ NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
+ Tok.getLocation(), PP);
+ if (Literal.hadError)
+ return ExprResult(true);
+
+ Expr *Res;
+
+ if (Literal.isFloatingLiteral()) {
+ QualType Ty;
+ const llvm::fltSemantics *Format;
+
+ if (Literal.isFloat) {
+ Ty = Context.FloatTy;
+ Format = Context.Target.getFloatFormat();
+ } else if (!Literal.isLong) {
+ Ty = Context.DoubleTy;
+ Format = Context.Target.getDoubleFormat();
+ } else {
+ Ty = Context.LongDoubleTy;
+ Format = Context.Target.getLongDoubleFormat();
+ }
+
+ // isExact will be set by GetFloatValue().
+ bool isExact = false;
+
+ Res = new FloatingLiteral(Literal.GetFloatValue(*Format,&isExact), &isExact,
+ Ty, Tok.getLocation());
+
+ } else if (!Literal.isIntegerLiteral()) {
+ return ExprResult(true);
+ } else {
+ QualType t;
+
+ // long long is a C99 feature.
+ if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
+ Literal.isLongLong)
+ Diag(Tok.getLocation(), diag::ext_longlong);
+
+ // Get the value in the widest-possible width.
+ llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
+
+ if (Literal.GetIntegerValue(ResultVal)) {
+ // If this value didn't fit into uintmax_t, warn and force to ull.
+ Diag(Tok.getLocation(), diag::warn_integer_too_large);
+ t = Context.UnsignedLongLongTy;
+ assert(Context.getTypeSize(t) == ResultVal.getBitWidth() &&
+ "long long is not intmax_t?");
+ } else {
+ // If this value fits into a ULL, try to figure out what else it fits into
+ // according to the rules of C99 6.4.4.1p5.
+
+ // Octal, Hexadecimal, and integers with a U suffix are allowed to
+ // be an unsigned int.
+ bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
+
+ // Check from smallest to largest, picking the smallest type we can.
+ if (!Literal.isLong && !Literal.isLongLong) {
+ // Are int/unsigned possibilities?
+ unsigned IntSize =
+ static_cast<unsigned>(Context.getTypeSize(Context.IntTy));
+ // Does it fit in a unsigned int?
+ if (ResultVal.isIntN(IntSize)) {
+ // Does it fit in a signed int?
+ if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
+ t = Context.IntTy;
+ else if (AllowUnsigned)
+ t = Context.UnsignedIntTy;
+ }
+
+ if (!t.isNull())
+ ResultVal.trunc(IntSize);
+ }
+
+ // Are long/unsigned long possibilities?
+ if (t.isNull() && !Literal.isLongLong) {
+ unsigned LongSize =
+ static_cast<unsigned>(Context.getTypeSize(Context.LongTy));
+
+ // Does it fit in a unsigned long?
+ if (ResultVal.isIntN(LongSize)) {
+ // Does it fit in a signed long?
+ if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
+ t = Context.LongTy;
+ else if (AllowUnsigned)
+ t = Context.UnsignedLongTy;
+ }
+ if (!t.isNull())
+ ResultVal.trunc(LongSize);
+ }
+
+ // Finally, check long long if needed.
+ if (t.isNull()) {
+ unsigned LongLongSize =
+ static_cast<unsigned>(Context.getTypeSize(Context.LongLongTy));
+
+ // Does it fit in a unsigned long long?
+ if (ResultVal.isIntN(LongLongSize)) {
+ // Does it fit in a signed long long?
+ if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
+ t = Context.LongLongTy;
+ else if (AllowUnsigned)
+ t = Context.UnsignedLongLongTy;
+ }
+ }
+
+ // If we still couldn't decide a type, we probably have something that
+ // does not fit in a signed long long, but has no U suffix.
+ if (t.isNull()) {
+ Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
+ t = Context.UnsignedLongLongTy;
+ }
+ }
+
+ Res = new IntegerLiteral(ResultVal, t, Tok.getLocation());
+ }
+
+ // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
+ if (Literal.isImaginary)
+ Res = new ImaginaryLiteral(Res, Context.getComplexType(Res->getType()));
+
+ return Res;
+}
+
+Action::ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R,
+ ExprTy *Val) {
+ Expr *e = (Expr *)Val;
+ assert((e != 0) && "ActOnParenExpr() missing expr");
+ return new ParenExpr(L, R, e);
+}
+
+/// The UsualUnaryConversions() function is *not* called by this routine.
+/// See C99 6.3.2.1p[2-4] for more details.
+QualType Sema::CheckSizeOfAlignOfOperand(QualType exprType,
+ SourceLocation OpLoc, bool isSizeof) {
+ // C99 6.5.3.4p1:
+ if (isa<FunctionType>(exprType) && isSizeof)
+ // alignof(function) is allowed.
+ Diag(OpLoc, diag::ext_sizeof_function_type);
+ else if (exprType->isVoidType())
+ Diag(OpLoc, diag::ext_sizeof_void_type, isSizeof ? "sizeof" : "__alignof");
+ else if (exprType->isIncompleteType()) {
+ Diag(OpLoc, isSizeof ? diag::err_sizeof_incomplete_type :
+ diag::err_alignof_incomplete_type,
+ exprType.getAsString());
+ return QualType(); // error
+ }
+ // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
+ return Context.getSizeType();
+}
+
+Action::ExprResult Sema::
+ActOnSizeOfAlignOfTypeExpr(SourceLocation OpLoc, bool isSizeof,
+ SourceLocation LPLoc, TypeTy *Ty,
+ SourceLocation RPLoc) {
+ // If error parsing type, ignore.
+ if (Ty == 0) return true;
+
+ // Verify that this is a valid expression.
+ QualType ArgTy = QualType::getFromOpaquePtr(Ty);
+
+ QualType resultType = CheckSizeOfAlignOfOperand(ArgTy, OpLoc, isSizeof);
+
+ if (resultType.isNull())
+ return true;
+ return new SizeOfAlignOfTypeExpr(isSizeof, ArgTy, resultType, OpLoc, RPLoc);
+}
+
+QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc) {
+ DefaultFunctionArrayConversion(V);
+
+ // These operators return the element type of a complex type.
+ if (const ComplexType *CT = V->getType()->getAsComplexType())
+ return CT->getElementType();
+
+ // Otherwise they pass through real integer and floating point types here.
+ if (V->getType()->isArithmeticType())
+ return V->getType();
+
+ // Reject anything else.
+ Diag(Loc, diag::err_realimag_invalid_type, V->getType().getAsString());
+ return QualType();
+}
+
+
+
+Action::ExprResult Sema::ActOnPostfixUnaryOp(SourceLocation OpLoc,
+ tok::TokenKind Kind,
+ ExprTy *Input) {
+ UnaryOperator::Opcode Opc;
+ switch (Kind) {
+ default: assert(0 && "Unknown unary op!");
+ case tok::plusplus: Opc = UnaryOperator::PostInc; break;
+ case tok::minusminus: Opc = UnaryOperator::PostDec; break;
+ }
+ QualType result = CheckIncrementDecrementOperand((Expr *)Input, OpLoc);
+ if (result.isNull())
+ return true;
+ return new UnaryOperator((Expr *)Input, Opc, result, OpLoc);
+}
+
+Action::ExprResult Sema::
+ActOnArraySubscriptExpr(ExprTy *Base, SourceLocation LLoc,
+ ExprTy *Idx, SourceLocation RLoc) {
+ Expr *LHSExp = static_cast<Expr*>(Base), *RHSExp = static_cast<Expr*>(Idx);
+
+ // Perform default conversions.
+ DefaultFunctionArrayConversion(LHSExp);
+ DefaultFunctionArrayConversion(RHSExp);
+
+ QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
+
+ // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
+ // to the expression *((e1)+(e2)). This means the array "Base" may actually be
+ // in the subscript position. As a result, we need to derive the array base
+ // and index from the expression types.
+ Expr *BaseExpr, *IndexExpr;
+ QualType ResultType;
+ if (const PointerType *PTy = LHSTy->getAsPointerType()) {
+ BaseExpr = LHSExp;
+ IndexExpr = RHSExp;
+ // FIXME: need to deal with const...
+ ResultType = PTy->getPointeeType();
+ } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
+ // Handle the uncommon case of "123[Ptr]".
+ BaseExpr = RHSExp;
+ IndexExpr = LHSExp;
+ // FIXME: need to deal with const...
+ ResultType = PTy->getPointeeType();
+ } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
+ BaseExpr = LHSExp; // vectors: V[123]
+ IndexExpr = RHSExp;
+
+ // Component access limited to variables (reject vec4.rg[1]).
+ if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr))
+ return Diag(LLoc, diag::err_ocuvector_component_access,
+ SourceRange(LLoc, RLoc));
+ // FIXME: need to deal with const...
+ ResultType = VTy->getElementType();
+ } else {
+ return Diag(LHSExp->getLocStart(), diag::err_typecheck_subscript_value,
+ RHSExp->getSourceRange());
+ }
+ // C99 6.5.2.1p1
+ if (!IndexExpr->getType()->isIntegerType())
+ return Diag(IndexExpr->getLocStart(), diag::err_typecheck_subscript,
+ IndexExpr->getSourceRange());
+
+ // C99 6.5.2.1p1: "shall have type "pointer to *object* type". In practice,
+ // the following check catches trying to index a pointer to a function (e.g.
+ // void (*)(int)). Functions are not objects in C99.
+ if (!ResultType->isObjectType())
+ return Diag(BaseExpr->getLocStart(),
+ diag::err_typecheck_subscript_not_object,
+ BaseExpr->getType().getAsString(), BaseExpr->getSourceRange());
+
+ return new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc);
+}
+
+QualType Sema::
+CheckOCUVectorComponent(QualType baseType, SourceLocation OpLoc,
+ IdentifierInfo &CompName, SourceLocation CompLoc) {
+ const OCUVectorType *vecType = baseType->getAsOCUVectorType();
+
+ // The vector accessor can't exceed the number of elements.
+ const char *compStr = CompName.getName();
+ if (strlen(compStr) > vecType->getNumElements()) {
+ Diag(OpLoc, diag::err_ocuvector_component_exceeds_length,
+ baseType.getAsString(), SourceRange(CompLoc));
+ return QualType();
+ }
+ // The component names must come from the same set.
+ if (vecType->getPointAccessorIdx(*compStr) != -1) {
+ do
+ compStr++;
+ while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
+ } else if (vecType->getColorAccessorIdx(*compStr) != -1) {
+ do
+ compStr++;
+ while (*compStr && vecType->getColorAccessorIdx(*compStr) != -1);
+ } else if (vecType->getTextureAccessorIdx(*compStr) != -1) {
+ do
+ compStr++;
+ while (*compStr && vecType->getTextureAccessorIdx(*compStr) != -1);
+ }
+
+ if (*compStr) {
+ // We didn't get to the end of the string. This means the component names
+ // didn't come from the same set *or* we encountered an illegal name.
+ Diag(OpLoc, diag::err_ocuvector_component_name_illegal,
+ std::string(compStr,compStr+1), SourceRange(CompLoc));
+ return QualType();
+ }
+ // Each component accessor can't exceed the vector type.
+ compStr = CompName.getName();
+ while (*compStr) {
+ if (vecType->isAccessorWithinNumElements(*compStr))
+ compStr++;
+ else
+ break;
+ }
+ if (*compStr) {
+ // We didn't get to the end of the string. This means a component accessor
+ // exceeds the number of elements in the vector.
+ Diag(OpLoc, diag::err_ocuvector_component_exceeds_length,
+ baseType.getAsString(), SourceRange(CompLoc));
+ return QualType();
+ }
+ // The component accessor looks fine - now we need to compute the actual type.
+ // The vector type is implied by the component accessor. For example,
+ // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
+ unsigned CompSize = strlen(CompName.getName());
+ if (CompSize == 1)
+ return vecType->getElementType();
+
+ QualType VT = Context.getOCUVectorType(vecType->getElementType(), CompSize);
+ // Now look up the TypeDefDecl from the vector type. Without this,
+ // diagostics look bad. We want OCU vector types to appear built-in.
+ for (unsigned i = 0, e = OCUVectorDecls.size(); i != e; ++i) {
+ if (OCUVectorDecls[i]->getUnderlyingType() == VT)
+ return Context.getTypedefType(OCUVectorDecls[i]);
+ }
+ return VT; // should never get here (a typedef type should always be found).
+}
+
+Action::ExprResult Sema::
+ActOnMemberReferenceExpr(ExprTy *Base, SourceLocation OpLoc,
+ tok::TokenKind OpKind, SourceLocation MemberLoc,
+ IdentifierInfo &Member) {
+ Expr *BaseExpr = static_cast<Expr *>(Base);
+ assert(BaseExpr && "no record expression");
+
+ // Perform default conversions.
+ DefaultFunctionArrayConversion(BaseExpr);
+
+ QualType BaseType = BaseExpr->getType();
+ assert(!BaseType.isNull() && "no type for member expression");
+
+ if (OpKind == tok::arrow) {
+ if (const PointerType *PT = BaseType->getAsPointerType())
+ BaseType = PT->getPointeeType();
+ else
+ return Diag(OpLoc, diag::err_typecheck_member_reference_arrow,
+ SourceRange(MemberLoc));
+ }
+ // The base type is either a record or an OCUVectorType.
+ if (const RecordType *RTy = BaseType->getAsRecordType()) {
+ RecordDecl *RDecl = RTy->getDecl();
+ if (RTy->isIncompleteType())
+ return Diag(OpLoc, diag::err_typecheck_incomplete_tag, RDecl->getName(),
+ BaseExpr->getSourceRange());
+ // The record definition is complete, now make sure the member is valid.
+ FieldDecl *MemberDecl = RDecl->getMember(&Member);
+ if (!MemberDecl)
+ return Diag(OpLoc, diag::err_typecheck_no_member, Member.getName(),
+ SourceRange(MemberLoc));
+
+ // Figure out the type of the member; see C99 6.5.2.3p3
+ // FIXME: Handle address space modifiers
+ QualType MemberType = MemberDecl->getType();
+ unsigned combinedQualifiers =
+ MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
+ MemberType = MemberType.getQualifiedType(combinedQualifiers);
+
+ return new MemberExpr(BaseExpr, OpKind==tok::arrow, MemberDecl,
+ MemberLoc, MemberType);
+ } else if (BaseType->isOCUVectorType() && OpKind == tok::period) {
+ // Component access limited to variables (reject vec4.rg.g).
+ if (!isa<DeclRefExpr>(BaseExpr))
+ return Diag(OpLoc, diag::err_ocuvector_component_access,
+ SourceRange(MemberLoc));
+ QualType ret = CheckOCUVectorComponent(BaseType, OpLoc, Member, MemberLoc);
+ if (ret.isNull())
+ return true;
+ return new OCUVectorElementExpr(ret, BaseExpr, Member, MemberLoc);
+ } else if (BaseType->isObjCInterfaceType()) {
+ ObjCInterfaceDecl *IFace;
+ if (isa<ObjCInterfaceType>(BaseType.getCanonicalType()))
+ IFace = dyn_cast<ObjCInterfaceType>(BaseType)->getDecl();
+ else
+ IFace = dyn_cast<ObjCQualifiedInterfaceType>(BaseType)->getDecl();
+ ObjCInterfaceDecl *clsDeclared;
+ if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(&Member, clsDeclared))
+ return new ObjCIvarRefExpr(IV, IV->getType(), MemberLoc, BaseExpr,
+ OpKind==tok::arrow);
+ }
+ return Diag(OpLoc, diag::err_typecheck_member_reference_structUnion,
+ SourceRange(MemberLoc));
+}
+
+/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
+/// This provides the location of the left/right parens and a list of comma
+/// locations.
+Action::ExprResult Sema::
+ActOnCallExpr(ExprTy *fn, SourceLocation LParenLoc,
+ ExprTy **args, unsigned NumArgs,
+ SourceLocation *CommaLocs, SourceLocation RParenLoc) {
+ Expr *Fn = static_cast<Expr *>(fn);
+ Expr **Args = reinterpret_cast<Expr**>(args);
+ assert(Fn && "no function call expression");
+
+ // Make the call expr early, before semantic checks. This guarantees cleanup
+ // of arguments and function on error.
+ llvm::OwningPtr<CallExpr> TheCall(new CallExpr(Fn, Args, NumArgs,
+ Context.BoolTy, RParenLoc));
+
+ // Promote the function operand.
+ TheCall->setCallee(UsualUnaryConversions(Fn));
+
+ // C99 6.5.2.2p1 - "The expression that denotes the called function shall have
+ // type pointer to function".
+ const PointerType *PT = Fn->getType()->getAsPointerType();
+ if (PT == 0)
+ return Diag(Fn->getLocStart(), diag::err_typecheck_call_not_function,
+ SourceRange(Fn->getLocStart(), RParenLoc));
+ const FunctionType *FuncT = PT->getPointeeType()->getAsFunctionType();
+ if (FuncT == 0)
+ return Diag(Fn->getLocStart(), diag::err_typecheck_call_not_function,
+ SourceRange(Fn->getLocStart(), RParenLoc));
+
+ // We know the result type of the call, set it.
+ TheCall->setType(FuncT->getResultType());
+
+ if (const FunctionTypeProto *Proto = dyn_cast<FunctionTypeProto>(FuncT)) {
+ // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
+ // assignment, to the types of the corresponding parameter, ...
+ unsigned NumArgsInProto = Proto->getNumArgs();
+ unsigned NumArgsToCheck = NumArgs;
+
+ // If too few arguments are available, don't make the call.
+ if (NumArgs < NumArgsInProto)
+ return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
+ Fn->getSourceRange());
+
+ // If too many are passed and not variadic, error on the extras and drop
+ // them.
+ if (NumArgs > NumArgsInProto) {
+ if (!Proto->isVariadic()) {
+ Diag(Args[NumArgsInProto]->getLocStart(),
+ diag::err_typecheck_call_too_many_args, Fn->getSourceRange(),
+ SourceRange(Args[NumArgsInProto]->getLocStart(),
+ Args[NumArgs-1]->getLocEnd()));
+ // This deletes the extra arguments.
+ TheCall->setNumArgs(NumArgsInProto);
+ }
+ NumArgsToCheck = NumArgsInProto;
+ }
+
+ // Continue to check argument types (even if we have too few/many args).
+ for (unsigned i = 0; i != NumArgsToCheck; i++) {
+ Expr *Arg = Args[i];
+ QualType ProtoArgType = Proto->getArgType(i);
+ QualType ArgType = Arg->getType();
+
+ // Compute implicit casts from the operand to the formal argument type.
+ AssignConvertType ConvTy =
+ CheckSingleAssignmentConstraints(ProtoArgType, Arg);
+ TheCall->setArg(i, Arg);
+
+ if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), ProtoArgType,
+ ArgType, Arg, "passing"))
+ return true;
+ }
+
+ // If this is a variadic call, handle args passed through "...".
+ if (Proto->isVariadic()) {
+ // Promote the arguments (C99 6.5.2.2p7).
+ for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
+ Expr *Arg = Args[i];
+ DefaultArgumentPromotion(Arg);
+ TheCall->setArg(i, Arg);
+ }
+ }
+ } else {
+ assert(isa<FunctionTypeNoProto>(FuncT) && "Unknown FunctionType!");
+
+ // Promote the arguments (C99 6.5.2.2p6).
+ for (unsigned i = 0; i != NumArgs; i++) {
+ Expr *Arg = Args[i];
+ DefaultArgumentPromotion(Arg);
+ TheCall->setArg(i, Arg);
+ }
+ }
+
+ // Do special checking on direct calls to functions.
+ if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(Fn))
+ if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(IcExpr->getSubExpr()))
+ if (FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl()))
+ if (CheckFunctionCall(FDecl, TheCall.get()))
+ return true;
+
+ return TheCall.take();
+}
+
+Action::ExprResult Sema::
+ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
+ SourceLocation RParenLoc, ExprTy *InitExpr) {
+ assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
+ QualType literalType = QualType::getFromOpaquePtr(Ty);
+ // FIXME: put back this assert when initializers are worked out.
+ //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
+ Expr *literalExpr = static_cast<Expr*>(InitExpr);
+
+ // FIXME: add more semantic analysis (C99 6.5.2.5).
+ if (CheckInitializerTypes(literalExpr, literalType))
+ return true;
+
+ bool isFileScope = !CurFunctionDecl && !CurMethodDecl;
+ if (isFileScope) { // 6.5.2.5p3
+ if (CheckForConstantInitializer(literalExpr, literalType))
+ return true;
+ }
+ return new CompoundLiteralExpr(LParenLoc, literalType, literalExpr, isFileScope);
+}
+
+Action::ExprResult Sema::
+ActOnInitList(SourceLocation LBraceLoc, ExprTy **initlist, unsigned NumInit,
+ SourceLocation RBraceLoc) {
+ Expr **InitList = reinterpret_cast<Expr**>(initlist);
+
+ // Semantic analysis for initializers is done by ActOnDeclarator() and
+ // CheckInitializer() - it requires knowledge of the object being intialized.
+
+ InitListExpr *e = new InitListExpr(LBraceLoc, InitList, NumInit, RBraceLoc);
+ e->setType(Context.VoidTy); // FIXME: just a place holder for now.
+ return e;
+}
+
+bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
+ assert(VectorTy->isVectorType() && "Not a vector type!");
+
+ if (Ty->isVectorType() || Ty->isIntegerType()) {
+ if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
+ return Diag(R.getBegin(),
+ Ty->isVectorType() ?
+ diag::err_invalid_conversion_between_vectors :
+ diag::err_invalid_conversion_between_vector_and_integer,
+ VectorTy.getAsString().c_str(),
+ Ty.getAsString().c_str(), R);
+ } else
+ return Diag(R.getBegin(),
+ diag::err_invalid_conversion_between_vector_and_scalar,
+ VectorTy.getAsString().c_str(),
+ Ty.getAsString().c_str(), R);
+
+ return false;
+}
+
+Action::ExprResult Sema::
+ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
+ SourceLocation RParenLoc, ExprTy *Op) {
+ assert((Ty != 0) && (Op != 0) && "ActOnCastExpr(): missing type or expr");
+
+ Expr *castExpr = static_cast<Expr*>(Op);
+ QualType castType = QualType::getFromOpaquePtr(Ty);
+
+ UsualUnaryConversions(castExpr);
+
+ // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
+ // type needs to be scalar.
+ if (!castType->isVoidType()) { // Cast to void allows any expr type.
+ if (!castType->isScalarType() && !castType->isVectorType())
+ return Diag(LParenLoc, diag::err_typecheck_cond_expect_scalar,
+ castType.getAsString(), SourceRange(LParenLoc, RParenLoc));
+ if (!castExpr->getType()->isScalarType() &&
+ !castExpr->getType()->isVectorType())
+ return Diag(castExpr->getLocStart(),
+ diag::err_typecheck_expect_scalar_operand,
+ castExpr->getType().getAsString(),castExpr->getSourceRange());
+
+ if (castExpr->getType()->isVectorType()) {
+ if (CheckVectorCast(SourceRange(LParenLoc, RParenLoc),
+ castExpr->getType(), castType))
+ return true;
+ } else if (castType->isVectorType()) {
+ if (CheckVectorCast(SourceRange(LParenLoc, RParenLoc),
+ castType, castExpr->getType()))
+ return true;
+ }
+ }
+ return new CastExpr(castType, castExpr, LParenLoc);
+}
+
+/// Note that lex is not null here, even if this is the gnu "x ?: y" extension.
+/// In that case, lex = cond.
+inline QualType Sema::CheckConditionalOperands( // C99 6.5.15
+ Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) {
+ UsualUnaryConversions(cond);
+ UsualUnaryConversions(lex);
+ UsualUnaryConversions(rex);
+ QualType condT = cond->getType();
+ QualType lexT = lex->getType();
+ QualType rexT = rex->getType();
+
+ // first, check the condition.
+ if (!condT->isScalarType()) { // C99 6.5.15p2
+ Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar,
+ condT.getAsString());
+ return QualType();
+ }
+
+ // Now check the two expressions.
+
+ // If both operands have arithmetic type, do the usual arithmetic conversions
+ // to find a common type: C99 6.5.15p3,5.
+ if (lexT->isArithmeticType() && rexT->isArithmeticType()) {
+ UsualArithmeticConversions(lex, rex);
+ return lex->getType();
+ }
+
+ // If both operands are the same structure or union type, the result is that
+ // type.
+ if (const RecordType *LHSRT = lexT->getAsRecordType()) { // C99 6.5.15p3
+ if (const RecordType *RHSRT = rexT->getAsRecordType())
+ if (LHSRT->getDecl() == RHSRT->getDecl())
+ // "If both the operands have structure or union type, the result has
+ // that type." This implies that CV qualifiers are dropped.
+ return lexT.getUnqualifiedType();
+ }
+
+ // C99 6.5.15p5: "If both operands have void type, the result has void type."
+ if (lexT->isVoidType() && rexT->isVoidType())
+ return lexT.getUnqualifiedType();
+
+ // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
+ // the type of the other operand."
+ if (lexT->isPointerType() && rex->isNullPointerConstant(Context)) {
+ ImpCastExprToType(rex, lexT); // promote the null to a pointer.
+ return lexT;
+ }
+ if (rexT->isPointerType() && lex->isNullPointerConstant(Context)) {
+ ImpCastExprToType(lex, rexT); // promote the null to a pointer.
+ return rexT;
+ }
+ // Handle the case where both operands are pointers before we handle null
+ // pointer constants in case both operands are null pointer constants.
+ if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6
+ if (const PointerType *RHSPT = rexT->getAsPointerType()) {
+ // get the "pointed to" types
+ QualType lhptee = LHSPT->getPointeeType();
+ QualType rhptee = RHSPT->getPointeeType();
+
+ // ignore qualifiers on void (C99 6.5.15p3, clause 6)
+ if (lhptee->isVoidType() &&
+ (rhptee->isObjectType() || rhptee->isIncompleteType())) {
+ // Figure out necessary qualifiers (C99 6.5.15p6)
+ QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
+ QualType destType = Context.getPointerType(destPointee);
+ ImpCastExprToType(lex, destType); // add qualifiers if necessary
+ ImpCastExprToType(rex, destType); // promote to void*
+ return destType;
+ }
+ if (rhptee->isVoidType() &&
+ (lhptee->isObjectType() || lhptee->isIncompleteType())) {
+ QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
+ QualType destType = Context.getPointerType(destPointee);
+ ImpCastExprToType(lex, destType); // add qualifiers if necessary
+ ImpCastExprToType(rex, destType); // promote to void*
+ return destType;
+ }
+
+ if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
+ rhptee.getUnqualifiedType())) {
+ Diag(questionLoc, diag::warn_typecheck_cond_incompatible_pointers,
+ lexT.getAsString(), rexT.getAsString(),
+ lex->getSourceRange(), rex->getSourceRange());
+ // In this situation, we assume void* type. No especially good
+ // reason, but this is what gcc does, and we do have to pick
+ // to get a consistent AST.
+ QualType voidPtrTy = Context.getPointerType(Context.VoidTy);
+ ImpCastExprToType(lex, voidPtrTy);
+ ImpCastExprToType(rex, voidPtrTy);
+ return voidPtrTy;
+ }
+ // The pointer types are compatible.
+ // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
+ // differently qualified versions of compatible types, the result type is
+ // a pointer to an appropriately qualified version of the *composite*
+ // type.
+ // FIXME: Need to return the composite type.
+ // FIXME: Need to add qualifiers
+ return lexT;
+ }
+ }
+
+ // Otherwise, the operands are not compatible.
+ Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands,
+ lexT.getAsString(), rexT.getAsString(),
+ lex->getSourceRange(), rex->getSourceRange());
+ return QualType();
+}
+
+/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
+/// in the case of a the GNU conditional expr extension.
+Action::ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
+ SourceLocation ColonLoc,
+ ExprTy *Cond, ExprTy *LHS,
+ ExprTy *RHS) {
+ Expr *CondExpr = (Expr *) Cond;
+ Expr *LHSExpr = (Expr *) LHS, *RHSExpr = (Expr *) RHS;
+
+ // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
+ // was the condition.
+ bool isLHSNull = LHSExpr == 0;
+ if (isLHSNull)
+ LHSExpr = CondExpr;
+
+ QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
+ RHSExpr, QuestionLoc);
+ if (result.isNull())
+ return true;
+ return new ConditionalOperator(CondExpr, isLHSNull ? 0 : LHSExpr,
+ RHSExpr, result);
+}
+
+/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
+/// do not have a prototype. Arguments that have type float are promoted to
+/// double. All other argument types are converted by UsualUnaryConversions().
+void Sema::DefaultArgumentPromotion(Expr *&Expr) {
+ QualType Ty = Expr->getType();
+ assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
+
+ if (Ty == Context.FloatTy)
+ ImpCastExprToType(Expr, Context.DoubleTy);
+ else
+ UsualUnaryConversions(Expr);
+}
+
+/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
+void Sema::DefaultFunctionArrayConversion(Expr *&e) {
+ QualType t = e->getType();
+ assert(!t.isNull() && "DefaultFunctionArrayConversion - missing type");
+
+ if (const ReferenceType *ref = t->getAsReferenceType()) {
+ ImpCastExprToType(e, ref->getReferenceeType()); // C++ [expr]
+ t = e->getType();
+ }
+ if (t->isFunctionType())
+ ImpCastExprToType(e, Context.getPointerType(t));
+ else if (const ArrayType *ary = t->getAsArrayType()) {
+ // Make sure we don't lose qualifiers when dealing with typedefs. Example:
+ // typedef int arr[10];
+ // void test2() {
+ // const arr b;
+ // b[4] = 1;
+ // }
+ QualType ELT = ary->getElementType();
+ // FIXME: Handle ASQualType
+ ELT = ELT.getQualifiedType(t.getCVRQualifiers()|ELT.getCVRQualifiers());
+ ImpCastExprToType(e, Context.getPointerType(ELT));
+ }
+}
+
+/// UsualUnaryConversions - Performs various conversions that are common to most
+/// operators (C99 6.3). The conversions of array and function types are
+/// sometimes surpressed. For example, the array->pointer conversion doesn't
+/// apply if the array is an argument to the sizeof or address (&) operators.
+/// In these instances, this routine should *not* be called.
+Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
+ QualType Ty = Expr->getType();
+ assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
+
+ if (const ReferenceType *Ref = Ty->getAsReferenceType()) {
+ ImpCastExprToType(Expr, Ref->getReferenceeType()); // C++ [expr]
+ Ty = Expr->getType();
+ }
+ if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
+ ImpCastExprToType(Expr, Context.IntTy);
+ else
+ DefaultFunctionArrayConversion(Expr);
+
+ return Expr;
+}
+
+/// UsualArithmeticConversions - Performs various conversions that are common to
+/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
+/// routine returns the first non-arithmetic type found. The client is
+/// responsible for emitting appropriate error diagnostics.
+/// FIXME: verify the conversion rules for "complex int" are consistent with GCC.
+QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
+ bool isCompAssign) {
+ if (!isCompAssign) {
+ UsualUnaryConversions(lhsExpr);
+ UsualUnaryConversions(rhsExpr);
+ }
+ // For conversion purposes, we ignore any qualifiers.
+ // For example, "const float" and "float" are equivalent.
+ QualType lhs = lhsExpr->getType().getCanonicalType().getUnqualifiedType();
+ QualType rhs = rhsExpr->getType().getCanonicalType().getUnqualifiedType();
+
+ // If both types are identical, no conversion is needed.
+ if (lhs == rhs)
+ return lhs;
+
+ // If either side is a non-arithmetic type (e.g. a pointer), we are done.
+ // The caller can deal with this (e.g. pointer + int).
+ if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
+ return lhs;
+
+ // At this point, we have two different arithmetic types.
+
+ // Handle complex types first (C99 6.3.1.8p1).
+ if (lhs->isComplexType() || rhs->isComplexType()) {
+ // if we have an integer operand, the result is the complex type.
+ if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
+ // convert the rhs to the lhs complex type.
+ if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
+ return lhs;
+ }
+ if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
+ // convert the lhs to the rhs complex type.
+ if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
+ return rhs;
+ }
+ // This handles complex/complex, complex/float, or float/complex.
+ // When both operands are complex, the shorter operand is converted to the
+ // type of the longer, and that is the type of the result. This corresponds
+ // to what is done when combining two real floating-point operands.
+ // The fun begins when size promotion occur across type domains.
+ // From H&S 6.3.4: When one operand is complex and the other is a real
+ // floating-point type, the less precise type is converted, within it's
+ // real or complex domain, to the precision of the other type. For example,
+ // when combining a "long double" with a "double _Complex", the
+ // "double _Complex" is promoted to "long double _Complex".
+ int result = Context.compareFloatingType(lhs, rhs);
+
+ if (result > 0) { // The left side is bigger, convert rhs.
+ rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
+ if (!isCompAssign)
+ ImpCastExprToType(rhsExpr, rhs);
+ } else if (result < 0) { // The right side is bigger, convert lhs.
+ lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
+ if (!isCompAssign)
+ ImpCastExprToType(lhsExpr, lhs);
+ }
+ // At this point, lhs and rhs have the same rank/size. Now, make sure the
+ // domains match. This is a requirement for our implementation, C99
+ // does not require this promotion.
+ if (lhs != rhs) { // Domains don't match, we have complex/float mix.
+ if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
+ if (!isCompAssign)
+ ImpCastExprToType(lhsExpr, rhs);
+ return rhs;
+ } else { // handle "_Complex double, double".
+ if (!isCompAssign)
+ ImpCastExprToType(rhsExpr, lhs);
+ return lhs;
+ }
+ }
+ return lhs; // The domain/size match exactly.
+ }
+ // Now handle "real" floating types (i.e. float, double, long double).
+ if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
+ // if we have an integer operand, the result is the real floating type.
+ if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
+ // convert rhs to the lhs floating point type.
+ if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
+ return lhs;
+ }
+ if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
+ // convert lhs to the rhs floating point type.
+ if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
+ return rhs;
+ }
+ // We have two real floating types, float/complex combos were handled above.
+ // Convert the smaller operand to the bigger result.
+ int result = Context.compareFloatingType(lhs, rhs);
+
+ if (result > 0) { // convert the rhs
+ if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
+ return lhs;
+ }
+ if (result < 0) { // convert the lhs
+ if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs); // convert the lhs
+ return rhs;
+ }
+ assert(0 && "Sema::UsualArithmeticConversions(): illegal float comparison");
+ }
+ if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
+ // Handle GCC complex int extension.
+ const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
+ const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
+
+ if (lhsComplexInt && rhsComplexInt) {
+ if (Context.maxIntegerType(lhsComplexInt->getElementType(),
+ rhsComplexInt->getElementType()) == lhs) {
+ // convert the rhs
+ if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
+ return lhs;
+ }
+ if (!isCompAssign)
+ ImpCastExprToType(lhsExpr, rhs); // convert the lhs
+ return rhs;
+ } else if (lhsComplexInt && rhs->isIntegerType()) {
+ // convert the rhs to the lhs complex type.
+ if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
+ return lhs;
+ } else if (rhsComplexInt && lhs->isIntegerType()) {
+ // convert the lhs to the rhs complex type.
+ if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
+ return rhs;
+ }
+ }
+ // Finally, we have two differing integer types.
+ if (Context.maxIntegerType(lhs, rhs) == lhs) { // convert the rhs
+ if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
+ return lhs;
+ }
+ if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs); // convert the lhs
+ return rhs;
+}
+
+// CheckPointerTypesForAssignment - This is a very tricky routine (despite
+// being closely modeled after the C99 spec:-). The odd characteristic of this
+// routine is it effectively iqnores the qualifiers on the top level pointee.
+// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
+// FIXME: add a couple examples in this comment.
+Sema::AssignConvertType
+Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
+ QualType lhptee, rhptee;
+
+ // get the "pointed to" type (ignoring qualifiers at the top level)
+ lhptee = lhsType->getAsPointerType()->getPointeeType();
+ rhptee = rhsType->getAsPointerType()->getPointeeType();
+
+ // make sure we operate on the canonical type
+ lhptee = lhptee.getCanonicalType();
+ rhptee = rhptee.getCanonicalType();
+
+ AssignConvertType ConvTy = Compatible;
+
+ // C99 6.5.16.1p1: This following citation is common to constraints
+ // 3 & 4 (below). ...and the type *pointed to* by the left has all the
+ // qualifiers of the type *pointed to* by the right;
+ // FIXME: Handle ASQualType
+ if ((lhptee.getCVRQualifiers() & rhptee.getCVRQualifiers()) !=
+ rhptee.getCVRQualifiers())
+ ConvTy = CompatiblePointerDiscardsQualifiers;
+
+ // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
+ // incomplete type and the other is a pointer to a qualified or unqualified
+ // version of void...
+ if (lhptee->isVoidType()) {
+ if (rhptee->isObjectType() || rhptee->isIncompleteType())
+ return ConvTy;
+
+ // As an extension, we allow cast to/from void* to function pointer.
+ if (rhptee->isFunctionType())
+ return FunctionVoidPointer;
+ }
+
+ if (rhptee->isVoidType()) {
+ if (lhptee->isObjectType() || lhptee->isIncompleteType())
+ return ConvTy;
+
+ // As an extension, we allow cast to/from void* to function pointer.
+ if (lhptee->isFunctionType())
+ return FunctionVoidPointer;
+ }
+
+ // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
+ // unqualified versions of compatible types, ...
+ if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
+ rhptee.getUnqualifiedType()))
+ return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
+ return ConvTy;
+}
+
+/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
+/// has code to accommodate several GCC extensions when type checking
+/// pointers. Here are some objectionable examples that GCC considers warnings:
+///
+/// int a, *pint;
+/// short *pshort;
+/// struct foo *pfoo;
+///
+/// pint = pshort; // warning: assignment from incompatible pointer type
+/// a = pint; // warning: assignment makes integer from pointer without a cast
+/// pint = a; // warning: assignment makes pointer from integer without a cast
+/// pint = pfoo; // warning: assignment from incompatible pointer type
+///
+/// As a result, the code for dealing with pointers is more complex than the
+/// C99 spec dictates.
+/// Note: the warning above turn into errors when -pedantic-errors is enabled.
+///
+Sema::AssignConvertType
+Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
+ // Get canonical types. We're not formatting these types, just comparing
+ // them.
+ lhsType = lhsType.getCanonicalType();
+ rhsType = rhsType.getCanonicalType();
+
+ if (lhsType.getUnqualifiedType() == rhsType.getUnqualifiedType())
+ return Compatible; // Common case: fast path an exact match.
+
+ if (lhsType->isReferenceType() || rhsType->isReferenceType()) {
+ if (Context.referenceTypesAreCompatible(lhsType, rhsType))
+ return Compatible;
+ return Incompatible;
+ }
+
+ if (lhsType->isObjCQualifiedIdType()
+ || rhsType->isObjCQualifiedIdType()) {
+ if (Context.ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType))
+ return Compatible;
+ return Incompatible;
+ }
+
+ if (lhsType->isVectorType() || rhsType->isVectorType()) {
+ // For OCUVector, allow vector splats; float -> <n x float>
+ if (const OCUVectorType *LV = lhsType->getAsOCUVectorType()) {
+ if (LV->getElementType().getTypePtr() == rhsType.getTypePtr())
+ return Compatible;
+ }
+
+ // If LHS and RHS are both vectors of integer or both vectors of floating
+ // point types, and the total vector length is the same, allow the
+ // conversion. This is a bitcast; no bits are changed but the result type
+ // is different.
+ if (getLangOptions().LaxVectorConversions &&
+ lhsType->isVectorType() && rhsType->isVectorType()) {
+ if ((lhsType->isIntegerType() && rhsType->isIntegerType()) ||
+ (lhsType->isRealFloatingType() && rhsType->isRealFloatingType())) {
+ if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
+ return Compatible;
+ }
+ }
+ return Incompatible;
+ }
+
+ if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
+ return Compatible;
+
+ if (lhsType->isPointerType()) {
+ if (rhsType->isIntegerType())
+ return IntToPointer;
+
+ if (rhsType->isPointerType())
+ return CheckPointerTypesForAssignment(lhsType, rhsType);
+ return Incompatible;
+ }
+
+ if (rhsType->isPointerType()) {
+ // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
+ if ((lhsType->isIntegerType()) && (lhsType != Context.BoolTy))
+ return PointerToInt;
+
+ if (lhsType->isPointerType())
+ return CheckPointerTypesForAssignment(lhsType, rhsType);
+ return Incompatible;
+ }
+
+ if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
+ if (Context.tagTypesAreCompatible(lhsType, rhsType))
+ return Compatible;
+ }
+ return Incompatible;
+}
+
+Sema::AssignConvertType
+Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
+ // C99 6.5.16.1p1: the left operand is a pointer and the right is
+ // a null pointer constant.
+ if ((lhsType->isPointerType() || lhsType->isObjCQualifiedIdType())
+ && rExpr->isNullPointerConstant(Context)) {
+ ImpCastExprToType(rExpr, lhsType);
+ return Compatible;
+ }
+ // This check seems unnatural, however it is necessary to ensure the proper
+ // conversion of functions/arrays. If the conversion were done for all
+ // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
+ // expressions that surpress this implicit conversion (&, sizeof).
+ //
+ // Suppress this for references: C99 8.5.3p5. FIXME: revisit when references
+ // are better understood.
+ if (!lhsType->isReferenceType())
+ DefaultFunctionArrayConversion(rExpr);
+
+ Sema::AssignConvertType result =
+ CheckAssignmentConstraints(lhsType, rExpr->getType());
+
+ // C99 6.5.16.1p2: The value of the right operand is converted to the
+ // type of the assignment expression.
+ if (rExpr->getType() != lhsType)
+ ImpCastExprToType(rExpr, lhsType);
+ return result;
+}
+
+Sema::AssignConvertType
+Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
+ return CheckAssignmentConstraints(lhsType, rhsType);
+}
+
+QualType Sema::InvalidOperands(SourceLocation loc, Expr *&lex, Expr *&rex) {
+ Diag(loc, diag::err_typecheck_invalid_operands,
+ lex->getType().getAsString(), rex->getType().getAsString(),
+ lex->getSourceRange(), rex->getSourceRange());
+ return QualType();
+}
+
+inline QualType Sema::CheckVectorOperands(SourceLocation loc, Expr *&lex,
+ Expr *&rex) {
+ QualType lhsType = lex->getType(), rhsType = rex->getType();
+
+ // make sure the vector types are identical.
+ if (lhsType == rhsType)
+ return lhsType;
+
+ // if the lhs is an ocu vector and the rhs is a scalar of the same type,
+ // promote the rhs to the vector type.
+ if (const OCUVectorType *V = lhsType->getAsOCUVectorType()) {
+ if (V->getElementType().getCanonicalType().getTypePtr()
+ == rhsType.getCanonicalType().getTypePtr()) {
+ ImpCastExprToType(rex, lhsType);
+ return lhsType;
+ }
+ }
+
+ // if the rhs is an ocu vector and the lhs is a scalar of the same type,
+ // promote the lhs to the vector type.
+ if (const OCUVectorType *V = rhsType->getAsOCUVectorType()) {
+ if (V->getElementType().getCanonicalType().getTypePtr()
+ == lhsType.getCanonicalType().getTypePtr()) {
+ ImpCastExprToType(lex, rhsType);
+ return rhsType;
+ }
+ }
+
+ // You cannot convert between vector values of different size.
+ Diag(loc, diag::err_typecheck_vector_not_convertable,
+ lex->getType().getAsString(), rex->getType().getAsString(),
+ lex->getSourceRange(), rex->getSourceRange());
+ return QualType();
+}
+
+inline QualType Sema::CheckMultiplyDivideOperands(
+ Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
+{
+ QualType lhsType = lex->getType(), rhsType = rex->getType();
+
+ if (lhsType->isVectorType() || rhsType->isVectorType())
+ return CheckVectorOperands(loc, lex, rex);
+
+ QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
+
+ if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
+ return compType;
+ return InvalidOperands(loc, lex, rex);
+}
+
+inline QualType Sema::CheckRemainderOperands(
+ Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
+{
+ QualType lhsType = lex->getType(), rhsType = rex->getType();
+
+ QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
+
+ if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
+ return compType;
+ return InvalidOperands(loc, lex, rex);
+}
+
+inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
+ Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
+{
+ if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
+ return CheckVectorOperands(loc, lex, rex);
+
+ QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
+
+ // handle the common case first (both operands are arithmetic).
+ if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
+ return compType;
+
+ if (lex->getType()->isPointerType() && rex->getType()->isIntegerType())
+ return lex->getType();
+ if (lex->getType()->isIntegerType() && rex->getType()->isPointerType())
+ return rex->getType();
+ return InvalidOperands(loc, lex, rex);
+}
+
+inline QualType Sema::CheckSubtractionOperands( // C99 6.5.6
+ Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
+{
+ if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
+ return CheckVectorOperands(loc, lex, rex);
+
+ QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
+
+ // Enforce type constraints: C99 6.5.6p3.
+
+ // Handle the common case first (both operands are arithmetic).
+ if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
+ return compType;
+
+ // Either ptr - int or ptr - ptr.
+ if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
+ QualType lpointee = LHSPTy->getPointeeType();
+
+ // The LHS must be an object type, not incomplete, function, etc.
+ if (!lpointee->isObjectType()) {
+ // Handle the GNU void* extension.
+ if (lpointee->isVoidType()) {
+ Diag(loc, diag::ext_gnu_void_ptr,
+ lex->getSourceRange(), rex->getSourceRange());
+ } else {
+ Diag(loc, diag::err_typecheck_sub_ptr_object,
+ lex->getType().getAsString(), lex->getSourceRange());
+ return QualType();
+ }
+ }
+
+ // The result type of a pointer-int computation is the pointer type.
+ if (rex->getType()->isIntegerType())
+ return lex->getType();
+
+ // Handle pointer-pointer subtractions.
+ if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
+ QualType rpointee = RHSPTy->getPointeeType();
+
+ // RHS must be an object type, unless void (GNU).
+ if (!rpointee->isObjectType()) {
+ // Handle the GNU void* extension.
+ if (rpointee->isVoidType()) {
+ if (!lpointee->isVoidType())
+ Diag(loc, diag::ext_gnu_void_ptr,
+ lex->getSourceRange(), rex->getSourceRange());
+ } else {
+ Diag(loc, diag::err_typecheck_sub_ptr_object,
+ rex->getType().getAsString(), rex->getSourceRange());
+ return QualType();
+ }
+ }
+
+ // Pointee types must be compatible.
+ if (!Context.typesAreCompatible(lpointee.getUnqualifiedType(),
+ rpointee.getUnqualifiedType())) {
+ Diag(loc, diag::err_typecheck_sub_ptr_compatible,
+ lex->getType().getAsString(), rex->getType().getAsString(),
+ lex->getSourceRange(), rex->getSourceRange());
+ return QualType();
+ }
+
+ return Context.getPointerDiffType();
+ }
+ }
+
+ return InvalidOperands(loc, lex, rex);
+}
+
+inline QualType Sema::CheckShiftOperands( // C99 6.5.7
+ Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign) {
+ // C99 6.5.7p2: Each of the operands shall have integer type.
+ if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
+ return InvalidOperands(loc, lex, rex);
+
+ // Shifts don't perform usual arithmetic conversions, they just do integer
+ // promotions on each operand. C99 6.5.7p3
+ if (!isCompAssign)
+ UsualUnaryConversions(lex);
+ UsualUnaryConversions(rex);
+
+ // "The type of the result is that of the promoted left operand."
+ return lex->getType();
+}
+
+inline QualType Sema::CheckCompareOperands( // C99 6.5.8
+ Expr *&lex, Expr *&rex, SourceLocation loc, bool isRelational)
+{
+ // C99 6.5.8p3 / C99 6.5.9p4
+ if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
+ UsualArithmeticConversions(lex, rex);
+ else {
+ UsualUnaryConversions(lex);
+ UsualUnaryConversions(rex);
+ }
+ QualType lType = lex->getType();
+ QualType rType = rex->getType();
+
+ // For non-floating point types, check for self-comparisons of the form
+ // x == x, x != x, x < x, etc. These always evaluate to a constant, and
+ // often indicate logic errors in the program.
+ if (!lType->isFloatingType()) {
+ if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
+ if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
+ if (DRL->getDecl() == DRR->getDecl())
+ Diag(loc, diag::warn_selfcomparison);
+ }
+
+ if (isRelational) {
+ if (lType->isRealType() && rType->isRealType())
+ return Context.IntTy;
+ } else {
+ // Check for comparisons of floating point operands using != and ==.
+ if (lType->isFloatingType()) {
+ assert (rType->isFloatingType());
+ CheckFloatComparison(loc,lex,rex);
+ }
+
+ if (lType->isArithmeticType() && rType->isArithmeticType())
+ return Context.IntTy;
+ }
+
+ bool LHSIsNull = lex->isNullPointerConstant(Context);
+ bool RHSIsNull = rex->isNullPointerConstant(Context);
+
+ // All of the following pointer related warnings are GCC extensions, except
+ // when handling null pointer constants. One day, we can consider making them
+ // errors (when -pedantic-errors is enabled).
+ if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
+ QualType lpointee = lType->getAsPointerType()->getPointeeType();
+ QualType rpointee = rType->getAsPointerType()->getPointeeType();
+
+ if (!LHSIsNull && !RHSIsNull && // C99 6.5.9p2
+ !lpointee->isVoidType() && !lpointee->isVoidType() &&
+ !Context.typesAreCompatible(lpointee.getUnqualifiedType(),
+ rpointee.getUnqualifiedType())) {
+ Diag(loc, diag::ext_typecheck_comparison_of_distinct_pointers,
+ lType.getAsString(), rType.getAsString(),
+ lex->getSourceRange(), rex->getSourceRange());
+ }
+ ImpCastExprToType(rex, lType); // promote the pointer to pointer
+ return Context.IntTy;
+ }
+ if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())
+ && Context.ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
+ ImpCastExprToType(rex, lType);
+ return Context.IntTy;
+ }
+ if (lType->isPointerType() && rType->isIntegerType()) {
+ if (!RHSIsNull)
+ Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
+ lType.getAsString(), rType.getAsString(),
+ lex->getSourceRange(), rex->getSourceRange());
+ ImpCastExprToType(rex, lType); // promote the integer to pointer
+ return Context.IntTy;
+ }
+ if (lType->isIntegerType() && rType->isPointerType()) {
+ if (!LHSIsNull)
+ Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
+ lType.getAsString(), rType.getAsString(),
+ lex->getSourceRange(), rex->getSourceRange());
+ ImpCastExprToType(lex, rType); // promote the integer to pointer
+ return Context.IntTy;
+ }
+ return InvalidOperands(loc, lex, rex);
+}
+
+inline QualType Sema::CheckBitwiseOperands(
+ Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
+{
+ if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
+ return CheckVectorOperands(loc, lex, rex);
+
+ QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
+
+ if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
+ return compType;
+ return InvalidOperands(loc, lex, rex);
+}
+
+inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
+ Expr *&lex, Expr *&rex, SourceLocation loc)
+{
+ UsualUnaryConversions(lex);
+ UsualUnaryConversions(rex);
+
+ if (lex->getType()->isScalarType() || rex->getType()->isScalarType())
+ return Context.IntTy;
+ return InvalidOperands(loc, lex, rex);
+}
+
+inline QualType Sema::CheckAssignmentOperands( // C99 6.5.16.1
+ Expr *lex, Expr *&rex, SourceLocation loc, QualType compoundType)
+{
+ QualType lhsType = lex->getType();
+ QualType rhsType = compoundType.isNull() ? rex->getType() : compoundType;
+ Expr::isModifiableLvalueResult mlval = lex->isModifiableLvalue();
+
+ switch (mlval) { // C99 6.5.16p2
+ case Expr::MLV_Valid:
+ break;
+ case Expr::MLV_ConstQualified:
+ Diag(loc, diag::err_typecheck_assign_const, lex->getSourceRange());
+ return QualType();
+ case Expr::MLV_ArrayType:
+ Diag(loc, diag::err_typecheck_array_not_modifiable_lvalue,
+ lhsType.getAsString(), lex->getSourceRange());
+ return QualType();
+ case Expr::MLV_NotObjectType:
+ Diag(loc, diag::err_typecheck_non_object_not_modifiable_lvalue,
+ lhsType.getAsString(), lex->getSourceRange());
+ return QualType();
+ case Expr::MLV_InvalidExpression:
+ Diag(loc, diag::err_typecheck_expression_not_modifiable_lvalue,
+ lex->getSourceRange());
+ return QualType();
+ case Expr::MLV_IncompleteType:
+ case Expr::MLV_IncompleteVoidType:
+ Diag(loc, diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
+ lhsType.getAsString(), lex->getSourceRange());
+ return QualType();
+ case Expr::MLV_DuplicateVectorComponents:
+ Diag(loc, diag::err_typecheck_duplicate_vector_components_not_mlvalue,
+ lex->getSourceRange());
+ return QualType();
+ }
+
+ AssignConvertType ConvTy;
+ if (compoundType.isNull())
+ ConvTy = CheckSingleAssignmentConstraints(lhsType, rex);
+ else
+ ConvTy = CheckCompoundAssignmentConstraints(lhsType, rhsType);
+
+ if (DiagnoseAssignmentResult(ConvTy, loc, lhsType, rhsType,
+ rex, "assigning"))
+ return QualType();
+
+ // C99 6.5.16p3: The type of an assignment expression is the type of the
+ // left operand unless the left operand has qualified type, in which case
+ // it is the unqualified version of the type of the left operand.
+ // C99 6.5.16.1p2: In simple assignment, the value of the right operand
+ // is converted to the type of the assignment expression (above).
+ // C++ 5.17p1: the type of the assignment expression is that of its left
+ // oprdu.
+ return lhsType.getUnqualifiedType();
+}
+
+inline QualType Sema::CheckCommaOperands( // C99 6.5.17
+ Expr *&lex, Expr *&rex, SourceLocation loc) {
+ UsualUnaryConversions(rex);
+ return rex->getType();
+}
+
+/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
+/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
+QualType Sema::CheckIncrementDecrementOperand(Expr *op, SourceLocation OpLoc) {
+ QualType resType = op->getType();
+ assert(!resType.isNull() && "no type for increment/decrement expression");
+
+ // C99 6.5.2.4p1: We allow complex as a GCC extension.
+ if (const PointerType *pt = resType->getAsPointerType()) {
+ if (!pt->getPointeeType()->isObjectType()) { // C99 6.5.2.4p2, 6.5.6p2
+ Diag(OpLoc, diag::err_typecheck_arithmetic_incomplete_type,
+ resType.getAsString(), op->getSourceRange());
+ return QualType();
+ }
+ } else if (!resType->isRealType()) {
+ if (resType->isComplexType())
+ // C99 does not support ++/-- on complex types.
+ Diag(OpLoc, diag::ext_integer_increment_complex,
+ resType.getAsString(), op->getSourceRange());
+ else {
+ Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement,
+ resType.getAsString(), op->getSourceRange());
+ return QualType();
+ }
+ }
+ // At this point, we know we have a real, complex or pointer type.
+ // Now make sure the operand is a modifiable lvalue.
+ Expr::isModifiableLvalueResult mlval = op->isModifiableLvalue();
+ if (mlval != Expr::MLV_Valid) {
+ // FIXME: emit a more precise diagnostic...
+ Diag(OpLoc, diag::err_typecheck_invalid_lvalue_incr_decr,
+ op->getSourceRange());
+ return QualType();
+ }
+ return resType;
+}
+
+/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
+/// This routine allows us to typecheck complex/recursive expressions
+/// where the declaration is needed for type checking. Here are some
+/// examples: &s.xx, &s.zz[1].yy, &(1+2), &(XX), &"123"[2].
+static ValueDecl *getPrimaryDecl(Expr *e) {
+ switch (e->getStmtClass()) {
+ case Stmt::DeclRefExprClass:
+ return cast<DeclRefExpr>(e)->getDecl();
+ case Stmt::MemberExprClass:
+ // Fields cannot be declared with a 'register' storage class.
+ // &X->f is always ok, even if X is declared register.
+ if (cast<MemberExpr>(e)->isArrow())
+ return 0;
+ return getPrimaryDecl(cast<MemberExpr>(e)->getBase());
+ case Stmt::ArraySubscriptExprClass: {
+ // &X[4] and &4[X] is invalid if X is invalid and X is not a pointer.
+
+ ValueDecl *VD = getPrimaryDecl(cast<ArraySubscriptExpr>(e)->getBase());
+ if (!VD || VD->getType()->isPointerType())
+ return 0;
+ else
+ return VD;
+ }
+ case Stmt::UnaryOperatorClass:
+ return getPrimaryDecl(cast<UnaryOperator>(e)->getSubExpr());
+ case Stmt::ParenExprClass:
+ return getPrimaryDecl(cast<ParenExpr>(e)->getSubExpr());
+ case Stmt::ImplicitCastExprClass:
+ // &X[4] when X is an array, has an implicit cast from array to pointer.
+ return getPrimaryDecl(cast<ImplicitCastExpr>(e)->getSubExpr());
+ default:
+ return 0;
+ }
+}
+
+/// CheckAddressOfOperand - The operand of & must be either a function
+/// designator or an lvalue designating an object. If it is an lvalue, the
+/// object cannot be declared with storage class register or be a bit field.
+/// Note: The usual conversions are *not* applied to the operand of the &
+/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
+QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
+ if (getLangOptions().C99) {
+ // Implement C99-only parts of addressof rules.
+ if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
+ if (uOp->getOpcode() == UnaryOperator::Deref)
+ // Per C99 6.5.3.2, the address of a deref always returns a valid result
+ // (assuming the deref expression is valid).
+ return uOp->getSubExpr()->getType();
+ }
+ // Technically, there should be a check for array subscript
+ // expressions here, but the result of one is always an lvalue anyway.
+ }
+ ValueDecl *dcl = getPrimaryDecl(op);
+ Expr::isLvalueResult lval = op->isLvalue();
+
+ if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
+ if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators
+ // FIXME: emit more specific diag...
+ Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof,
+ op->getSourceRange());
+ return QualType();
+ }
+ } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(op)) { // C99 6.5.3.2p1
+ if (MemExpr->getMemberDecl()->isBitField()) {
+ Diag(OpLoc, diag::err_typecheck_address_of,
+ std::string("bit-field"), op->getSourceRange());
+ return QualType();
+ }
+ // Check for Apple extension for accessing vector components.
+ } else if (isa<ArraySubscriptExpr>(op) &&
+ cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType()) {
+ Diag(OpLoc, diag::err_typecheck_address_of,
+ std::string("vector"), op->getSourceRange());
+ return QualType();
+ } else if (dcl) { // C99 6.5.3.2p1
+ // We have an lvalue with a decl. Make sure the decl is not declared
+ // with the register storage-class specifier.
+ if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
+ if (vd->getStorageClass() == VarDecl::Register) {
+ Diag(OpLoc, diag::err_typecheck_address_of,
+ std::string("register variable"), op->getSourceRange());
+ return QualType();
+ }
+ } else
+ assert(0 && "Unknown/unexpected decl type");
+ }
+ // If the operand has type "type", the result has type "pointer to type".
+ return Context.getPointerType(op->getType());
+}
+
+QualType Sema::CheckIndirectionOperand(Expr *op, SourceLocation OpLoc) {
+ UsualUnaryConversions(op);
+ QualType qType = op->getType();
+
+ if (const PointerType *PT = qType->getAsPointerType()) {
+ // Note that per both C89 and C99, this is always legal, even
+ // if ptype is an incomplete type or void.
+ // It would be possible to warn about dereferencing a
+ // void pointer, but it's completely well-defined,
+ // and such a warning is unlikely to catch any mistakes.
+ return PT->getPointeeType();
+ }
+ Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer,
+ qType.getAsString(), op->getSourceRange());
+ return QualType();
+}
+
+static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
+ tok::TokenKind Kind) {
+ BinaryOperator::Opcode Opc;
+ switch (Kind) {
+ default: assert(0 && "Unknown binop!");
+ case tok::star: Opc = BinaryOperator::Mul; break;
+ case tok::slash: Opc = BinaryOperator::Div; break;
+ case tok::percent: Opc = BinaryOperator::Rem; break;
+ case tok::plus: Opc = BinaryOperator::Add; break;
+ case tok::minus: Opc = BinaryOperator::Sub; break;
+ case tok::lessless: Opc = BinaryOperator::Shl; break;
+ case tok::greatergreater: Opc = BinaryOperator::Shr; break;
+ case tok::lessequal: Opc = BinaryOperator::LE; break;
+ case tok::less: Opc = BinaryOperator::LT; break;
+ case tok::greaterequal: Opc = BinaryOperator::GE; break;
+ case tok::greater: Opc = BinaryOperator::GT; break;
+ case tok::exclaimequal: Opc = BinaryOperator::NE; break;
+ case tok::equalequal: Opc = BinaryOperator::EQ; break;
+ case tok::amp: Opc = BinaryOperator::And; break;
+ case tok::caret: Opc = BinaryOperator::Xor; break;
+ case tok::pipe: Opc = BinaryOperator::Or; break;
+ case tok::ampamp: Opc = BinaryOperator::LAnd; break;
+ case tok::pipepipe: Opc = BinaryOperator::LOr; break;
+ case tok::equal: Opc = BinaryOperator::Assign; break;
+ case tok::starequal: Opc = BinaryOperator::MulAssign; break;
+ case tok::slashequal: Opc = BinaryOperator::DivAssign; break;
+ case tok::percentequal: Opc = BinaryOperator::RemAssign; break;
+ case tok::plusequal: Opc = BinaryOperator::AddAssign; break;
+ case tok::minusequal: Opc = BinaryOperator::SubAssign; break;
+ case tok::lesslessequal: Opc = BinaryOperator::ShlAssign; break;
+ case tok::greatergreaterequal: Opc = BinaryOperator::ShrAssign; break;
+ case tok::ampequal: Opc = BinaryOperator::AndAssign; break;
+ case tok::caretequal: Opc = BinaryOperator::XorAssign; break;
+ case tok::pipeequal: Opc = BinaryOperator::OrAssign; break;
+ case tok::comma: Opc = BinaryOperator::Comma; break;
+ }
+ return Opc;
+}
+
+static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
+ tok::TokenKind Kind) {
+ UnaryOperator::Opcode Opc;
+ switch (Kind) {
+ default: assert(0 && "Unknown unary op!");
+ case tok::plusplus: Opc = UnaryOperator::PreInc; break;
+ case tok::minusminus: Opc = UnaryOperator::PreDec; break;
+ case tok::amp: Opc = UnaryOperator::AddrOf; break;
+ case tok::star: Opc = UnaryOperator::Deref; break;
+ case tok::plus: Opc = UnaryOperator::Plus; break;
+ case tok::minus: Opc = UnaryOperator::Minus; break;
+ case tok::tilde: Opc = UnaryOperator::Not; break;
+ case tok::exclaim: Opc = UnaryOperator::LNot; break;
+ case tok::kw_sizeof: Opc = UnaryOperator::SizeOf; break;
+ case tok::kw___alignof: Opc = UnaryOperator::AlignOf; break;
+ case tok::kw___real: Opc = UnaryOperator::Real; break;
+ case tok::kw___imag: Opc = UnaryOperator::Imag; break;
+ case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
+ }
+ return Opc;
+}
+
+// Binary Operators. 'Tok' is the token for the operator.
+Action::ExprResult Sema::ActOnBinOp(SourceLocation TokLoc, tok::TokenKind Kind,
+ ExprTy *LHS, ExprTy *RHS) {
+ BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
+ Expr *lhs = (Expr *)LHS, *rhs = (Expr*)RHS;
+
+ assert((lhs != 0) && "ActOnBinOp(): missing left expression");
+ assert((rhs != 0) && "ActOnBinOp(): missing right expression");
+
+ QualType ResultTy; // Result type of the binary operator.
+ QualType CompTy; // Computation type for compound assignments (e.g. '+=')
+
+ switch (Opc) {
+ default:
+ assert(0 && "Unknown binary expr!");
+ case BinaryOperator::Assign:
+ ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, QualType());
+ break;
+ case BinaryOperator::Mul:
+ case BinaryOperator::Div:
+ ResultTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc);
+ break;
+ case BinaryOperator::Rem:
+ ResultTy = CheckRemainderOperands(lhs, rhs, TokLoc);
+ break;
+ case BinaryOperator::Add:
+ ResultTy = CheckAdditionOperands(lhs, rhs, TokLoc);
+ break;
+ case BinaryOperator::Sub:
+ ResultTy = CheckSubtractionOperands(lhs, rhs, TokLoc);
+ break;
+ case BinaryOperator::Shl:
+ case BinaryOperator::Shr:
+ ResultTy = CheckShiftOperands(lhs, rhs, TokLoc);
+ break;
+ case BinaryOperator::LE:
+ case BinaryOperator::LT:
+ case BinaryOperator::GE:
+ case BinaryOperator::GT:
+ ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, true);
+ break;
+ case BinaryOperator::EQ:
+ case BinaryOperator::NE:
+ ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, false);
+ break;
+ case BinaryOperator::And:
+ case BinaryOperator::Xor:
+ case BinaryOperator::Or:
+ ResultTy = CheckBitwiseOperands(lhs, rhs, TokLoc);
+ break;
+ case BinaryOperator::LAnd:
+ case BinaryOperator::LOr:
+ ResultTy = CheckLogicalOperands(lhs, rhs, TokLoc);
+ break;
+ case BinaryOperator::MulAssign:
+ case BinaryOperator::DivAssign:
+ CompTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc, true);
+ if (!CompTy.isNull())
+ ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
+ break;
+ case BinaryOperator::RemAssign:
+ CompTy = CheckRemainderOperands(lhs, rhs, TokLoc, true);
+ if (!CompTy.isNull())
+ ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
+ break;
+ case BinaryOperator::AddAssign:
+ CompTy = CheckAdditionOperands(lhs, rhs, TokLoc, true);
+ if (!CompTy.isNull())
+ ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
+ break;
+ case BinaryOperator::SubAssign:
+ CompTy = CheckSubtractionOperands(lhs, rhs, TokLoc, true);
+ if (!CompTy.isNull())
+ ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
+ break;
+ case BinaryOperator::ShlAssign:
+ case BinaryOperator::ShrAssign:
+ CompTy = CheckShiftOperands(lhs, rhs, TokLoc, true);
+ if (!CompTy.isNull())
+ ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
+ break;
+ case BinaryOperator::AndAssign:
+ case BinaryOperator::XorAssign:
+ case BinaryOperator::OrAssign:
+ CompTy = CheckBitwiseOperands(lhs, rhs, TokLoc, true);
+ if (!CompTy.isNull())
+ ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
+ break;
+ case BinaryOperator::Comma:
+ ResultTy = CheckCommaOperands(lhs, rhs, TokLoc);
+ break;
+ }
+ if (ResultTy.isNull())
+ return true;
+ if (CompTy.isNull())
+ return new BinaryOperator(lhs, rhs, Opc, ResultTy, TokLoc);
+ else
+ return new CompoundAssignOperator(lhs, rhs, Opc, ResultTy, CompTy, TokLoc);
+}
+
+// Unary Operators. 'Tok' is the token for the operator.
+Action::ExprResult Sema::ActOnUnaryOp(SourceLocation OpLoc, tok::TokenKind Op,
+ ExprTy *input) {
+ Expr *Input = (Expr*)input;
+ UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
+ QualType resultType;
+ switch (Opc) {
+ default:
+ assert(0 && "Unimplemented unary expr!");
+ case UnaryOperator::PreInc:
+ case UnaryOperator::PreDec:
+ resultType = CheckIncrementDecrementOperand(Input, OpLoc);
+ break;
+ case UnaryOperator::AddrOf:
+ resultType = CheckAddressOfOperand(Input, OpLoc);
+ break;
+ case UnaryOperator::Deref:
+ DefaultFunctionArrayConversion(Input);
+ resultType = CheckIndirectionOperand(Input, OpLoc);
+ break;
+ case UnaryOperator::Plus:
+ case UnaryOperator::Minus:
+ UsualUnaryConversions(Input);
+ resultType = Input->getType();
+ if (!resultType->isArithmeticType()) // C99 6.5.3.3p1
+ return Diag(OpLoc, diag::err_typecheck_unary_expr,
+ resultType.getAsString());
+ break;
+ case UnaryOperator::Not: // bitwise complement
+ UsualUnaryConversions(Input);
+ resultType = Input->getType();
+ // C99 6.5.3.3p1. We allow complex as a GCC extension.
+ if (!resultType->isIntegerType()) {
+ if (resultType->isComplexType())
+ // C99 does not support '~' for complex conjugation.
+ Diag(OpLoc, diag::ext_integer_complement_complex,
+ resultType.getAsString());
+ else
+ return Diag(OpLoc, diag::err_typecheck_unary_expr,
+ resultType.getAsString());
+ }
+ break;
+ case UnaryOperator::LNot: // logical negation
+ // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
+ DefaultFunctionArrayConversion(Input);
+ resultType = Input->getType();
+ if (!resultType->isScalarType()) // C99 6.5.3.3p1
+ return Diag(OpLoc, diag::err_typecheck_unary_expr,
+ resultType.getAsString());
+ // LNot always has type int. C99 6.5.3.3p5.
+ resultType = Context.IntTy;
+ break;
+ case UnaryOperator::SizeOf:
+ resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc, true);
+ break;
+ case UnaryOperator::AlignOf:
+ resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc, false);
+ break;
+ case UnaryOperator::Real:
+ case UnaryOperator::Imag:
+ resultType = CheckRealImagOperand(Input, OpLoc);
+ break;
+ case UnaryOperator::Extension:
+ resultType = Input->getType();
+ break;
+ }
+ if (resultType.isNull())
+ return true;
+ return new UnaryOperator(Input, Opc, resultType, OpLoc);
+}
+
+/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
+Sema::ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
+ SourceLocation LabLoc,
+ IdentifierInfo *LabelII) {
+ // Look up the record for this label identifier.
+ LabelStmt *&LabelDecl = LabelMap[LabelII];
+
+ // If we haven't seen this label yet, create a forward reference.
+ if (LabelDecl == 0)
+ LabelDecl = new LabelStmt(LabLoc, LabelII, 0);
+
+ // Create the AST node. The address of a label always has type 'void*'.
+ return new AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
+ Context.getPointerType(Context.VoidTy));
+}
+
+Sema::ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
+ SourceLocation RPLoc) { // "({..})"
+ Stmt *SubStmt = static_cast<Stmt*>(substmt);
+ assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
+ CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
+
+ // FIXME: there are a variety of strange constraints to enforce here, for
+ // example, it is not possible to goto into a stmt expression apparently.
+ // More semantic analysis is needed.
+
+ // FIXME: the last statement in the compount stmt has its value used. We
+ // should not warn about it being unused.
+
+ // If there are sub stmts in the compound stmt, take the type of the last one
+ // as the type of the stmtexpr.
+ QualType Ty = Context.VoidTy;
+
+ if (!Compound->body_empty())
+ if (Expr *LastExpr = dyn_cast<Expr>(Compound->body_back()))
+ Ty = LastExpr->getType();
+
+ return new StmtExpr(Compound, Ty, LPLoc, RPLoc);
+}
+
+Sema::ExprResult Sema::ActOnBuiltinOffsetOf(SourceLocation BuiltinLoc,
+ SourceLocation TypeLoc,
+ TypeTy *argty,
+ OffsetOfComponent *CompPtr,
+ unsigned NumComponents,
+ SourceLocation RPLoc) {
+ QualType ArgTy = QualType::getFromOpaquePtr(argty);
+ assert(!ArgTy.isNull() && "Missing type argument!");
+
+ // We must have at least one component that refers to the type, and the first
+ // one is known to be a field designator. Verify that the ArgTy represents
+ // a struct/union/class.
+ if (!ArgTy->isRecordType())
+ return Diag(TypeLoc, diag::err_offsetof_record_type,ArgTy.getAsString());
+
+ // Otherwise, create a compound literal expression as the base, and
+ // iteratively process the offsetof designators.
+ Expr *Res = new CompoundLiteralExpr(SourceLocation(), ArgTy, 0, false);
+
+ // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
+ // GCC extension, diagnose them.
+ if (NumComponents != 1)
+ Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator,
+ SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd));
+
+ for (unsigned i = 0; i != NumComponents; ++i) {
+ const OffsetOfComponent &OC = CompPtr[i];
+ if (OC.isBrackets) {
+ // Offset of an array sub-field. TODO: Should we allow vector elements?
+ const ArrayType *AT = Res->getType()->getAsArrayType();
+ if (!AT) {
+ delete Res;
+ return Diag(OC.LocEnd, diag::err_offsetof_array_type,
+ Res->getType().getAsString());
+ }
+
+ // FIXME: C++: Verify that operator[] isn't overloaded.
+
+ // C99 6.5.2.1p1
+ Expr *Idx = static_cast<Expr*>(OC.U.E);
+ if (!Idx->getType()->isIntegerType())
+ return Diag(Idx->getLocStart(), diag::err_typecheck_subscript,
+ Idx->getSourceRange());
+
+ Res = new ArraySubscriptExpr(Res, Idx, AT->getElementType(), OC.LocEnd);
+ continue;
+ }
+
+ const RecordType *RC = Res->getType()->getAsRecordType();
+ if (!RC) {
+ delete Res;
+ return Diag(OC.LocEnd, diag::err_offsetof_record_type,
+ Res->getType().getAsString());
+ }
+
+ // Get the decl corresponding to this.
+ RecordDecl *RD = RC->getDecl();
+ FieldDecl *MemberDecl = RD->getMember(OC.U.IdentInfo);
+ if (!MemberDecl)
+ return Diag(BuiltinLoc, diag::err_typecheck_no_member,
+ OC.U.IdentInfo->getName(),
+ SourceRange(OC.LocStart, OC.LocEnd));
+
+ // FIXME: C++: Verify that MemberDecl isn't a static field.
+ // FIXME: Verify that MemberDecl isn't a bitfield.
+ // MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
+ // matter here.
+ Res = new MemberExpr(Res, false, MemberDecl, OC.LocEnd, MemberDecl->getType());
+ }
+
+ return new UnaryOperator(Res, UnaryOperator::OffsetOf, Context.getSizeType(),
+ BuiltinLoc);
+}
+
+
+Sema::ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
+ TypeTy *arg1, TypeTy *arg2,
+ SourceLocation RPLoc) {
+ QualType argT1 = QualType::getFromOpaquePtr(arg1);
+ QualType argT2 = QualType::getFromOpaquePtr(arg2);
+
+ assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
+
+ return new TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1, argT2,RPLoc);
+}
+
+Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond,
+ ExprTy *expr1, ExprTy *expr2,
+ SourceLocation RPLoc) {
+ Expr *CondExpr = static_cast<Expr*>(cond);
+ Expr *LHSExpr = static_cast<Expr*>(expr1);
+ Expr *RHSExpr = static_cast<Expr*>(expr2);
+
+ assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
+
+ // The conditional expression is required to be a constant expression.
+ llvm::APSInt condEval(32);
+ SourceLocation ExpLoc;
+ if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
+ return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant,
+ CondExpr->getSourceRange());
+
+ // If the condition is > zero, then the AST type is the same as the LSHExpr.
+ QualType resType = condEval.getZExtValue() ? LHSExpr->getType() :
+ RHSExpr->getType();
+ return new ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, RPLoc);
+}
+
+/// ExprsMatchFnType - return true if the Exprs in array Args have
+/// QualTypes that match the QualTypes of the arguments of the FnType.
+/// The number of arguments has already been validated to match the number of
+/// arguments in FnType.
+static bool ExprsMatchFnType(Expr **Args, const FunctionTypeProto *FnType) {
+ unsigned NumParams = FnType->getNumArgs();
+ for (unsigned i = 0; i != NumParams; ++i)
+ if (Args[i]->getType().getCanonicalType() !=
+ FnType->getArgType(i).getCanonicalType())
+ return false;
+ return true;
+}
+
+Sema::ExprResult Sema::ActOnOverloadExpr(ExprTy **args, unsigned NumArgs,
+ SourceLocation *CommaLocs,
+ SourceLocation BuiltinLoc,
+ SourceLocation RParenLoc) {
+ // __builtin_overload requires at least 2 arguments
+ if (NumArgs < 2)
+ return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
+ SourceRange(BuiltinLoc, RParenLoc));
+
+ // The first argument is required to be a constant expression. It tells us
+ // the number of arguments to pass to each of the functions to be overloaded.
+ Expr **Args = reinterpret_cast<Expr**>(args);
+ Expr *NParamsExpr = Args[0];
+ llvm::APSInt constEval(32);
+ SourceLocation ExpLoc;
+ if (!NParamsExpr->isIntegerConstantExpr(constEval, Context, &ExpLoc))
+ return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant,
+ NParamsExpr->getSourceRange());
+
+ // Verify that the number of parameters is > 0
+ unsigned NumParams = constEval.getZExtValue();
+ if (NumParams == 0)
+ return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant,
+ NParamsExpr->getSourceRange());
+ // Verify that we have at least 1 + NumParams arguments to the builtin.
+ if ((NumParams + 1) > NumArgs)
+ return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
+ SourceRange(BuiltinLoc, RParenLoc));
+
+ // Figure out the return type, by matching the args to one of the functions
+ // listed after the parameters.
+ OverloadExpr *OE = 0;
+ for (unsigned i = NumParams + 1; i < NumArgs; ++i) {
+ // UsualUnaryConversions will convert the function DeclRefExpr into a
+ // pointer to function.
+ Expr *Fn = UsualUnaryConversions(Args[i]);
+ FunctionTypeProto *FnType = 0;
+ if (const PointerType *PT = Fn->getType()->getAsPointerType()) {
+ QualType PointeeType = PT->getPointeeType().getCanonicalType();
+ FnType = dyn_cast<FunctionTypeProto>(PointeeType);
+ }
+
+ // The Expr type must be FunctionTypeProto, since FunctionTypeProto has no
+ // parameters, and the number of parameters must match the value passed to
+ // the builtin.
+ if (!FnType || (FnType->getNumArgs() != NumParams))
+ return Diag(Fn->getExprLoc(), diag::err_overload_incorrect_fntype,
+ Fn->getSourceRange());
+
+ // Scan the parameter list for the FunctionType, checking the QualType of
+ // each parameter against the QualTypes of the arguments to the builtin.
+ // If they match, return a new OverloadExpr.
+ if (ExprsMatchFnType(Args+1, FnType)) {
+ if (OE)
+ return Diag(Fn->getExprLoc(), diag::err_overload_multiple_match,
+ OE->getFn()->getSourceRange());
+ // Remember our match, and continue processing the remaining arguments
+ // to catch any errors.
+ OE = new OverloadExpr(Args, NumArgs, i, FnType->getResultType(),
+ BuiltinLoc, RParenLoc);
+ }
+ }
+ // Return the newly created OverloadExpr node, if we succeded in matching
+ // exactly one of the candidate functions.
+ if (OE)
+ return OE;
+
+ // If we didn't find a matching function Expr in the __builtin_overload list
+ // the return an error.
+ std::string typeNames;
+ for (unsigned i = 0; i != NumParams; ++i) {
+ if (i != 0) typeNames += ", ";
+ typeNames += Args[i+1]->getType().getAsString();
+ }
+
+ return Diag(BuiltinLoc, diag::err_overload_no_match, typeNames,
+ SourceRange(BuiltinLoc, RParenLoc));
+}
+
+Sema::ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
+ ExprTy *expr, TypeTy *type,
+ SourceLocation RPLoc) {
+ Expr *E = static_cast<Expr*>(expr);
+ QualType T = QualType::getFromOpaquePtr(type);
+
+ InitBuiltinVaListType();
+
+ if (CheckAssignmentConstraints(Context.getBuiltinVaListType(), E->getType())
+ != Compatible)
+ return Diag(E->getLocStart(),
+ diag::err_first_argument_to_va_arg_not_of_type_va_list,
+ E->getType().getAsString(),
+ E->getSourceRange());
+
+ // FIXME: Warn if a non-POD type is passed in.
+
+ return new VAArgExpr(BuiltinLoc, E, T, RPLoc);
+}
+
+bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
+ SourceLocation Loc,
+ QualType DstType, QualType SrcType,
+ Expr *SrcExpr, const char *Flavor) {
+ // Decode the result (notice that AST's are still created for extensions).
+ bool isInvalid = false;
+ unsigned DiagKind;
+ switch (ConvTy) {
+ default: assert(0 && "Unknown conversion type");
+ case Compatible: return false;
+ case PointerToInt:
+ DiagKind = diag::ext_typecheck_convert_pointer_int;
+ break;
+ case IntToPointer:
+ DiagKind = diag::ext_typecheck_convert_int_pointer;
+ break;
+ case IncompatiblePointer:
+ DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
+ break;
+ case FunctionVoidPointer:
+ DiagKind = diag::ext_typecheck_convert_pointer_void_func;
+ break;
+ case CompatiblePointerDiscardsQualifiers:
+ DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
+ break;
+ case Incompatible:
+ DiagKind = diag::err_typecheck_convert_incompatible;
+ isInvalid = true;
+ break;
+ }
+
+ Diag(Loc, DiagKind, DstType.getAsString(), SrcType.getAsString(), Flavor,
+ SrcExpr->getSourceRange());
+ return isInvalid;
+}
+
OpenPOWER on IntegriCloud