summaryrefslogtreecommitdiffstats
path: root/clang/lib/Sema/SemaDecl.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'clang/lib/Sema/SemaDecl.cpp')
-rw-r--r--clang/lib/Sema/SemaDecl.cpp2297
1 files changed, 2297 insertions, 0 deletions
diff --git a/clang/lib/Sema/SemaDecl.cpp b/clang/lib/Sema/SemaDecl.cpp
new file mode 100644
index 00000000000..7914e865741
--- /dev/null
+++ b/clang/lib/Sema/SemaDecl.cpp
@@ -0,0 +1,2297 @@
+//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for declarations.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Sema.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/Builtins.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/Type.h"
+#include "clang/Parse/DeclSpec.h"
+#include "clang/Parse/Scope.h"
+#include "clang/Basic/LangOptions.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Basic/SourceManager.h"
+// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Lex/HeaderSearch.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/DenseSet.h"
+using namespace clang;
+
+Sema::DeclTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S) const {
+ Decl *IIDecl = II.getFETokenInfo<Decl>();
+ // Find first occurance of none-tagged declaration
+ while(IIDecl && IIDecl->getIdentifierNamespace() != Decl::IDNS_Ordinary)
+ IIDecl = cast<ScopedDecl>(IIDecl)->getNext();
+ if (!IIDecl)
+ return 0;
+ if (isa<TypedefDecl>(IIDecl) || isa<ObjCInterfaceDecl>(IIDecl))
+ return IIDecl;
+ if (ObjCCompatibleAliasDecl *ADecl =
+ dyn_cast<ObjCCompatibleAliasDecl>(IIDecl))
+ return ADecl->getClassInterface();
+ return 0;
+}
+
+void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
+ if (S->decl_empty()) return;
+ assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!");
+
+ for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
+ I != E; ++I) {
+ Decl *TmpD = static_cast<Decl*>(*I);
+ assert(TmpD && "This decl didn't get pushed??");
+ ScopedDecl *D = dyn_cast<ScopedDecl>(TmpD);
+ assert(D && "This decl isn't a ScopedDecl?");
+
+ IdentifierInfo *II = D->getIdentifier();
+ if (!II) continue;
+
+ // Unlink this decl from the identifier. Because the scope contains decls
+ // in an unordered collection, and because we have multiple identifier
+ // namespaces (e.g. tag, normal, label),the decl may not be the first entry.
+ if (II->getFETokenInfo<Decl>() == D) {
+ // Normal case, no multiple decls in different namespaces.
+ II->setFETokenInfo(D->getNext());
+ } else {
+ // Scan ahead. There are only three namespaces in C, so this loop can
+ // never execute more than 3 times.
+ ScopedDecl *SomeDecl = II->getFETokenInfo<ScopedDecl>();
+ while (SomeDecl->getNext() != D) {
+ SomeDecl = SomeDecl->getNext();
+ assert(SomeDecl && "Didn't find this decl on its identifier's chain!");
+ }
+ SomeDecl->setNext(D->getNext());
+ }
+
+ // This will have to be revisited for C++: there we want to nest stuff in
+ // namespace decls etc. Even for C, we might want a top-level translation
+ // unit decl or something.
+ if (!CurFunctionDecl)
+ continue;
+
+ // Chain this decl to the containing function, it now owns the memory for
+ // the decl.
+ D->setNext(CurFunctionDecl->getDeclChain());
+ CurFunctionDecl->setDeclChain(D);
+ }
+}
+
+/// LookupInterfaceDecl - Lookup interface declaration in the scope chain.
+/// Return the first declaration found (which may or may not be a class
+/// declaration. Caller is responsible for handling the none-class case.
+/// Bypassing the alias of a class by returning the aliased class.
+ScopedDecl *Sema::LookupInterfaceDecl(IdentifierInfo *ClassName) {
+ ScopedDecl *IDecl;
+ // Scan up the scope chain looking for a decl that matches this identifier
+ // that is in the appropriate namespace.
+ for (IDecl = ClassName->getFETokenInfo<ScopedDecl>(); IDecl;
+ IDecl = IDecl->getNext())
+ if (IDecl->getIdentifierNamespace() == Decl::IDNS_Ordinary)
+ break;
+
+ if (ObjCCompatibleAliasDecl *ADecl =
+ dyn_cast_or_null<ObjCCompatibleAliasDecl>(IDecl))
+ return ADecl->getClassInterface();
+ return IDecl;
+}
+
+/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
+/// return 0 if one not found.
+ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
+ ScopedDecl *IdDecl = LookupInterfaceDecl(Id);
+ return cast_or_null<ObjCInterfaceDecl>(IdDecl);
+}
+
+/// LookupScopedDecl - Look up the inner-most declaration in the specified
+/// namespace.
+ScopedDecl *Sema::LookupScopedDecl(IdentifierInfo *II, unsigned NSI,
+ SourceLocation IdLoc, Scope *S) {
+ if (II == 0) return 0;
+ Decl::IdentifierNamespace NS = (Decl::IdentifierNamespace)NSI;
+
+ // Scan up the scope chain looking for a decl that matches this identifier
+ // that is in the appropriate namespace. This search should not take long, as
+ // shadowing of names is uncommon, and deep shadowing is extremely uncommon.
+ for (ScopedDecl *D = II->getFETokenInfo<ScopedDecl>(); D; D = D->getNext())
+ if (D->getIdentifierNamespace() == NS)
+ return D;
+
+ // If we didn't find a use of this identifier, and if the identifier
+ // corresponds to a compiler builtin, create the decl object for the builtin
+ // now, injecting it into translation unit scope, and return it.
+ if (NS == Decl::IDNS_Ordinary) {
+ // If this is a builtin on this (or all) targets, create the decl.
+ if (unsigned BuiltinID = II->getBuiltinID())
+ return LazilyCreateBuiltin(II, BuiltinID, S);
+ }
+ return 0;
+}
+
+void Sema::InitBuiltinVaListType()
+{
+ if (!Context.getBuiltinVaListType().isNull())
+ return;
+
+ IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
+ ScopedDecl *VaDecl = LookupScopedDecl(VaIdent, Decl::IDNS_Ordinary,
+ SourceLocation(), TUScope);
+ TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
+ Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
+}
+
+/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
+/// lazily create a decl for it.
+ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
+ Scope *S) {
+ Builtin::ID BID = (Builtin::ID)bid;
+
+ if (BID == Builtin::BI__builtin_va_start ||
+ BID == Builtin::BI__builtin_va_copy ||
+ BID == Builtin::BI__builtin_va_end)
+ InitBuiltinVaListType();
+
+ QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
+ FunctionDecl *New = FunctionDecl::Create(Context, SourceLocation(), II, R,
+ FunctionDecl::Extern, false, 0);
+
+ // Find translation-unit scope to insert this function into.
+ if (Scope *FnS = S->getFnParent())
+ S = FnS->getParent(); // Skip all scopes in a function at once.
+ while (S->getParent())
+ S = S->getParent();
+ S->AddDecl(New);
+
+ // Add this decl to the end of the identifier info.
+ if (ScopedDecl *LastDecl = II->getFETokenInfo<ScopedDecl>()) {
+ // Scan until we find the last (outermost) decl in the id chain.
+ while (LastDecl->getNext())
+ LastDecl = LastDecl->getNext();
+ // Insert before (outside) it.
+ LastDecl->setNext(New);
+ } else {
+ II->setFETokenInfo(New);
+ }
+ return New;
+}
+
+/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
+/// and scope as a previous declaration 'Old'. Figure out how to resolve this
+/// situation, merging decls or emitting diagnostics as appropriate.
+///
+TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, ScopedDecl *OldD) {
+ // Verify the old decl was also a typedef.
+ TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
+ if (!Old) {
+ Diag(New->getLocation(), diag::err_redefinition_different_kind,
+ New->getName());
+ Diag(OldD->getLocation(), diag::err_previous_definition);
+ return New;
+ }
+
+ // Allow multiple definitions for ObjC built-in typedefs.
+ // FIXME: Verify the underlying types are equivalent!
+ if (getLangOptions().ObjC1 && isBuiltinObjCType(New))
+ return Old;
+
+ // Redeclaration of a type is a constraint violation (6.7.2.3p1).
+ // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
+ // *either* declaration is in a system header. The code below implements
+ // this adhoc compatibility rule. FIXME: The following code will not
+ // work properly when compiling ".i" files (containing preprocessed output).
+ SourceManager &SrcMgr = Context.getSourceManager();
+ const FileEntry *OldDeclFile = SrcMgr.getFileEntryForLoc(Old->getLocation());
+ const FileEntry *NewDeclFile = SrcMgr.getFileEntryForLoc(New->getLocation());
+ HeaderSearch &HdrInfo = PP.getHeaderSearchInfo();
+ DirectoryLookup::DirType OldDirType = HdrInfo.getFileDirFlavor(OldDeclFile);
+ DirectoryLookup::DirType NewDirType = HdrInfo.getFileDirFlavor(NewDeclFile);
+
+ if ((OldDirType == DirectoryLookup::ExternCSystemHeaderDir ||
+ NewDirType == DirectoryLookup::ExternCSystemHeaderDir) ||
+ getLangOptions().Microsoft)
+ return New;
+
+ // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
+ // TODO: This is totally simplistic. It should handle merging functions
+ // together etc, merging extern int X; int X; ...
+ Diag(New->getLocation(), diag::err_redefinition, New->getName());
+ Diag(Old->getLocation(), diag::err_previous_definition);
+ return New;
+}
+
+/// DeclhasAttr - returns true if decl Declaration already has the target attribute.
+static bool DeclHasAttr(const Decl *decl, const Attr *target) {
+ for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
+ if (attr->getKind() == target->getKind())
+ return true;
+
+ return false;
+}
+
+/// MergeAttributes - append attributes from the Old decl to the New one.
+static void MergeAttributes(Decl *New, Decl *Old) {
+ Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
+
+// FIXME: fix this code to cleanup the Old attrs correctly
+ while (attr) {
+ tmp = attr;
+ attr = attr->getNext();
+
+ if (!DeclHasAttr(New, tmp)) {
+ New->addAttr(tmp);
+ } else {
+ tmp->setNext(0);
+ delete(tmp);
+ }
+ }
+}
+
+/// MergeFunctionDecl - We just parsed a function 'New' which has the same name
+/// and scope as a previous declaration 'Old'. Figure out how to resolve this
+/// situation, merging decls or emitting diagnostics as appropriate.
+///
+FunctionDecl *Sema::MergeFunctionDecl(FunctionDecl *New, ScopedDecl *OldD) {
+ // Verify the old decl was also a function.
+ FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
+ if (!Old) {
+ Diag(New->getLocation(), diag::err_redefinition_different_kind,
+ New->getName());
+ Diag(OldD->getLocation(), diag::err_previous_definition);
+ return New;
+ }
+
+ MergeAttributes(New, Old);
+
+
+ QualType OldQType = Old->getCanonicalType();
+ QualType NewQType = New->getCanonicalType();
+
+ // Function types need to be compatible, not identical. This handles
+ // duplicate function decls like "void f(int); void f(enum X);" properly.
+ if (Context.functionTypesAreCompatible(OldQType, NewQType))
+ return New;
+
+ // A function that has already been declared has been redeclared or defined
+ // with a different type- show appropriate diagnostic
+ diag::kind PrevDiag = Old->getBody() ? diag::err_previous_definition :
+ diag::err_previous_declaration;
+
+ // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
+ // TODO: This is totally simplistic. It should handle merging functions
+ // together etc, merging extern int X; int X; ...
+ Diag(New->getLocation(), diag::err_conflicting_types, New->getName());
+ Diag(Old->getLocation(), PrevDiag);
+ return New;
+}
+
+/// equivalentArrayTypes - Used to determine whether two array types are
+/// equivalent.
+/// We need to check this explicitly as an incomplete array definition is
+/// considered a VariableArrayType, so will not match a complete array
+/// definition that would be otherwise equivalent.
+static bool areEquivalentArrayTypes(QualType NewQType, QualType OldQType) {
+ const ArrayType *NewAT = NewQType->getAsArrayType();
+ const ArrayType *OldAT = OldQType->getAsArrayType();
+
+ if (!NewAT || !OldAT)
+ return false;
+
+ // If either (or both) array types in incomplete we need to strip off the
+ // outer VariableArrayType. Once the outer VAT is removed the remaining
+ // types must be identical if the array types are to be considered
+ // equivalent.
+ // eg. int[][1] and int[1][1] become
+ // VAT(null, CAT(1, int)) and CAT(1, CAT(1, int))
+ // removing the outermost VAT gives
+ // CAT(1, int) and CAT(1, int)
+ // which are equal, therefore the array types are equivalent.
+ if (NewAT->isIncompleteArrayType() || OldAT->isIncompleteArrayType()) {
+ if (NewAT->getIndexTypeQualifier() != OldAT->getIndexTypeQualifier())
+ return false;
+ NewQType = NewAT->getElementType().getCanonicalType();
+ OldQType = OldAT->getElementType().getCanonicalType();
+ }
+
+ return NewQType == OldQType;
+}
+
+/// MergeVarDecl - We just parsed a variable 'New' which has the same name
+/// and scope as a previous declaration 'Old'. Figure out how to resolve this
+/// situation, merging decls or emitting diagnostics as appropriate.
+///
+/// FIXME: Need to carefully consider tentative definition rules (C99 6.9.2p2).
+/// For example, we incorrectly complain about i1, i4 from C99 6.9.2p4.
+///
+VarDecl *Sema::MergeVarDecl(VarDecl *New, ScopedDecl *OldD) {
+ // Verify the old decl was also a variable.
+ VarDecl *Old = dyn_cast<VarDecl>(OldD);
+ if (!Old) {
+ Diag(New->getLocation(), diag::err_redefinition_different_kind,
+ New->getName());
+ Diag(OldD->getLocation(), diag::err_previous_definition);
+ return New;
+ }
+
+ MergeAttributes(New, Old);
+
+ // Verify the types match.
+ if (Old->getCanonicalType() != New->getCanonicalType() &&
+ !areEquivalentArrayTypes(New->getCanonicalType(), Old->getCanonicalType())) {
+ Diag(New->getLocation(), diag::err_redefinition, New->getName());
+ Diag(Old->getLocation(), diag::err_previous_definition);
+ return New;
+ }
+ // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
+ if (New->getStorageClass() == VarDecl::Static &&
+ (Old->getStorageClass() == VarDecl::None ||
+ Old->getStorageClass() == VarDecl::Extern)) {
+ Diag(New->getLocation(), diag::err_static_non_static, New->getName());
+ Diag(Old->getLocation(), diag::err_previous_definition);
+ return New;
+ }
+ // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
+ if (New->getStorageClass() != VarDecl::Static &&
+ Old->getStorageClass() == VarDecl::Static) {
+ Diag(New->getLocation(), diag::err_non_static_static, New->getName());
+ Diag(Old->getLocation(), diag::err_previous_definition);
+ return New;
+ }
+ // We've verified the types match, now handle "tentative" definitions.
+ FileVarDecl *OldFSDecl = dyn_cast<FileVarDecl>(Old);
+ FileVarDecl *NewFSDecl = dyn_cast<FileVarDecl>(New);
+
+ if (OldFSDecl && NewFSDecl) {
+ // Handle C "tentative" external object definitions (C99 6.9.2).
+ bool OldIsTentative = false;
+ bool NewIsTentative = false;
+
+ if (!OldFSDecl->getInit() &&
+ (OldFSDecl->getStorageClass() == VarDecl::None ||
+ OldFSDecl->getStorageClass() == VarDecl::Static))
+ OldIsTentative = true;
+
+ // FIXME: this check doesn't work (since the initializer hasn't been
+ // attached yet). This check should be moved to FinalizeDeclaratorGroup.
+ // Unfortunately, by the time we get to FinializeDeclaratorGroup, we've
+ // thrown out the old decl.
+ if (!NewFSDecl->getInit() &&
+ (NewFSDecl->getStorageClass() == VarDecl::None ||
+ NewFSDecl->getStorageClass() == VarDecl::Static))
+ ; // change to NewIsTentative = true; once the code is moved.
+
+ if (NewIsTentative || OldIsTentative)
+ return New;
+ }
+ if (Old->getStorageClass() != VarDecl::Extern &&
+ New->getStorageClass() != VarDecl::Extern) {
+ Diag(New->getLocation(), diag::err_redefinition, New->getName());
+ Diag(Old->getLocation(), diag::err_previous_definition);
+ }
+ return New;
+}
+
+/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
+/// no declarator (e.g. "struct foo;") is parsed.
+Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
+ // TODO: emit error on 'int;' or 'const enum foo;'.
+ // TODO: emit error on 'typedef int;'
+ // if (!DS.isMissingDeclaratorOk()) Diag(...);
+
+ return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
+}
+
+bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
+ // Get the type before calling CheckSingleAssignmentConstraints(), since
+ // it can promote the expression.
+ QualType InitType = Init->getType();
+
+ AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
+ return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
+ InitType, Init, "initializing");
+}
+
+bool Sema::CheckInitExpr(Expr *expr, InitListExpr *IList, unsigned slot,
+ QualType ElementType) {
+ Expr *savExpr = expr; // Might be promoted by CheckSingleInitializer.
+ if (CheckSingleInitializer(expr, ElementType))
+ return true; // types weren't compatible.
+
+ if (savExpr != expr) // The type was promoted, update initializer list.
+ IList->setInit(slot, expr);
+ return false;
+}
+
+bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
+ if (const IncompleteArrayType *IAT = DeclT->getAsIncompleteArrayType()) {
+ // C99 6.7.8p14. We have an array of character type with unknown size
+ // being initialized to a string literal.
+ llvm::APSInt ConstVal(32);
+ ConstVal = strLiteral->getByteLength() + 1;
+ // Return a new array type (C99 6.7.8p22).
+ DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
+ ArrayType::Normal, 0);
+ } else if (const ConstantArrayType *CAT = DeclT->getAsConstantArrayType()) {
+ // C99 6.7.8p14. We have an array of character type with known size.
+ if (strLiteral->getByteLength() > (unsigned)CAT->getMaximumElements())
+ Diag(strLiteral->getSourceRange().getBegin(),
+ diag::warn_initializer_string_for_char_array_too_long,
+ strLiteral->getSourceRange());
+ } else {
+ assert(0 && "HandleStringLiteralInit(): Invalid array type");
+ }
+ // Set type from "char *" to "constant array of char".
+ strLiteral->setType(DeclT);
+ // For now, we always return false (meaning success).
+ return false;
+}
+
+StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
+ const ArrayType *AT = DeclType->getAsArrayType();
+ if (AT && AT->getElementType()->isCharType()) {
+ return dyn_cast<StringLiteral>(Init);
+ }
+ return 0;
+}
+
+// CheckInitializerListTypes - Checks the types of elements of an initializer
+// list. This function is recursive: it calls itself to initialize subelements
+// of aggregate types. Note that the topLevel parameter essentially refers to
+// whether this expression "owns" the initializer list passed in, or if this
+// initialization is taking elements out of a parent initializer. Each
+// call to this function adds zero or more to startIndex, reports any errors,
+// and returns true if it found any inconsistent types.
+bool Sema::CheckInitializerListTypes(InitListExpr*& IList, QualType &DeclType,
+ bool topLevel, unsigned& startIndex) {
+ bool hadError = false;
+
+ if (DeclType->isScalarType()) {
+ // The simplest case: initializing a single scalar
+ if (topLevel) {
+ Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init,
+ IList->getSourceRange());
+ }
+ if (startIndex < IList->getNumInits()) {
+ Expr* expr = IList->getInit(startIndex);
+ if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
+ // FIXME: Should an error be reported here instead?
+ unsigned newIndex = 0;
+ CheckInitializerListTypes(SubInitList, DeclType, true, newIndex);
+ } else {
+ hadError |= CheckInitExpr(expr, IList, startIndex, DeclType);
+ }
+ ++startIndex;
+ }
+ // FIXME: Should an error be reported for empty initializer list + scalar?
+ } else if (DeclType->isVectorType()) {
+ if (startIndex < IList->getNumInits()) {
+ const VectorType *VT = DeclType->getAsVectorType();
+ int maxElements = VT->getNumElements();
+ QualType elementType = VT->getElementType();
+
+ for (int i = 0; i < maxElements; ++i) {
+ // Don't attempt to go past the end of the init list
+ if (startIndex >= IList->getNumInits())
+ break;
+ Expr* expr = IList->getInit(startIndex);
+ if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
+ unsigned newIndex = 0;
+ hadError |= CheckInitializerListTypes(SubInitList, elementType,
+ true, newIndex);
+ ++startIndex;
+ } else {
+ hadError |= CheckInitializerListTypes(IList, elementType,
+ false, startIndex);
+ }
+ }
+ }
+ } else if (DeclType->isAggregateType() || DeclType->isUnionType()) {
+ if (DeclType->isStructureType() || DeclType->isUnionType()) {
+ if (startIndex < IList->getNumInits() && !topLevel &&
+ Context.typesAreCompatible(IList->getInit(startIndex)->getType(),
+ DeclType)) {
+ // We found a compatible struct; per the standard, this initializes the
+ // struct. (The C standard technically says that this only applies for
+ // initializers for declarations with automatic scope; however, this
+ // construct is unambiguous anyway because a struct cannot contain
+ // a type compatible with itself. We'll output an error when we check
+ // if the initializer is constant.)
+ // FIXME: Is a call to CheckSingleInitializer required here?
+ ++startIndex;
+ } else {
+ RecordDecl* structDecl = DeclType->getAsRecordType()->getDecl();
+
+ // If the record is invalid, some of it's members are invalid. To avoid
+ // confusion, we forgo checking the intializer for the entire record.
+ if (structDecl->isInvalidDecl())
+ return true;
+
+ // If structDecl is a forward declaration, this loop won't do anything;
+ // That's okay, because an error should get printed out elsewhere. It
+ // might be worthwhile to skip over the rest of the initializer, though.
+ int numMembers = structDecl->getNumMembers() -
+ structDecl->hasFlexibleArrayMember();
+ for (int i = 0; i < numMembers; i++) {
+ // Don't attempt to go past the end of the init list
+ if (startIndex >= IList->getNumInits())
+ break;
+ FieldDecl * curField = structDecl->getMember(i);
+ if (!curField->getIdentifier()) {
+ // Don't initialize unnamed fields, e.g. "int : 20;"
+ continue;
+ }
+ QualType fieldType = curField->getType();
+ Expr* expr = IList->getInit(startIndex);
+ if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
+ unsigned newStart = 0;
+ hadError |= CheckInitializerListTypes(SubInitList, fieldType,
+ true, newStart);
+ ++startIndex;
+ } else {
+ hadError |= CheckInitializerListTypes(IList, fieldType,
+ false, startIndex);
+ }
+ if (DeclType->isUnionType())
+ break;
+ }
+ // FIXME: Implement flexible array initialization GCC extension (it's a
+ // really messy extension to implement, unfortunately...the necessary
+ // information isn't actually even here!)
+ }
+ } else if (DeclType->isArrayType()) {
+ // Check for the special-case of initializing an array with a string.
+ if (startIndex < IList->getNumInits()) {
+ if (StringLiteral *lit = IsStringLiteralInit(IList->getInit(startIndex),
+ DeclType)) {
+ CheckStringLiteralInit(lit, DeclType);
+ ++startIndex;
+ if (topLevel && startIndex < IList->getNumInits()) {
+ // We have leftover initializers; warn
+ Diag(IList->getInit(startIndex)->getLocStart(),
+ diag::err_excess_initializers_in_char_array_initializer,
+ IList->getInit(startIndex)->getSourceRange());
+ }
+ return false;
+ }
+ }
+ int maxElements;
+ if (DeclType->isIncompleteArrayType()) {
+ // FIXME: use a proper constant
+ maxElements = 0x7FFFFFFF;
+ } else if (const VariableArrayType *VAT =
+ DeclType->getAsVariableArrayType()) {
+ // Check for VLAs; in standard C it would be possible to check this
+ // earlier, but I don't know where clang accepts VLAs (gcc accepts
+ // them in all sorts of strange places).
+ Diag(VAT->getSizeExpr()->getLocStart(),
+ diag::err_variable_object_no_init,
+ VAT->getSizeExpr()->getSourceRange());
+ hadError = true;
+ maxElements = 0x7FFFFFFF;
+ } else {
+ const ConstantArrayType *CAT = DeclType->getAsConstantArrayType();
+ maxElements = static_cast<int>(CAT->getSize().getZExtValue());
+ }
+ QualType elementType = DeclType->getAsArrayType()->getElementType();
+ int numElements = 0;
+ for (int i = 0; i < maxElements; ++i, ++numElements) {
+ // Don't attempt to go past the end of the init list
+ if (startIndex >= IList->getNumInits())
+ break;
+ Expr* expr = IList->getInit(startIndex);
+ if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
+ unsigned newIndex = 0;
+ hadError |= CheckInitializerListTypes(SubInitList, elementType,
+ true, newIndex);
+ ++startIndex;
+ } else {
+ hadError |= CheckInitializerListTypes(IList, elementType,
+ false, startIndex);
+ }
+ }
+ if (DeclType->isIncompleteArrayType()) {
+ // If this is an incomplete array type, the actual type needs to
+ // be calculated here
+ if (numElements == 0) {
+ // Sizing an array implicitly to zero is not allowed
+ // (It could in theory be allowed, but it doesn't really matter.)
+ Diag(IList->getLocStart(),
+ diag::err_at_least_one_initializer_needed_to_size_array);
+ hadError = true;
+ } else {
+ llvm::APSInt ConstVal(32);
+ ConstVal = numElements;
+ DeclType = Context.getConstantArrayType(elementType, ConstVal,
+ ArrayType::Normal, 0);
+ }
+ }
+ } else {
+ assert(0 && "Aggregate that isn't a function or array?!");
+ }
+ } else {
+ // In C, all types are either scalars or aggregates, but
+ // additional handling is needed here for C++ (and possibly others?).
+ assert(0 && "Unsupported initializer type");
+ }
+
+ // If this init list is a base list, we set the type; an initializer doesn't
+ // fundamentally have a type, but this makes the ASTs a bit easier to read
+ if (topLevel)
+ IList->setType(DeclType);
+
+ if (topLevel && startIndex < IList->getNumInits()) {
+ // We have leftover initializers; warn
+ Diag(IList->getInit(startIndex)->getLocStart(),
+ diag::warn_excess_initializers,
+ IList->getInit(startIndex)->getSourceRange());
+ }
+ return hadError;
+}
+
+bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType) {
+ // C99 6.7.8p3: The type of the entity to be initialized shall be an array
+ // of unknown size ("[]") or an object type that is not a variable array type.
+ if (const VariableArrayType *VAT = DeclType->getAsVariableArrayType())
+ return Diag(VAT->getSizeExpr()->getLocStart(),
+ diag::err_variable_object_no_init,
+ VAT->getSizeExpr()->getSourceRange());
+
+ InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
+ if (!InitList) {
+ // FIXME: Handle wide strings
+ if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
+ return CheckStringLiteralInit(strLiteral, DeclType);
+
+ if (DeclType->isArrayType())
+ return Diag(Init->getLocStart(),
+ diag::err_array_init_list_required,
+ Init->getSourceRange());
+
+ return CheckSingleInitializer(Init, DeclType);
+ }
+ unsigned newIndex = 0;
+ return CheckInitializerListTypes(InitList, DeclType, true, newIndex);
+}
+
+Sema::DeclTy *
+Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
+ ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
+ IdentifierInfo *II = D.getIdentifier();
+
+ // All of these full declarators require an identifier. If it doesn't have
+ // one, the ParsedFreeStandingDeclSpec action should be used.
+ if (II == 0) {
+ Diag(D.getDeclSpec().getSourceRange().getBegin(),
+ diag::err_declarator_need_ident,
+ D.getDeclSpec().getSourceRange(), D.getSourceRange());
+ return 0;
+ }
+
+ // The scope passed in may not be a decl scope. Zip up the scope tree until
+ // we find one that is.
+ while ((S->getFlags() & Scope::DeclScope) == 0)
+ S = S->getParent();
+
+ // See if this is a redefinition of a variable in the same scope.
+ ScopedDecl *PrevDecl = LookupScopedDecl(II, Decl::IDNS_Ordinary,
+ D.getIdentifierLoc(), S);
+ ScopedDecl *New;
+ bool InvalidDecl = false;
+
+ QualType R = GetTypeForDeclarator(D, S);
+ assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
+
+ if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
+ TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
+ if (!NewTD) return 0;
+
+ // Handle attributes prior to checking for duplicates in MergeVarDecl
+ HandleDeclAttributes(NewTD, D.getDeclSpec().getAttributes(),
+ D.getAttributes());
+ // Merge the decl with the existing one if appropriate. If the decl is
+ // in an outer scope, it isn't the same thing.
+ if (PrevDecl && S->isDeclScope(PrevDecl)) {
+ NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
+ if (NewTD == 0) return 0;
+ }
+ New = NewTD;
+ if (S->getParent() == 0) {
+ // C99 6.7.7p2: If a typedef name specifies a variably modified type
+ // then it shall have block scope.
+ if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
+ // FIXME: Diagnostic needs to be fixed.
+ Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla);
+ InvalidDecl = true;
+ }
+ }
+ } else if (R.getTypePtr()->isFunctionType()) {
+ FunctionDecl::StorageClass SC = FunctionDecl::None;
+ switch (D.getDeclSpec().getStorageClassSpec()) {
+ default: assert(0 && "Unknown storage class!");
+ case DeclSpec::SCS_auto:
+ case DeclSpec::SCS_register:
+ Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func,
+ R.getAsString());
+ InvalidDecl = true;
+ break;
+ case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
+ case DeclSpec::SCS_extern: SC = FunctionDecl::Extern; break;
+ case DeclSpec::SCS_static: SC = FunctionDecl::Static; break;
+ case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
+ }
+
+ bool isInline = D.getDeclSpec().isInlineSpecified();
+ FunctionDecl *NewFD = FunctionDecl::Create(Context, D.getIdentifierLoc(),
+ II, R, SC, isInline,
+ LastDeclarator);
+ // Handle attributes.
+ HandleDeclAttributes(NewFD, D.getDeclSpec().getAttributes(),
+ D.getAttributes());
+
+ // Merge the decl with the existing one if appropriate. Since C functions
+ // are in a flat namespace, make sure we consider decls in outer scopes.
+ if (PrevDecl) {
+ NewFD = MergeFunctionDecl(NewFD, PrevDecl);
+ if (NewFD == 0) return 0;
+ }
+ New = NewFD;
+ } else {
+ if (R.getTypePtr()->isObjCInterfaceType()) {
+ Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object,
+ D.getIdentifier()->getName());
+ InvalidDecl = true;
+ }
+
+ VarDecl *NewVD;
+ VarDecl::StorageClass SC;
+ switch (D.getDeclSpec().getStorageClassSpec()) {
+ default: assert(0 && "Unknown storage class!");
+ case DeclSpec::SCS_unspecified: SC = VarDecl::None; break;
+ case DeclSpec::SCS_extern: SC = VarDecl::Extern; break;
+ case DeclSpec::SCS_static: SC = VarDecl::Static; break;
+ case DeclSpec::SCS_auto: SC = VarDecl::Auto; break;
+ case DeclSpec::SCS_register: SC = VarDecl::Register; break;
+ case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
+ }
+ if (S->getParent() == 0) {
+ // C99 6.9p2: The storage-class specifiers auto and register shall not
+ // appear in the declaration specifiers in an external declaration.
+ if (SC == VarDecl::Auto || SC == VarDecl::Register) {
+ Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope,
+ R.getAsString());
+ InvalidDecl = true;
+ }
+ NewVD = FileVarDecl::Create(Context, D.getIdentifierLoc(), II, R, SC,
+ LastDeclarator);
+ } else {
+ NewVD = BlockVarDecl::Create(Context, D.getIdentifierLoc(), II, R, SC,
+ LastDeclarator);
+ }
+ // Handle attributes prior to checking for duplicates in MergeVarDecl
+ HandleDeclAttributes(NewVD, D.getDeclSpec().getAttributes(),
+ D.getAttributes());
+
+ // Emit an error if an address space was applied to decl with local storage.
+ // This includes arrays of objects with address space qualifiers, but not
+ // automatic variables that point to other address spaces.
+ // ISO/IEC TR 18037 S5.1.2
+ if (NewVD->hasLocalStorage()) {
+ QualType AutoTy = NewVD->getCanonicalType();
+ if (const ArrayType *AT = AutoTy->getAsArrayType())
+ AutoTy = AT->getElementType().getCanonicalType();
+ if (AutoTy.getAddressSpace() != 0) {
+ Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
+ InvalidDecl = true;
+ }
+ }
+ // Merge the decl with the existing one if appropriate. If the decl is
+ // in an outer scope, it isn't the same thing.
+ if (PrevDecl && S->isDeclScope(PrevDecl)) {
+ NewVD = MergeVarDecl(NewVD, PrevDecl);
+ if (NewVD == 0) return 0;
+ }
+ New = NewVD;
+ }
+
+ // If this has an identifier, add it to the scope stack.
+ if (II) {
+ New->setNext(II->getFETokenInfo<ScopedDecl>());
+ II->setFETokenInfo(New);
+ S->AddDecl(New);
+ }
+ // If any semantic error occurred, mark the decl as invalid.
+ if (D.getInvalidType() || InvalidDecl)
+ New->setInvalidDecl();
+
+ return New;
+}
+
+bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
+ SourceLocation loc;
+ // FIXME: Remove the isReference check and handle assignment to a reference.
+ if (!DclT->isReferenceType() && !Init->isConstantExpr(Context, &loc)) {
+ assert(loc.isValid() && "isConstantExpr didn't return a loc!");
+ Diag(loc, diag::err_init_element_not_constant, Init->getSourceRange());
+ return true;
+ }
+ return false;
+}
+
+void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) {
+ Decl *RealDecl = static_cast<Decl *>(dcl);
+ Expr *Init = static_cast<Expr *>(init);
+ assert(Init && "missing initializer");
+
+ // If there is no declaration, there was an error parsing it. Just ignore
+ // the initializer.
+ if (RealDecl == 0) {
+ delete Init;
+ return;
+ }
+
+ VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
+ if (!VDecl) {
+ Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
+ diag::err_illegal_initializer);
+ RealDecl->setInvalidDecl();
+ return;
+ }
+ // Get the decls type and save a reference for later, since
+ // CheckInitializerTypes may change it.
+ QualType DclT = VDecl->getType(), SavT = DclT;
+ if (BlockVarDecl *BVD = dyn_cast<BlockVarDecl>(VDecl)) {
+ VarDecl::StorageClass SC = BVD->getStorageClass();
+ if (SC == VarDecl::Extern) { // C99 6.7.8p5
+ Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
+ BVD->setInvalidDecl();
+ } else if (!BVD->isInvalidDecl()) {
+ if (CheckInitializerTypes(Init, DclT))
+ BVD->setInvalidDecl();
+ if (SC == VarDecl::Static) // C99 6.7.8p4.
+ CheckForConstantInitializer(Init, DclT);
+ }
+ } else if (FileVarDecl *FVD = dyn_cast<FileVarDecl>(VDecl)) {
+ if (FVD->getStorageClass() == VarDecl::Extern)
+ Diag(VDecl->getLocation(), diag::warn_extern_init);
+ if (!FVD->isInvalidDecl())
+ if (CheckInitializerTypes(Init, DclT))
+ FVD->setInvalidDecl();
+
+ // C99 6.7.8p4. All file scoped initializers need to be constant.
+ CheckForConstantInitializer(Init, DclT);
+ }
+ // If the type changed, it means we had an incomplete type that was
+ // completed by the initializer. For example:
+ // int ary[] = { 1, 3, 5 };
+ // "ary" transitions from a VariableArrayType to a ConstantArrayType.
+ if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
+ VDecl->setType(DclT);
+ Init->setType(DclT);
+ }
+
+ // Attach the initializer to the decl.
+ VDecl->setInit(Init);
+ return;
+}
+
+/// The declarators are chained together backwards, reverse the list.
+Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
+ // Often we have single declarators, handle them quickly.
+ Decl *GroupDecl = static_cast<Decl*>(group);
+ if (GroupDecl == 0)
+ return 0;
+
+ ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
+ ScopedDecl *NewGroup = 0;
+ if (Group->getNextDeclarator() == 0)
+ NewGroup = Group;
+ else { // reverse the list.
+ while (Group) {
+ ScopedDecl *Next = Group->getNextDeclarator();
+ Group->setNextDeclarator(NewGroup);
+ NewGroup = Group;
+ Group = Next;
+ }
+ }
+ // Perform semantic analysis that depends on having fully processed both
+ // the declarator and initializer.
+ for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
+ VarDecl *IDecl = dyn_cast<VarDecl>(ID);
+ if (!IDecl)
+ continue;
+ FileVarDecl *FVD = dyn_cast<FileVarDecl>(IDecl);
+ BlockVarDecl *BVD = dyn_cast<BlockVarDecl>(IDecl);
+ QualType T = IDecl->getType();
+
+ // C99 6.7.5.2p2: If an identifier is declared to be an object with
+ // static storage duration, it shall not have a variable length array.
+ if ((FVD || BVD) && IDecl->getStorageClass() == VarDecl::Static) {
+ if (T->getAsVariableArrayType()) {
+ Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla);
+ IDecl->setInvalidDecl();
+ }
+ }
+ // Block scope. C99 6.7p7: If an identifier for an object is declared with
+ // no linkage (C99 6.2.2p6), the type for the object shall be complete...
+ if (BVD && IDecl->getStorageClass() != VarDecl::Extern) {
+ if (T->isIncompleteType()) {
+ Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
+ T.getAsString());
+ IDecl->setInvalidDecl();
+ }
+ }
+ // File scope. C99 6.9.2p2: A declaration of an identifier for and
+ // object that has file scope without an initializer, and without a
+ // storage-class specifier or with the storage-class specifier "static",
+ // constitutes a tentative definition. Note: A tentative definition with
+ // external linkage is valid (C99 6.2.2p5).
+ if (FVD && !FVD->getInit() && (FVD->getStorageClass() == VarDecl::Static ||
+ FVD->getStorageClass() == VarDecl::None)) {
+ if (T->isIncompleteArrayType()) {
+ // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
+ // array to be completed. Don't issue a diagnostic.
+ } else if (T->isIncompleteType()) {
+ // C99 6.9.2p3: If the declaration of an identifier for an object is
+ // a tentative definition and has internal linkage (C99 6.2.2p3), the
+ // declared type shall not be an incomplete type.
+ Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
+ T.getAsString());
+ IDecl->setInvalidDecl();
+ }
+ }
+ }
+ return NewGroup;
+}
+
+// Called from Sema::ParseStartOfFunctionDef().
+ParmVarDecl *
+Sema::ActOnParamDeclarator(struct DeclaratorChunk::ParamInfo &PI,
+ Scope *FnScope) {
+ IdentifierInfo *II = PI.Ident;
+ // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
+ // Can this happen for params? We already checked that they don't conflict
+ // among each other. Here they can only shadow globals, which is ok.
+ if (/*Decl *PrevDecl = */LookupScopedDecl(II, Decl::IDNS_Ordinary,
+ PI.IdentLoc, FnScope)) {
+
+ }
+
+ // FIXME: Handle storage class (auto, register). No declarator?
+ // TODO: Chain to previous parameter with the prevdeclarator chain?
+
+ // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
+ // Doing the promotion here has a win and a loss. The win is the type for
+ // both Decl's and DeclRefExpr's will match (a convenient invariant for the
+ // code generator). The loss is the orginal type isn't preserved. For example:
+ //
+ // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
+ // int blockvardecl[5];
+ // sizeof(parmvardecl); // size == 4
+ // sizeof(blockvardecl); // size == 20
+ // }
+ //
+ // For expressions, all implicit conversions are captured using the
+ // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
+ //
+ // FIXME: If a source translation tool needs to see the original type, then
+ // we need to consider storing both types (in ParmVarDecl)...
+ //
+ QualType parmDeclType = QualType::getFromOpaquePtr(PI.TypeInfo);
+ if (const ArrayType *AT = parmDeclType->getAsArrayType()) {
+ // int x[restrict 4] -> int *restrict
+ parmDeclType = Context.getPointerType(AT->getElementType());
+ parmDeclType = parmDeclType.getQualifiedType(AT->getIndexTypeQualifier());
+ } else if (parmDeclType->isFunctionType())
+ parmDeclType = Context.getPointerType(parmDeclType);
+
+ ParmVarDecl *New = ParmVarDecl::Create(Context, PI.IdentLoc, II, parmDeclType,
+ VarDecl::None, 0);
+
+ if (PI.InvalidType)
+ New->setInvalidDecl();
+
+ // If this has an identifier, add it to the scope stack.
+ if (II) {
+ New->setNext(II->getFETokenInfo<ScopedDecl>());
+ II->setFETokenInfo(New);
+ FnScope->AddDecl(New);
+ }
+
+ HandleDeclAttributes(New, PI.AttrList, 0);
+ return New;
+}
+
+Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
+ assert(CurFunctionDecl == 0 && "Function parsing confused");
+ assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
+ "Not a function declarator!");
+ DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
+
+ // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
+ // for a K&R function.
+ if (!FTI.hasPrototype) {
+ for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
+ if (FTI.ArgInfo[i].TypeInfo == 0) {
+ Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared,
+ FTI.ArgInfo[i].Ident->getName());
+ // Implicitly declare the argument as type 'int' for lack of a better
+ // type.
+ FTI.ArgInfo[i].TypeInfo = Context.IntTy.getAsOpaquePtr();
+ }
+ }
+
+ // Since this is a function definition, act as though we have information
+ // about the arguments.
+ if (FTI.NumArgs)
+ FTI.hasPrototype = true;
+ } else {
+ // FIXME: Diagnose arguments without names in C.
+
+ }
+
+ Scope *GlobalScope = FnBodyScope->getParent();
+
+ // See if this is a redefinition.
+ ScopedDecl *PrevDcl = LookupScopedDecl(D.getIdentifier(), Decl::IDNS_Ordinary,
+ D.getIdentifierLoc(), GlobalScope);
+ if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(PrevDcl)) {
+ if (FD->getBody()) {
+ Diag(D.getIdentifierLoc(), diag::err_redefinition,
+ D.getIdentifier()->getName());
+ Diag(FD->getLocation(), diag::err_previous_definition);
+ }
+ }
+ Decl *decl = static_cast<Decl*>(ActOnDeclarator(GlobalScope, D, 0));
+ FunctionDecl *FD = cast<FunctionDecl>(decl);
+ CurFunctionDecl = FD;
+
+ // Create Decl objects for each parameter, adding them to the FunctionDecl.
+ llvm::SmallVector<ParmVarDecl*, 16> Params;
+
+ // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
+ // no arguments, not a function that takes a single void argument.
+ if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
+ !QualType::getFromOpaquePtr(FTI.ArgInfo[0].TypeInfo).getCVRQualifiers() &&
+ QualType::getFromOpaquePtr(FTI.ArgInfo[0].TypeInfo)->isVoidType()) {
+ // empty arg list, don't push any params.
+ } else {
+ for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
+ Params.push_back(ActOnParamDeclarator(D.getTypeObject(0).Fun.ArgInfo[i],
+ FnBodyScope));
+ }
+ }
+
+ FD->setParams(&Params[0], Params.size());
+
+ return FD;
+}
+
+Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) {
+ Decl *dcl = static_cast<Decl *>(D);
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
+ FD->setBody((Stmt*)Body);
+ assert(FD == CurFunctionDecl && "Function parsing confused");
+ CurFunctionDecl = 0;
+ } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(dcl)) {
+ MD->setBody((Stmt*)Body);
+ CurMethodDecl = 0;
+ }
+ // Verify and clean out per-function state.
+
+ // Check goto/label use.
+ for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
+ I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
+ // Verify that we have no forward references left. If so, there was a goto
+ // or address of a label taken, but no definition of it. Label fwd
+ // definitions are indicated with a null substmt.
+ if (I->second->getSubStmt() == 0) {
+ LabelStmt *L = I->second;
+ // Emit error.
+ Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName());
+
+ // At this point, we have gotos that use the bogus label. Stitch it into
+ // the function body so that they aren't leaked and that the AST is well
+ // formed.
+ if (Body) {
+ L->setSubStmt(new NullStmt(L->getIdentLoc()));
+ cast<CompoundStmt>((Stmt*)Body)->push_back(L);
+ } else {
+ // The whole function wasn't parsed correctly, just delete this.
+ delete L;
+ }
+ }
+ }
+ LabelMap.clear();
+
+ return D;
+}
+
+/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
+/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
+ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
+ IdentifierInfo &II, Scope *S) {
+ if (getLangOptions().C99) // Extension in C99.
+ Diag(Loc, diag::ext_implicit_function_decl, II.getName());
+ else // Legal in C90, but warn about it.
+ Diag(Loc, diag::warn_implicit_function_decl, II.getName());
+
+ // FIXME: handle stuff like:
+ // void foo() { extern float X(); }
+ // void bar() { X(); } <-- implicit decl for X in another scope.
+
+ // Set a Declarator for the implicit definition: int foo();
+ const char *Dummy;
+ DeclSpec DS;
+ bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
+ Error = Error; // Silence warning.
+ assert(!Error && "Error setting up implicit decl!");
+ Declarator D(DS, Declarator::BlockContext);
+ D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, Loc));
+ D.SetIdentifier(&II, Loc);
+
+ // Find translation-unit scope to insert this function into.
+ if (Scope *FnS = S->getFnParent())
+ S = FnS->getParent(); // Skip all scopes in a function at once.
+ while (S->getParent())
+ S = S->getParent();
+
+ return dyn_cast<ScopedDecl>(static_cast<Decl*>(ActOnDeclarator(S, D, 0)));
+}
+
+
+TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
+ ScopedDecl *LastDeclarator) {
+ assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
+ assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
+
+ // Scope manipulation handled by caller.
+ TypedefDecl *NewTD = TypedefDecl::Create(Context, D.getIdentifierLoc(),
+ D.getIdentifier(),
+ T, LastDeclarator);
+ if (D.getInvalidType())
+ NewTD->setInvalidDecl();
+ return NewTD;
+}
+
+/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'. In the
+/// former case, Name will be non-null. In the later case, Name will be null.
+/// TagType indicates what kind of tag this is. TK indicates whether this is a
+/// reference/declaration/definition of a tag.
+Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
+ SourceLocation KWLoc, IdentifierInfo *Name,
+ SourceLocation NameLoc, AttributeList *Attr) {
+ // If this is a use of an existing tag, it must have a name.
+ assert((Name != 0 || TK == TK_Definition) &&
+ "Nameless record must be a definition!");
+
+ Decl::Kind Kind;
+ switch (TagType) {
+ default: assert(0 && "Unknown tag type!");
+ case DeclSpec::TST_struct: Kind = Decl::Struct; break;
+ case DeclSpec::TST_union: Kind = Decl::Union; break;
+//case DeclSpec::TST_class: Kind = Decl::Class; break;
+ case DeclSpec::TST_enum: Kind = Decl::Enum; break;
+ }
+
+ // If this is a named struct, check to see if there was a previous forward
+ // declaration or definition.
+ if (TagDecl *PrevDecl =
+ dyn_cast_or_null<TagDecl>(LookupScopedDecl(Name, Decl::IDNS_Tag,
+ NameLoc, S))) {
+
+ // If this is a use of a previous tag, or if the tag is already declared in
+ // the same scope (so that the definition/declaration completes or
+ // rementions the tag), reuse the decl.
+ if (TK == TK_Reference || S->isDeclScope(PrevDecl)) {
+ // Make sure that this wasn't declared as an enum and now used as a struct
+ // or something similar.
+ if (PrevDecl->getKind() != Kind) {
+ Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
+ Diag(PrevDecl->getLocation(), diag::err_previous_use);
+ }
+
+ // If this is a use or a forward declaration, we're good.
+ if (TK != TK_Definition)
+ return PrevDecl;
+
+ // Diagnose attempts to redefine a tag.
+ if (PrevDecl->isDefinition()) {
+ Diag(NameLoc, diag::err_redefinition, Name->getName());
+ Diag(PrevDecl->getLocation(), diag::err_previous_definition);
+ // If this is a redefinition, recover by making this struct be
+ // anonymous, which will make any later references get the previous
+ // definition.
+ Name = 0;
+ } else {
+ // Okay, this is definition of a previously declared or referenced tag.
+ // Move the location of the decl to be the definition site.
+ PrevDecl->setLocation(NameLoc);
+ return PrevDecl;
+ }
+ }
+ // If we get here, this is a definition of a new struct type in a nested
+ // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
+ // type.
+ }
+
+ // If there is an identifier, use the location of the identifier as the
+ // location of the decl, otherwise use the location of the struct/union
+ // keyword.
+ SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
+
+ // Otherwise, if this is the first time we've seen this tag, create the decl.
+ TagDecl *New;
+ switch (Kind) {
+ default: assert(0 && "Unknown tag kind!");
+ case Decl::Enum:
+ // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
+ // enum X { A, B, C } D; D should chain to X.
+ New = EnumDecl::Create(Context, Loc, Name, 0);
+ // If this is an undefined enum, warn.
+ if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
+ break;
+ case Decl::Union:
+ case Decl::Struct:
+ case Decl::Class:
+ // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
+ // struct X { int A; } D; D should chain to X.
+ New = RecordDecl::Create(Context, Kind, Loc, Name, 0);
+ break;
+ }
+
+ // If this has an identifier, add it to the scope stack.
+ if (Name) {
+ // The scope passed in may not be a decl scope. Zip up the scope tree until
+ // we find one that is.
+ while ((S->getFlags() & Scope::DeclScope) == 0)
+ S = S->getParent();
+
+ // Add it to the decl chain.
+ New->setNext(Name->getFETokenInfo<ScopedDecl>());
+ Name->setFETokenInfo(New);
+ S->AddDecl(New);
+ }
+
+ HandleDeclAttributes(New, Attr, 0);
+ return New;
+}
+
+/// ActOnField - Each field of a struct/union/class is passed into this in order
+/// to create a FieldDecl object for it.
+Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagDecl,
+ SourceLocation DeclStart,
+ Declarator &D, ExprTy *BitfieldWidth) {
+ IdentifierInfo *II = D.getIdentifier();
+ Expr *BitWidth = (Expr*)BitfieldWidth;
+ SourceLocation Loc = DeclStart;
+ if (II) Loc = D.getIdentifierLoc();
+
+ // FIXME: Unnamed fields can be handled in various different ways, for
+ // example, unnamed unions inject all members into the struct namespace!
+
+
+ if (BitWidth) {
+ // TODO: Validate.
+ //printf("WARNING: BITFIELDS IGNORED!\n");
+
+ // 6.7.2.1p3
+ // 6.7.2.1p4
+
+ } else {
+ // Not a bitfield.
+
+ // validate II.
+
+ }
+
+ QualType T = GetTypeForDeclarator(D, S);
+ assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
+ bool InvalidDecl = false;
+
+ // C99 6.7.2.1p8: A member of a structure or union may have any type other
+ // than a variably modified type.
+ if (T->isVariablyModifiedType()) {
+ // FIXME: This diagnostic needs work
+ Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
+ InvalidDecl = true;
+ }
+ // FIXME: Chain fielddecls together.
+ FieldDecl *NewFD;
+
+ if (isa<RecordDecl>(static_cast<Decl *>(TagDecl)))
+ NewFD = new FieldDecl(Loc, II, T, BitWidth);
+ else if (isa<ObjCInterfaceDecl>(static_cast<Decl *>(TagDecl)) ||
+ isa<ObjCImplementationDecl>(static_cast<Decl *>(TagDecl)) ||
+ isa<ObjCCategoryDecl>(static_cast<Decl *>(TagDecl)) ||
+ // FIXME: ivars are currently used to model properties, and
+ // properties can appear within a protocol.
+ // See corresponding FIXME in DeclObjC.h:ObjCPropertyDecl.
+ isa<ObjCProtocolDecl>(static_cast<Decl *>(TagDecl)))
+ NewFD = new ObjCIvarDecl(Loc, II, T);
+ else
+ assert(0 && "Sema::ActOnField(): Unknown TagDecl");
+
+ HandleDeclAttributes(NewFD, D.getDeclSpec().getAttributes(),
+ D.getAttributes());
+
+ if (D.getInvalidType() || InvalidDecl)
+ NewFD->setInvalidDecl();
+ return NewFD;
+}
+
+/// TranslateIvarVisibility - Translate visibility from a token ID to an
+/// AST enum value.
+static ObjCIvarDecl::AccessControl
+TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
+ switch (ivarVisibility) {
+ case tok::objc_private: return ObjCIvarDecl::Private;
+ case tok::objc_public: return ObjCIvarDecl::Public;
+ case tok::objc_protected: return ObjCIvarDecl::Protected;
+ case tok::objc_package: return ObjCIvarDecl::Package;
+ default: assert(false && "Unknown visitibility kind");
+ }
+}
+
+void Sema::ActOnFields(Scope* S,
+ SourceLocation RecLoc, DeclTy *RecDecl,
+ DeclTy **Fields, unsigned NumFields,
+ SourceLocation LBrac, SourceLocation RBrac,
+ tok::ObjCKeywordKind *visibility) {
+ Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
+ assert(EnclosingDecl && "missing record or interface decl");
+ RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
+
+ if (Record && Record->isDefinition()) {
+ // Diagnose code like:
+ // struct S { struct S {} X; };
+ // We discover this when we complete the outer S. Reject and ignore the
+ // outer S.
+ Diag(Record->getLocation(), diag::err_nested_redefinition,
+ Record->getKindName());
+ Diag(RecLoc, diag::err_previous_definition);
+ Record->setInvalidDecl();
+ return;
+ }
+ // Verify that all the fields are okay.
+ unsigned NumNamedMembers = 0;
+ llvm::SmallVector<FieldDecl*, 32> RecFields;
+ llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
+
+ for (unsigned i = 0; i != NumFields; ++i) {
+
+ FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
+ assert(FD && "missing field decl");
+
+ // Remember all fields.
+ RecFields.push_back(FD);
+
+ // Get the type for the field.
+ Type *FDTy = FD->getType().getTypePtr();
+
+ // If we have visibility info, make sure the AST is set accordingly.
+ if (visibility)
+ cast<ObjCIvarDecl>(FD)->setAccessControl(
+ TranslateIvarVisibility(visibility[i]));
+
+ // C99 6.7.2.1p2 - A field may not be a function type.
+ if (FDTy->isFunctionType()) {
+ Diag(FD->getLocation(), diag::err_field_declared_as_function,
+ FD->getName());
+ FD->setInvalidDecl();
+ EnclosingDecl->setInvalidDecl();
+ continue;
+ }
+ // C99 6.7.2.1p2 - A field may not be an incomplete type except...
+ if (FDTy->isIncompleteType()) {
+ if (!Record) { // Incomplete ivar type is always an error.
+ Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
+ FD->setInvalidDecl();
+ EnclosingDecl->setInvalidDecl();
+ continue;
+ }
+ if (i != NumFields-1 || // ... that the last member ...
+ Record->getKind() != Decl::Struct || // ... of a structure ...
+ !FDTy->isArrayType()) { //... may have incomplete array type.
+ Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
+ FD->setInvalidDecl();
+ EnclosingDecl->setInvalidDecl();
+ continue;
+ }
+ if (NumNamedMembers < 1) { //... must have more than named member ...
+ Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
+ FD->getName());
+ FD->setInvalidDecl();
+ EnclosingDecl->setInvalidDecl();
+ continue;
+ }
+ // Okay, we have a legal flexible array member at the end of the struct.
+ if (Record)
+ Record->setHasFlexibleArrayMember(true);
+ }
+ /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
+ /// field of another structure or the element of an array.
+ if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
+ if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
+ // If this is a member of a union, then entire union becomes "flexible".
+ if (Record && Record->getKind() == Decl::Union) {
+ Record->setHasFlexibleArrayMember(true);
+ } else {
+ // If this is a struct/class and this is not the last element, reject
+ // it. Note that GCC supports variable sized arrays in the middle of
+ // structures.
+ if (i != NumFields-1) {
+ Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
+ FD->getName());
+ FD->setInvalidDecl();
+ EnclosingDecl->setInvalidDecl();
+ continue;
+ }
+ // We support flexible arrays at the end of structs in other structs
+ // as an extension.
+ Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
+ FD->getName());
+ if (Record)
+ Record->setHasFlexibleArrayMember(true);
+ }
+ }
+ }
+ /// A field cannot be an Objective-c object
+ if (FDTy->isObjCInterfaceType()) {
+ Diag(FD->getLocation(), diag::err_statically_allocated_object,
+ FD->getName());
+ FD->setInvalidDecl();
+ EnclosingDecl->setInvalidDecl();
+ continue;
+ }
+ // Keep track of the number of named members.
+ if (IdentifierInfo *II = FD->getIdentifier()) {
+ // Detect duplicate member names.
+ if (!FieldIDs.insert(II)) {
+ Diag(FD->getLocation(), diag::err_duplicate_member, II->getName());
+ // Find the previous decl.
+ SourceLocation PrevLoc;
+ for (unsigned i = 0, e = RecFields.size(); ; ++i) {
+ assert(i != e && "Didn't find previous def!");
+ if (RecFields[i]->getIdentifier() == II) {
+ PrevLoc = RecFields[i]->getLocation();
+ break;
+ }
+ }
+ Diag(PrevLoc, diag::err_previous_definition);
+ FD->setInvalidDecl();
+ EnclosingDecl->setInvalidDecl();
+ continue;
+ }
+ ++NumNamedMembers;
+ }
+ }
+
+ // Okay, we successfully defined 'Record'.
+ if (Record) {
+ Record->defineBody(&RecFields[0], RecFields.size());
+ Consumer.HandleTagDeclDefinition(Record);
+ } else {
+ ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
+ if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl))
+ ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
+ else if (ObjCImplementationDecl *IMPDecl =
+ dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
+ assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
+ IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
+ CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
+ }
+ }
+}
+
+Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
+ DeclTy *lastEnumConst,
+ SourceLocation IdLoc, IdentifierInfo *Id,
+ SourceLocation EqualLoc, ExprTy *val) {
+ theEnumDecl = theEnumDecl; // silence unused warning.
+ EnumConstantDecl *LastEnumConst =
+ cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
+ Expr *Val = static_cast<Expr*>(val);
+
+ // The scope passed in may not be a decl scope. Zip up the scope tree until
+ // we find one that is.
+ while ((S->getFlags() & Scope::DeclScope) == 0)
+ S = S->getParent();
+
+ // Verify that there isn't already something declared with this name in this
+ // scope.
+ if (ScopedDecl *PrevDecl = LookupScopedDecl(Id, Decl::IDNS_Ordinary,
+ IdLoc, S)) {
+ if (S->isDeclScope(PrevDecl)) {
+ if (isa<EnumConstantDecl>(PrevDecl))
+ Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName());
+ else
+ Diag(IdLoc, diag::err_redefinition, Id->getName());
+ Diag(PrevDecl->getLocation(), diag::err_previous_definition);
+ delete Val;
+ return 0;
+ }
+ }
+
+ llvm::APSInt EnumVal(32);
+ QualType EltTy;
+ if (Val) {
+ // Make sure to promote the operand type to int.
+ UsualUnaryConversions(Val);
+
+ // C99 6.7.2.2p2: Make sure we have an integer constant expression.
+ SourceLocation ExpLoc;
+ if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
+ Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr,
+ Id->getName());
+ delete Val;
+ Val = 0; // Just forget about it.
+ } else {
+ EltTy = Val->getType();
+ }
+ }
+
+ if (!Val) {
+ if (LastEnumConst) {
+ // Assign the last value + 1.
+ EnumVal = LastEnumConst->getInitVal();
+ ++EnumVal;
+
+ // Check for overflow on increment.
+ if (EnumVal < LastEnumConst->getInitVal())
+ Diag(IdLoc, diag::warn_enum_value_overflow);
+
+ EltTy = LastEnumConst->getType();
+ } else {
+ // First value, set to zero.
+ EltTy = Context.IntTy;
+ EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
+ }
+ }
+
+ EnumConstantDecl *New =
+ EnumConstantDecl::Create(Context, IdLoc, Id, EltTy, Val, EnumVal,
+ LastEnumConst);
+
+ // Register this decl in the current scope stack.
+ New->setNext(Id->getFETokenInfo<ScopedDecl>());
+ Id->setFETokenInfo(New);
+ S->AddDecl(New);
+ return New;
+}
+
+void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
+ DeclTy **Elements, unsigned NumElements) {
+ EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
+ assert(!Enum->isDefinition() && "Enum redefinitions can't reach here");
+
+ // TODO: If the result value doesn't fit in an int, it must be a long or long
+ // long value. ISO C does not support this, but GCC does as an extension,
+ // emit a warning.
+ unsigned IntWidth = Context.Target.getIntWidth();
+
+ // Verify that all the values are okay, compute the size of the values, and
+ // reverse the list.
+ unsigned NumNegativeBits = 0;
+ unsigned NumPositiveBits = 0;
+
+ // Keep track of whether all elements have type int.
+ bool AllElementsInt = true;
+
+ EnumConstantDecl *EltList = 0;
+ for (unsigned i = 0; i != NumElements; ++i) {
+ EnumConstantDecl *ECD =
+ cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
+ if (!ECD) continue; // Already issued a diagnostic.
+
+ // If the enum value doesn't fit in an int, emit an extension warning.
+ const llvm::APSInt &InitVal = ECD->getInitVal();
+ assert(InitVal.getBitWidth() >= IntWidth &&
+ "Should have promoted value to int");
+ if (InitVal.getBitWidth() > IntWidth) {
+ llvm::APSInt V(InitVal);
+ V.trunc(IntWidth);
+ V.extend(InitVal.getBitWidth());
+ if (V != InitVal)
+ Diag(ECD->getLocation(), diag::ext_enum_value_not_int,
+ InitVal.toString());
+ }
+
+ // Keep track of the size of positive and negative values.
+ if (InitVal.isUnsigned() || InitVal.isNonNegative())
+ NumPositiveBits = std::max(NumPositiveBits,
+ (unsigned)InitVal.getActiveBits());
+ else
+ NumNegativeBits = std::max(NumNegativeBits,
+ (unsigned)InitVal.getMinSignedBits());
+
+ // Keep track of whether every enum element has type int (very commmon).
+ if (AllElementsInt)
+ AllElementsInt = ECD->getType() == Context.IntTy;
+
+ ECD->setNextDeclarator(EltList);
+ EltList = ECD;
+ }
+
+ // Figure out the type that should be used for this enum.
+ // FIXME: Support attribute(packed) on enums and -fshort-enums.
+ QualType BestType;
+ unsigned BestWidth;
+
+ if (NumNegativeBits) {
+ // If there is a negative value, figure out the smallest integer type (of
+ // int/long/longlong) that fits.
+ if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
+ BestType = Context.IntTy;
+ BestWidth = IntWidth;
+ } else {
+ BestWidth = Context.Target.getLongWidth();
+
+ if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
+ BestType = Context.LongTy;
+ else {
+ BestWidth = Context.Target.getLongLongWidth();
+
+ if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
+ Diag(Enum->getLocation(), diag::warn_enum_too_large);
+ BestType = Context.LongLongTy;
+ }
+ }
+ } else {
+ // If there is no negative value, figure out which of uint, ulong, ulonglong
+ // fits.
+ if (NumPositiveBits <= IntWidth) {
+ BestType = Context.UnsignedIntTy;
+ BestWidth = IntWidth;
+ } else if (NumPositiveBits <=
+ (BestWidth = Context.Target.getLongWidth())) {
+ BestType = Context.UnsignedLongTy;
+ } else {
+ BestWidth = Context.Target.getLongLongWidth();
+ assert(NumPositiveBits <= BestWidth &&
+ "How could an initializer get larger than ULL?");
+ BestType = Context.UnsignedLongLongTy;
+ }
+ }
+
+ // Loop over all of the enumerator constants, changing their types to match
+ // the type of the enum if needed.
+ for (unsigned i = 0; i != NumElements; ++i) {
+ EnumConstantDecl *ECD =
+ cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
+ if (!ECD) continue; // Already issued a diagnostic.
+
+ // Standard C says the enumerators have int type, but we allow, as an
+ // extension, the enumerators to be larger than int size. If each
+ // enumerator value fits in an int, type it as an int, otherwise type it the
+ // same as the enumerator decl itself. This means that in "enum { X = 1U }"
+ // that X has type 'int', not 'unsigned'.
+ if (ECD->getType() == Context.IntTy) {
+ // Make sure the init value is signed.
+ llvm::APSInt IV = ECD->getInitVal();
+ IV.setIsSigned(true);
+ ECD->setInitVal(IV);
+ continue; // Already int type.
+ }
+
+ // Determine whether the value fits into an int.
+ llvm::APSInt InitVal = ECD->getInitVal();
+ bool FitsInInt;
+ if (InitVal.isUnsigned() || !InitVal.isNegative())
+ FitsInInt = InitVal.getActiveBits() < IntWidth;
+ else
+ FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
+
+ // If it fits into an integer type, force it. Otherwise force it to match
+ // the enum decl type.
+ QualType NewTy;
+ unsigned NewWidth;
+ bool NewSign;
+ if (FitsInInt) {
+ NewTy = Context.IntTy;
+ NewWidth = IntWidth;
+ NewSign = true;
+ } else if (ECD->getType() == BestType) {
+ // Already the right type!
+ continue;
+ } else {
+ NewTy = BestType;
+ NewWidth = BestWidth;
+ NewSign = BestType->isSignedIntegerType();
+ }
+
+ // Adjust the APSInt value.
+ InitVal.extOrTrunc(NewWidth);
+ InitVal.setIsSigned(NewSign);
+ ECD->setInitVal(InitVal);
+
+ // Adjust the Expr initializer and type.
+ ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr()));
+ ECD->setType(NewTy);
+ }
+
+ Enum->defineElements(EltList, BestType);
+ Consumer.HandleTagDeclDefinition(Enum);
+}
+
+Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
+ ExprTy *expr) {
+ StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr);
+
+ return new FileScopeAsmDecl(Loc, AsmString);
+}
+
+Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
+ SourceLocation LBrace,
+ SourceLocation RBrace,
+ const char *Lang,
+ unsigned StrSize,
+ DeclTy *D) {
+ LinkageSpecDecl::LanguageIDs Language;
+ Decl *dcl = static_cast<Decl *>(D);
+ if (strncmp(Lang, "\"C\"", StrSize) == 0)
+ Language = LinkageSpecDecl::lang_c;
+ else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
+ Language = LinkageSpecDecl::lang_cxx;
+ else {
+ Diag(Loc, diag::err_bad_language);
+ return 0;
+ }
+
+ // FIXME: Add all the various semantics of linkage specifications
+ return new LinkageSpecDecl(Loc, Language, dcl);
+}
+
+void Sema::HandleDeclAttribute(Decl *New, AttributeList *Attr) {
+
+ switch (Attr->getKind()) {
+ case AttributeList::AT_vector_size:
+ if (ValueDecl *vDecl = dyn_cast<ValueDecl>(New)) {
+ QualType newType = HandleVectorTypeAttribute(vDecl->getType(), Attr);
+ if (!newType.isNull()) // install the new vector type into the decl
+ vDecl->setType(newType);
+ }
+ if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New)) {
+ QualType newType = HandleVectorTypeAttribute(tDecl->getUnderlyingType(),
+ Attr);
+ if (!newType.isNull()) // install the new vector type into the decl
+ tDecl->setUnderlyingType(newType);
+ }
+ break;
+ case AttributeList::AT_ocu_vector_type:
+ if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New))
+ HandleOCUVectorTypeAttribute(tDecl, Attr);
+ else
+ Diag(Attr->getLoc(),
+ diag::err_typecheck_ocu_vector_not_typedef);
+ break;
+ case AttributeList::AT_address_space:
+ if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New)) {
+ QualType newType = HandleAddressSpaceTypeAttribute(
+ tDecl->getUnderlyingType(),
+ Attr);
+ tDecl->setUnderlyingType(newType);
+ } else if (ValueDecl *vDecl = dyn_cast<ValueDecl>(New)) {
+ QualType newType = HandleAddressSpaceTypeAttribute(vDecl->getType(),
+ Attr);
+ // install the new addr spaced type into the decl
+ vDecl->setType(newType);
+ }
+ break;
+ case AttributeList::AT_deprecated:
+ HandleDeprecatedAttribute(New, Attr);
+ break;
+ case AttributeList::AT_visibility:
+ HandleVisibilityAttribute(New, Attr);
+ break;
+ case AttributeList::AT_weak:
+ HandleWeakAttribute(New, Attr);
+ break;
+ case AttributeList::AT_dllimport:
+ HandleDLLImportAttribute(New, Attr);
+ break;
+ case AttributeList::AT_dllexport:
+ HandleDLLExportAttribute(New, Attr);
+ break;
+ case AttributeList::AT_nothrow:
+ HandleNothrowAttribute(New, Attr);
+ break;
+ case AttributeList::AT_stdcall:
+ HandleStdCallAttribute(New, Attr);
+ break;
+ case AttributeList::AT_fastcall:
+ HandleFastCallAttribute(New, Attr);
+ break;
+ case AttributeList::AT_aligned:
+ HandleAlignedAttribute(New, Attr);
+ break;
+ case AttributeList::AT_packed:
+ HandlePackedAttribute(New, Attr);
+ break;
+ case AttributeList::AT_annotate:
+ HandleAnnotateAttribute(New, Attr);
+ break;
+ case AttributeList::AT_noreturn:
+ HandleNoReturnAttribute(New, Attr);
+ break;
+ case AttributeList::AT_format:
+ HandleFormatAttribute(New, Attr);
+ break;
+ default:
+#if 0
+ // TODO: when we have the full set of attributes, warn about unknown ones.
+ Diag(Attr->getLoc(), diag::warn_attribute_ignored,
+ Attr->getName()->getName());
+#endif
+ break;
+ }
+}
+
+void Sema::HandleDeclAttributes(Decl *New, AttributeList *declspec_prefix,
+ AttributeList *declarator_postfix) {
+ while (declspec_prefix) {
+ HandleDeclAttribute(New, declspec_prefix);
+ declspec_prefix = declspec_prefix->getNext();
+ }
+ while (declarator_postfix) {
+ HandleDeclAttribute(New, declarator_postfix);
+ declarator_postfix = declarator_postfix->getNext();
+ }
+}
+
+void Sema::HandleOCUVectorTypeAttribute(TypedefDecl *tDecl,
+ AttributeList *rawAttr) {
+ QualType curType = tDecl->getUnderlyingType();
+ // check the attribute arguments.
+ if (rawAttr->getNumArgs() != 1) {
+ Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
+ std::string("1"));
+ return;
+ }
+ Expr *sizeExpr = static_cast<Expr *>(rawAttr->getArg(0));
+ llvm::APSInt vecSize(32);
+ if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) {
+ Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
+ "ocu_vector_type", sizeExpr->getSourceRange());
+ return;
+ }
+ // unlike gcc's vector_size attribute, we do not allow vectors to be defined
+ // in conjunction with complex types (pointers, arrays, functions, etc.).
+ Type *canonType = curType.getCanonicalType().getTypePtr();
+ if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) {
+ Diag(rawAttr->getLoc(), diag::err_attribute_invalid_vector_type,
+ curType.getCanonicalType().getAsString());
+ return;
+ }
+ // unlike gcc's vector_size attribute, the size is specified as the
+ // number of elements, not the number of bytes.
+ unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
+
+ if (vectorSize == 0) {
+ Diag(rawAttr->getLoc(), diag::err_attribute_zero_size,
+ sizeExpr->getSourceRange());
+ return;
+ }
+ // Instantiate/Install the vector type, the number of elements is > 0.
+ tDecl->setUnderlyingType(Context.getOCUVectorType(curType, vectorSize));
+ // Remember this typedef decl, we will need it later for diagnostics.
+ OCUVectorDecls.push_back(tDecl);
+}
+
+QualType Sema::HandleVectorTypeAttribute(QualType curType,
+ AttributeList *rawAttr) {
+ // check the attribute arugments.
+ if (rawAttr->getNumArgs() != 1) {
+ Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
+ std::string("1"));
+ return QualType();
+ }
+ Expr *sizeExpr = static_cast<Expr *>(rawAttr->getArg(0));
+ llvm::APSInt vecSize(32);
+ if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) {
+ Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
+ "vector_size", sizeExpr->getSourceRange());
+ return QualType();
+ }
+ // navigate to the base type - we need to provide for vector pointers,
+ // vector arrays, and functions returning vectors.
+ Type *canonType = curType.getCanonicalType().getTypePtr();
+
+ if (canonType->isPointerType() || canonType->isArrayType() ||
+ canonType->isFunctionType()) {
+ assert(0 && "HandleVector(): Complex type construction unimplemented");
+ /* FIXME: rebuild the type from the inside out, vectorizing the inner type.
+ do {
+ if (PointerType *PT = dyn_cast<PointerType>(canonType))
+ canonType = PT->getPointeeType().getTypePtr();
+ else if (ArrayType *AT = dyn_cast<ArrayType>(canonType))
+ canonType = AT->getElementType().getTypePtr();
+ else if (FunctionType *FT = dyn_cast<FunctionType>(canonType))
+ canonType = FT->getResultType().getTypePtr();
+ } while (canonType->isPointerType() || canonType->isArrayType() ||
+ canonType->isFunctionType());
+ */
+ }
+ // the base type must be integer or float.
+ if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) {
+ Diag(rawAttr->getLoc(), diag::err_attribute_invalid_vector_type,
+ curType.getCanonicalType().getAsString());
+ return QualType();
+ }
+ unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(curType));
+ // vecSize is specified in bytes - convert to bits.
+ unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
+
+ // the vector size needs to be an integral multiple of the type size.
+ if (vectorSize % typeSize) {
+ Diag(rawAttr->getLoc(), diag::err_attribute_invalid_size,
+ sizeExpr->getSourceRange());
+ return QualType();
+ }
+ if (vectorSize == 0) {
+ Diag(rawAttr->getLoc(), diag::err_attribute_zero_size,
+ sizeExpr->getSourceRange());
+ return QualType();
+ }
+ // Instantiate the vector type, the number of elements is > 0, and not
+ // required to be a power of 2, unlike GCC.
+ return Context.getVectorType(curType, vectorSize/typeSize);
+}
+
+void Sema::HandlePackedAttribute(Decl *d, AttributeList *rawAttr) {
+ // check the attribute arguments.
+ if (rawAttr->getNumArgs() > 0) {
+ Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
+ std::string("0"));
+ return;
+ }
+
+ if (TagDecl *TD = dyn_cast<TagDecl>(d))
+ TD->addAttr(new PackedAttr);
+ else if (FieldDecl *FD = dyn_cast<FieldDecl>(d)) {
+ // If the alignment is less than or equal to 8 bits, the packed attribute
+ // has no effect.
+ if (Context.getTypeAlign(FD->getType()) <= 8)
+ Diag(rawAttr->getLoc(),
+ diag::warn_attribute_ignored_for_field_of_type,
+ rawAttr->getName()->getName(), FD->getType().getAsString());
+ else
+ FD->addAttr(new PackedAttr);
+ } else
+ Diag(rawAttr->getLoc(), diag::warn_attribute_ignored,
+ rawAttr->getName()->getName());
+}
+
+void Sema::HandleNoReturnAttribute(Decl *d, AttributeList *rawAttr) {
+ // check the attribute arguments.
+ if (rawAttr->getNumArgs() != 0) {
+ Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
+ std::string("0"));
+ return;
+ }
+
+ FunctionDecl *Fn = dyn_cast<FunctionDecl>(d);
+
+ if (!Fn) {
+ Diag(rawAttr->getLoc(), diag::warn_attribute_wrong_decl_type,
+ "noreturn", "function");
+ return;
+ }
+
+ d->addAttr(new NoReturnAttr());
+}
+
+void Sema::HandleDeprecatedAttribute(Decl *d, AttributeList *rawAttr) {
+ // check the attribute arguments.
+ if (rawAttr->getNumArgs() != 0) {
+ Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
+ std::string("0"));
+ return;
+ }
+
+ d->addAttr(new DeprecatedAttr());
+}
+
+void Sema::HandleVisibilityAttribute(Decl *d, AttributeList *rawAttr) {
+ // check the attribute arguments.
+ if (rawAttr->getNumArgs() != 1) {
+ Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
+ std::string("1"));
+ return;
+ }
+
+ Expr *Arg = static_cast<Expr*>(rawAttr->getArg(0));
+ Arg = Arg->IgnoreParenCasts();
+ StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
+
+ if (Str == 0 || Str->isWide()) {
+ Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_string,
+ "visibility", std::string("1"));
+ return;
+ }
+
+ const char *TypeStr = Str->getStrData();
+ unsigned TypeLen = Str->getByteLength();
+ llvm::GlobalValue::VisibilityTypes type;
+
+ if (TypeLen == 7 && !memcmp(TypeStr, "default", 7))
+ type = llvm::GlobalValue::DefaultVisibility;
+ else if (TypeLen == 6 && !memcmp(TypeStr, "hidden", 6))
+ type = llvm::GlobalValue::HiddenVisibility;
+ else if (TypeLen == 8 && !memcmp(TypeStr, "internal", 8))
+ type = llvm::GlobalValue::HiddenVisibility; // FIXME
+ else if (TypeLen == 9 && !memcmp(TypeStr, "protected", 9))
+ type = llvm::GlobalValue::ProtectedVisibility;
+ else {
+ Diag(rawAttr->getLoc(), diag::warn_attribute_type_not_supported,
+ "visibility", TypeStr);
+ return;
+ }
+
+ d->addAttr(new VisibilityAttr(type));
+}
+
+void Sema::HandleWeakAttribute(Decl *d, AttributeList *rawAttr) {
+ // check the attribute arguments.
+ if (rawAttr->getNumArgs() != 0) {
+ Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
+ std::string("0"));
+ return;
+ }
+
+ d->addAttr(new WeakAttr());
+}
+
+void Sema::HandleDLLImportAttribute(Decl *d, AttributeList *rawAttr) {
+ // check the attribute arguments.
+ if (rawAttr->getNumArgs() != 0) {
+ Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
+ std::string("0"));
+ return;
+ }
+
+ d->addAttr(new DLLImportAttr());
+}
+
+void Sema::HandleDLLExportAttribute(Decl *d, AttributeList *rawAttr) {
+ // check the attribute arguments.
+ if (rawAttr->getNumArgs() != 0) {
+ Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
+ std::string("0"));
+ return;
+ }
+
+ d->addAttr(new DLLExportAttr());
+}
+
+void Sema::HandleStdCallAttribute(Decl *d, AttributeList *rawAttr) {
+ // check the attribute arguments.
+ if (rawAttr->getNumArgs() != 0) {
+ Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
+ std::string("0"));
+ return;
+ }
+
+ d->addAttr(new StdCallAttr());
+}
+
+void Sema::HandleFastCallAttribute(Decl *d, AttributeList *rawAttr) {
+ // check the attribute arguments.
+ if (rawAttr->getNumArgs() != 0) {
+ Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
+ std::string("0"));
+ return;
+ }
+
+ d->addAttr(new FastCallAttr());
+}
+
+void Sema::HandleNothrowAttribute(Decl *d, AttributeList *rawAttr) {
+ // check the attribute arguments.
+ if (rawAttr->getNumArgs() != 0) {
+ Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
+ std::string("0"));
+ return;
+ }
+
+ d->addAttr(new NoThrowAttr());
+}
+
+/// Handle __attribute__((format(type,idx,firstarg))) attributes
+/// based on http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
+void Sema::HandleFormatAttribute(Decl *d, AttributeList *rawAttr) {
+
+ if (!rawAttr->getParameterName()) {
+ Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_string,
+ "format", std::string("1"));
+ return;
+ }
+
+ if (rawAttr->getNumArgs() != 2) {
+ Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
+ std::string("3"));
+ return;
+ }
+
+ FunctionDecl *Fn = dyn_cast<FunctionDecl>(d);
+ if (!Fn) {
+ Diag(rawAttr->getLoc(), diag::warn_attribute_wrong_decl_type,
+ "format", "function");
+ return;
+ }
+
+ const FunctionTypeProto *proto =
+ dyn_cast<FunctionTypeProto>(Fn->getType()->getAsFunctionType());
+ if (!proto)
+ return;
+
+ // FIXME: in C++ the implicit 'this' function parameter also counts.
+ // this is needed in order to be compatible with GCC
+ // the index must start in 1 and the limit is numargs+1
+ unsigned NumArgs = Fn->getNumParams();
+ unsigned FirstIdx = 1;
+
+ const char *Format = rawAttr->getParameterName()->getName();
+ unsigned FormatLen = rawAttr->getParameterName()->getLength();
+
+ // Normalize the argument, __foo__ becomes foo.
+ if (FormatLen > 4 && Format[0] == '_' && Format[1] == '_' &&
+ Format[FormatLen - 2] == '_' && Format[FormatLen - 1] == '_') {
+ Format += 2;
+ FormatLen -= 4;
+ }
+
+ if (!((FormatLen == 5 && !memcmp(Format, "scanf", 5))
+ || (FormatLen == 6 && !memcmp(Format, "printf", 6))
+ || (FormatLen == 7 && !memcmp(Format, "strfmon", 7))
+ || (FormatLen == 8 && !memcmp(Format, "strftime", 8)))) {
+ Diag(rawAttr->getLoc(), diag::warn_attribute_type_not_supported,
+ "format", rawAttr->getParameterName()->getName());
+ return;
+ }
+
+ // checks for the 2nd argument
+ Expr *IdxExpr = static_cast<Expr *>(rawAttr->getArg(0));
+ llvm::APSInt Idx(Context.getTypeSize(IdxExpr->getType()));
+ if (!IdxExpr->isIntegerConstantExpr(Idx, Context)) {
+ Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_int,
+ "format", std::string("2"), IdxExpr->getSourceRange());
+ return;
+ }
+
+ if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) {
+ Diag(rawAttr->getLoc(), diag::err_attribute_argument_out_of_bounds,
+ "format", std::string("2"), IdxExpr->getSourceRange());
+ return;
+ }
+
+ // make sure the format string is really a string
+ QualType Ty = proto->getArgType(Idx.getZExtValue()-1);
+ if (!Ty->isPointerType() ||
+ !Ty->getAsPointerType()->getPointeeType()->isCharType()) {
+ Diag(rawAttr->getLoc(), diag::err_format_attribute_not_string,
+ IdxExpr->getSourceRange());
+ return;
+ }
+
+
+ // check the 3rd argument
+ Expr *FirstArgExpr = static_cast<Expr *>(rawAttr->getArg(1));
+ llvm::APSInt FirstArg(Context.getTypeSize(FirstArgExpr->getType()));
+ if (!FirstArgExpr->isIntegerConstantExpr(FirstArg, Context)) {
+ Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_int,
+ "format", std::string("3"), FirstArgExpr->getSourceRange());
+ return;
+ }
+
+ // check if the function is variadic if the 3rd argument non-zero
+ if (FirstArg != 0) {
+ if (proto->isVariadic()) {
+ ++NumArgs; // +1 for ...
+ } else {
+ Diag(d->getLocation(), diag::err_format_attribute_requires_variadic);
+ return;
+ }
+ }
+
+ // strftime requires FirstArg to be 0 because it doesn't read from any variable
+ // the input is just the current time + the format string
+ if (FormatLen == 8 && !memcmp(Format, "strftime", 8)) {
+ if (FirstArg != 0) {
+ Diag(rawAttr->getLoc(), diag::err_format_strftime_third_parameter,
+ FirstArgExpr->getSourceRange());
+ return;
+ }
+ // if 0 it disables parameter checking (to use with e.g. va_list)
+ } else if (FirstArg != 0 && FirstArg != NumArgs) {
+ Diag(rawAttr->getLoc(), diag::err_attribute_argument_out_of_bounds,
+ "format", std::string("3"), FirstArgExpr->getSourceRange());
+ return;
+ }
+
+ d->addAttr(new FormatAttr(std::string(Format, FormatLen),
+ Idx.getZExtValue(), FirstArg.getZExtValue()));
+}
+
+void Sema::HandleAnnotateAttribute(Decl *d, AttributeList *rawAttr) {
+ // check the attribute arguments.
+ if (rawAttr->getNumArgs() != 1) {
+ Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
+ std::string("1"));
+ return;
+ }
+ Expr *argExpr = static_cast<Expr *>(rawAttr->getArg(0));
+ StringLiteral *SE = dyn_cast<StringLiteral>(argExpr);
+
+ // Make sure that there is a string literal as the annotation's single
+ // argument.
+ if (!SE) {
+ Diag(rawAttr->getLoc(), diag::err_attribute_annotate_no_string);
+ return;
+ }
+ d->addAttr(new AnnotateAttr(std::string(SE->getStrData(),
+ SE->getByteLength())));
+}
+
+void Sema::HandleAlignedAttribute(Decl *d, AttributeList *rawAttr)
+{
+ // check the attribute arguments.
+ if (rawAttr->getNumArgs() > 1) {
+ Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
+ std::string("1"));
+ return;
+ }
+
+ unsigned Align = 0;
+
+ if (rawAttr->getNumArgs() == 0) {
+ // FIXME: This should be the target specific maximum alignment.
+ // (For now we just use 128 bits which is the maximum on X86.
+ Align = 128;
+ return;
+ } else {
+ Expr *alignmentExpr = static_cast<Expr *>(rawAttr->getArg(0));
+ llvm::APSInt alignment(32);
+ if (!alignmentExpr->isIntegerConstantExpr(alignment, Context)) {
+ Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
+ "aligned", alignmentExpr->getSourceRange());
+ return;
+ }
+
+ Align = alignment.getZExtValue() * 8;
+ }
+
+ d->addAttr(new AlignedAttr(Align));
+}
OpenPOWER on IntegriCloud