summaryrefslogtreecommitdiffstats
path: root/clang/lib/Lex/LiteralSupport.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'clang/lib/Lex/LiteralSupport.cpp')
-rw-r--r--clang/lib/Lex/LiteralSupport.cpp691
1 files changed, 691 insertions, 0 deletions
diff --git a/clang/lib/Lex/LiteralSupport.cpp b/clang/lib/Lex/LiteralSupport.cpp
new file mode 100644
index 00000000000..aa0b831af90
--- /dev/null
+++ b/clang/lib/Lex/LiteralSupport.cpp
@@ -0,0 +1,691 @@
+//===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the NumericLiteralParser, CharLiteralParser, and
+// StringLiteralParser interfaces.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Lex/LiteralSupport.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/ADT/StringExtras.h"
+using namespace clang;
+
+/// HexDigitValue - Return the value of the specified hex digit, or -1 if it's
+/// not valid.
+static int HexDigitValue(char C) {
+ if (C >= '0' && C <= '9') return C-'0';
+ if (C >= 'a' && C <= 'f') return C-'a'+10;
+ if (C >= 'A' && C <= 'F') return C-'A'+10;
+ return -1;
+}
+
+/// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
+/// either a character or a string literal.
+static unsigned ProcessCharEscape(const char *&ThisTokBuf,
+ const char *ThisTokEnd, bool &HadError,
+ SourceLocation Loc, bool IsWide,
+ Preprocessor &PP) {
+ // Skip the '\' char.
+ ++ThisTokBuf;
+
+ // We know that this character can't be off the end of the buffer, because
+ // that would have been \", which would not have been the end of string.
+ unsigned ResultChar = *ThisTokBuf++;
+ switch (ResultChar) {
+ // These map to themselves.
+ case '\\': case '\'': case '"': case '?': break;
+
+ // These have fixed mappings.
+ case 'a':
+ // TODO: K&R: the meaning of '\\a' is different in traditional C
+ ResultChar = 7;
+ break;
+ case 'b':
+ ResultChar = 8;
+ break;
+ case 'e':
+ PP.Diag(Loc, diag::ext_nonstandard_escape, "e");
+ ResultChar = 27;
+ break;
+ case 'f':
+ ResultChar = 12;
+ break;
+ case 'n':
+ ResultChar = 10;
+ break;
+ case 'r':
+ ResultChar = 13;
+ break;
+ case 't':
+ ResultChar = 9;
+ break;
+ case 'v':
+ ResultChar = 11;
+ break;
+
+ //case 'u': case 'U': // FIXME: UCNs.
+ case 'x': { // Hex escape.
+ ResultChar = 0;
+ if (ThisTokBuf == ThisTokEnd || !isxdigit(*ThisTokBuf)) {
+ PP.Diag(Loc, diag::err_hex_escape_no_digits);
+ HadError = 1;
+ break;
+ }
+
+ // Hex escapes are a maximal series of hex digits.
+ bool Overflow = false;
+ for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
+ int CharVal = HexDigitValue(ThisTokBuf[0]);
+ if (CharVal == -1) break;
+ Overflow |= (ResultChar & 0xF0000000) ? true : false; // About to shift out a digit?
+ ResultChar <<= 4;
+ ResultChar |= CharVal;
+ }
+
+ // See if any bits will be truncated when evaluated as a character.
+ unsigned CharWidth = PP.getTargetInfo().getCharWidth(IsWide);
+
+ if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
+ Overflow = true;
+ ResultChar &= ~0U >> (32-CharWidth);
+ }
+
+ // Check for overflow.
+ if (Overflow) // Too many digits to fit in
+ PP.Diag(Loc, diag::warn_hex_escape_too_large);
+ break;
+ }
+ case '0': case '1': case '2': case '3':
+ case '4': case '5': case '6': case '7': {
+ // Octal escapes.
+ --ThisTokBuf;
+ ResultChar = 0;
+
+ // Octal escapes are a series of octal digits with maximum length 3.
+ // "\0123" is a two digit sequence equal to "\012" "3".
+ unsigned NumDigits = 0;
+ do {
+ ResultChar <<= 3;
+ ResultChar |= *ThisTokBuf++ - '0';
+ ++NumDigits;
+ } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
+ ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
+
+ // Check for overflow. Reject '\777', but not L'\777'.
+ unsigned CharWidth = PP.getTargetInfo().getCharWidth(IsWide);
+
+ if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
+ PP.Diag(Loc, diag::warn_octal_escape_too_large);
+ ResultChar &= ~0U >> (32-CharWidth);
+ }
+ break;
+ }
+
+ // Otherwise, these are not valid escapes.
+ case '(': case '{': case '[': case '%':
+ // GCC accepts these as extensions. We warn about them as such though.
+ if (!PP.getLangOptions().NoExtensions) {
+ PP.Diag(Loc, diag::ext_nonstandard_escape,
+ std::string()+(char)ResultChar);
+ break;
+ }
+ // FALL THROUGH.
+ default:
+ if (isgraph(ThisTokBuf[0])) {
+ PP.Diag(Loc, diag::ext_unknown_escape, std::string()+(char)ResultChar);
+ } else {
+ PP.Diag(Loc, diag::ext_unknown_escape, "x"+llvm::utohexstr(ResultChar));
+ }
+ break;
+ }
+
+ return ResultChar;
+}
+
+
+
+
+/// integer-constant: [C99 6.4.4.1]
+/// decimal-constant integer-suffix
+/// octal-constant integer-suffix
+/// hexadecimal-constant integer-suffix
+/// decimal-constant:
+/// nonzero-digit
+/// decimal-constant digit
+/// octal-constant:
+/// 0
+/// octal-constant octal-digit
+/// hexadecimal-constant:
+/// hexadecimal-prefix hexadecimal-digit
+/// hexadecimal-constant hexadecimal-digit
+/// hexadecimal-prefix: one of
+/// 0x 0X
+/// integer-suffix:
+/// unsigned-suffix [long-suffix]
+/// unsigned-suffix [long-long-suffix]
+/// long-suffix [unsigned-suffix]
+/// long-long-suffix [unsigned-sufix]
+/// nonzero-digit:
+/// 1 2 3 4 5 6 7 8 9
+/// octal-digit:
+/// 0 1 2 3 4 5 6 7
+/// hexadecimal-digit:
+/// 0 1 2 3 4 5 6 7 8 9
+/// a b c d e f
+/// A B C D E F
+/// unsigned-suffix: one of
+/// u U
+/// long-suffix: one of
+/// l L
+/// long-long-suffix: one of
+/// ll LL
+///
+/// floating-constant: [C99 6.4.4.2]
+/// TODO: add rules...
+///
+
+NumericLiteralParser::
+NumericLiteralParser(const char *begin, const char *end,
+ SourceLocation TokLoc, Preprocessor &pp)
+ : PP(pp), ThisTokBegin(begin), ThisTokEnd(end) {
+ s = DigitsBegin = begin;
+ saw_exponent = false;
+ saw_period = false;
+ isLong = false;
+ isUnsigned = false;
+ isLongLong = false;
+ isFloat = false;
+ isImaginary = false;
+ hadError = false;
+
+ if (*s == '0') { // parse radix
+ s++;
+ if ((*s == 'x' || *s == 'X') && (isxdigit(s[1]) || s[1] == '.')) {
+ s++;
+ radix = 16;
+ DigitsBegin = s;
+ s = SkipHexDigits(s);
+ if (s == ThisTokEnd) {
+ // Done.
+ } else if (*s == '.') {
+ s++;
+ saw_period = true;
+ s = SkipHexDigits(s);
+ }
+ // A binary exponent can appear with or with a '.'. If dotted, the
+ // binary exponent is required.
+ if ((*s == 'p' || *s == 'P') && PP.getLangOptions().HexFloats) {
+ s++;
+ saw_exponent = true;
+ if (*s == '+' || *s == '-') s++; // sign
+ const char *first_non_digit = SkipDigits(s);
+ if (first_non_digit == s) {
+ Diag(TokLoc, diag::err_exponent_has_no_digits);
+ return;
+ } else {
+ s = first_non_digit;
+ }
+ } else if (saw_period) {
+ Diag(TokLoc, diag::err_hexconstant_requires_exponent);
+ return;
+ }
+ } else if (*s == 'b' || *s == 'B') {
+ // 0b101010 is a GCC extension.
+ ++s;
+ radix = 2;
+ DigitsBegin = s;
+ s = SkipBinaryDigits(s);
+ if (s == ThisTokEnd) {
+ // Done.
+ } else if (isxdigit(*s)) {
+ Diag(TokLoc, diag::err_invalid_binary_digit, std::string(s, s+1));
+ return;
+ }
+ PP.Diag(TokLoc, diag::ext_binary_literal);
+ } else {
+ // For now, the radix is set to 8. If we discover that we have a
+ // floating point constant, the radix will change to 10. Octal floating
+ // point constants are not permitted (only decimal and hexadecimal).
+ radix = 8;
+ DigitsBegin = s;
+ s = SkipOctalDigits(s);
+ if (s == ThisTokEnd) {
+ // Done.
+ } else if (isxdigit(*s) && !(*s == 'e' || *s == 'E')) {
+ TokLoc = PP.AdvanceToTokenCharacter(TokLoc, s-begin);
+ Diag(TokLoc, diag::err_invalid_octal_digit, std::string(s, s+1));
+ return;
+ } else if (*s == '.') {
+ s++;
+ radix = 10;
+ saw_period = true;
+ s = SkipDigits(s);
+ }
+ if (*s == 'e' || *s == 'E') { // exponent
+ s++;
+ radix = 10;
+ saw_exponent = true;
+ if (*s == '+' || *s == '-') s++; // sign
+ const char *first_non_digit = SkipDigits(s);
+ if (first_non_digit == s) {
+ Diag(TokLoc, diag::err_exponent_has_no_digits);
+ return;
+ } else {
+ s = first_non_digit;
+ }
+ }
+ }
+ } else { // the first digit is non-zero
+ radix = 10;
+ s = SkipDigits(s);
+ if (s == ThisTokEnd) {
+ // Done.
+ } else if (isxdigit(*s) && !(*s == 'e' || *s == 'E')) {
+ Diag(TokLoc, diag::err_invalid_decimal_digit, std::string(s, s+1));
+ return;
+ } else if (*s == '.') {
+ s++;
+ saw_period = true;
+ s = SkipDigits(s);
+ }
+ if (*s == 'e' || *s == 'E') { // exponent
+ s++;
+ saw_exponent = true;
+ if (*s == '+' || *s == '-') s++; // sign
+ const char *first_non_digit = SkipDigits(s);
+ if (first_non_digit == s) {
+ Diag(TokLoc, diag::err_exponent_has_no_digits);
+ return;
+ } else {
+ s = first_non_digit;
+ }
+ }
+ }
+
+ SuffixBegin = s;
+
+ // Parse the suffix. At this point we can classify whether we have an FP or
+ // integer constant.
+ bool isFPConstant = isFloatingLiteral();
+
+ // Loop over all of the characters of the suffix. If we see something bad,
+ // we break out of the loop.
+ for (; s != ThisTokEnd; ++s) {
+ switch (*s) {
+ case 'f': // FP Suffix for "float"
+ case 'F':
+ if (!isFPConstant) break; // Error for integer constant.
+ if (isFloat || isLong) break; // FF, LF invalid.
+ isFloat = true;
+ continue; // Success.
+ case 'u':
+ case 'U':
+ if (isFPConstant) break; // Error for floating constant.
+ if (isUnsigned) break; // Cannot be repeated.
+ isUnsigned = true;
+ continue; // Success.
+ case 'l':
+ case 'L':
+ if (isLong || isLongLong) break; // Cannot be repeated.
+ if (isFloat) break; // LF invalid.
+
+ // Check for long long. The L's need to be adjacent and the same case.
+ if (s+1 != ThisTokEnd && s[1] == s[0]) {
+ if (isFPConstant) break; // long long invalid for floats.
+ isLongLong = true;
+ ++s; // Eat both of them.
+ } else {
+ isLong = true;
+ }
+ continue; // Success.
+ case 'i':
+ case 'I':
+ case 'j':
+ case 'J':
+ if (isImaginary) break; // Cannot be repeated.
+ PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-begin),
+ diag::ext_imaginary_constant);
+ isImaginary = true;
+ continue; // Success.
+ }
+ // If we reached here, there was an error.
+ break;
+ }
+
+ // Report an error if there are any.
+ if (s != ThisTokEnd) {
+ TokLoc = PP.AdvanceToTokenCharacter(TokLoc, s-begin);
+ Diag(TokLoc, isFPConstant ? diag::err_invalid_suffix_float_constant :
+ diag::err_invalid_suffix_integer_constant,
+ std::string(SuffixBegin, ThisTokEnd));
+ return;
+ }
+}
+
+/// GetIntegerValue - Convert this numeric literal value to an APInt that
+/// matches Val's input width. If there is an overflow, set Val to the low bits
+/// of the result and return true. Otherwise, return false.
+bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
+ Val = 0;
+ s = DigitsBegin;
+
+ llvm::APInt RadixVal(Val.getBitWidth(), radix);
+ llvm::APInt CharVal(Val.getBitWidth(), 0);
+ llvm::APInt OldVal = Val;
+
+ bool OverflowOccurred = false;
+ while (s < SuffixBegin) {
+ unsigned C = HexDigitValue(*s++);
+
+ // If this letter is out of bound for this radix, reject it.
+ assert(C < radix && "NumericLiteralParser ctor should have rejected this");
+
+ CharVal = C;
+
+ // Add the digit to the value in the appropriate radix. If adding in digits
+ // made the value smaller, then this overflowed.
+ OldVal = Val;
+
+ // Multiply by radix, did overflow occur on the multiply?
+ Val *= RadixVal;
+ OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
+
+ OldVal = Val;
+ // Add value, did overflow occur on the value?
+ Val += CharVal;
+ OverflowOccurred |= Val.ult(OldVal);
+ OverflowOccurred |= Val.ult(CharVal);
+ }
+ return OverflowOccurred;
+}
+
+llvm::APFloat NumericLiteralParser::
+GetFloatValue(const llvm::fltSemantics &Format, bool* isExact) {
+ using llvm::APFloat;
+
+ llvm::SmallVector<char,256> floatChars;
+ for (unsigned i = 0, n = ThisTokEnd-ThisTokBegin; i != n; ++i)
+ floatChars.push_back(ThisTokBegin[i]);
+
+ floatChars.push_back('\0');
+
+ APFloat V (Format, APFloat::fcZero, false);
+ APFloat::opStatus status;
+
+ status = V.convertFromString(&floatChars[0],APFloat::rmNearestTiesToEven);
+
+ if (isExact)
+ *isExact = status == APFloat::opOK;
+
+ return V;
+}
+
+void NumericLiteralParser::Diag(SourceLocation Loc, unsigned DiagID,
+ const std::string &M) {
+ PP.Diag(Loc, DiagID, M);
+ hadError = true;
+}
+
+
+CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
+ SourceLocation Loc, Preprocessor &PP) {
+ // At this point we know that the character matches the regex "L?'.*'".
+ HadError = false;
+ Value = 0;
+
+ // Determine if this is a wide character.
+ IsWide = begin[0] == 'L';
+ if (IsWide) ++begin;
+
+ // Skip over the entry quote.
+ assert(begin[0] == '\'' && "Invalid token lexed");
+ ++begin;
+
+ // FIXME: This assumes that 'int' is 32-bits in overflow calculation, and the
+ // size of "value".
+ assert(PP.getTargetInfo().getIntWidth() == 32 &&
+ "Assumes sizeof(int) == 4 for now");
+ // FIXME: This assumes that wchar_t is 32-bits for now.
+ assert(PP.getTargetInfo().getWCharWidth() == 32 &&
+ "Assumes sizeof(wchar_t) == 4 for now");
+ // FIXME: This extensively assumes that 'char' is 8-bits.
+ assert(PP.getTargetInfo().getCharWidth() == 8 &&
+ "Assumes char is 8 bits");
+
+ bool isFirstChar = true;
+ bool isMultiChar = false;
+ while (begin[0] != '\'') {
+ unsigned ResultChar;
+ if (begin[0] != '\\') // If this is a normal character, consume it.
+ ResultChar = *begin++;
+ else // Otherwise, this is an escape character.
+ ResultChar = ProcessCharEscape(begin, end, HadError, Loc, IsWide, PP);
+
+ // If this is a multi-character constant (e.g. 'abc'), handle it. These are
+ // implementation defined (C99 6.4.4.4p10).
+ if (!isFirstChar) {
+ // If this is the second character being processed, do special handling.
+ if (!isMultiChar) {
+ isMultiChar = true;
+
+ // Warn about discarding the top bits for multi-char wide-character
+ // constants (L'abcd').
+ if (IsWide)
+ PP.Diag(Loc, diag::warn_extraneous_wide_char_constant);
+ }
+
+ if (IsWide) {
+ // Emulate GCC's (unintentional?) behavior: L'ab' -> L'b'.
+ Value = 0;
+ } else {
+ // Narrow character literals act as though their value is concatenated
+ // in this implementation.
+ if (((Value << 8) >> 8) != Value)
+ PP.Diag(Loc, diag::warn_char_constant_too_large);
+ Value <<= 8;
+ }
+ }
+
+ Value += ResultChar;
+ isFirstChar = false;
+ }
+
+ // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
+ // if 'char' is signed for this target (C99 6.4.4.4p10). Note that multiple
+ // character constants are not sign extended in the this implementation:
+ // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
+ if (!IsWide && !isMultiChar && (Value & 128) &&
+ PP.getTargetInfo().isCharSigned())
+ Value = (signed char)Value;
+}
+
+
+/// string-literal: [C99 6.4.5]
+/// " [s-char-sequence] "
+/// L" [s-char-sequence] "
+/// s-char-sequence:
+/// s-char
+/// s-char-sequence s-char
+/// s-char:
+/// any source character except the double quote ",
+/// backslash \, or newline character
+/// escape-character
+/// universal-character-name
+/// escape-character: [C99 6.4.4.4]
+/// \ escape-code
+/// universal-character-name
+/// escape-code:
+/// character-escape-code
+/// octal-escape-code
+/// hex-escape-code
+/// character-escape-code: one of
+/// n t b r f v a
+/// \ ' " ?
+/// octal-escape-code:
+/// octal-digit
+/// octal-digit octal-digit
+/// octal-digit octal-digit octal-digit
+/// hex-escape-code:
+/// x hex-digit
+/// hex-escape-code hex-digit
+/// universal-character-name:
+/// \u hex-quad
+/// \U hex-quad hex-quad
+/// hex-quad:
+/// hex-digit hex-digit hex-digit hex-digit
+///
+StringLiteralParser::
+StringLiteralParser(const Token *StringToks, unsigned NumStringToks,
+ Preprocessor &pp, TargetInfo &t)
+ : PP(pp), Target(t) {
+ // Scan all of the string portions, remember the max individual token length,
+ // computing a bound on the concatenated string length, and see whether any
+ // piece is a wide-string. If any of the string portions is a wide-string
+ // literal, the result is a wide-string literal [C99 6.4.5p4].
+ MaxTokenLength = StringToks[0].getLength();
+ SizeBound = StringToks[0].getLength()-2; // -2 for "".
+ AnyWide = StringToks[0].is(tok::wide_string_literal);
+
+ hadError = false;
+
+ // Implement Translation Phase #6: concatenation of string literals
+ /// (C99 5.1.1.2p1). The common case is only one string fragment.
+ for (unsigned i = 1; i != NumStringToks; ++i) {
+ // The string could be shorter than this if it needs cleaning, but this is a
+ // reasonable bound, which is all we need.
+ SizeBound += StringToks[i].getLength()-2; // -2 for "".
+
+ // Remember maximum string piece length.
+ if (StringToks[i].getLength() > MaxTokenLength)
+ MaxTokenLength = StringToks[i].getLength();
+
+ // Remember if we see any wide strings.
+ AnyWide |= StringToks[i].is(tok::wide_string_literal);
+ }
+
+
+ // Include space for the null terminator.
+ ++SizeBound;
+
+ // TODO: K&R warning: "traditional C rejects string constant concatenation"
+
+ // Get the width in bytes of wchar_t. If no wchar_t strings are used, do not
+ // query the target. As such, wchar_tByteWidth is only valid if AnyWide=true.
+ wchar_tByteWidth = ~0U;
+ if (AnyWide) {
+ wchar_tByteWidth = Target.getWCharWidth();
+ assert((wchar_tByteWidth & 7) == 0 && "Assumes wchar_t is byte multiple!");
+ wchar_tByteWidth /= 8;
+ }
+
+ // The output buffer size needs to be large enough to hold wide characters.
+ // This is a worst-case assumption which basically corresponds to L"" "long".
+ if (AnyWide)
+ SizeBound *= wchar_tByteWidth;
+
+ // Size the temporary buffer to hold the result string data.
+ ResultBuf.resize(SizeBound);
+
+ // Likewise, but for each string piece.
+ llvm::SmallString<512> TokenBuf;
+ TokenBuf.resize(MaxTokenLength);
+
+ // Loop over all the strings, getting their spelling, and expanding them to
+ // wide strings as appropriate.
+ ResultPtr = &ResultBuf[0]; // Next byte to fill in.
+
+ Pascal = false;
+
+ for (unsigned i = 0, e = NumStringToks; i != e; ++i) {
+ const char *ThisTokBuf = &TokenBuf[0];
+ // Get the spelling of the token, which eliminates trigraphs, etc. We know
+ // that ThisTokBuf points to a buffer that is big enough for the whole token
+ // and 'spelled' tokens can only shrink.
+ unsigned ThisTokLen = PP.getSpelling(StringToks[i], ThisTokBuf);
+ const char *ThisTokEnd = ThisTokBuf+ThisTokLen-1; // Skip end quote.
+
+ // TODO: Input character set mapping support.
+
+ // Skip L marker for wide strings.
+ bool ThisIsWide = false;
+ if (ThisTokBuf[0] == 'L') {
+ ++ThisTokBuf;
+ ThisIsWide = true;
+ }
+
+ assert(ThisTokBuf[0] == '"' && "Expected quote, lexer broken?");
+ ++ThisTokBuf;
+
+ // Check if this is a pascal string
+ if (pp.getLangOptions().PascalStrings && ThisTokBuf + 1 != ThisTokEnd &&
+ ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') {
+
+ // If the \p sequence is found in the first token, we have a pascal string
+ // Otherwise, if we already have a pascal string, ignore the first \p
+ if (i == 0) {
+ ++ThisTokBuf;
+ Pascal = true;
+ } else if (Pascal)
+ ThisTokBuf += 2;
+ }
+
+ while (ThisTokBuf != ThisTokEnd) {
+ // Is this a span of non-escape characters?
+ if (ThisTokBuf[0] != '\\') {
+ const char *InStart = ThisTokBuf;
+ do {
+ ++ThisTokBuf;
+ } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
+
+ // Copy the character span over.
+ unsigned Len = ThisTokBuf-InStart;
+ if (!AnyWide) {
+ memcpy(ResultPtr, InStart, Len);
+ ResultPtr += Len;
+ } else {
+ // Note: our internal rep of wide char tokens is always little-endian.
+ for (; Len; --Len, ++InStart) {
+ *ResultPtr++ = InStart[0];
+ // Add zeros at the end.
+ for (unsigned i = 1, e = wchar_tByteWidth; i != e; ++i)
+ *ResultPtr++ = 0;
+ }
+ }
+ continue;
+ }
+
+ // Otherwise, this is an escape character. Process it.
+ unsigned ResultChar = ProcessCharEscape(ThisTokBuf, ThisTokEnd, hadError,
+ StringToks[i].getLocation(),
+ ThisIsWide, PP);
+
+ // Note: our internal rep of wide char tokens is always little-endian.
+ *ResultPtr++ = ResultChar & 0xFF;
+
+ if (AnyWide) {
+ for (unsigned i = 1, e = wchar_tByteWidth; i != e; ++i)
+ *ResultPtr++ = ResultChar >> i*8;
+ }
+ }
+ }
+
+ // Add zero terminator.
+ *ResultPtr = 0;
+ if (AnyWide) {
+ for (unsigned i = 1, e = wchar_tByteWidth; i != e; ++i)
+ *ResultPtr++ = 0;
+ }
+
+ if (Pascal)
+ ResultBuf[0] = ResultPtr-&ResultBuf[0]-1;
+}
OpenPOWER on IntegriCloud