diff options
Diffstat (limited to 'clang/lib/CodeGen/CGExprScalar.cpp')
-rw-r--r-- | clang/lib/CodeGen/CGExprScalar.cpp | 210 |
1 files changed, 176 insertions, 34 deletions
diff --git a/clang/lib/CodeGen/CGExprScalar.cpp b/clang/lib/CodeGen/CGExprScalar.cpp index 048b50d8261..d604b4130a2 100644 --- a/clang/lib/CodeGen/CGExprScalar.cpp +++ b/clang/lib/CodeGen/CGExprScalar.cpp @@ -30,6 +30,7 @@ #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Function.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Module.h" @@ -44,6 +45,43 @@ using llvm::Value; //===----------------------------------------------------------------------===// namespace { + +/// Determine whether the given binary operation may overflow. +/// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, +/// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, +/// the returned overflow check is precise. The returned value is 'true' for +/// all other opcodes, to be conservative. +bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, + BinaryOperator::Opcode Opcode, bool Signed, + llvm::APInt &Result) { + // Assume overflow is possible, unless we can prove otherwise. + bool Overflow = true; + const auto &LHSAP = LHS->getValue(); + const auto &RHSAP = RHS->getValue(); + if (Opcode == BO_Add) { + if (Signed) + Result = LHSAP.sadd_ov(RHSAP, Overflow); + else + Result = LHSAP.uadd_ov(RHSAP, Overflow); + } else if (Opcode == BO_Sub) { + if (Signed) + Result = LHSAP.ssub_ov(RHSAP, Overflow); + else + Result = LHSAP.usub_ov(RHSAP, Overflow); + } else if (Opcode == BO_Mul) { + if (Signed) + Result = LHSAP.smul_ov(RHSAP, Overflow); + else + Result = LHSAP.umul_ov(RHSAP, Overflow); + } else if (Opcode == BO_Div || Opcode == BO_Rem) { + if (Signed && !RHS->isZero()) + Result = LHSAP.sdiv_ov(RHSAP, Overflow); + else + return false; + } + return Overflow; +} + struct BinOpInfo { Value *LHS; Value *RHS; @@ -55,37 +93,14 @@ struct BinOpInfo { /// Check if the binop can result in integer overflow. bool mayHaveIntegerOverflow() const { // Without constant input, we can't rule out overflow. - const auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); - const auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); + auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); + auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); if (!LHSCI || !RHSCI) return true; - // Assume overflow is possible, unless we can prove otherwise. - bool Overflow = true; - const auto &LHSAP = LHSCI->getValue(); - const auto &RHSAP = RHSCI->getValue(); - if (Opcode == BO_Add) { - if (Ty->hasSignedIntegerRepresentation()) - (void)LHSAP.sadd_ov(RHSAP, Overflow); - else - (void)LHSAP.uadd_ov(RHSAP, Overflow); - } else if (Opcode == BO_Sub) { - if (Ty->hasSignedIntegerRepresentation()) - (void)LHSAP.ssub_ov(RHSAP, Overflow); - else - (void)LHSAP.usub_ov(RHSAP, Overflow); - } else if (Opcode == BO_Mul) { - if (Ty->hasSignedIntegerRepresentation()) - (void)LHSAP.smul_ov(RHSAP, Overflow); - else - (void)LHSAP.umul_ov(RHSAP, Overflow); - } else if (Opcode == BO_Div || Opcode == BO_Rem) { - if (Ty->hasSignedIntegerRepresentation() && !RHSCI->isZero()) - (void)LHSAP.sdiv_ov(RHSAP, Overflow); - else - return false; - } - return Overflow; + llvm::APInt Result; + return ::mayHaveIntegerOverflow( + LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); } /// Check if the binop computes a division or a remainder. @@ -1925,7 +1940,8 @@ ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, if (CGF.getLangOpts().isSignedOverflowDefined()) value = Builder.CreateGEP(value, numElts, "vla.inc"); else - value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc"); + value = CGF.EmitCheckedInBoundsGEP(value, numElts, E->getExprLoc(), + "vla.inc"); // Arithmetic on function pointers (!) is just +-1. } else if (type->isFunctionType()) { @@ -1935,7 +1951,8 @@ ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, if (CGF.getLangOpts().isSignedOverflowDefined()) value = Builder.CreateGEP(value, amt, "incdec.funcptr"); else - value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr"); + value = CGF.EmitCheckedInBoundsGEP(value, amt, E->getExprLoc(), + "incdec.funcptr"); value = Builder.CreateBitCast(value, input->getType()); // For everything else, we can just do a simple increment. @@ -1944,7 +1961,8 @@ ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, if (CGF.getLangOpts().isSignedOverflowDefined()) value = Builder.CreateGEP(value, amt, "incdec.ptr"); else - value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr"); + value = CGF.EmitCheckedInBoundsGEP(value, amt, E->getExprLoc(), + "incdec.ptr"); } // Vector increment/decrement. @@ -2025,7 +2043,8 @@ ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, if (CGF.getLangOpts().isSignedOverflowDefined()) value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); else - value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr"); + value = CGF.EmitCheckedInBoundsGEP(value, sizeValue, E->getExprLoc(), + "incdec.objptr"); value = Builder.CreateBitCast(value, input->getType()); } @@ -2692,7 +2711,8 @@ static Value *emitPointerArithmetic(CodeGenFunction &CGF, pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); } else { index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); - pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); + pointer = CGF.EmitCheckedInBoundsGEP(pointer, index, op.E->getExprLoc(), + "add.ptr"); } return pointer; } @@ -2709,7 +2729,8 @@ static Value *emitPointerArithmetic(CodeGenFunction &CGF, if (CGF.getLangOpts().isSignedOverflowDefined()) return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); - return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); + return CGF.EmitCheckedInBoundsGEP(pointer, index, op.E->getExprLoc(), + "add.ptr"); } // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and @@ -3824,3 +3845,124 @@ LValue CodeGenFunction::EmitCompoundAssignmentLValue( llvm_unreachable("Unhandled compound assignment operator"); } + +Value *CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, + ArrayRef<Value *> IdxList, + SourceLocation Loc, + const Twine &Name) { + Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name); + + // If the pointer overflow sanitizer isn't enabled, do nothing. + if (!SanOpts.has(SanitizerKind::PointerOverflow)) + return GEPVal; + + // If the GEP has already been reduced to a constant, leave it be. + if (isa<llvm::Constant>(GEPVal)) + return GEPVal; + + // Only check for overflows in the default address space. + if (GEPVal->getType()->getPointerAddressSpace()) + return GEPVal; + + auto *GEP = cast<llvm::GEPOperator>(GEPVal); + assert(GEP->isInBounds() && "Expected inbounds GEP"); + + SanitizerScope SanScope(this); + auto &VMContext = getLLVMContext(); + const auto &DL = CGM.getDataLayout(); + auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); + + // Grab references to the signed add/mul overflow intrinsics for intptr_t. + auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); + auto *SAddIntrinsic = + CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); + auto *SMulIntrinsic = + CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); + + // The total (signed) byte offset for the GEP. + llvm::Value *TotalOffset = nullptr; + // The offset overflow flag - true if the total offset overflows. + llvm::Value *OffsetOverflows = Builder.getFalse(); + + /// Return the result of the given binary operation. + auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, + llvm::Value *RHS) -> llvm::Value * { + assert(Opcode == BO_Add || Opcode == BO_Mul && "Can't eval binop"); + + // If the operands are constants, return a constant result. + if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { + if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { + llvm::APInt N; + bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, + /*Signed=*/true, N); + if (HasOverflow) + OffsetOverflows = Builder.getTrue(); + return llvm::ConstantInt::get(VMContext, N); + } + } + + // Otherwise, compute the result with checked arithmetic. + auto *ResultAndOverflow = Builder.CreateCall( + (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); + OffsetOverflows = Builder.CreateOr( + OffsetOverflows, Builder.CreateExtractValue(ResultAndOverflow, 1)); + return Builder.CreateExtractValue(ResultAndOverflow, 0); + }; + + // Determine the total byte offset by looking at each GEP operand. + for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); + GTI != GTE; ++GTI) { + llvm::Value *LocalOffset; + auto *Index = GTI.getOperand(); + // Compute the local offset contributed by this indexing step: + if (auto *STy = GTI.getStructTypeOrNull()) { + // For struct indexing, the local offset is the byte position of the + // specified field. + unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); + LocalOffset = llvm::ConstantInt::get( + IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); + } else { + // Otherwise this is array-like indexing. The local offset is the index + // multiplied by the element size. + auto *ElementSize = llvm::ConstantInt::get( + IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); + auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); + LocalOffset = eval(BO_Mul, ElementSize, IndexS); + } + + // If this is the first offset, set it as the total offset. Otherwise, add + // the local offset into the running total. + if (!TotalOffset || TotalOffset == Zero) + TotalOffset = LocalOffset; + else + TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); + } + + // Common case: if the total offset is zero, don't emit a check. + if (TotalOffset == Zero) + return GEPVal; + + // Now that we've computed the total offset, add it to the base pointer (with + // wrapping semantics). + auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy); + auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset); + + // The GEP is valid if: + // 1) The total offset doesn't overflow, and + // 2) The sign of the difference between the computed address and the base + // pointer matches the sign of the total offset. + llvm::Value *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); + llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); + auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero); + llvm::Value *ValidGEP = Builder.CreateAnd( + Builder.CreateNot(OffsetOverflows), + Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid)); + + llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; + // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. + llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; + EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow), + SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); + + return GEPVal; +} |