summaryrefslogtreecommitdiffstats
path: root/clang/lib/CodeGen/CGExprScalar.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'clang/lib/CodeGen/CGExprScalar.cpp')
-rw-r--r--clang/lib/CodeGen/CGExprScalar.cpp1185
1 files changed, 1185 insertions, 0 deletions
diff --git a/clang/lib/CodeGen/CGExprScalar.cpp b/clang/lib/CodeGen/CGExprScalar.cpp
new file mode 100644
index 00000000000..892712a0d4c
--- /dev/null
+++ b/clang/lib/CodeGen/CGExprScalar.cpp
@@ -0,0 +1,1185 @@
+//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenFunction.h"
+#include "CodeGenModule.h"
+#include "clang/AST/AST.h"
+#include "llvm/Constants.h"
+#include "llvm/Function.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/Support/Compiler.h"
+#include <cstdarg>
+
+using namespace clang;
+using namespace CodeGen;
+using llvm::Value;
+
+//===----------------------------------------------------------------------===//
+// Scalar Expression Emitter
+//===----------------------------------------------------------------------===//
+
+struct BinOpInfo {
+ Value *LHS;
+ Value *RHS;
+ QualType Ty; // Computation Type.
+ const BinaryOperator *E;
+};
+
+namespace {
+class VISIBILITY_HIDDEN ScalarExprEmitter
+ : public StmtVisitor<ScalarExprEmitter, Value*> {
+ CodeGenFunction &CGF;
+ llvm::LLVMFoldingBuilder &Builder;
+ CGObjCRuntime *Runtime;
+
+
+public:
+
+ ScalarExprEmitter(CodeGenFunction &cgf) : CGF(cgf),
+ Builder(CGF.Builder),
+ Runtime(CGF.CGM.getObjCRuntime()) {
+ }
+
+
+ //===--------------------------------------------------------------------===//
+ // Utilities
+ //===--------------------------------------------------------------------===//
+
+ const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
+ LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
+
+ Value *EmitLoadOfLValue(LValue LV, QualType T) {
+ return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
+ }
+
+ /// EmitLoadOfLValue - Given an expression with complex type that represents a
+ /// value l-value, this method emits the address of the l-value, then loads
+ /// and returns the result.
+ Value *EmitLoadOfLValue(const Expr *E) {
+ // FIXME: Volatile
+ return EmitLoadOfLValue(EmitLValue(E), E->getType());
+ }
+
+ /// EmitConversionToBool - Convert the specified expression value to a
+ /// boolean (i1) truth value. This is equivalent to "Val != 0".
+ Value *EmitConversionToBool(Value *Src, QualType DstTy);
+
+ /// EmitScalarConversion - Emit a conversion from the specified type to the
+ /// specified destination type, both of which are LLVM scalar types.
+ Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
+
+ /// EmitComplexToScalarConversion - Emit a conversion from the specified
+ /// complex type to the specified destination type, where the destination
+ /// type is an LLVM scalar type.
+ Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
+ QualType SrcTy, QualType DstTy);
+
+ //===--------------------------------------------------------------------===//
+ // Visitor Methods
+ //===--------------------------------------------------------------------===//
+
+ Value *VisitStmt(Stmt *S) {
+ S->dump(CGF.getContext().getSourceManager());
+ assert(0 && "Stmt can't have complex result type!");
+ return 0;
+ }
+ Value *VisitExpr(Expr *S);
+ Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
+
+ // Leaves.
+ Value *VisitIntegerLiteral(const IntegerLiteral *E) {
+ return llvm::ConstantInt::get(E->getValue());
+ }
+ Value *VisitFloatingLiteral(const FloatingLiteral *E) {
+ return llvm::ConstantFP::get(ConvertType(E->getType()), E->getValue());
+ }
+ Value *VisitCharacterLiteral(const CharacterLiteral *E) {
+ return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
+ }
+ Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
+ return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
+ }
+ Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
+ return llvm::ConstantInt::get(ConvertType(E->getType()),
+ CGF.getContext().typesAreCompatible(
+ E->getArgType1(), E->getArgType2()));
+ }
+ Value *VisitSizeOfAlignOfTypeExpr(const SizeOfAlignOfTypeExpr *E) {
+ return EmitSizeAlignOf(E->getArgumentType(), E->getType(), E->isSizeOf());
+ }
+
+ // l-values.
+ Value *VisitDeclRefExpr(DeclRefExpr *E) {
+ if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl()))
+ return llvm::ConstantInt::get(EC->getInitVal());
+ return EmitLoadOfLValue(E);
+ }
+ Value *VisitObjCMessageExpr(ObjCMessageExpr *E);
+ Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
+ Value *VisitMemberExpr(Expr *E) { return EmitLoadOfLValue(E); }
+ Value *VisitOCUVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
+ Value *VisitStringLiteral(Expr *E) { return EmitLValue(E).getAddress(); }
+ Value *VisitPreDefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); }
+
+ Value *VisitInitListExpr(InitListExpr *E) {
+ unsigned NumInitElements = E->getNumInits();
+
+ const llvm::VectorType *VType =
+ dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
+
+ // We have a scalar in braces. Just use the first element.
+ if (!VType)
+ return Visit(E->getInit(0));
+
+ unsigned NumVectorElements = VType->getNumElements();
+ const llvm::Type *ElementType = VType->getElementType();
+
+ // Emit individual vector element stores.
+ llvm::Value *V = llvm::UndefValue::get(VType);
+
+ // Emit initializers
+ unsigned i;
+ for (i = 0; i < NumInitElements; ++i) {
+ Value *NewV = Visit(E->getInit(i));
+ Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
+ V = Builder.CreateInsertElement(V, NewV, Idx);
+ }
+
+ // Emit remaining default initializers
+ for (/* Do not initialize i*/; i < NumVectorElements; ++i) {
+ Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
+ llvm::Value *NewV = llvm::Constant::getNullValue(ElementType);
+ V = Builder.CreateInsertElement(V, NewV, Idx);
+ }
+
+ return V;
+ }
+
+ Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
+ return Visit(E->getInitializer());
+ }
+
+ Value *VisitImplicitCastExpr(const ImplicitCastExpr *E);
+ Value *VisitCastExpr(const CastExpr *E) {
+ return EmitCastExpr(E->getSubExpr(), E->getType());
+ }
+ Value *EmitCastExpr(const Expr *E, QualType T);
+
+ Value *VisitCallExpr(const CallExpr *E) {
+ return CGF.EmitCallExpr(E).getScalarVal();
+ }
+
+ Value *VisitStmtExpr(const StmtExpr *E);
+
+ // Unary Operators.
+ Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre);
+ Value *VisitUnaryPostDec(const UnaryOperator *E) {
+ return VisitPrePostIncDec(E, false, false);
+ }
+ Value *VisitUnaryPostInc(const UnaryOperator *E) {
+ return VisitPrePostIncDec(E, true, false);
+ }
+ Value *VisitUnaryPreDec(const UnaryOperator *E) {
+ return VisitPrePostIncDec(E, false, true);
+ }
+ Value *VisitUnaryPreInc(const UnaryOperator *E) {
+ return VisitPrePostIncDec(E, true, true);
+ }
+ Value *VisitUnaryAddrOf(const UnaryOperator *E) {
+ return EmitLValue(E->getSubExpr()).getAddress();
+ }
+ Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
+ Value *VisitUnaryPlus(const UnaryOperator *E) {
+ return Visit(E->getSubExpr());
+ }
+ Value *VisitUnaryMinus (const UnaryOperator *E);
+ Value *VisitUnaryNot (const UnaryOperator *E);
+ Value *VisitUnaryLNot (const UnaryOperator *E);
+ Value *VisitUnarySizeOf (const UnaryOperator *E) {
+ return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), true);
+ }
+ Value *VisitUnaryAlignOf (const UnaryOperator *E) {
+ return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), false);
+ }
+ Value *EmitSizeAlignOf(QualType TypeToSize, QualType RetType,
+ bool isSizeOf);
+ Value *VisitUnaryReal (const UnaryOperator *E);
+ Value *VisitUnaryImag (const UnaryOperator *E);
+ Value *VisitUnaryExtension(const UnaryOperator *E) {
+ return Visit(E->getSubExpr());
+ }
+ Value *VisitUnaryOffsetOf(const UnaryOperator *E);
+
+ // Binary Operators.
+ Value *EmitMul(const BinOpInfo &Ops) {
+ return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
+ }
+ Value *EmitDiv(const BinOpInfo &Ops);
+ Value *EmitRem(const BinOpInfo &Ops);
+ Value *EmitAdd(const BinOpInfo &Ops);
+ Value *EmitSub(const BinOpInfo &Ops);
+ Value *EmitShl(const BinOpInfo &Ops);
+ Value *EmitShr(const BinOpInfo &Ops);
+ Value *EmitAnd(const BinOpInfo &Ops) {
+ return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
+ }
+ Value *EmitXor(const BinOpInfo &Ops) {
+ return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
+ }
+ Value *EmitOr (const BinOpInfo &Ops) {
+ return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
+ }
+
+ BinOpInfo EmitBinOps(const BinaryOperator *E);
+ Value *EmitCompoundAssign(const CompoundAssignOperator *E,
+ Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
+
+ // Binary operators and binary compound assignment operators.
+#define HANDLEBINOP(OP) \
+ Value *VisitBin ## OP(const BinaryOperator *E) { \
+ return Emit ## OP(EmitBinOps(E)); \
+ } \
+ Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
+ return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
+ }
+ HANDLEBINOP(Mul);
+ HANDLEBINOP(Div);
+ HANDLEBINOP(Rem);
+ HANDLEBINOP(Add);
+ // (Sub) - Sub is handled specially below for ptr-ptr subtract.
+ HANDLEBINOP(Shl);
+ HANDLEBINOP(Shr);
+ HANDLEBINOP(And);
+ HANDLEBINOP(Xor);
+ HANDLEBINOP(Or);
+#undef HANDLEBINOP
+ Value *VisitBinSub(const BinaryOperator *E);
+ Value *VisitBinSubAssign(const CompoundAssignOperator *E) {
+ return EmitCompoundAssign(E, &ScalarExprEmitter::EmitSub);
+ }
+
+ // Comparisons.
+ Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
+ unsigned SICmpOpc, unsigned FCmpOpc);
+#define VISITCOMP(CODE, UI, SI, FP) \
+ Value *VisitBin##CODE(const BinaryOperator *E) { \
+ return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
+ llvm::FCmpInst::FP); }
+ VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT);
+ VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT);
+ VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE);
+ VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE);
+ VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ);
+ VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE);
+#undef VISITCOMP
+
+ Value *VisitBinAssign (const BinaryOperator *E);
+
+ Value *VisitBinLAnd (const BinaryOperator *E);
+ Value *VisitBinLOr (const BinaryOperator *E);
+ Value *VisitBinComma (const BinaryOperator *E);
+
+ // Other Operators.
+ Value *VisitConditionalOperator(const ConditionalOperator *CO);
+ Value *VisitChooseExpr(ChooseExpr *CE);
+ Value *VisitOverloadExpr(OverloadExpr *OE);
+ Value *VisitVAArgExpr(VAArgExpr *VE);
+ Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
+ return CGF.EmitObjCStringLiteral(E);
+ }
+ Value *VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
+};
+} // end anonymous namespace.
+
+//===----------------------------------------------------------------------===//
+// Utilities
+//===----------------------------------------------------------------------===//
+
+/// EmitConversionToBool - Convert the specified expression value to a
+/// boolean (i1) truth value. This is equivalent to "Val != 0".
+Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
+ assert(SrcType->isCanonical() && "EmitScalarConversion strips typedefs");
+
+ if (SrcType->isRealFloatingType()) {
+ // Compare against 0.0 for fp scalars.
+ llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
+ return Builder.CreateFCmpUNE(Src, Zero, "tobool");
+ }
+
+ assert((SrcType->isIntegerType() || SrcType->isPointerType()) &&
+ "Unknown scalar type to convert");
+
+ // Because of the type rules of C, we often end up computing a logical value,
+ // then zero extending it to int, then wanting it as a logical value again.
+ // Optimize this common case.
+ if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
+ if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) {
+ Value *Result = ZI->getOperand(0);
+ // If there aren't any more uses, zap the instruction to save space.
+ // Note that there can be more uses, for example if this
+ // is the result of an assignment.
+ if (ZI->use_empty())
+ ZI->eraseFromParent();
+ return Result;
+ }
+ }
+
+ // Compare against an integer or pointer null.
+ llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
+ return Builder.CreateICmpNE(Src, Zero, "tobool");
+}
+
+/// EmitScalarConversion - Emit a conversion from the specified type to the
+/// specified destination type, both of which are LLVM scalar types.
+Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
+ QualType DstType) {
+ SrcType = SrcType.getCanonicalType();
+ DstType = DstType.getCanonicalType();
+ if (SrcType == DstType) return Src;
+
+ if (DstType->isVoidType()) return 0;
+
+ // Handle conversions to bool first, they are special: comparisons against 0.
+ if (DstType->isBooleanType())
+ return EmitConversionToBool(Src, SrcType);
+
+ const llvm::Type *DstTy = ConvertType(DstType);
+
+ // Ignore conversions like int -> uint.
+ if (Src->getType() == DstTy)
+ return Src;
+
+ // Handle pointer conversions next: pointers can only be converted to/from
+ // other pointers and integers.
+ if (isa<PointerType>(DstType)) {
+ // The source value may be an integer, or a pointer.
+ if (isa<llvm::PointerType>(Src->getType()))
+ return Builder.CreateBitCast(Src, DstTy, "conv");
+ assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
+ return Builder.CreateIntToPtr(Src, DstTy, "conv");
+ }
+
+ if (isa<PointerType>(SrcType)) {
+ // Must be an ptr to int cast.
+ assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
+ return Builder.CreatePtrToInt(Src, DstTy, "conv");
+ }
+
+ // A scalar source can be splatted to an OCU vector of the same element type
+ if (DstType->isOCUVectorType() && !isa<VectorType>(SrcType) &&
+ cast<llvm::VectorType>(DstTy)->getElementType() == Src->getType())
+ return CGF.EmitVector(&Src, DstType->getAsVectorType()->getNumElements(),
+ true);
+
+ // Allow bitcast from vector to integer/fp of the same size.
+ if (isa<llvm::VectorType>(Src->getType()) ||
+ isa<llvm::VectorType>(DstTy))
+ return Builder.CreateBitCast(Src, DstTy, "conv");
+
+ // Finally, we have the arithmetic types: real int/float.
+ if (isa<llvm::IntegerType>(Src->getType())) {
+ bool InputSigned = SrcType->isSignedIntegerType();
+ if (isa<llvm::IntegerType>(DstTy))
+ return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
+ else if (InputSigned)
+ return Builder.CreateSIToFP(Src, DstTy, "conv");
+ else
+ return Builder.CreateUIToFP(Src, DstTy, "conv");
+ }
+
+ assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
+ if (isa<llvm::IntegerType>(DstTy)) {
+ if (DstType->isSignedIntegerType())
+ return Builder.CreateFPToSI(Src, DstTy, "conv");
+ else
+ return Builder.CreateFPToUI(Src, DstTy, "conv");
+ }
+
+ assert(DstTy->isFloatingPoint() && "Unknown real conversion");
+ if (DstTy->getTypeID() < Src->getType()->getTypeID())
+ return Builder.CreateFPTrunc(Src, DstTy, "conv");
+ else
+ return Builder.CreateFPExt(Src, DstTy, "conv");
+}
+
+/// EmitComplexToScalarConversion - Emit a conversion from the specified
+/// complex type to the specified destination type, where the destination
+/// type is an LLVM scalar type.
+Value *ScalarExprEmitter::
+EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
+ QualType SrcTy, QualType DstTy) {
+ // Get the source element type.
+ SrcTy = cast<ComplexType>(SrcTy.getCanonicalType())->getElementType();
+
+ // Handle conversions to bool first, they are special: comparisons against 0.
+ if (DstTy->isBooleanType()) {
+ // Complex != 0 -> (Real != 0) | (Imag != 0)
+ Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy);
+ Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
+ return Builder.CreateOr(Src.first, Src.second, "tobool");
+ }
+
+ // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
+ // the imaginary part of the complex value is discarded and the value of the
+ // real part is converted according to the conversion rules for the
+ // corresponding real type.
+ return EmitScalarConversion(Src.first, SrcTy, DstTy);
+}
+
+
+//===----------------------------------------------------------------------===//
+// Visitor Methods
+//===----------------------------------------------------------------------===//
+
+Value *ScalarExprEmitter::VisitExpr(Expr *E) {
+ CGF.WarnUnsupported(E, "scalar expression");
+ if (E->getType()->isVoidType())
+ return 0;
+ return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
+}
+
+Value *ScalarExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
+ // Only the lookup mechanism and first two arguments of the method
+ // implementation vary between runtimes. We can get the receiver and
+ // arguments in generic code.
+
+ // Find the receiver
+ llvm::Value * Receiver = CGF.EmitScalarExpr(E->getReceiver());
+
+ // Process the arguments
+ unsigned int ArgC = E->getNumArgs();
+ llvm::SmallVector<llvm::Value*, 16> Args;
+ for(unsigned i=0 ; i<ArgC ; i++) {
+ Expr *ArgExpr = E->getArg(i);
+ QualType ArgTy = ArgExpr->getType();
+ if (!CGF.hasAggregateLLVMType(ArgTy)) {
+ // Scalar argument is passed by-value.
+ Args.push_back(CGF.EmitScalarExpr(ArgExpr));
+ } else if (ArgTy->isComplexType()) {
+ // Make a temporary alloca to pass the argument.
+ llvm::Value *DestMem = CGF.CreateTempAlloca(ConvertType(ArgTy));
+ CGF.EmitComplexExprIntoAddr(ArgExpr, DestMem, false);
+ Args.push_back(DestMem);
+ } else {
+ llvm::Value *DestMem = CGF.CreateTempAlloca(ConvertType(ArgTy));
+ CGF.EmitAggExpr(ArgExpr, DestMem, false);
+ Args.push_back(DestMem);
+ }
+ }
+
+ // Get the selector string
+ std::string SelStr = E->getSelector().getName();
+ llvm::Constant *Selector = CGF.CGM.GetAddrOfConstantString(SelStr);
+ ConvertType(E->getType());
+ return Runtime->generateMessageSend(Builder,
+ ConvertType(E->getType()),
+ Receiver,
+ Selector,
+ &Args[0],
+ Args.size());
+}
+
+Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
+ // Emit subscript expressions in rvalue context's. For most cases, this just
+ // loads the lvalue formed by the subscript expr. However, we have to be
+ // careful, because the base of a vector subscript is occasionally an rvalue,
+ // so we can't get it as an lvalue.
+ if (!E->getBase()->getType()->isVectorType())
+ return EmitLoadOfLValue(E);
+
+ // Handle the vector case. The base must be a vector, the index must be an
+ // integer value.
+ Value *Base = Visit(E->getBase());
+ Value *Idx = Visit(E->getIdx());
+
+ // FIXME: Convert Idx to i32 type.
+ return Builder.CreateExtractElement(Base, Idx, "vecext");
+}
+
+/// VisitImplicitCastExpr - Implicit casts are the same as normal casts, but
+/// also handle things like function to pointer-to-function decay, and array to
+/// pointer decay.
+Value *ScalarExprEmitter::VisitImplicitCastExpr(const ImplicitCastExpr *E) {
+ const Expr *Op = E->getSubExpr();
+
+ // If this is due to array->pointer conversion, emit the array expression as
+ // an l-value.
+ if (Op->getType()->isArrayType()) {
+ // FIXME: For now we assume that all source arrays map to LLVM arrays. This
+ // will not true when we add support for VLAs.
+ Value *V = EmitLValue(Op).getAddress(); // Bitfields can't be arrays.
+
+ assert(isa<llvm::PointerType>(V->getType()) &&
+ isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
+ ->getElementType()) &&
+ "Doesn't support VLAs yet!");
+ llvm::Constant *Idx0 = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
+
+ llvm::Value *Ops[] = {Idx0, Idx0};
+ V = Builder.CreateGEP(V, Ops, Ops+2, "arraydecay");
+
+ // The resultant pointer type can be implicitly casted to other pointer
+ // types as well, for example void*.
+ const llvm::Type *DestPTy = ConvertType(E->getType());
+ assert(isa<llvm::PointerType>(DestPTy) &&
+ "Only expect implicit cast to pointer");
+ if (V->getType() != DestPTy)
+ V = Builder.CreateBitCast(V, DestPTy, "ptrconv");
+ return V;
+
+ } else if (E->getType()->isReferenceType()) {
+ assert(cast<ReferenceType>(E->getType().getCanonicalType())->
+ getReferenceeType() ==
+ Op->getType().getCanonicalType() && "Incompatible types!");
+
+ return EmitLValue(Op).getAddress();
+ }
+
+ return EmitCastExpr(Op, E->getType());
+}
+
+
+// VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
+// have to handle a more broad range of conversions than explicit casts, as they
+// handle things like function to ptr-to-function decay etc.
+Value *ScalarExprEmitter::EmitCastExpr(const Expr *E, QualType DestTy) {
+ // Handle cases where the source is an non-complex type.
+
+ if (!CGF.hasAggregateLLVMType(E->getType())) {
+ Value *Src = Visit(const_cast<Expr*>(E));
+
+ // Use EmitScalarConversion to perform the conversion.
+ return EmitScalarConversion(Src, E->getType(), DestTy);
+ }
+
+ if (E->getType()->isComplexType()) {
+ // Handle cases where the source is a complex type.
+ return EmitComplexToScalarConversion(CGF.EmitComplexExpr(E), E->getType(),
+ DestTy);
+ }
+
+ // Okay, this is a cast from an aggregate. It must be a cast to void. Just
+ // evaluate the result and return.
+ CGF.EmitAggExpr(E, 0, false);
+ return 0;
+}
+
+Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
+ return CGF.EmitCompoundStmt(*E->getSubStmt(), true).getScalarVal();
+}
+
+
+//===----------------------------------------------------------------------===//
+// Unary Operators
+//===----------------------------------------------------------------------===//
+
+Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
+ bool isInc, bool isPre) {
+ LValue LV = EmitLValue(E->getSubExpr());
+ // FIXME: Handle volatile!
+ Value *InVal = CGF.EmitLoadOfLValue(LV, // false
+ E->getSubExpr()->getType()).getScalarVal();
+
+ int AmountVal = isInc ? 1 : -1;
+
+ Value *NextVal;
+ if (isa<llvm::PointerType>(InVal->getType())) {
+ // FIXME: This isn't right for VLAs.
+ NextVal = llvm::ConstantInt::get(llvm::Type::Int32Ty, AmountVal);
+ NextVal = Builder.CreateGEP(InVal, NextVal);
+ } else {
+ // Add the inc/dec to the real part.
+ if (isa<llvm::IntegerType>(InVal->getType()))
+ NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
+ else if (InVal->getType() == llvm::Type::FloatTy)
+ // FIXME: Handle long double.
+ NextVal =
+ llvm::ConstantFP::get(InVal->getType(),
+ llvm::APFloat(static_cast<float>(AmountVal)));
+ else {
+ // FIXME: Handle long double.
+ assert(InVal->getType() == llvm::Type::DoubleTy);
+ NextVal =
+ llvm::ConstantFP::get(InVal->getType(),
+ llvm::APFloat(static_cast<double>(AmountVal)));
+ }
+ NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
+ }
+
+ // Store the updated result through the lvalue.
+ CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV,
+ E->getSubExpr()->getType());
+
+ // If this is a postinc, return the value read from memory, otherwise use the
+ // updated value.
+ return isPre ? NextVal : InVal;
+}
+
+
+Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
+ Value *Op = Visit(E->getSubExpr());
+ return Builder.CreateNeg(Op, "neg");
+}
+
+Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
+ Value *Op = Visit(E->getSubExpr());
+ return Builder.CreateNot(Op, "neg");
+}
+
+Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
+ // Compare operand to zero.
+ Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
+
+ // Invert value.
+ // TODO: Could dynamically modify easy computations here. For example, if
+ // the operand is an icmp ne, turn into icmp eq.
+ BoolVal = Builder.CreateNot(BoolVal, "lnot");
+
+ // ZExt result to int.
+ return Builder.CreateZExt(BoolVal, CGF.LLVMIntTy, "lnot.ext");
+}
+
+/// EmitSizeAlignOf - Return the size or alignment of the 'TypeToSize' type as
+/// an integer (RetType).
+Value *ScalarExprEmitter::EmitSizeAlignOf(QualType TypeToSize,
+ QualType RetType,bool isSizeOf){
+ assert(RetType->isIntegerType() && "Result type must be an integer!");
+ uint32_t ResultWidth =
+ static_cast<uint32_t>(CGF.getContext().getTypeSize(RetType));
+
+ // sizeof(void) and __alignof__(void) = 1 as a gcc extension.
+ if (TypeToSize->isVoidType())
+ return llvm::ConstantInt::get(llvm::APInt(ResultWidth, 1));
+
+ /// FIXME: This doesn't handle VLAs yet!
+ std::pair<uint64_t, unsigned> Info = CGF.getContext().getTypeInfo(TypeToSize);
+
+ uint64_t Val = isSizeOf ? Info.first : Info.second;
+ Val /= 8; // Return size in bytes, not bits.
+
+ return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
+}
+
+Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
+ Expr *Op = E->getSubExpr();
+ if (Op->getType()->isComplexType())
+ return CGF.EmitComplexExpr(Op).first;
+ return Visit(Op);
+}
+Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
+ Expr *Op = E->getSubExpr();
+ if (Op->getType()->isComplexType())
+ return CGF.EmitComplexExpr(Op).second;
+
+ // __imag on a scalar returns zero. Emit it the subexpr to ensure side
+ // effects are evaluated.
+ CGF.EmitScalarExpr(Op);
+ return llvm::Constant::getNullValue(ConvertType(E->getType()));
+}
+
+Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E)
+{
+ int64_t Val = E->evaluateOffsetOf(CGF.getContext());
+
+ assert(E->getType()->isIntegerType() && "Result type must be an integer!");
+
+ uint32_t ResultWidth =
+ static_cast<uint32_t>(CGF.getContext().getTypeSize(E->getType()));
+ return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
+}
+
+//===----------------------------------------------------------------------===//
+// Binary Operators
+//===----------------------------------------------------------------------===//
+
+BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
+ BinOpInfo Result;
+ Result.LHS = Visit(E->getLHS());
+ Result.RHS = Visit(E->getRHS());
+ Result.Ty = E->getType();
+ Result.E = E;
+ return Result;
+}
+
+Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
+ Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
+ QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType();
+
+ BinOpInfo OpInfo;
+
+ // Load the LHS and RHS operands.
+ LValue LHSLV = EmitLValue(E->getLHS());
+ OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
+
+ // Determine the computation type. If the RHS is complex, then this is one of
+ // the add/sub/mul/div operators. All of these operators can be computed in
+ // with just their real component even though the computation domain really is
+ // complex.
+ QualType ComputeType = E->getComputationType();
+
+ // If the computation type is complex, then the RHS is complex. Emit the RHS.
+ if (const ComplexType *CT = ComputeType->getAsComplexType()) {
+ ComputeType = CT->getElementType();
+
+ // Emit the RHS, only keeping the real component.
+ OpInfo.RHS = CGF.EmitComplexExpr(E->getRHS()).first;
+ RHSTy = RHSTy->getAsComplexType()->getElementType();
+ } else {
+ // Otherwise the RHS is a simple scalar value.
+ OpInfo.RHS = Visit(E->getRHS());
+ }
+
+ // Convert the LHS/RHS values to the computation type.
+ OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, ComputeType);
+
+ // Do not merge types for -= or += where the LHS is a pointer.
+ if (!(E->getOpcode() == BinaryOperator::SubAssign ||
+ E->getOpcode() == BinaryOperator::AddAssign) ||
+ !E->getLHS()->getType()->isPointerType()) {
+ OpInfo.RHS = EmitScalarConversion(OpInfo.RHS, RHSTy, ComputeType);
+ }
+ OpInfo.Ty = ComputeType;
+ OpInfo.E = E;
+
+ // Expand the binary operator.
+ Value *Result = (this->*Func)(OpInfo);
+
+ // Truncate the result back to the LHS type.
+ Result = EmitScalarConversion(Result, ComputeType, LHSTy);
+
+ // Store the result value into the LHS lvalue.
+ CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, E->getType());
+
+ return Result;
+}
+
+
+Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
+ if (Ops.LHS->getType()->isFPOrFPVector())
+ return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
+ else if (Ops.Ty->isUnsignedIntegerType())
+ return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
+ else
+ return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
+}
+
+Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
+ // Rem in C can't be a floating point type: C99 6.5.5p2.
+ if (Ops.Ty->isUnsignedIntegerType())
+ return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
+ else
+ return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
+}
+
+
+Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
+ if (!Ops.Ty->isPointerType())
+ return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
+
+ // FIXME: What about a pointer to a VLA?
+ Value *Ptr, *Idx;
+ Expr *IdxExp;
+ if (isa<llvm::PointerType>(Ops.LHS->getType())) { // pointer + int
+ Ptr = Ops.LHS;
+ Idx = Ops.RHS;
+ IdxExp = Ops.E->getRHS();
+ } else { // int + pointer
+ Ptr = Ops.RHS;
+ Idx = Ops.LHS;
+ IdxExp = Ops.E->getLHS();
+ }
+
+ unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
+ if (Width < CGF.LLVMPointerWidth) {
+ // Zero or sign extend the pointer value based on whether the index is
+ // signed or not.
+ const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
+ if (IdxExp->getType().getCanonicalType()->isSignedIntegerType())
+ Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
+ else
+ Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
+ }
+
+ return Builder.CreateGEP(Ptr, Idx, "add.ptr");
+}
+
+Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
+ if (!isa<llvm::PointerType>(Ops.LHS->getType()))
+ return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
+
+ // pointer - int
+ assert(!isa<llvm::PointerType>(Ops.RHS->getType()) &&
+ "ptr-ptr shouldn't get here");
+ // FIXME: The pointer could point to a VLA.
+ Value *Idx = Builder.CreateNeg(Ops.RHS, "sub.ptr.neg");
+
+ unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
+ if (Width < CGF.LLVMPointerWidth) {
+ // Zero or sign extend the pointer value based on whether the index is
+ // signed or not.
+ const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
+ if (Ops.E->getRHS()->getType().getCanonicalType()->isSignedIntegerType())
+ Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
+ else
+ Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
+ }
+
+ return Builder.CreateGEP(Ops.LHS, Idx, "sub.ptr");
+}
+
+Value *ScalarExprEmitter::VisitBinSub(const BinaryOperator *E) {
+ // "X - Y" is different from "X -= Y" in one case: when Y is a pointer. In
+ // the compound assignment case it is invalid, so just handle it here.
+ if (!E->getRHS()->getType()->isPointerType())
+ return EmitSub(EmitBinOps(E));
+
+ // pointer - pointer
+ Value *LHS = Visit(E->getLHS());
+ Value *RHS = Visit(E->getRHS());
+
+ const QualType LHSType = E->getLHS()->getType().getCanonicalType();
+ const QualType LHSElementType = cast<PointerType>(LHSType)->getPointeeType();
+ uint64_t ElementSize = CGF.getContext().getTypeSize(LHSElementType) / 8;
+
+ const llvm::Type *ResultType = ConvertType(E->getType());
+ LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
+ RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
+ Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
+
+ // HACK: LLVM doesn't have an divide instruction that 'knows' there is no
+ // remainder. As such, we handle common power-of-two cases here to generate
+ // better code.
+ if (llvm::isPowerOf2_64(ElementSize)) {
+ Value *ShAmt =
+ llvm::ConstantInt::get(ResultType, llvm::Log2_64(ElementSize));
+ return Builder.CreateAShr(BytesBetween, ShAmt, "sub.ptr.shr");
+ }
+
+ // Otherwise, do a full sdiv.
+ Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize);
+ return Builder.CreateSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
+}
+
+
+Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
+ // LLVM requires the LHS and RHS to be the same type: promote or truncate the
+ // RHS to the same size as the LHS.
+ Value *RHS = Ops.RHS;
+ if (Ops.LHS->getType() != RHS->getType())
+ RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
+
+ return Builder.CreateShl(Ops.LHS, RHS, "shl");
+}
+
+Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
+ // LLVM requires the LHS and RHS to be the same type: promote or truncate the
+ // RHS to the same size as the LHS.
+ Value *RHS = Ops.RHS;
+ if (Ops.LHS->getType() != RHS->getType())
+ RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
+
+ if (Ops.Ty->isUnsignedIntegerType())
+ return Builder.CreateLShr(Ops.LHS, RHS, "shr");
+ return Builder.CreateAShr(Ops.LHS, RHS, "shr");
+}
+
+Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
+ unsigned SICmpOpc, unsigned FCmpOpc) {
+ Value *Result;
+ QualType LHSTy = E->getLHS()->getType();
+ if (!LHSTy->isComplexType()) {
+ Value *LHS = Visit(E->getLHS());
+ Value *RHS = Visit(E->getRHS());
+
+ if (LHS->getType()->isFloatingPoint()) {
+ Result = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
+ LHS, RHS, "cmp");
+ } else if (LHSTy->isUnsignedIntegerType()) {
+ Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
+ LHS, RHS, "cmp");
+ } else {
+ // Signed integers and pointers.
+ Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
+ LHS, RHS, "cmp");
+ }
+ } else {
+ // Complex Comparison: can only be an equality comparison.
+ CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
+ CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
+
+ QualType CETy =
+ cast<ComplexType>(LHSTy.getCanonicalType())->getElementType();
+
+ Value *ResultR, *ResultI;
+ if (CETy->isRealFloatingType()) {
+ ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
+ LHS.first, RHS.first, "cmp.r");
+ ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
+ LHS.second, RHS.second, "cmp.i");
+ } else {
+ // Complex comparisons can only be equality comparisons. As such, signed
+ // and unsigned opcodes are the same.
+ ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
+ LHS.first, RHS.first, "cmp.r");
+ ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
+ LHS.second, RHS.second, "cmp.i");
+ }
+
+ if (E->getOpcode() == BinaryOperator::EQ) {
+ Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
+ } else {
+ assert(E->getOpcode() == BinaryOperator::NE &&
+ "Complex comparison other than == or != ?");
+ Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
+ }
+ }
+
+ // ZExt result to int.
+ return Builder.CreateZExt(Result, CGF.LLVMIntTy, "cmp.ext");
+}
+
+Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
+ LValue LHS = EmitLValue(E->getLHS());
+ Value *RHS = Visit(E->getRHS());
+
+ // Store the value into the LHS.
+ // FIXME: Volatility!
+ CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
+
+ // Return the RHS.
+ return RHS;
+}
+
+Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
+ Value *LHSCond = CGF.EvaluateExprAsBool(E->getLHS());
+
+ llvm::BasicBlock *ContBlock = new llvm::BasicBlock("land_cont");
+ llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("land_rhs");
+
+ llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock();
+ Builder.CreateCondBr(LHSCond, RHSBlock, ContBlock);
+
+ CGF.EmitBlock(RHSBlock);
+ Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
+
+ // Reaquire the RHS block, as there may be subblocks inserted.
+ RHSBlock = Builder.GetInsertBlock();
+ CGF.EmitBlock(ContBlock);
+
+ // Create a PHI node. If we just evaluted the LHS condition, the result is
+ // false. If we evaluated both, the result is the RHS condition.
+ llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "land");
+ PN->reserveOperandSpace(2);
+ PN->addIncoming(llvm::ConstantInt::getFalse(), OrigBlock);
+ PN->addIncoming(RHSCond, RHSBlock);
+
+ // ZExt result to int.
+ return Builder.CreateZExt(PN, CGF.LLVMIntTy, "land.ext");
+}
+
+Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
+ Value *LHSCond = CGF.EvaluateExprAsBool(E->getLHS());
+
+ llvm::BasicBlock *ContBlock = new llvm::BasicBlock("lor_cont");
+ llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("lor_rhs");
+
+ llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock();
+ Builder.CreateCondBr(LHSCond, ContBlock, RHSBlock);
+
+ CGF.EmitBlock(RHSBlock);
+ Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
+
+ // Reaquire the RHS block, as there may be subblocks inserted.
+ RHSBlock = Builder.GetInsertBlock();
+ CGF.EmitBlock(ContBlock);
+
+ // Create a PHI node. If we just evaluted the LHS condition, the result is
+ // true. If we evaluated both, the result is the RHS condition.
+ llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "lor");
+ PN->reserveOperandSpace(2);
+ PN->addIncoming(llvm::ConstantInt::getTrue(), OrigBlock);
+ PN->addIncoming(RHSCond, RHSBlock);
+
+ // ZExt result to int.
+ return Builder.CreateZExt(PN, CGF.LLVMIntTy, "lor.ext");
+}
+
+Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
+ CGF.EmitStmt(E->getLHS());
+ return Visit(E->getRHS());
+}
+
+//===----------------------------------------------------------------------===//
+// Other Operators
+//===----------------------------------------------------------------------===//
+
+Value *ScalarExprEmitter::
+VisitConditionalOperator(const ConditionalOperator *E) {
+ llvm::BasicBlock *LHSBlock = new llvm::BasicBlock("cond.?");
+ llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("cond.:");
+ llvm::BasicBlock *ContBlock = new llvm::BasicBlock("cond.cont");
+
+ // Evaluate the conditional, then convert it to bool. We do this explicitly
+ // because we need the unconverted value if this is a GNU ?: expression with
+ // missing middle value.
+ Value *CondVal = CGF.EmitScalarExpr(E->getCond());
+ Value *CondBoolVal =CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
+ CGF.getContext().BoolTy);
+ Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
+
+ CGF.EmitBlock(LHSBlock);
+
+ // Handle the GNU extension for missing LHS.
+ Value *LHS;
+ if (E->getLHS())
+ LHS = Visit(E->getLHS());
+ else // Perform promotions, to handle cases like "short ?: int"
+ LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
+
+ Builder.CreateBr(ContBlock);
+ LHSBlock = Builder.GetInsertBlock();
+
+ CGF.EmitBlock(RHSBlock);
+
+ Value *RHS = Visit(E->getRHS());
+ Builder.CreateBr(ContBlock);
+ RHSBlock = Builder.GetInsertBlock();
+
+ CGF.EmitBlock(ContBlock);
+
+ if (!LHS) {
+ assert(E->getType()->isVoidType() && "Non-void value should have a value");
+ return 0;
+ }
+
+ // Create a PHI node for the real part.
+ llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
+ PN->reserveOperandSpace(2);
+ PN->addIncoming(LHS, LHSBlock);
+ PN->addIncoming(RHS, RHSBlock);
+ return PN;
+}
+
+Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
+ // Emit the LHS or RHS as appropriate.
+ return
+ Visit(E->isConditionTrue(CGF.getContext()) ? E->getLHS() : E->getRHS());
+}
+
+Value *ScalarExprEmitter::VisitOverloadExpr(OverloadExpr *E) {
+ return CGF.EmitCallExpr(E->getFn(), E->arg_begin(),
+ E->getNumArgs(CGF.getContext())).getScalarVal();
+}
+
+Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
+ llvm::Value *ArgValue = EmitLValue(VE->getSubExpr()).getAddress();
+
+ llvm::Value *V = Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
+ return V;
+}
+
+Value *ScalarExprEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
+ std::string str;
+ llvm::SmallVector<const RecordType *, 8> EncodingRecordTypes;
+ CGF.getContext().getObjCEncodingForType(E->getEncodedType(), str,
+ EncodingRecordTypes);
+
+ llvm::Constant *C = llvm::ConstantArray::get(str);
+ C = new llvm::GlobalVariable(C->getType(), true,
+ llvm::GlobalValue::InternalLinkage,
+ C, ".str", &CGF.CGM.getModule());
+ llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
+ llvm::Constant *Zeros[] = { Zero, Zero };
+ C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
+
+ return C;
+}
+
+//===----------------------------------------------------------------------===//
+// Entry Point into this File
+//===----------------------------------------------------------------------===//
+
+/// EmitComplexExpr - Emit the computation of the specified expression of
+/// complex type, ignoring the result.
+Value *CodeGenFunction::EmitScalarExpr(const Expr *E) {
+ assert(E && !hasAggregateLLVMType(E->getType()) &&
+ "Invalid scalar expression to emit");
+
+ return ScalarExprEmitter(*this).Visit(const_cast<Expr*>(E));
+}
+
+/// EmitScalarConversion - Emit a conversion from the specified type to the
+/// specified destination type, both of which are LLVM scalar types.
+Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
+ QualType DstTy) {
+ assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
+ "Invalid scalar expression to emit");
+ return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
+}
+
+/// EmitComplexToScalarConversion - Emit a conversion from the specified
+/// complex type to the specified destination type, where the destination
+/// type is an LLVM scalar type.
+Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
+ QualType SrcTy,
+ QualType DstTy) {
+ assert(SrcTy->isComplexType() && !hasAggregateLLVMType(DstTy) &&
+ "Invalid complex -> scalar conversion");
+ return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
+ DstTy);
+}
+
+Value *CodeGenFunction::EmitShuffleVector(Value* V1, Value *V2, ...) {
+ assert(V1->getType() == V2->getType() &&
+ "Vector operands must be of the same type");
+
+ unsigned NumElements =
+ cast<llvm::VectorType>(V1->getType())->getNumElements();
+
+ va_list va;
+ va_start(va, V2);
+
+ llvm::SmallVector<llvm::Constant*, 16> Args;
+
+ for (unsigned i = 0; i < NumElements; i++) {
+ int n = va_arg(va, int);
+
+ assert(n >= 0 && n < (int)NumElements * 2 &&
+ "Vector shuffle index out of bounds!");
+
+ Args.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, n));
+ }
+
+ const char *Name = va_arg(va, const char *);
+ va_end(va);
+
+ llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
+
+ return Builder.CreateShuffleVector(V1, V2, Mask, Name);
+}
+
+llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals,
+ unsigned NumVals, bool isSplat)
+{
+ llvm::Value *Vec
+ = llvm::UndefValue::get(llvm::VectorType::get(Vals[0]->getType(), NumVals));
+
+ for (unsigned i = 0, e = NumVals ; i != e; ++i) {
+ llvm::Value *Val = isSplat ? Vals[0] : Vals[i];
+ llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
+ Vec = Builder.CreateInsertElement(Vec, Val, Idx, "tmp");
+ }
+
+ return Vec;
+}
OpenPOWER on IntegriCloud