diff options
Diffstat (limited to 'clang/lib/CodeGen/CGExprScalar.cpp')
-rw-r--r-- | clang/lib/CodeGen/CGExprScalar.cpp | 1185 |
1 files changed, 1185 insertions, 0 deletions
diff --git a/clang/lib/CodeGen/CGExprScalar.cpp b/clang/lib/CodeGen/CGExprScalar.cpp new file mode 100644 index 00000000000..892712a0d4c --- /dev/null +++ b/clang/lib/CodeGen/CGExprScalar.cpp @@ -0,0 +1,1185 @@ +//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This contains code to emit Expr nodes with scalar LLVM types as LLVM code. +// +//===----------------------------------------------------------------------===// + +#include "CodeGenFunction.h" +#include "CodeGenModule.h" +#include "clang/AST/AST.h" +#include "llvm/Constants.h" +#include "llvm/Function.h" +#include "llvm/GlobalVariable.h" +#include "llvm/Intrinsics.h" +#include "llvm/Support/Compiler.h" +#include <cstdarg> + +using namespace clang; +using namespace CodeGen; +using llvm::Value; + +//===----------------------------------------------------------------------===// +// Scalar Expression Emitter +//===----------------------------------------------------------------------===// + +struct BinOpInfo { + Value *LHS; + Value *RHS; + QualType Ty; // Computation Type. + const BinaryOperator *E; +}; + +namespace { +class VISIBILITY_HIDDEN ScalarExprEmitter + : public StmtVisitor<ScalarExprEmitter, Value*> { + CodeGenFunction &CGF; + llvm::LLVMFoldingBuilder &Builder; + CGObjCRuntime *Runtime; + + +public: + + ScalarExprEmitter(CodeGenFunction &cgf) : CGF(cgf), + Builder(CGF.Builder), + Runtime(CGF.CGM.getObjCRuntime()) { + } + + + //===--------------------------------------------------------------------===// + // Utilities + //===--------------------------------------------------------------------===// + + const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } + LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } + + Value *EmitLoadOfLValue(LValue LV, QualType T) { + return CGF.EmitLoadOfLValue(LV, T).getScalarVal(); + } + + /// EmitLoadOfLValue - Given an expression with complex type that represents a + /// value l-value, this method emits the address of the l-value, then loads + /// and returns the result. + Value *EmitLoadOfLValue(const Expr *E) { + // FIXME: Volatile + return EmitLoadOfLValue(EmitLValue(E), E->getType()); + } + + /// EmitConversionToBool - Convert the specified expression value to a + /// boolean (i1) truth value. This is equivalent to "Val != 0". + Value *EmitConversionToBool(Value *Src, QualType DstTy); + + /// EmitScalarConversion - Emit a conversion from the specified type to the + /// specified destination type, both of which are LLVM scalar types. + Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy); + + /// EmitComplexToScalarConversion - Emit a conversion from the specified + /// complex type to the specified destination type, where the destination + /// type is an LLVM scalar type. + Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, + QualType SrcTy, QualType DstTy); + + //===--------------------------------------------------------------------===// + // Visitor Methods + //===--------------------------------------------------------------------===// + + Value *VisitStmt(Stmt *S) { + S->dump(CGF.getContext().getSourceManager()); + assert(0 && "Stmt can't have complex result type!"); + return 0; + } + Value *VisitExpr(Expr *S); + Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); } + + // Leaves. + Value *VisitIntegerLiteral(const IntegerLiteral *E) { + return llvm::ConstantInt::get(E->getValue()); + } + Value *VisitFloatingLiteral(const FloatingLiteral *E) { + return llvm::ConstantFP::get(ConvertType(E->getType()), E->getValue()); + } + Value *VisitCharacterLiteral(const CharacterLiteral *E) { + return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); + } + Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { + return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); + } + Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) { + return llvm::ConstantInt::get(ConvertType(E->getType()), + CGF.getContext().typesAreCompatible( + E->getArgType1(), E->getArgType2())); + } + Value *VisitSizeOfAlignOfTypeExpr(const SizeOfAlignOfTypeExpr *E) { + return EmitSizeAlignOf(E->getArgumentType(), E->getType(), E->isSizeOf()); + } + + // l-values. + Value *VisitDeclRefExpr(DeclRefExpr *E) { + if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl())) + return llvm::ConstantInt::get(EC->getInitVal()); + return EmitLoadOfLValue(E); + } + Value *VisitObjCMessageExpr(ObjCMessageExpr *E); + Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); + Value *VisitMemberExpr(Expr *E) { return EmitLoadOfLValue(E); } + Value *VisitOCUVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } + Value *VisitStringLiteral(Expr *E) { return EmitLValue(E).getAddress(); } + Value *VisitPreDefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); } + + Value *VisitInitListExpr(InitListExpr *E) { + unsigned NumInitElements = E->getNumInits(); + + const llvm::VectorType *VType = + dyn_cast<llvm::VectorType>(ConvertType(E->getType())); + + // We have a scalar in braces. Just use the first element. + if (!VType) + return Visit(E->getInit(0)); + + unsigned NumVectorElements = VType->getNumElements(); + const llvm::Type *ElementType = VType->getElementType(); + + // Emit individual vector element stores. + llvm::Value *V = llvm::UndefValue::get(VType); + + // Emit initializers + unsigned i; + for (i = 0; i < NumInitElements; ++i) { + Value *NewV = Visit(E->getInit(i)); + Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i); + V = Builder.CreateInsertElement(V, NewV, Idx); + } + + // Emit remaining default initializers + for (/* Do not initialize i*/; i < NumVectorElements; ++i) { + Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i); + llvm::Value *NewV = llvm::Constant::getNullValue(ElementType); + V = Builder.CreateInsertElement(V, NewV, Idx); + } + + return V; + } + + Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { + return Visit(E->getInitializer()); + } + + Value *VisitImplicitCastExpr(const ImplicitCastExpr *E); + Value *VisitCastExpr(const CastExpr *E) { + return EmitCastExpr(E->getSubExpr(), E->getType()); + } + Value *EmitCastExpr(const Expr *E, QualType T); + + Value *VisitCallExpr(const CallExpr *E) { + return CGF.EmitCallExpr(E).getScalarVal(); + } + + Value *VisitStmtExpr(const StmtExpr *E); + + // Unary Operators. + Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre); + Value *VisitUnaryPostDec(const UnaryOperator *E) { + return VisitPrePostIncDec(E, false, false); + } + Value *VisitUnaryPostInc(const UnaryOperator *E) { + return VisitPrePostIncDec(E, true, false); + } + Value *VisitUnaryPreDec(const UnaryOperator *E) { + return VisitPrePostIncDec(E, false, true); + } + Value *VisitUnaryPreInc(const UnaryOperator *E) { + return VisitPrePostIncDec(E, true, true); + } + Value *VisitUnaryAddrOf(const UnaryOperator *E) { + return EmitLValue(E->getSubExpr()).getAddress(); + } + Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } + Value *VisitUnaryPlus(const UnaryOperator *E) { + return Visit(E->getSubExpr()); + } + Value *VisitUnaryMinus (const UnaryOperator *E); + Value *VisitUnaryNot (const UnaryOperator *E); + Value *VisitUnaryLNot (const UnaryOperator *E); + Value *VisitUnarySizeOf (const UnaryOperator *E) { + return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), true); + } + Value *VisitUnaryAlignOf (const UnaryOperator *E) { + return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), false); + } + Value *EmitSizeAlignOf(QualType TypeToSize, QualType RetType, + bool isSizeOf); + Value *VisitUnaryReal (const UnaryOperator *E); + Value *VisitUnaryImag (const UnaryOperator *E); + Value *VisitUnaryExtension(const UnaryOperator *E) { + return Visit(E->getSubExpr()); + } + Value *VisitUnaryOffsetOf(const UnaryOperator *E); + + // Binary Operators. + Value *EmitMul(const BinOpInfo &Ops) { + return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); + } + Value *EmitDiv(const BinOpInfo &Ops); + Value *EmitRem(const BinOpInfo &Ops); + Value *EmitAdd(const BinOpInfo &Ops); + Value *EmitSub(const BinOpInfo &Ops); + Value *EmitShl(const BinOpInfo &Ops); + Value *EmitShr(const BinOpInfo &Ops); + Value *EmitAnd(const BinOpInfo &Ops) { + return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); + } + Value *EmitXor(const BinOpInfo &Ops) { + return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); + } + Value *EmitOr (const BinOpInfo &Ops) { + return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); + } + + BinOpInfo EmitBinOps(const BinaryOperator *E); + Value *EmitCompoundAssign(const CompoundAssignOperator *E, + Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); + + // Binary operators and binary compound assignment operators. +#define HANDLEBINOP(OP) \ + Value *VisitBin ## OP(const BinaryOperator *E) { \ + return Emit ## OP(EmitBinOps(E)); \ + } \ + Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ + return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ + } + HANDLEBINOP(Mul); + HANDLEBINOP(Div); + HANDLEBINOP(Rem); + HANDLEBINOP(Add); + // (Sub) - Sub is handled specially below for ptr-ptr subtract. + HANDLEBINOP(Shl); + HANDLEBINOP(Shr); + HANDLEBINOP(And); + HANDLEBINOP(Xor); + HANDLEBINOP(Or); +#undef HANDLEBINOP + Value *VisitBinSub(const BinaryOperator *E); + Value *VisitBinSubAssign(const CompoundAssignOperator *E) { + return EmitCompoundAssign(E, &ScalarExprEmitter::EmitSub); + } + + // Comparisons. + Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc, + unsigned SICmpOpc, unsigned FCmpOpc); +#define VISITCOMP(CODE, UI, SI, FP) \ + Value *VisitBin##CODE(const BinaryOperator *E) { \ + return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ + llvm::FCmpInst::FP); } + VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT); + VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT); + VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE); + VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE); + VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ); + VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE); +#undef VISITCOMP + + Value *VisitBinAssign (const BinaryOperator *E); + + Value *VisitBinLAnd (const BinaryOperator *E); + Value *VisitBinLOr (const BinaryOperator *E); + Value *VisitBinComma (const BinaryOperator *E); + + // Other Operators. + Value *VisitConditionalOperator(const ConditionalOperator *CO); + Value *VisitChooseExpr(ChooseExpr *CE); + Value *VisitOverloadExpr(OverloadExpr *OE); + Value *VisitVAArgExpr(VAArgExpr *VE); + Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { + return CGF.EmitObjCStringLiteral(E); + } + Value *VisitObjCEncodeExpr(const ObjCEncodeExpr *E); +}; +} // end anonymous namespace. + +//===----------------------------------------------------------------------===// +// Utilities +//===----------------------------------------------------------------------===// + +/// EmitConversionToBool - Convert the specified expression value to a +/// boolean (i1) truth value. This is equivalent to "Val != 0". +Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { + assert(SrcType->isCanonical() && "EmitScalarConversion strips typedefs"); + + if (SrcType->isRealFloatingType()) { + // Compare against 0.0 for fp scalars. + llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType()); + return Builder.CreateFCmpUNE(Src, Zero, "tobool"); + } + + assert((SrcType->isIntegerType() || SrcType->isPointerType()) && + "Unknown scalar type to convert"); + + // Because of the type rules of C, we often end up computing a logical value, + // then zero extending it to int, then wanting it as a logical value again. + // Optimize this common case. + if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) { + if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) { + Value *Result = ZI->getOperand(0); + // If there aren't any more uses, zap the instruction to save space. + // Note that there can be more uses, for example if this + // is the result of an assignment. + if (ZI->use_empty()) + ZI->eraseFromParent(); + return Result; + } + } + + // Compare against an integer or pointer null. + llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType()); + return Builder.CreateICmpNE(Src, Zero, "tobool"); +} + +/// EmitScalarConversion - Emit a conversion from the specified type to the +/// specified destination type, both of which are LLVM scalar types. +Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, + QualType DstType) { + SrcType = SrcType.getCanonicalType(); + DstType = DstType.getCanonicalType(); + if (SrcType == DstType) return Src; + + if (DstType->isVoidType()) return 0; + + // Handle conversions to bool first, they are special: comparisons against 0. + if (DstType->isBooleanType()) + return EmitConversionToBool(Src, SrcType); + + const llvm::Type *DstTy = ConvertType(DstType); + + // Ignore conversions like int -> uint. + if (Src->getType() == DstTy) + return Src; + + // Handle pointer conversions next: pointers can only be converted to/from + // other pointers and integers. + if (isa<PointerType>(DstType)) { + // The source value may be an integer, or a pointer. + if (isa<llvm::PointerType>(Src->getType())) + return Builder.CreateBitCast(Src, DstTy, "conv"); + assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); + return Builder.CreateIntToPtr(Src, DstTy, "conv"); + } + + if (isa<PointerType>(SrcType)) { + // Must be an ptr to int cast. + assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); + return Builder.CreatePtrToInt(Src, DstTy, "conv"); + } + + // A scalar source can be splatted to an OCU vector of the same element type + if (DstType->isOCUVectorType() && !isa<VectorType>(SrcType) && + cast<llvm::VectorType>(DstTy)->getElementType() == Src->getType()) + return CGF.EmitVector(&Src, DstType->getAsVectorType()->getNumElements(), + true); + + // Allow bitcast from vector to integer/fp of the same size. + if (isa<llvm::VectorType>(Src->getType()) || + isa<llvm::VectorType>(DstTy)) + return Builder.CreateBitCast(Src, DstTy, "conv"); + + // Finally, we have the arithmetic types: real int/float. + if (isa<llvm::IntegerType>(Src->getType())) { + bool InputSigned = SrcType->isSignedIntegerType(); + if (isa<llvm::IntegerType>(DstTy)) + return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); + else if (InputSigned) + return Builder.CreateSIToFP(Src, DstTy, "conv"); + else + return Builder.CreateUIToFP(Src, DstTy, "conv"); + } + + assert(Src->getType()->isFloatingPoint() && "Unknown real conversion"); + if (isa<llvm::IntegerType>(DstTy)) { + if (DstType->isSignedIntegerType()) + return Builder.CreateFPToSI(Src, DstTy, "conv"); + else + return Builder.CreateFPToUI(Src, DstTy, "conv"); + } + + assert(DstTy->isFloatingPoint() && "Unknown real conversion"); + if (DstTy->getTypeID() < Src->getType()->getTypeID()) + return Builder.CreateFPTrunc(Src, DstTy, "conv"); + else + return Builder.CreateFPExt(Src, DstTy, "conv"); +} + +/// EmitComplexToScalarConversion - Emit a conversion from the specified +/// complex type to the specified destination type, where the destination +/// type is an LLVM scalar type. +Value *ScalarExprEmitter:: +EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, + QualType SrcTy, QualType DstTy) { + // Get the source element type. + SrcTy = cast<ComplexType>(SrcTy.getCanonicalType())->getElementType(); + + // Handle conversions to bool first, they are special: comparisons against 0. + if (DstTy->isBooleanType()) { + // Complex != 0 -> (Real != 0) | (Imag != 0) + Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy); + Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy); + return Builder.CreateOr(Src.first, Src.second, "tobool"); + } + + // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, + // the imaginary part of the complex value is discarded and the value of the + // real part is converted according to the conversion rules for the + // corresponding real type. + return EmitScalarConversion(Src.first, SrcTy, DstTy); +} + + +//===----------------------------------------------------------------------===// +// Visitor Methods +//===----------------------------------------------------------------------===// + +Value *ScalarExprEmitter::VisitExpr(Expr *E) { + CGF.WarnUnsupported(E, "scalar expression"); + if (E->getType()->isVoidType()) + return 0; + return llvm::UndefValue::get(CGF.ConvertType(E->getType())); +} + +Value *ScalarExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { + // Only the lookup mechanism and first two arguments of the method + // implementation vary between runtimes. We can get the receiver and + // arguments in generic code. + + // Find the receiver + llvm::Value * Receiver = CGF.EmitScalarExpr(E->getReceiver()); + + // Process the arguments + unsigned int ArgC = E->getNumArgs(); + llvm::SmallVector<llvm::Value*, 16> Args; + for(unsigned i=0 ; i<ArgC ; i++) { + Expr *ArgExpr = E->getArg(i); + QualType ArgTy = ArgExpr->getType(); + if (!CGF.hasAggregateLLVMType(ArgTy)) { + // Scalar argument is passed by-value. + Args.push_back(CGF.EmitScalarExpr(ArgExpr)); + } else if (ArgTy->isComplexType()) { + // Make a temporary alloca to pass the argument. + llvm::Value *DestMem = CGF.CreateTempAlloca(ConvertType(ArgTy)); + CGF.EmitComplexExprIntoAddr(ArgExpr, DestMem, false); + Args.push_back(DestMem); + } else { + llvm::Value *DestMem = CGF.CreateTempAlloca(ConvertType(ArgTy)); + CGF.EmitAggExpr(ArgExpr, DestMem, false); + Args.push_back(DestMem); + } + } + + // Get the selector string + std::string SelStr = E->getSelector().getName(); + llvm::Constant *Selector = CGF.CGM.GetAddrOfConstantString(SelStr); + ConvertType(E->getType()); + return Runtime->generateMessageSend(Builder, + ConvertType(E->getType()), + Receiver, + Selector, + &Args[0], + Args.size()); +} + +Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { + // Emit subscript expressions in rvalue context's. For most cases, this just + // loads the lvalue formed by the subscript expr. However, we have to be + // careful, because the base of a vector subscript is occasionally an rvalue, + // so we can't get it as an lvalue. + if (!E->getBase()->getType()->isVectorType()) + return EmitLoadOfLValue(E); + + // Handle the vector case. The base must be a vector, the index must be an + // integer value. + Value *Base = Visit(E->getBase()); + Value *Idx = Visit(E->getIdx()); + + // FIXME: Convert Idx to i32 type. + return Builder.CreateExtractElement(Base, Idx, "vecext"); +} + +/// VisitImplicitCastExpr - Implicit casts are the same as normal casts, but +/// also handle things like function to pointer-to-function decay, and array to +/// pointer decay. +Value *ScalarExprEmitter::VisitImplicitCastExpr(const ImplicitCastExpr *E) { + const Expr *Op = E->getSubExpr(); + + // If this is due to array->pointer conversion, emit the array expression as + // an l-value. + if (Op->getType()->isArrayType()) { + // FIXME: For now we assume that all source arrays map to LLVM arrays. This + // will not true when we add support for VLAs. + Value *V = EmitLValue(Op).getAddress(); // Bitfields can't be arrays. + + assert(isa<llvm::PointerType>(V->getType()) && + isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType()) + ->getElementType()) && + "Doesn't support VLAs yet!"); + llvm::Constant *Idx0 = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0); + + llvm::Value *Ops[] = {Idx0, Idx0}; + V = Builder.CreateGEP(V, Ops, Ops+2, "arraydecay"); + + // The resultant pointer type can be implicitly casted to other pointer + // types as well, for example void*. + const llvm::Type *DestPTy = ConvertType(E->getType()); + assert(isa<llvm::PointerType>(DestPTy) && + "Only expect implicit cast to pointer"); + if (V->getType() != DestPTy) + V = Builder.CreateBitCast(V, DestPTy, "ptrconv"); + return V; + + } else if (E->getType()->isReferenceType()) { + assert(cast<ReferenceType>(E->getType().getCanonicalType())-> + getReferenceeType() == + Op->getType().getCanonicalType() && "Incompatible types!"); + + return EmitLValue(Op).getAddress(); + } + + return EmitCastExpr(Op, E->getType()); +} + + +// VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts +// have to handle a more broad range of conversions than explicit casts, as they +// handle things like function to ptr-to-function decay etc. +Value *ScalarExprEmitter::EmitCastExpr(const Expr *E, QualType DestTy) { + // Handle cases where the source is an non-complex type. + + if (!CGF.hasAggregateLLVMType(E->getType())) { + Value *Src = Visit(const_cast<Expr*>(E)); + + // Use EmitScalarConversion to perform the conversion. + return EmitScalarConversion(Src, E->getType(), DestTy); + } + + if (E->getType()->isComplexType()) { + // Handle cases where the source is a complex type. + return EmitComplexToScalarConversion(CGF.EmitComplexExpr(E), E->getType(), + DestTy); + } + + // Okay, this is a cast from an aggregate. It must be a cast to void. Just + // evaluate the result and return. + CGF.EmitAggExpr(E, 0, false); + return 0; +} + +Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { + return CGF.EmitCompoundStmt(*E->getSubStmt(), true).getScalarVal(); +} + + +//===----------------------------------------------------------------------===// +// Unary Operators +//===----------------------------------------------------------------------===// + +Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E, + bool isInc, bool isPre) { + LValue LV = EmitLValue(E->getSubExpr()); + // FIXME: Handle volatile! + Value *InVal = CGF.EmitLoadOfLValue(LV, // false + E->getSubExpr()->getType()).getScalarVal(); + + int AmountVal = isInc ? 1 : -1; + + Value *NextVal; + if (isa<llvm::PointerType>(InVal->getType())) { + // FIXME: This isn't right for VLAs. + NextVal = llvm::ConstantInt::get(llvm::Type::Int32Ty, AmountVal); + NextVal = Builder.CreateGEP(InVal, NextVal); + } else { + // Add the inc/dec to the real part. + if (isa<llvm::IntegerType>(InVal->getType())) + NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal); + else if (InVal->getType() == llvm::Type::FloatTy) + // FIXME: Handle long double. + NextVal = + llvm::ConstantFP::get(InVal->getType(), + llvm::APFloat(static_cast<float>(AmountVal))); + else { + // FIXME: Handle long double. + assert(InVal->getType() == llvm::Type::DoubleTy); + NextVal = + llvm::ConstantFP::get(InVal->getType(), + llvm::APFloat(static_cast<double>(AmountVal))); + } + NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec"); + } + + // Store the updated result through the lvalue. + CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV, + E->getSubExpr()->getType()); + + // If this is a postinc, return the value read from memory, otherwise use the + // updated value. + return isPre ? NextVal : InVal; +} + + +Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { + Value *Op = Visit(E->getSubExpr()); + return Builder.CreateNeg(Op, "neg"); +} + +Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { + Value *Op = Visit(E->getSubExpr()); + return Builder.CreateNot(Op, "neg"); +} + +Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { + // Compare operand to zero. + Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); + + // Invert value. + // TODO: Could dynamically modify easy computations here. For example, if + // the operand is an icmp ne, turn into icmp eq. + BoolVal = Builder.CreateNot(BoolVal, "lnot"); + + // ZExt result to int. + return Builder.CreateZExt(BoolVal, CGF.LLVMIntTy, "lnot.ext"); +} + +/// EmitSizeAlignOf - Return the size or alignment of the 'TypeToSize' type as +/// an integer (RetType). +Value *ScalarExprEmitter::EmitSizeAlignOf(QualType TypeToSize, + QualType RetType,bool isSizeOf){ + assert(RetType->isIntegerType() && "Result type must be an integer!"); + uint32_t ResultWidth = + static_cast<uint32_t>(CGF.getContext().getTypeSize(RetType)); + + // sizeof(void) and __alignof__(void) = 1 as a gcc extension. + if (TypeToSize->isVoidType()) + return llvm::ConstantInt::get(llvm::APInt(ResultWidth, 1)); + + /// FIXME: This doesn't handle VLAs yet! + std::pair<uint64_t, unsigned> Info = CGF.getContext().getTypeInfo(TypeToSize); + + uint64_t Val = isSizeOf ? Info.first : Info.second; + Val /= 8; // Return size in bytes, not bits. + + return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val)); +} + +Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { + Expr *Op = E->getSubExpr(); + if (Op->getType()->isComplexType()) + return CGF.EmitComplexExpr(Op).first; + return Visit(Op); +} +Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { + Expr *Op = E->getSubExpr(); + if (Op->getType()->isComplexType()) + return CGF.EmitComplexExpr(Op).second; + + // __imag on a scalar returns zero. Emit it the subexpr to ensure side + // effects are evaluated. + CGF.EmitScalarExpr(Op); + return llvm::Constant::getNullValue(ConvertType(E->getType())); +} + +Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E) +{ + int64_t Val = E->evaluateOffsetOf(CGF.getContext()); + + assert(E->getType()->isIntegerType() && "Result type must be an integer!"); + + uint32_t ResultWidth = + static_cast<uint32_t>(CGF.getContext().getTypeSize(E->getType())); + return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val)); +} + +//===----------------------------------------------------------------------===// +// Binary Operators +//===----------------------------------------------------------------------===// + +BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { + BinOpInfo Result; + Result.LHS = Visit(E->getLHS()); + Result.RHS = Visit(E->getRHS()); + Result.Ty = E->getType(); + Result.E = E; + return Result; +} + +Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, + Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { + QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType(); + + BinOpInfo OpInfo; + + // Load the LHS and RHS operands. + LValue LHSLV = EmitLValue(E->getLHS()); + OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy); + + // Determine the computation type. If the RHS is complex, then this is one of + // the add/sub/mul/div operators. All of these operators can be computed in + // with just their real component even though the computation domain really is + // complex. + QualType ComputeType = E->getComputationType(); + + // If the computation type is complex, then the RHS is complex. Emit the RHS. + if (const ComplexType *CT = ComputeType->getAsComplexType()) { + ComputeType = CT->getElementType(); + + // Emit the RHS, only keeping the real component. + OpInfo.RHS = CGF.EmitComplexExpr(E->getRHS()).first; + RHSTy = RHSTy->getAsComplexType()->getElementType(); + } else { + // Otherwise the RHS is a simple scalar value. + OpInfo.RHS = Visit(E->getRHS()); + } + + // Convert the LHS/RHS values to the computation type. + OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, ComputeType); + + // Do not merge types for -= or += where the LHS is a pointer. + if (!(E->getOpcode() == BinaryOperator::SubAssign || + E->getOpcode() == BinaryOperator::AddAssign) || + !E->getLHS()->getType()->isPointerType()) { + OpInfo.RHS = EmitScalarConversion(OpInfo.RHS, RHSTy, ComputeType); + } + OpInfo.Ty = ComputeType; + OpInfo.E = E; + + // Expand the binary operator. + Value *Result = (this->*Func)(OpInfo); + + // Truncate the result back to the LHS type. + Result = EmitScalarConversion(Result, ComputeType, LHSTy); + + // Store the result value into the LHS lvalue. + CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, E->getType()); + + return Result; +} + + +Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { + if (Ops.LHS->getType()->isFPOrFPVector()) + return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); + else if (Ops.Ty->isUnsignedIntegerType()) + return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); + else + return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); +} + +Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { + // Rem in C can't be a floating point type: C99 6.5.5p2. + if (Ops.Ty->isUnsignedIntegerType()) + return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); + else + return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); +} + + +Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) { + if (!Ops.Ty->isPointerType()) + return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add"); + + // FIXME: What about a pointer to a VLA? + Value *Ptr, *Idx; + Expr *IdxExp; + if (isa<llvm::PointerType>(Ops.LHS->getType())) { // pointer + int + Ptr = Ops.LHS; + Idx = Ops.RHS; + IdxExp = Ops.E->getRHS(); + } else { // int + pointer + Ptr = Ops.RHS; + Idx = Ops.LHS; + IdxExp = Ops.E->getLHS(); + } + + unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth(); + if (Width < CGF.LLVMPointerWidth) { + // Zero or sign extend the pointer value based on whether the index is + // signed or not. + const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth); + if (IdxExp->getType().getCanonicalType()->isSignedIntegerType()) + Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext"); + else + Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext"); + } + + return Builder.CreateGEP(Ptr, Idx, "add.ptr"); +} + +Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) { + if (!isa<llvm::PointerType>(Ops.LHS->getType())) + return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub"); + + // pointer - int + assert(!isa<llvm::PointerType>(Ops.RHS->getType()) && + "ptr-ptr shouldn't get here"); + // FIXME: The pointer could point to a VLA. + Value *Idx = Builder.CreateNeg(Ops.RHS, "sub.ptr.neg"); + + unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth(); + if (Width < CGF.LLVMPointerWidth) { + // Zero or sign extend the pointer value based on whether the index is + // signed or not. + const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth); + if (Ops.E->getRHS()->getType().getCanonicalType()->isSignedIntegerType()) + Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext"); + else + Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext"); + } + + return Builder.CreateGEP(Ops.LHS, Idx, "sub.ptr"); +} + +Value *ScalarExprEmitter::VisitBinSub(const BinaryOperator *E) { + // "X - Y" is different from "X -= Y" in one case: when Y is a pointer. In + // the compound assignment case it is invalid, so just handle it here. + if (!E->getRHS()->getType()->isPointerType()) + return EmitSub(EmitBinOps(E)); + + // pointer - pointer + Value *LHS = Visit(E->getLHS()); + Value *RHS = Visit(E->getRHS()); + + const QualType LHSType = E->getLHS()->getType().getCanonicalType(); + const QualType LHSElementType = cast<PointerType>(LHSType)->getPointeeType(); + uint64_t ElementSize = CGF.getContext().getTypeSize(LHSElementType) / 8; + + const llvm::Type *ResultType = ConvertType(E->getType()); + LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast"); + RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); + Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); + + // HACK: LLVM doesn't have an divide instruction that 'knows' there is no + // remainder. As such, we handle common power-of-two cases here to generate + // better code. + if (llvm::isPowerOf2_64(ElementSize)) { + Value *ShAmt = + llvm::ConstantInt::get(ResultType, llvm::Log2_64(ElementSize)); + return Builder.CreateAShr(BytesBetween, ShAmt, "sub.ptr.shr"); + } + + // Otherwise, do a full sdiv. + Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize); + return Builder.CreateSDiv(BytesBetween, BytesPerElt, "sub.ptr.div"); +} + + +Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { + // LLVM requires the LHS and RHS to be the same type: promote or truncate the + // RHS to the same size as the LHS. + Value *RHS = Ops.RHS; + if (Ops.LHS->getType() != RHS->getType()) + RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); + + return Builder.CreateShl(Ops.LHS, RHS, "shl"); +} + +Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { + // LLVM requires the LHS and RHS to be the same type: promote or truncate the + // RHS to the same size as the LHS. + Value *RHS = Ops.RHS; + if (Ops.LHS->getType() != RHS->getType()) + RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); + + if (Ops.Ty->isUnsignedIntegerType()) + return Builder.CreateLShr(Ops.LHS, RHS, "shr"); + return Builder.CreateAShr(Ops.LHS, RHS, "shr"); +} + +Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc, + unsigned SICmpOpc, unsigned FCmpOpc) { + Value *Result; + QualType LHSTy = E->getLHS()->getType(); + if (!LHSTy->isComplexType()) { + Value *LHS = Visit(E->getLHS()); + Value *RHS = Visit(E->getRHS()); + + if (LHS->getType()->isFloatingPoint()) { + Result = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, + LHS, RHS, "cmp"); + } else if (LHSTy->isUnsignedIntegerType()) { + Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, + LHS, RHS, "cmp"); + } else { + // Signed integers and pointers. + Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc, + LHS, RHS, "cmp"); + } + } else { + // Complex Comparison: can only be an equality comparison. + CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS()); + CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS()); + + QualType CETy = + cast<ComplexType>(LHSTy.getCanonicalType())->getElementType(); + + Value *ResultR, *ResultI; + if (CETy->isRealFloatingType()) { + ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, + LHS.first, RHS.first, "cmp.r"); + ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, + LHS.second, RHS.second, "cmp.i"); + } else { + // Complex comparisons can only be equality comparisons. As such, signed + // and unsigned opcodes are the same. + ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, + LHS.first, RHS.first, "cmp.r"); + ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, + LHS.second, RHS.second, "cmp.i"); + } + + if (E->getOpcode() == BinaryOperator::EQ) { + Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); + } else { + assert(E->getOpcode() == BinaryOperator::NE && + "Complex comparison other than == or != ?"); + Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); + } + } + + // ZExt result to int. + return Builder.CreateZExt(Result, CGF.LLVMIntTy, "cmp.ext"); +} + +Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { + LValue LHS = EmitLValue(E->getLHS()); + Value *RHS = Visit(E->getRHS()); + + // Store the value into the LHS. + // FIXME: Volatility! + CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType()); + + // Return the RHS. + return RHS; +} + +Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { + Value *LHSCond = CGF.EvaluateExprAsBool(E->getLHS()); + + llvm::BasicBlock *ContBlock = new llvm::BasicBlock("land_cont"); + llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("land_rhs"); + + llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock(); + Builder.CreateCondBr(LHSCond, RHSBlock, ContBlock); + + CGF.EmitBlock(RHSBlock); + Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); + + // Reaquire the RHS block, as there may be subblocks inserted. + RHSBlock = Builder.GetInsertBlock(); + CGF.EmitBlock(ContBlock); + + // Create a PHI node. If we just evaluted the LHS condition, the result is + // false. If we evaluated both, the result is the RHS condition. + llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "land"); + PN->reserveOperandSpace(2); + PN->addIncoming(llvm::ConstantInt::getFalse(), OrigBlock); + PN->addIncoming(RHSCond, RHSBlock); + + // ZExt result to int. + return Builder.CreateZExt(PN, CGF.LLVMIntTy, "land.ext"); +} + +Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { + Value *LHSCond = CGF.EvaluateExprAsBool(E->getLHS()); + + llvm::BasicBlock *ContBlock = new llvm::BasicBlock("lor_cont"); + llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("lor_rhs"); + + llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock(); + Builder.CreateCondBr(LHSCond, ContBlock, RHSBlock); + + CGF.EmitBlock(RHSBlock); + Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); + + // Reaquire the RHS block, as there may be subblocks inserted. + RHSBlock = Builder.GetInsertBlock(); + CGF.EmitBlock(ContBlock); + + // Create a PHI node. If we just evaluted the LHS condition, the result is + // true. If we evaluated both, the result is the RHS condition. + llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "lor"); + PN->reserveOperandSpace(2); + PN->addIncoming(llvm::ConstantInt::getTrue(), OrigBlock); + PN->addIncoming(RHSCond, RHSBlock); + + // ZExt result to int. + return Builder.CreateZExt(PN, CGF.LLVMIntTy, "lor.ext"); +} + +Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { + CGF.EmitStmt(E->getLHS()); + return Visit(E->getRHS()); +} + +//===----------------------------------------------------------------------===// +// Other Operators +//===----------------------------------------------------------------------===// + +Value *ScalarExprEmitter:: +VisitConditionalOperator(const ConditionalOperator *E) { + llvm::BasicBlock *LHSBlock = new llvm::BasicBlock("cond.?"); + llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("cond.:"); + llvm::BasicBlock *ContBlock = new llvm::BasicBlock("cond.cont"); + + // Evaluate the conditional, then convert it to bool. We do this explicitly + // because we need the unconverted value if this is a GNU ?: expression with + // missing middle value. + Value *CondVal = CGF.EmitScalarExpr(E->getCond()); + Value *CondBoolVal =CGF.EmitScalarConversion(CondVal, E->getCond()->getType(), + CGF.getContext().BoolTy); + Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock); + + CGF.EmitBlock(LHSBlock); + + // Handle the GNU extension for missing LHS. + Value *LHS; + if (E->getLHS()) + LHS = Visit(E->getLHS()); + else // Perform promotions, to handle cases like "short ?: int" + LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType()); + + Builder.CreateBr(ContBlock); + LHSBlock = Builder.GetInsertBlock(); + + CGF.EmitBlock(RHSBlock); + + Value *RHS = Visit(E->getRHS()); + Builder.CreateBr(ContBlock); + RHSBlock = Builder.GetInsertBlock(); + + CGF.EmitBlock(ContBlock); + + if (!LHS) { + assert(E->getType()->isVoidType() && "Non-void value should have a value"); + return 0; + } + + // Create a PHI node for the real part. + llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond"); + PN->reserveOperandSpace(2); + PN->addIncoming(LHS, LHSBlock); + PN->addIncoming(RHS, RHSBlock); + return PN; +} + +Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { + // Emit the LHS or RHS as appropriate. + return + Visit(E->isConditionTrue(CGF.getContext()) ? E->getLHS() : E->getRHS()); +} + +Value *ScalarExprEmitter::VisitOverloadExpr(OverloadExpr *E) { + return CGF.EmitCallExpr(E->getFn(), E->arg_begin(), + E->getNumArgs(CGF.getContext())).getScalarVal(); +} + +Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { + llvm::Value *ArgValue = EmitLValue(VE->getSubExpr()).getAddress(); + + llvm::Value *V = Builder.CreateVAArg(ArgValue, ConvertType(VE->getType())); + return V; +} + +Value *ScalarExprEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { + std::string str; + llvm::SmallVector<const RecordType *, 8> EncodingRecordTypes; + CGF.getContext().getObjCEncodingForType(E->getEncodedType(), str, + EncodingRecordTypes); + + llvm::Constant *C = llvm::ConstantArray::get(str); + C = new llvm::GlobalVariable(C->getType(), true, + llvm::GlobalValue::InternalLinkage, + C, ".str", &CGF.CGM.getModule()); + llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); + llvm::Constant *Zeros[] = { Zero, Zero }; + C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2); + + return C; +} + +//===----------------------------------------------------------------------===// +// Entry Point into this File +//===----------------------------------------------------------------------===// + +/// EmitComplexExpr - Emit the computation of the specified expression of +/// complex type, ignoring the result. +Value *CodeGenFunction::EmitScalarExpr(const Expr *E) { + assert(E && !hasAggregateLLVMType(E->getType()) && + "Invalid scalar expression to emit"); + + return ScalarExprEmitter(*this).Visit(const_cast<Expr*>(E)); +} + +/// EmitScalarConversion - Emit a conversion from the specified type to the +/// specified destination type, both of which are LLVM scalar types. +Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, + QualType DstTy) { + assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) && + "Invalid scalar expression to emit"); + return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy); +} + +/// EmitComplexToScalarConversion - Emit a conversion from the specified +/// complex type to the specified destination type, where the destination +/// type is an LLVM scalar type. +Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, + QualType SrcTy, + QualType DstTy) { + assert(SrcTy->isComplexType() && !hasAggregateLLVMType(DstTy) && + "Invalid complex -> scalar conversion"); + return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy, + DstTy); +} + +Value *CodeGenFunction::EmitShuffleVector(Value* V1, Value *V2, ...) { + assert(V1->getType() == V2->getType() && + "Vector operands must be of the same type"); + + unsigned NumElements = + cast<llvm::VectorType>(V1->getType())->getNumElements(); + + va_list va; + va_start(va, V2); + + llvm::SmallVector<llvm::Constant*, 16> Args; + + for (unsigned i = 0; i < NumElements; i++) { + int n = va_arg(va, int); + + assert(n >= 0 && n < (int)NumElements * 2 && + "Vector shuffle index out of bounds!"); + + Args.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, n)); + } + + const char *Name = va_arg(va, const char *); + va_end(va); + + llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements); + + return Builder.CreateShuffleVector(V1, V2, Mask, Name); +} + +llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals, + unsigned NumVals, bool isSplat) +{ + llvm::Value *Vec + = llvm::UndefValue::get(llvm::VectorType::get(Vals[0]->getType(), NumVals)); + + for (unsigned i = 0, e = NumVals ; i != e; ++i) { + llvm::Value *Val = isSplat ? Vals[0] : Vals[i]; + llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i); + Vec = Builder.CreateInsertElement(Vec, Val, Idx, "tmp"); + } + + return Vec; +} |