summaryrefslogtreecommitdiffstats
path: root/clang/lib/AST/ItaniumMangle.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'clang/lib/AST/ItaniumMangle.cpp')
-rw-r--r--clang/lib/AST/ItaniumMangle.cpp7154
1 files changed, 3574 insertions, 3580 deletions
diff --git a/clang/lib/AST/ItaniumMangle.cpp b/clang/lib/AST/ItaniumMangle.cpp
index 65907f909bb..566a3894cb9 100644
--- a/clang/lib/AST/ItaniumMangle.cpp
+++ b/clang/lib/AST/ItaniumMangle.cpp
@@ -1,3580 +1,3574 @@
-//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// Implements C++ name mangling according to the Itanium C++ ABI,
-// which is used in GCC 3.2 and newer (and many compilers that are
-// ABI-compatible with GCC):
-//
-// http://www.codesourcery.com/public/cxx-abi/abi.html
-//
-//===----------------------------------------------------------------------===//
-#include "clang/AST/Mangle.h"
-#include "clang/AST/ASTContext.h"
-#include "clang/AST/Attr.h"
-#include "clang/AST/Decl.h"
-#include "clang/AST/DeclCXX.h"
-#include "clang/AST/DeclObjC.h"
-#include "clang/AST/DeclTemplate.h"
-#include "clang/AST/ExprCXX.h"
-#include "clang/AST/ExprObjC.h"
-#include "clang/AST/TypeLoc.h"
-#include "clang/Basic/ABI.h"
-#include "clang/Basic/SourceManager.h"
-#include "clang/Basic/TargetInfo.h"
-#include "llvm/ADT/StringExtras.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/raw_ostream.h"
-
-#define MANGLE_CHECKER 0
-
-#if MANGLE_CHECKER
-#include <cxxabi.h>
-#endif
-
-using namespace clang;
-
-namespace {
-
-/// \brief Retrieve the declaration context that should be used when mangling
-/// the given declaration.
-static const DeclContext *getEffectiveDeclContext(const Decl *D) {
- // The ABI assumes that lambda closure types that occur within
- // default arguments live in the context of the function. However, due to
- // the way in which Clang parses and creates function declarations, this is
- // not the case: the lambda closure type ends up living in the context
- // where the function itself resides, because the function declaration itself
- // had not yet been created. Fix the context here.
- if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
- if (RD->isLambda())
- if (ParmVarDecl *ContextParam
- = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
- return ContextParam->getDeclContext();
- }
-
- return D->getDeclContext();
-}
-
-static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
- return getEffectiveDeclContext(cast<Decl>(DC));
-}
-
-static const CXXRecordDecl *GetLocalClassDecl(const NamedDecl *ND) {
- const DeclContext *DC = dyn_cast<DeclContext>(ND);
- if (!DC)
- DC = getEffectiveDeclContext(ND);
- while (!DC->isNamespace() && !DC->isTranslationUnit()) {
- const DeclContext *Parent = getEffectiveDeclContext(cast<Decl>(DC));
- if (isa<FunctionDecl>(Parent))
- return dyn_cast<CXXRecordDecl>(DC);
- DC = Parent;
- }
- return 0;
-}
-
-static const FunctionDecl *getStructor(const FunctionDecl *fn) {
- if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
- return ftd->getTemplatedDecl();
-
- return fn;
-}
-
-static const NamedDecl *getStructor(const NamedDecl *decl) {
- const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
- return (fn ? getStructor(fn) : decl);
-}
-
-static const unsigned UnknownArity = ~0U;
-
-class ItaniumMangleContext : public MangleContext {
- llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
- unsigned Discriminator;
- llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
-
-public:
- explicit ItaniumMangleContext(ASTContext &Context,
- DiagnosticsEngine &Diags)
- : MangleContext(Context, Diags) { }
-
- uint64_t getAnonymousStructId(const TagDecl *TD) {
- std::pair<llvm::DenseMap<const TagDecl *,
- uint64_t>::iterator, bool> Result =
- AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
- return Result.first->second;
- }
-
- void startNewFunction() {
- MangleContext::startNewFunction();
- mangleInitDiscriminator();
- }
-
- /// @name Mangler Entry Points
- /// @{
-
- bool shouldMangleDeclName(const NamedDecl *D);
- void mangleName(const NamedDecl *D, raw_ostream &);
- void mangleThunk(const CXXMethodDecl *MD,
- const ThunkInfo &Thunk,
- raw_ostream &);
- void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
- const ThisAdjustment &ThisAdjustment,
- raw_ostream &);
- void mangleReferenceTemporary(const VarDecl *D,
- raw_ostream &);
- void mangleCXXVTable(const CXXRecordDecl *RD,
- raw_ostream &);
- void mangleCXXVTT(const CXXRecordDecl *RD,
- raw_ostream &);
- void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
- const CXXRecordDecl *Type,
- raw_ostream &);
- void mangleCXXRTTI(QualType T, raw_ostream &);
- void mangleCXXRTTIName(QualType T, raw_ostream &);
- void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
- raw_ostream &);
- void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
- raw_ostream &);
-
- void mangleItaniumGuardVariable(const VarDecl *D, raw_ostream &);
-
- void mangleInitDiscriminator() {
- Discriminator = 0;
- }
-
- bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
- // Lambda closure types with external linkage (indicated by a
- // non-zero lambda mangling number) have their own numbering scheme, so
- // they do not need a discriminator.
- if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND))
- if (RD->isLambda() && RD->getLambdaManglingNumber() > 0)
- return false;
-
- unsigned &discriminator = Uniquifier[ND];
- if (!discriminator)
- discriminator = ++Discriminator;
- if (discriminator == 1)
- return false;
- disc = discriminator-2;
- return true;
- }
- /// @}
-};
-
-/// CXXNameMangler - Manage the mangling of a single name.
-class CXXNameMangler {
- ItaniumMangleContext &Context;
- raw_ostream &Out;
-
- /// The "structor" is the top-level declaration being mangled, if
- /// that's not a template specialization; otherwise it's the pattern
- /// for that specialization.
- const NamedDecl *Structor;
- unsigned StructorType;
-
- /// SeqID - The next subsitution sequence number.
- unsigned SeqID;
-
- class FunctionTypeDepthState {
- unsigned Bits;
-
- enum { InResultTypeMask = 1 };
-
- public:
- FunctionTypeDepthState() : Bits(0) {}
-
- /// The number of function types we're inside.
- unsigned getDepth() const {
- return Bits >> 1;
- }
-
- /// True if we're in the return type of the innermost function type.
- bool isInResultType() const {
- return Bits & InResultTypeMask;
- }
-
- FunctionTypeDepthState push() {
- FunctionTypeDepthState tmp = *this;
- Bits = (Bits & ~InResultTypeMask) + 2;
- return tmp;
- }
-
- void enterResultType() {
- Bits |= InResultTypeMask;
- }
-
- void leaveResultType() {
- Bits &= ~InResultTypeMask;
- }
-
- void pop(FunctionTypeDepthState saved) {
- assert(getDepth() == saved.getDepth() + 1);
- Bits = saved.Bits;
- }
-
- } FunctionTypeDepth;
-
- llvm::DenseMap<uintptr_t, unsigned> Substitutions;
-
- ASTContext &getASTContext() const { return Context.getASTContext(); }
-
-public:
- CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
- const NamedDecl *D = 0)
- : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
- SeqID(0) {
- // These can't be mangled without a ctor type or dtor type.
- assert(!D || (!isa<CXXDestructorDecl>(D) &&
- !isa<CXXConstructorDecl>(D)));
- }
- CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
- const CXXConstructorDecl *D, CXXCtorType Type)
- : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
- SeqID(0) { }
- CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
- const CXXDestructorDecl *D, CXXDtorType Type)
- : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
- SeqID(0) { }
-
-#if MANGLE_CHECKER
- ~CXXNameMangler() {
- if (Out.str()[0] == '\01')
- return;
-
- int status = 0;
- char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
- assert(status == 0 && "Could not demangle mangled name!");
- free(result);
- }
-#endif
- raw_ostream &getStream() { return Out; }
-
- void mangle(const NamedDecl *D, StringRef Prefix = "_Z");
- void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
- void mangleNumber(const llvm::APSInt &I);
- void mangleNumber(int64_t Number);
- void mangleFloat(const llvm::APFloat &F);
- void mangleFunctionEncoding(const FunctionDecl *FD);
- void mangleName(const NamedDecl *ND);
- void mangleType(QualType T);
- void mangleNameOrStandardSubstitution(const NamedDecl *ND);
-
-private:
- bool mangleSubstitution(const NamedDecl *ND);
- bool mangleSubstitution(QualType T);
- bool mangleSubstitution(TemplateName Template);
- bool mangleSubstitution(uintptr_t Ptr);
-
- void mangleExistingSubstitution(QualType type);
- void mangleExistingSubstitution(TemplateName name);
-
- bool mangleStandardSubstitution(const NamedDecl *ND);
-
- void addSubstitution(const NamedDecl *ND) {
- ND = cast<NamedDecl>(ND->getCanonicalDecl());
-
- addSubstitution(reinterpret_cast<uintptr_t>(ND));
- }
- void addSubstitution(QualType T);
- void addSubstitution(TemplateName Template);
- void addSubstitution(uintptr_t Ptr);
-
- void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
- NamedDecl *firstQualifierLookup,
- bool recursive = false);
- void mangleUnresolvedName(NestedNameSpecifier *qualifier,
- NamedDecl *firstQualifierLookup,
- DeclarationName name,
- unsigned KnownArity = UnknownArity);
-
- void mangleName(const TemplateDecl *TD,
- const TemplateArgument *TemplateArgs,
- unsigned NumTemplateArgs);
- void mangleUnqualifiedName(const NamedDecl *ND) {
- mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
- }
- void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
- unsigned KnownArity);
- void mangleUnscopedName(const NamedDecl *ND);
- void mangleUnscopedTemplateName(const TemplateDecl *ND);
- void mangleUnscopedTemplateName(TemplateName);
- void mangleSourceName(const IdentifierInfo *II);
- void mangleLocalName(const NamedDecl *ND);
- void mangleLambda(const CXXRecordDecl *Lambda);
- void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
- bool NoFunction=false);
- void mangleNestedName(const TemplateDecl *TD,
- const TemplateArgument *TemplateArgs,
- unsigned NumTemplateArgs);
- void manglePrefix(NestedNameSpecifier *qualifier);
- void manglePrefix(const DeclContext *DC, bool NoFunction=false);
- void manglePrefix(QualType type);
- void mangleTemplatePrefix(const TemplateDecl *ND);
- void mangleTemplatePrefix(TemplateName Template);
- void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
- void mangleQualifiers(Qualifiers Quals);
- void mangleRefQualifier(RefQualifierKind RefQualifier);
-
- void mangleObjCMethodName(const ObjCMethodDecl *MD);
-
- // Declare manglers for every type class.
-#define ABSTRACT_TYPE(CLASS, PARENT)
-#define NON_CANONICAL_TYPE(CLASS, PARENT)
-#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
-#include "clang/AST/TypeNodes.def"
-
- void mangleType(const TagType*);
- void mangleType(TemplateName);
- void mangleBareFunctionType(const FunctionType *T,
- bool MangleReturnType);
- void mangleNeonVectorType(const VectorType *T);
-
- void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
- void mangleMemberExpr(const Expr *base, bool isArrow,
- NestedNameSpecifier *qualifier,
- NamedDecl *firstQualifierLookup,
- DeclarationName name,
- unsigned knownArity);
- void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
- void mangleCXXCtorType(CXXCtorType T);
- void mangleCXXDtorType(CXXDtorType T);
-
- void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
- void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
- unsigned NumTemplateArgs);
- void mangleTemplateArgs(const TemplateArgumentList &AL);
- void mangleTemplateArg(TemplateArgument A);
-
- void mangleTemplateParameter(unsigned Index);
-
- void mangleFunctionParam(const ParmVarDecl *parm);
-};
-
-}
-
-static bool isInCLinkageSpecification(const Decl *D) {
- D = D->getCanonicalDecl();
- for (const DeclContext *DC = getEffectiveDeclContext(D);
- !DC->isTranslationUnit(); DC = getEffectiveParentContext(DC)) {
- if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
- return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
- }
-
- return false;
-}
-
-bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) {
- // In C, functions with no attributes never need to be mangled. Fastpath them.
- if (!getASTContext().getLangOpts().CPlusPlus && !D->hasAttrs())
- return false;
-
- // Any decl can be declared with __asm("foo") on it, and this takes precedence
- // over all other naming in the .o file.
- if (D->hasAttr<AsmLabelAttr>())
- return true;
-
- // Clang's "overloadable" attribute extension to C/C++ implies name mangling
- // (always) as does passing a C++ member function and a function
- // whose name is not a simple identifier.
- const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
- if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||
- !FD->getDeclName().isIdentifier()))
- return true;
-
- // Otherwise, no mangling is done outside C++ mode.
- if (!getASTContext().getLangOpts().CPlusPlus)
- return false;
-
- // Variables at global scope with non-internal linkage are not mangled
- if (!FD) {
- const DeclContext *DC = getEffectiveDeclContext(D);
- // Check for extern variable declared locally.
- if (DC->isFunctionOrMethod() && D->hasLinkage())
- while (!DC->isNamespace() && !DC->isTranslationUnit())
- DC = getEffectiveParentContext(DC);
- if (DC->isTranslationUnit() && D->getLinkage() != InternalLinkage)
- return false;
- }
-
- // Class members are always mangled.
- if (getEffectiveDeclContext(D)->isRecord())
- return true;
-
- // C functions and "main" are not mangled.
- if ((FD && FD->isMain()) || isInCLinkageSpecification(D))
- return false;
-
- return true;
-}
-
-void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
- // Any decl can be declared with __asm("foo") on it, and this takes precedence
- // over all other naming in the .o file.
- if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
- // If we have an asm name, then we use it as the mangling.
-
- // Adding the prefix can cause problems when one file has a "foo" and
- // another has a "\01foo". That is known to happen on ELF with the
- // tricks normally used for producing aliases (PR9177). Fortunately the
- // llvm mangler on ELF is a nop, so we can just avoid adding the \01
- // marker. We also avoid adding the marker if this is an alias for an
- // LLVM intrinsic.
- StringRef UserLabelPrefix =
- getASTContext().getTargetInfo().getUserLabelPrefix();
- if (!UserLabelPrefix.empty() && !ALA->getLabel().startswith("llvm."))
- Out << '\01'; // LLVM IR Marker for __asm("foo")
-
- Out << ALA->getLabel();
- return;
- }
-
- // <mangled-name> ::= _Z <encoding>
- // ::= <data name>
- // ::= <special-name>
- Out << Prefix;
- if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
- mangleFunctionEncoding(FD);
- else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
- mangleName(VD);
- else
- mangleName(cast<FieldDecl>(D));
-}
-
-void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
- // <encoding> ::= <function name> <bare-function-type>
- mangleName(FD);
-
- // Don't mangle in the type if this isn't a decl we should typically mangle.
- if (!Context.shouldMangleDeclName(FD))
- return;
-
- // Whether the mangling of a function type includes the return type depends on
- // the context and the nature of the function. The rules for deciding whether
- // the return type is included are:
- //
- // 1. Template functions (names or types) have return types encoded, with
- // the exceptions listed below.
- // 2. Function types not appearing as part of a function name mangling,
- // e.g. parameters, pointer types, etc., have return type encoded, with the
- // exceptions listed below.
- // 3. Non-template function names do not have return types encoded.
- //
- // The exceptions mentioned in (1) and (2) above, for which the return type is
- // never included, are
- // 1. Constructors.
- // 2. Destructors.
- // 3. Conversion operator functions, e.g. operator int.
- bool MangleReturnType = false;
- if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
- if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
- isa<CXXConversionDecl>(FD)))
- MangleReturnType = true;
-
- // Mangle the type of the primary template.
- FD = PrimaryTemplate->getTemplatedDecl();
- }
-
- mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
- MangleReturnType);
-}
-
-static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
- while (isa<LinkageSpecDecl>(DC)) {
- DC = getEffectiveParentContext(DC);
- }
-
- return DC;
-}
-
-/// isStd - Return whether a given namespace is the 'std' namespace.
-static bool isStd(const NamespaceDecl *NS) {
- if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
- ->isTranslationUnit())
- return false;
-
- const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
- return II && II->isStr("std");
-}
-
-// isStdNamespace - Return whether a given decl context is a toplevel 'std'
-// namespace.
-static bool isStdNamespace(const DeclContext *DC) {
- if (!DC->isNamespace())
- return false;
-
- return isStd(cast<NamespaceDecl>(DC));
-}
-
-static const TemplateDecl *
-isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
- // Check if we have a function template.
- if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
- if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
- TemplateArgs = FD->getTemplateSpecializationArgs();
- return TD;
- }
- }
-
- // Check if we have a class template.
- if (const ClassTemplateSpecializationDecl *Spec =
- dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
- TemplateArgs = &Spec->getTemplateArgs();
- return Spec->getSpecializedTemplate();
- }
-
- return 0;
-}
-
-static bool isLambda(const NamedDecl *ND) {
- const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
- if (!Record)
- return false;
-
- return Record->isLambda();
-}
-
-void CXXNameMangler::mangleName(const NamedDecl *ND) {
- // <name> ::= <nested-name>
- // ::= <unscoped-name>
- // ::= <unscoped-template-name> <template-args>
- // ::= <local-name>
- //
- const DeclContext *DC = getEffectiveDeclContext(ND);
-
- // If this is an extern variable declared locally, the relevant DeclContext
- // is that of the containing namespace, or the translation unit.
- // FIXME: This is a hack; extern variables declared locally should have
- // a proper semantic declaration context!
- if (isa<FunctionDecl>(DC) && ND->hasLinkage() && !isLambda(ND))
- while (!DC->isNamespace() && !DC->isTranslationUnit())
- DC = getEffectiveParentContext(DC);
- else if (GetLocalClassDecl(ND)) {
- mangleLocalName(ND);
- return;
- }
-
- DC = IgnoreLinkageSpecDecls(DC);
-
- if (DC->isTranslationUnit() || isStdNamespace(DC)) {
- // Check if we have a template.
- const TemplateArgumentList *TemplateArgs = 0;
- if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
- mangleUnscopedTemplateName(TD);
- mangleTemplateArgs(*TemplateArgs);
- return;
- }
-
- mangleUnscopedName(ND);
- return;
- }
-
- if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) {
- mangleLocalName(ND);
- return;
- }
-
- mangleNestedName(ND, DC);
-}
-void CXXNameMangler::mangleName(const TemplateDecl *TD,
- const TemplateArgument *TemplateArgs,
- unsigned NumTemplateArgs) {
- const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
-
- if (DC->isTranslationUnit() || isStdNamespace(DC)) {
- mangleUnscopedTemplateName(TD);
- mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
- } else {
- mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
- }
-}
-
-void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
- // <unscoped-name> ::= <unqualified-name>
- // ::= St <unqualified-name> # ::std::
-
- if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
- Out << "St";
-
- mangleUnqualifiedName(ND);
-}
-
-void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
- // <unscoped-template-name> ::= <unscoped-name>
- // ::= <substitution>
- if (mangleSubstitution(ND))
- return;
-
- // <template-template-param> ::= <template-param>
- if (const TemplateTemplateParmDecl *TTP
- = dyn_cast<TemplateTemplateParmDecl>(ND)) {
- mangleTemplateParameter(TTP->getIndex());
- return;
- }
-
- mangleUnscopedName(ND->getTemplatedDecl());
- addSubstitution(ND);
-}
-
-void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
- // <unscoped-template-name> ::= <unscoped-name>
- // ::= <substitution>
- if (TemplateDecl *TD = Template.getAsTemplateDecl())
- return mangleUnscopedTemplateName(TD);
-
- if (mangleSubstitution(Template))
- return;
-
- DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
- assert(Dependent && "Not a dependent template name?");
- if (const IdentifierInfo *Id = Dependent->getIdentifier())
- mangleSourceName(Id);
- else
- mangleOperatorName(Dependent->getOperator(), UnknownArity);
-
- addSubstitution(Template);
-}
-
-void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
- // ABI:
- // Floating-point literals are encoded using a fixed-length
- // lowercase hexadecimal string corresponding to the internal
- // representation (IEEE on Itanium), high-order bytes first,
- // without leading zeroes. For example: "Lf bf800000 E" is -1.0f
- // on Itanium.
- // The 'without leading zeroes' thing seems to be an editorial
- // mistake; see the discussion on cxx-abi-dev beginning on
- // 2012-01-16.
-
- // Our requirements here are just barely weird enough to justify
- // using a custom algorithm instead of post-processing APInt::toString().
-
- llvm::APInt valueBits = f.bitcastToAPInt();
- unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
- assert(numCharacters != 0);
-
- // Allocate a buffer of the right number of characters.
- llvm::SmallVector<char, 20> buffer;
- buffer.set_size(numCharacters);
-
- // Fill the buffer left-to-right.
- for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
- // The bit-index of the next hex digit.
- unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
-
- // Project out 4 bits starting at 'digitIndex'.
- llvm::integerPart hexDigit
- = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
- hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
- hexDigit &= 0xF;
-
- // Map that over to a lowercase hex digit.
- static const char charForHex[16] = {
- '0', '1', '2', '3', '4', '5', '6', '7',
- '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
- };
- buffer[stringIndex] = charForHex[hexDigit];
- }
-
- Out.write(buffer.data(), numCharacters);
-}
-
-void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
- if (Value.isSigned() && Value.isNegative()) {
- Out << 'n';
- Value.abs().print(Out, /*signed*/ false);
- } else {
- Value.print(Out, /*signed*/ false);
- }
-}
-
-void CXXNameMangler::mangleNumber(int64_t Number) {
- // <number> ::= [n] <non-negative decimal integer>
- if (Number < 0) {
- Out << 'n';
- Number = -Number;
- }
-
- Out << Number;
-}
-
-void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
- // <call-offset> ::= h <nv-offset> _
- // ::= v <v-offset> _
- // <nv-offset> ::= <offset number> # non-virtual base override
- // <v-offset> ::= <offset number> _ <virtual offset number>
- // # virtual base override, with vcall offset
- if (!Virtual) {
- Out << 'h';
- mangleNumber(NonVirtual);
- Out << '_';
- return;
- }
-
- Out << 'v';
- mangleNumber(NonVirtual);
- Out << '_';
- mangleNumber(Virtual);
- Out << '_';
-}
-
-void CXXNameMangler::manglePrefix(QualType type) {
- if (const TemplateSpecializationType *TST =
- type->getAs<TemplateSpecializationType>()) {
- if (!mangleSubstitution(QualType(TST, 0))) {
- mangleTemplatePrefix(TST->getTemplateName());
-
- // FIXME: GCC does not appear to mangle the template arguments when
- // the template in question is a dependent template name. Should we
- // emulate that badness?
- mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
- addSubstitution(QualType(TST, 0));
- }
- } else if (const DependentTemplateSpecializationType *DTST
- = type->getAs<DependentTemplateSpecializationType>()) {
- TemplateName Template
- = getASTContext().getDependentTemplateName(DTST->getQualifier(),
- DTST->getIdentifier());
- mangleTemplatePrefix(Template);
-
- // FIXME: GCC does not appear to mangle the template arguments when
- // the template in question is a dependent template name. Should we
- // emulate that badness?
- mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
- } else {
- // We use the QualType mangle type variant here because it handles
- // substitutions.
- mangleType(type);
- }
-}
-
-/// Mangle everything prior to the base-unresolved-name in an unresolved-name.
-///
-/// \param firstQualifierLookup - the entity found by unqualified lookup
-/// for the first name in the qualifier, if this is for a member expression
-/// \param recursive - true if this is being called recursively,
-/// i.e. if there is more prefix "to the right".
-void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
- NamedDecl *firstQualifierLookup,
- bool recursive) {
-
- // x, ::x
- // <unresolved-name> ::= [gs] <base-unresolved-name>
-
- // T::x / decltype(p)::x
- // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
-
- // T::N::x /decltype(p)::N::x
- // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
- // <base-unresolved-name>
-
- // A::x, N::y, A<T>::z; "gs" means leading "::"
- // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
- // <base-unresolved-name>
-
- switch (qualifier->getKind()) {
- case NestedNameSpecifier::Global:
- Out << "gs";
-
- // We want an 'sr' unless this is the entire NNS.
- if (recursive)
- Out << "sr";
-
- // We never want an 'E' here.
- return;
-
- case NestedNameSpecifier::Namespace:
- if (qualifier->getPrefix())
- mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
- /*recursive*/ true);
- else
- Out << "sr";
- mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
- break;
- case NestedNameSpecifier::NamespaceAlias:
- if (qualifier->getPrefix())
- mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
- /*recursive*/ true);
- else
- Out << "sr";
- mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
- break;
-
- case NestedNameSpecifier::TypeSpec:
- case NestedNameSpecifier::TypeSpecWithTemplate: {
- const Type *type = qualifier->getAsType();
-
- // We only want to use an unresolved-type encoding if this is one of:
- // - a decltype
- // - a template type parameter
- // - a template template parameter with arguments
- // In all of these cases, we should have no prefix.
- if (qualifier->getPrefix()) {
- mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
- /*recursive*/ true);
- } else {
- // Otherwise, all the cases want this.
- Out << "sr";
- }
-
- // Only certain other types are valid as prefixes; enumerate them.
- switch (type->getTypeClass()) {
- case Type::Builtin:
- case Type::Complex:
- case Type::Pointer:
- case Type::BlockPointer:
- case Type::LValueReference:
- case Type::RValueReference:
- case Type::MemberPointer:
- case Type::ConstantArray:
- case Type::IncompleteArray:
- case Type::VariableArray:
- case Type::DependentSizedArray:
- case Type::DependentSizedExtVector:
- case Type::Vector:
- case Type::ExtVector:
- case Type::FunctionProto:
- case Type::FunctionNoProto:
- case Type::Enum:
- case Type::Paren:
- case Type::Elaborated:
- case Type::Attributed:
- case Type::Auto:
- case Type::PackExpansion:
- case Type::ObjCObject:
- case Type::ObjCInterface:
- case Type::ObjCObjectPointer:
- case Type::Atomic:
- llvm_unreachable("type is illegal as a nested name specifier");
-
- case Type::SubstTemplateTypeParmPack:
- // FIXME: not clear how to mangle this!
- // template <class T...> class A {
- // template <class U...> void foo(decltype(T::foo(U())) x...);
- // };
- Out << "_SUBSTPACK_";
- break;
-
- // <unresolved-type> ::= <template-param>
- // ::= <decltype>
- // ::= <template-template-param> <template-args>
- // (this last is not official yet)
- case Type::TypeOfExpr:
- case Type::TypeOf:
- case Type::Decltype:
- case Type::TemplateTypeParm:
- case Type::UnaryTransform:
- case Type::SubstTemplateTypeParm:
- unresolvedType:
- assert(!qualifier->getPrefix());
-
- // We only get here recursively if we're followed by identifiers.
- if (recursive) Out << 'N';
-
- // This seems to do everything we want. It's not really
- // sanctioned for a substituted template parameter, though.
- mangleType(QualType(type, 0));
-
- // We never want to print 'E' directly after an unresolved-type,
- // so we return directly.
- return;
-
- case Type::Typedef:
- mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier());
- break;
-
- case Type::UnresolvedUsing:
- mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl()
- ->getIdentifier());
- break;
-
- case Type::Record:
- mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier());
- break;
-
- case Type::TemplateSpecialization: {
- const TemplateSpecializationType *tst
- = cast<TemplateSpecializationType>(type);
- TemplateName name = tst->getTemplateName();
- switch (name.getKind()) {
- case TemplateName::Template:
- case TemplateName::QualifiedTemplate: {
- TemplateDecl *temp = name.getAsTemplateDecl();
-
- // If the base is a template template parameter, this is an
- // unresolved type.
- assert(temp && "no template for template specialization type");
- if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType;
-
- mangleSourceName(temp->getIdentifier());
- break;
- }
-
- case TemplateName::OverloadedTemplate:
- case TemplateName::DependentTemplate:
- llvm_unreachable("invalid base for a template specialization type");
-
- case TemplateName::SubstTemplateTemplateParm: {
- SubstTemplateTemplateParmStorage *subst
- = name.getAsSubstTemplateTemplateParm();
- mangleExistingSubstitution(subst->getReplacement());
- break;
- }
-
- case TemplateName::SubstTemplateTemplateParmPack: {
- // FIXME: not clear how to mangle this!
- // template <template <class U> class T...> class A {
- // template <class U...> void foo(decltype(T<U>::foo) x...);
- // };
- Out << "_SUBSTPACK_";
- break;
- }
- }
-
- mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
- break;
- }
-
- case Type::InjectedClassName:
- mangleSourceName(cast<InjectedClassNameType>(type)->getDecl()
- ->getIdentifier());
- break;
-
- case Type::DependentName:
- mangleSourceName(cast<DependentNameType>(type)->getIdentifier());
- break;
-
- case Type::DependentTemplateSpecialization: {
- const DependentTemplateSpecializationType *tst
- = cast<DependentTemplateSpecializationType>(type);
- mangleSourceName(tst->getIdentifier());
- mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
- break;
- }
- }
- break;
- }
-
- case NestedNameSpecifier::Identifier:
- // Member expressions can have these without prefixes.
- if (qualifier->getPrefix()) {
- mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
- /*recursive*/ true);
- } else if (firstQualifierLookup) {
-
- // Try to make a proper qualifier out of the lookup result, and
- // then just recurse on that.
- NestedNameSpecifier *newQualifier;
- if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) {
- QualType type = getASTContext().getTypeDeclType(typeDecl);
-
- // Pretend we had a different nested name specifier.
- newQualifier = NestedNameSpecifier::Create(getASTContext(),
- /*prefix*/ 0,
- /*template*/ false,
- type.getTypePtr());
- } else if (NamespaceDecl *nspace =
- dyn_cast<NamespaceDecl>(firstQualifierLookup)) {
- newQualifier = NestedNameSpecifier::Create(getASTContext(),
- /*prefix*/ 0,
- nspace);
- } else if (NamespaceAliasDecl *alias =
- dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) {
- newQualifier = NestedNameSpecifier::Create(getASTContext(),
- /*prefix*/ 0,
- alias);
- } else {
- // No sensible mangling to do here.
- newQualifier = 0;
- }
-
- if (newQualifier)
- return mangleUnresolvedPrefix(newQualifier, /*lookup*/ 0, recursive);
-
- } else {
- Out << "sr";
- }
-
- mangleSourceName(qualifier->getAsIdentifier());
- break;
- }
-
- // If this was the innermost part of the NNS, and we fell out to
- // here, append an 'E'.
- if (!recursive)
- Out << 'E';
-}
-
-/// Mangle an unresolved-name, which is generally used for names which
-/// weren't resolved to specific entities.
-void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
- NamedDecl *firstQualifierLookup,
- DeclarationName name,
- unsigned knownArity) {
- if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup);
- mangleUnqualifiedName(0, name, knownArity);
-}
-
-static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
- assert(RD->isAnonymousStructOrUnion() &&
- "Expected anonymous struct or union!");
-
- for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
- I != E; ++I) {
- if (I->getIdentifier())
- return *I;
-
- if (const RecordType *RT = I->getType()->getAs<RecordType>())
- if (const FieldDecl *NamedDataMember =
- FindFirstNamedDataMember(RT->getDecl()))
- return NamedDataMember;
- }
-
- // We didn't find a named data member.
- return 0;
-}
-
-void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
- DeclarationName Name,
- unsigned KnownArity) {
- // <unqualified-name> ::= <operator-name>
- // ::= <ctor-dtor-name>
- // ::= <source-name>
- switch (Name.getNameKind()) {
- case DeclarationName::Identifier: {
- if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
- // We must avoid conflicts between internally- and externally-
- // linked variable and function declaration names in the same TU:
- // void test() { extern void foo(); }
- // static void foo();
- // This naming convention is the same as that followed by GCC,
- // though it shouldn't actually matter.
- if (ND && ND->getLinkage() == InternalLinkage &&
- getEffectiveDeclContext(ND)->isFileContext())
- Out << 'L';
-
- mangleSourceName(II);
- break;
- }
-
- // Otherwise, an anonymous entity. We must have a declaration.
- assert(ND && "mangling empty name without declaration");
-
- if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
- if (NS->isAnonymousNamespace()) {
- // This is how gcc mangles these names.
- Out << "12_GLOBAL__N_1";
- break;
- }
- }
-
- if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
- // We must have an anonymous union or struct declaration.
- const RecordDecl *RD =
- cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
-
- // Itanium C++ ABI 5.1.2:
- //
- // For the purposes of mangling, the name of an anonymous union is
- // considered to be the name of the first named data member found by a
- // pre-order, depth-first, declaration-order walk of the data members of
- // the anonymous union. If there is no such data member (i.e., if all of
- // the data members in the union are unnamed), then there is no way for
- // a program to refer to the anonymous union, and there is therefore no
- // need to mangle its name.
- const FieldDecl *FD = FindFirstNamedDataMember(RD);
-
- // It's actually possible for various reasons for us to get here
- // with an empty anonymous struct / union. Fortunately, it
- // doesn't really matter what name we generate.
- if (!FD) break;
- assert(FD->getIdentifier() && "Data member name isn't an identifier!");
-
- mangleSourceName(FD->getIdentifier());
- break;
- }
-
- // We must have an anonymous struct.
- const TagDecl *TD = cast<TagDecl>(ND);
- if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
- assert(TD->getDeclContext() == D->getDeclContext() &&
- "Typedef should not be in another decl context!");
- assert(D->getDeclName().getAsIdentifierInfo() &&
- "Typedef was not named!");
- mangleSourceName(D->getDeclName().getAsIdentifierInfo());
- break;
- }
-
- // <unnamed-type-name> ::= <closure-type-name>
- //
- // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
- // <lambda-sig> ::= <parameter-type>+ # Parameter types or 'v' for 'void'.
- if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
- if (Record->isLambda() && Record->getLambdaManglingNumber()) {
- mangleLambda(Record);
- break;
- }
- }
-
- int UnnamedMangle = Context.getASTContext().getUnnamedTagManglingNumber(TD);
- if (UnnamedMangle != -1) {
- Out << "Ut";
- if (UnnamedMangle != 0)
- Out << llvm::utostr(UnnamedMangle - 1);
- Out << '_';
- break;
- }
-
- // Get a unique id for the anonymous struct.
- uint64_t AnonStructId = Context.getAnonymousStructId(TD);
-
- // Mangle it as a source name in the form
- // [n] $_<id>
- // where n is the length of the string.
- SmallString<8> Str;
- Str += "$_";
- Str += llvm::utostr(AnonStructId);
-
- Out << Str.size();
- Out << Str.str();
- break;
- }
-
- case DeclarationName::ObjCZeroArgSelector:
- case DeclarationName::ObjCOneArgSelector:
- case DeclarationName::ObjCMultiArgSelector:
- llvm_unreachable("Can't mangle Objective-C selector names here!");
-
- case DeclarationName::CXXConstructorName:
- if (ND == Structor)
- // If the named decl is the C++ constructor we're mangling, use the type
- // we were given.
- mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
- else
- // Otherwise, use the complete constructor name. This is relevant if a
- // class with a constructor is declared within a constructor.
- mangleCXXCtorType(Ctor_Complete);
- break;
-
- case DeclarationName::CXXDestructorName:
- if (ND == Structor)
- // If the named decl is the C++ destructor we're mangling, use the type we
- // were given.
- mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
- else
- // Otherwise, use the complete destructor name. This is relevant if a
- // class with a destructor is declared within a destructor.
- mangleCXXDtorType(Dtor_Complete);
- break;
-
- case DeclarationName::CXXConversionFunctionName:
- // <operator-name> ::= cv <type> # (cast)
- Out << "cv";
- mangleType(Name.getCXXNameType());
- break;
-
- case DeclarationName::CXXOperatorName: {
- unsigned Arity;
- if (ND) {
- Arity = cast<FunctionDecl>(ND)->getNumParams();
-
- // If we have a C++ member function, we need to include the 'this' pointer.
- // FIXME: This does not make sense for operators that are static, but their
- // names stay the same regardless of the arity (operator new for instance).
- if (isa<CXXMethodDecl>(ND))
- Arity++;
- } else
- Arity = KnownArity;
-
- mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
- break;
- }
-
- case DeclarationName::CXXLiteralOperatorName:
- // FIXME: This mangling is not yet official.
- Out << "li";
- mangleSourceName(Name.getCXXLiteralIdentifier());
- break;
-
- case DeclarationName::CXXUsingDirective:
- llvm_unreachable("Can't mangle a using directive name!");
- }
-}
-
-void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
- // <source-name> ::= <positive length number> <identifier>
- // <number> ::= [n] <non-negative decimal integer>
- // <identifier> ::= <unqualified source code identifier>
- Out << II->getLength() << II->getName();
-}
-
-void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
- const DeclContext *DC,
- bool NoFunction) {
- // <nested-name>
- // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
- // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
- // <template-args> E
-
- Out << 'N';
- if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
- mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
- mangleRefQualifier(Method->getRefQualifier());
- }
-
- // Check if we have a template.
- const TemplateArgumentList *TemplateArgs = 0;
- if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
- mangleTemplatePrefix(TD);
- mangleTemplateArgs(*TemplateArgs);
- }
- else {
- manglePrefix(DC, NoFunction);
- mangleUnqualifiedName(ND);
- }
-
- Out << 'E';
-}
-void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
- const TemplateArgument *TemplateArgs,
- unsigned NumTemplateArgs) {
- // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
-
- Out << 'N';
-
- mangleTemplatePrefix(TD);
- mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
-
- Out << 'E';
-}
-
-void CXXNameMangler::mangleLocalName(const NamedDecl *ND) {
- // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
- // := Z <function encoding> E s [<discriminator>]
- // <local-name> := Z <function encoding> E d [ <parameter number> ]
- // _ <entity name>
- // <discriminator> := _ <non-negative number>
- const DeclContext *DC = getEffectiveDeclContext(ND);
- if (isa<ObjCMethodDecl>(DC) && isa<FunctionDecl>(ND)) {
- // Don't add objc method name mangling to locally declared function
- mangleUnqualifiedName(ND);
- return;
- }
-
- Out << 'Z';
-
- if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) {
- mangleObjCMethodName(MD);
- } else if (const CXXRecordDecl *RD = GetLocalClassDecl(ND)) {
- mangleFunctionEncoding(cast<FunctionDecl>(getEffectiveDeclContext(RD)));
- Out << 'E';
-
- // The parameter number is omitted for the last parameter, 0 for the
- // second-to-last parameter, 1 for the third-to-last parameter, etc. The
- // <entity name> will of course contain a <closure-type-name>: Its
- // numbering will be local to the particular argument in which it appears
- // -- other default arguments do not affect its encoding.
- bool SkipDiscriminator = false;
- if (RD->isLambda()) {
- if (const ParmVarDecl *Parm
- = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) {
- if (const FunctionDecl *Func
- = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
- Out << 'd';
- unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
- if (Num > 1)
- mangleNumber(Num - 2);
- Out << '_';
- SkipDiscriminator = true;
- }
- }
- }
-
- // Mangle the name relative to the closest enclosing function.
- if (ND == RD) // equality ok because RD derived from ND above
- mangleUnqualifiedName(ND);
- else
- mangleNestedName(ND, DC, true /*NoFunction*/);
-
- if (!SkipDiscriminator) {
- unsigned disc;
- if (Context.getNextDiscriminator(RD, disc)) {
- if (disc < 10)
- Out << '_' << disc;
- else
- Out << "__" << disc << '_';
- }
- }
-
- return;
- }
- else
- mangleFunctionEncoding(cast<FunctionDecl>(DC));
-
- Out << 'E';
- mangleUnqualifiedName(ND);
-}
-
-void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
- // If the context of a closure type is an initializer for a class member
- // (static or nonstatic), it is encoded in a qualified name with a final
- // <prefix> of the form:
- //
- // <data-member-prefix> := <member source-name> M
- //
- // Technically, the data-member-prefix is part of the <prefix>. However,
- // since a closure type will always be mangled with a prefix, it's easier
- // to emit that last part of the prefix here.
- if (Decl *Context = Lambda->getLambdaContextDecl()) {
- if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
- Context->getDeclContext()->isRecord()) {
- if (const IdentifierInfo *Name
- = cast<NamedDecl>(Context)->getIdentifier()) {
- mangleSourceName(Name);
- Out << 'M';
- }
- }
- }
-
- Out << "Ul";
- const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
- getAs<FunctionProtoType>();
- mangleBareFunctionType(Proto, /*MangleReturnType=*/false);
- Out << "E";
-
- // The number is omitted for the first closure type with a given
- // <lambda-sig> in a given context; it is n-2 for the nth closure type
- // (in lexical order) with that same <lambda-sig> and context.
- //
- // The AST keeps track of the number for us.
- unsigned Number = Lambda->getLambdaManglingNumber();
- assert(Number > 0 && "Lambda should be mangled as an unnamed class");
- if (Number > 1)
- mangleNumber(Number - 2);
- Out << '_';
-}
-
-void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
- switch (qualifier->getKind()) {
- case NestedNameSpecifier::Global:
- // nothing
- return;
-
- case NestedNameSpecifier::Namespace:
- mangleName(qualifier->getAsNamespace());
- return;
-
- case NestedNameSpecifier::NamespaceAlias:
- mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
- return;
-
- case NestedNameSpecifier::TypeSpec:
- case NestedNameSpecifier::TypeSpecWithTemplate:
- manglePrefix(QualType(qualifier->getAsType(), 0));
- return;
-
- case NestedNameSpecifier::Identifier:
- // Member expressions can have these without prefixes, but that
- // should end up in mangleUnresolvedPrefix instead.
- assert(qualifier->getPrefix());
- manglePrefix(qualifier->getPrefix());
-
- mangleSourceName(qualifier->getAsIdentifier());
- return;
- }
-
- llvm_unreachable("unexpected nested name specifier");
-}
-
-void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
- // <prefix> ::= <prefix> <unqualified-name>
- // ::= <template-prefix> <template-args>
- // ::= <template-param>
- // ::= # empty
- // ::= <substitution>
-
- DC = IgnoreLinkageSpecDecls(DC);
-
- if (DC->isTranslationUnit())
- return;
-
- if (const BlockDecl *Block = dyn_cast<BlockDecl>(DC)) {
- manglePrefix(getEffectiveParentContext(DC), NoFunction);
- SmallString<64> Name;
- llvm::raw_svector_ostream NameStream(Name);
- Context.mangleBlock(Block, NameStream);
- NameStream.flush();
- Out << Name.size() << Name;
- return;
- }
-
- const NamedDecl *ND = cast<NamedDecl>(DC);
- if (mangleSubstitution(ND))
- return;
-
- // Check if we have a template.
- const TemplateArgumentList *TemplateArgs = 0;
- if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
- mangleTemplatePrefix(TD);
- mangleTemplateArgs(*TemplateArgs);
- }
- else if(NoFunction && (isa<FunctionDecl>(ND) || isa<ObjCMethodDecl>(ND)))
- return;
- else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(ND))
- mangleObjCMethodName(Method);
- else {
- manglePrefix(getEffectiveDeclContext(ND), NoFunction);
- mangleUnqualifiedName(ND);
- }
-
- addSubstitution(ND);
-}
-
-void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
- // <template-prefix> ::= <prefix> <template unqualified-name>
- // ::= <template-param>
- // ::= <substitution>
- if (TemplateDecl *TD = Template.getAsTemplateDecl())
- return mangleTemplatePrefix(TD);
-
- if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
- manglePrefix(Qualified->getQualifier());
-
- if (OverloadedTemplateStorage *Overloaded
- = Template.getAsOverloadedTemplate()) {
- mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(),
- UnknownArity);
- return;
- }
-
- DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
- assert(Dependent && "Unknown template name kind?");
- manglePrefix(Dependent->getQualifier());
- mangleUnscopedTemplateName(Template);
-}
-
-void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) {
- // <template-prefix> ::= <prefix> <template unqualified-name>
- // ::= <template-param>
- // ::= <substitution>
- // <template-template-param> ::= <template-param>
- // <substitution>
-
- if (mangleSubstitution(ND))
- return;
-
- // <template-template-param> ::= <template-param>
- if (const TemplateTemplateParmDecl *TTP
- = dyn_cast<TemplateTemplateParmDecl>(ND)) {
- mangleTemplateParameter(TTP->getIndex());
- return;
- }
-
- manglePrefix(getEffectiveDeclContext(ND));
- mangleUnqualifiedName(ND->getTemplatedDecl());
- addSubstitution(ND);
-}
-
-/// Mangles a template name under the production <type>. Required for
-/// template template arguments.
-/// <type> ::= <class-enum-type>
-/// ::= <template-param>
-/// ::= <substitution>
-void CXXNameMangler::mangleType(TemplateName TN) {
- if (mangleSubstitution(TN))
- return;
-
- TemplateDecl *TD = 0;
-
- switch (TN.getKind()) {
- case TemplateName::QualifiedTemplate:
- TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
- goto HaveDecl;
-
- case TemplateName::Template:
- TD = TN.getAsTemplateDecl();
- goto HaveDecl;
-
- HaveDecl:
- if (isa<TemplateTemplateParmDecl>(TD))
- mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
- else
- mangleName(TD);
- break;
-
- case TemplateName::OverloadedTemplate:
- llvm_unreachable("can't mangle an overloaded template name as a <type>");
-
- case TemplateName::DependentTemplate: {
- const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
- assert(Dependent->isIdentifier());
-
- // <class-enum-type> ::= <name>
- // <name> ::= <nested-name>
- mangleUnresolvedPrefix(Dependent->getQualifier(), 0);
- mangleSourceName(Dependent->getIdentifier());
- break;
- }
-
- case TemplateName::SubstTemplateTemplateParm: {
- // Substituted template parameters are mangled as the substituted
- // template. This will check for the substitution twice, which is
- // fine, but we have to return early so that we don't try to *add*
- // the substitution twice.
- SubstTemplateTemplateParmStorage *subst
- = TN.getAsSubstTemplateTemplateParm();
- mangleType(subst->getReplacement());
- return;
- }
-
- case TemplateName::SubstTemplateTemplateParmPack: {
- // FIXME: not clear how to mangle this!
- // template <template <class> class T...> class A {
- // template <template <class> class U...> void foo(B<T,U> x...);
- // };
- Out << "_SUBSTPACK_";
- break;
- }
- }
-
- addSubstitution(TN);
-}
-
-void
-CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
- switch (OO) {
- // <operator-name> ::= nw # new
- case OO_New: Out << "nw"; break;
- // ::= na # new[]
- case OO_Array_New: Out << "na"; break;
- // ::= dl # delete
- case OO_Delete: Out << "dl"; break;
- // ::= da # delete[]
- case OO_Array_Delete: Out << "da"; break;
- // ::= ps # + (unary)
- // ::= pl # + (binary or unknown)
- case OO_Plus:
- Out << (Arity == 1? "ps" : "pl"); break;
- // ::= ng # - (unary)
- // ::= mi # - (binary or unknown)
- case OO_Minus:
- Out << (Arity == 1? "ng" : "mi"); break;
- // ::= ad # & (unary)
- // ::= an # & (binary or unknown)
- case OO_Amp:
- Out << (Arity == 1? "ad" : "an"); break;
- // ::= de # * (unary)
- // ::= ml # * (binary or unknown)
- case OO_Star:
- // Use binary when unknown.
- Out << (Arity == 1? "de" : "ml"); break;
- // ::= co # ~
- case OO_Tilde: Out << "co"; break;
- // ::= dv # /
- case OO_Slash: Out << "dv"; break;
- // ::= rm # %
- case OO_Percent: Out << "rm"; break;
- // ::= or # |
- case OO_Pipe: Out << "or"; break;
- // ::= eo # ^
- case OO_Caret: Out << "eo"; break;
- // ::= aS # =
- case OO_Equal: Out << "aS"; break;
- // ::= pL # +=
- case OO_PlusEqual: Out << "pL"; break;
- // ::= mI # -=
- case OO_MinusEqual: Out << "mI"; break;
- // ::= mL # *=
- case OO_StarEqual: Out << "mL"; break;
- // ::= dV # /=
- case OO_SlashEqual: Out << "dV"; break;
- // ::= rM # %=
- case OO_PercentEqual: Out << "rM"; break;
- // ::= aN # &=
- case OO_AmpEqual: Out << "aN"; break;
- // ::= oR # |=
- case OO_PipeEqual: Out << "oR"; break;
- // ::= eO # ^=
- case OO_CaretEqual: Out << "eO"; break;
- // ::= ls # <<
- case OO_LessLess: Out << "ls"; break;
- // ::= rs # >>
- case OO_GreaterGreater: Out << "rs"; break;
- // ::= lS # <<=
- case OO_LessLessEqual: Out << "lS"; break;
- // ::= rS # >>=
- case OO_GreaterGreaterEqual: Out << "rS"; break;
- // ::= eq # ==
- case OO_EqualEqual: Out << "eq"; break;
- // ::= ne # !=
- case OO_ExclaimEqual: Out << "ne"; break;
- // ::= lt # <
- case OO_Less: Out << "lt"; break;
- // ::= gt # >
- case OO_Greater: Out << "gt"; break;
- // ::= le # <=
- case OO_LessEqual: Out << "le"; break;
- // ::= ge # >=
- case OO_GreaterEqual: Out << "ge"; break;
- // ::= nt # !
- case OO_Exclaim: Out << "nt"; break;
- // ::= aa # &&
- case OO_AmpAmp: Out << "aa"; break;
- // ::= oo # ||
- case OO_PipePipe: Out << "oo"; break;
- // ::= pp # ++
- case OO_PlusPlus: Out << "pp"; break;
- // ::= mm # --
- case OO_MinusMinus: Out << "mm"; break;
- // ::= cm # ,
- case OO_Comma: Out << "cm"; break;
- // ::= pm # ->*
- case OO_ArrowStar: Out << "pm"; break;
- // ::= pt # ->
- case OO_Arrow: Out << "pt"; break;
- // ::= cl # ()
- case OO_Call: Out << "cl"; break;
- // ::= ix # []
- case OO_Subscript: Out << "ix"; break;
-
- // ::= qu # ?
- // The conditional operator can't be overloaded, but we still handle it when
- // mangling expressions.
- case OO_Conditional: Out << "qu"; break;
-
- case OO_None:
- case NUM_OVERLOADED_OPERATORS:
- llvm_unreachable("Not an overloaded operator");
- }
-}
-
-void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
- // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const
- if (Quals.hasRestrict())
- Out << 'r';
- if (Quals.hasVolatile())
- Out << 'V';
- if (Quals.hasConst())
- Out << 'K';
-
- if (Quals.hasAddressSpace()) {
- // Extension:
- //
- // <type> ::= U <address-space-number>
- //
- // where <address-space-number> is a source name consisting of 'AS'
- // followed by the address space <number>.
- SmallString<64> ASString;
- ASString = "AS" + llvm::utostr_32(Quals.getAddressSpace());
- Out << 'U' << ASString.size() << ASString;
- }
-
- StringRef LifetimeName;
- switch (Quals.getObjCLifetime()) {
- // Objective-C ARC Extension:
- //
- // <type> ::= U "__strong"
- // <type> ::= U "__weak"
- // <type> ::= U "__autoreleasing"
- case Qualifiers::OCL_None:
- break;
-
- case Qualifiers::OCL_Weak:
- LifetimeName = "__weak";
- break;
-
- case Qualifiers::OCL_Strong:
- LifetimeName = "__strong";
- break;
-
- case Qualifiers::OCL_Autoreleasing:
- LifetimeName = "__autoreleasing";
- break;
-
- case Qualifiers::OCL_ExplicitNone:
- // The __unsafe_unretained qualifier is *not* mangled, so that
- // __unsafe_unretained types in ARC produce the same manglings as the
- // equivalent (but, naturally, unqualified) types in non-ARC, providing
- // better ABI compatibility.
- //
- // It's safe to do this because unqualified 'id' won't show up
- // in any type signatures that need to be mangled.
- break;
- }
- if (!LifetimeName.empty())
- Out << 'U' << LifetimeName.size() << LifetimeName;
-}
-
-void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
- // <ref-qualifier> ::= R # lvalue reference
- // ::= O # rvalue-reference
- // Proposal to Itanium C++ ABI list on 1/26/11
- switch (RefQualifier) {
- case RQ_None:
- break;
-
- case RQ_LValue:
- Out << 'R';
- break;
-
- case RQ_RValue:
- Out << 'O';
- break;
- }
-}
-
-void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
- Context.mangleObjCMethodName(MD, Out);
-}
-
-void CXXNameMangler::mangleType(QualType T) {
- // If our type is instantiation-dependent but not dependent, we mangle
- // it as it was written in the source, removing any top-level sugar.
- // Otherwise, use the canonical type.
- //
- // FIXME: This is an approximation of the instantiation-dependent name
- // mangling rules, since we should really be using the type as written and
- // augmented via semantic analysis (i.e., with implicit conversions and
- // default template arguments) for any instantiation-dependent type.
- // Unfortunately, that requires several changes to our AST:
- // - Instantiation-dependent TemplateSpecializationTypes will need to be
- // uniqued, so that we can handle substitutions properly
- // - Default template arguments will need to be represented in the
- // TemplateSpecializationType, since they need to be mangled even though
- // they aren't written.
- // - Conversions on non-type template arguments need to be expressed, since
- // they can affect the mangling of sizeof/alignof.
- if (!T->isInstantiationDependentType() || T->isDependentType())
- T = T.getCanonicalType();
- else {
- // Desugar any types that are purely sugar.
- do {
- // Don't desugar through template specialization types that aren't
- // type aliases. We need to mangle the template arguments as written.
- if (const TemplateSpecializationType *TST
- = dyn_cast<TemplateSpecializationType>(T))
- if (!TST->isTypeAlias())
- break;
-
- QualType Desugared
- = T.getSingleStepDesugaredType(Context.getASTContext());
- if (Desugared == T)
- break;
-
- T = Desugared;
- } while (true);
- }
- SplitQualType split = T.split();
- Qualifiers quals = split.Quals;
- const Type *ty = split.Ty;
-
- bool isSubstitutable = quals || !isa<BuiltinType>(T);
- if (isSubstitutable && mangleSubstitution(T))
- return;
-
- // If we're mangling a qualified array type, push the qualifiers to
- // the element type.
- if (quals && isa<ArrayType>(T)) {
- ty = Context.getASTContext().getAsArrayType(T);
- quals = Qualifiers();
-
- // Note that we don't update T: we want to add the
- // substitution at the original type.
- }
-
- if (quals) {
- mangleQualifiers(quals);
- // Recurse: even if the qualified type isn't yet substitutable,
- // the unqualified type might be.
- mangleType(QualType(ty, 0));
- } else {
- switch (ty->getTypeClass()) {
-#define ABSTRACT_TYPE(CLASS, PARENT)
-#define NON_CANONICAL_TYPE(CLASS, PARENT) \
- case Type::CLASS: \
- llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
- return;
-#define TYPE(CLASS, PARENT) \
- case Type::CLASS: \
- mangleType(static_cast<const CLASS##Type*>(ty)); \
- break;
-#include "clang/AST/TypeNodes.def"
- }
- }
-
- // Add the substitution.
- if (isSubstitutable)
- addSubstitution(T);
-}
-
-void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
- if (!mangleStandardSubstitution(ND))
- mangleName(ND);
-}
-
-void CXXNameMangler::mangleType(const BuiltinType *T) {
- // <type> ::= <builtin-type>
- // <builtin-type> ::= v # void
- // ::= w # wchar_t
- // ::= b # bool
- // ::= c # char
- // ::= a # signed char
- // ::= h # unsigned char
- // ::= s # short
- // ::= t # unsigned short
- // ::= i # int
- // ::= j # unsigned int
- // ::= l # long
- // ::= m # unsigned long
- // ::= x # long long, __int64
- // ::= y # unsigned long long, __int64
- // ::= n # __int128
- // UNSUPPORTED: ::= o # unsigned __int128
- // ::= f # float
- // ::= d # double
- // ::= e # long double, __float80
- // UNSUPPORTED: ::= g # __float128
- // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits)
- // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits)
- // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits)
- // ::= Dh # IEEE 754r half-precision floating point (16 bits)
- // ::= Di # char32_t
- // ::= Ds # char16_t
- // ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
- // ::= u <source-name> # vendor extended type
- switch (T->getKind()) {
- case BuiltinType::Void: Out << 'v'; break;
- case BuiltinType::Bool: Out << 'b'; break;
- case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
- case BuiltinType::UChar: Out << 'h'; break;
- case BuiltinType::UShort: Out << 't'; break;
- case BuiltinType::UInt: Out << 'j'; break;
- case BuiltinType::ULong: Out << 'm'; break;
- case BuiltinType::ULongLong: Out << 'y'; break;
- case BuiltinType::UInt128: Out << 'o'; break;
- case BuiltinType::SChar: Out << 'a'; break;
- case BuiltinType::WChar_S:
- case BuiltinType::WChar_U: Out << 'w'; break;
- case BuiltinType::Char16: Out << "Ds"; break;
- case BuiltinType::Char32: Out << "Di"; break;
- case BuiltinType::Short: Out << 's'; break;
- case BuiltinType::Int: Out << 'i'; break;
- case BuiltinType::Long: Out << 'l'; break;
- case BuiltinType::LongLong: Out << 'x'; break;
- case BuiltinType::Int128: Out << 'n'; break;
- case BuiltinType::Half: Out << "Dh"; break;
- case BuiltinType::Float: Out << 'f'; break;
- case BuiltinType::Double: Out << 'd'; break;
- case BuiltinType::LongDouble: Out << 'e'; break;
- case BuiltinType::NullPtr: Out << "Dn"; break;
-
-#define BUILTIN_TYPE(Id, SingletonId)
-#define PLACEHOLDER_TYPE(Id, SingletonId) \
- case BuiltinType::Id:
-#include "clang/AST/BuiltinTypes.def"
- case BuiltinType::Dependent:
- llvm_unreachable("mangling a placeholder type");
- case BuiltinType::ObjCId: Out << "11objc_object"; break;
- case BuiltinType::ObjCClass: Out << "10objc_class"; break;
- case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
- case BuiltinType::OCLImage1d: Out << "11ocl_image1d"; break;
- case BuiltinType::OCLImage1dArray: Out << "16ocl_image1darray"; break;
- case BuiltinType::OCLImage1dBuffer: Out << "17ocl_image1dbuffer"; break;
- case BuiltinType::OCLImage2d: Out << "11ocl_image2d"; break;
- case BuiltinType::OCLImage2dArray: Out << "16ocl_image2darray"; break;
- case BuiltinType::OCLImage3d: Out << "11ocl_image3d"; break;
- }
-}
-
-// <type> ::= <function-type>
-// <function-type> ::= [<CV-qualifiers>] F [Y]
-// <bare-function-type> [<ref-qualifier>] E
-// (Proposal to cxx-abi-dev, 2012-05-11)
-void CXXNameMangler::mangleType(const FunctionProtoType *T) {
- // Mangle CV-qualifiers, if present. These are 'this' qualifiers,
- // e.g. "const" in "int (A::*)() const".
- mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));
-
- Out << 'F';
-
- // FIXME: We don't have enough information in the AST to produce the 'Y'
- // encoding for extern "C" function types.
- mangleBareFunctionType(T, /*MangleReturnType=*/true);
-
- // Mangle the ref-qualifier, if present.
- mangleRefQualifier(T->getRefQualifier());
-
- Out << 'E';
-}
-void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
- llvm_unreachable("Can't mangle K&R function prototypes");
-}
-void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
- bool MangleReturnType) {
- // We should never be mangling something without a prototype.
- const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
-
- // Record that we're in a function type. See mangleFunctionParam
- // for details on what we're trying to achieve here.
- FunctionTypeDepthState saved = FunctionTypeDepth.push();
-
- // <bare-function-type> ::= <signature type>+
- if (MangleReturnType) {
- FunctionTypeDepth.enterResultType();
- mangleType(Proto->getResultType());
- FunctionTypeDepth.leaveResultType();
- }
-
- if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
- // <builtin-type> ::= v # void
- Out << 'v';
-
- FunctionTypeDepth.pop(saved);
- return;
- }
-
- for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
- ArgEnd = Proto->arg_type_end();
- Arg != ArgEnd; ++Arg)
- mangleType(Context.getASTContext().getSignatureParameterType(*Arg));
-
- FunctionTypeDepth.pop(saved);
-
- // <builtin-type> ::= z # ellipsis
- if (Proto->isVariadic())
- Out << 'z';
-}
-
-// <type> ::= <class-enum-type>
-// <class-enum-type> ::= <name>
-void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
- mangleName(T->getDecl());
-}
-
-// <type> ::= <class-enum-type>
-// <class-enum-type> ::= <name>
-void CXXNameMangler::mangleType(const EnumType *T) {
- mangleType(static_cast<const TagType*>(T));
-}
-void CXXNameMangler::mangleType(const RecordType *T) {
- mangleType(static_cast<const TagType*>(T));
-}
-void CXXNameMangler::mangleType(const TagType *T) {
- mangleName(T->getDecl());
-}
-
-// <type> ::= <array-type>
-// <array-type> ::= A <positive dimension number> _ <element type>
-// ::= A [<dimension expression>] _ <element type>
-void CXXNameMangler::mangleType(const ConstantArrayType *T) {
- Out << 'A' << T->getSize() << '_';
- mangleType(T->getElementType());
-}
-void CXXNameMangler::mangleType(const VariableArrayType *T) {
- Out << 'A';
- // decayed vla types (size 0) will just be skipped.
- if (T->getSizeExpr())
- mangleExpression(T->getSizeExpr());
- Out << '_';
- mangleType(T->getElementType());
-}
-void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
- Out << 'A';
- mangleExpression(T->getSizeExpr());
- Out << '_';
- mangleType(T->getElementType());
-}
-void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
- Out << "A_";
- mangleType(T->getElementType());
-}
-
-// <type> ::= <pointer-to-member-type>
-// <pointer-to-member-type> ::= M <class type> <member type>
-void CXXNameMangler::mangleType(const MemberPointerType *T) {
- Out << 'M';
- mangleType(QualType(T->getClass(), 0));
- QualType PointeeType = T->getPointeeType();
- if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
- mangleType(FPT);
-
- // Itanium C++ ABI 5.1.8:
- //
- // The type of a non-static member function is considered to be different,
- // for the purposes of substitution, from the type of a namespace-scope or
- // static member function whose type appears similar. The types of two
- // non-static member functions are considered to be different, for the
- // purposes of substitution, if the functions are members of different
- // classes. In other words, for the purposes of substitution, the class of
- // which the function is a member is considered part of the type of
- // function.
-
- // Given that we already substitute member function pointers as a
- // whole, the net effect of this rule is just to unconditionally
- // suppress substitution on the function type in a member pointer.
- // We increment the SeqID here to emulate adding an entry to the
- // substitution table.
- ++SeqID;
- } else
- mangleType(PointeeType);
-}
-
-// <type> ::= <template-param>
-void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
- mangleTemplateParameter(T->getIndex());
-}
-
-// <type> ::= <template-param>
-void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
- // FIXME: not clear how to mangle this!
- // template <class T...> class A {
- // template <class U...> void foo(T(*)(U) x...);
- // };
- Out << "_SUBSTPACK_";
-}
-
-// <type> ::= P <type> # pointer-to
-void CXXNameMangler::mangleType(const PointerType *T) {
- Out << 'P';
- mangleType(T->getPointeeType());
-}
-void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
- Out << 'P';
- mangleType(T->getPointeeType());
-}
-
-// <type> ::= R <type> # reference-to
-void CXXNameMangler::mangleType(const LValueReferenceType *T) {
- Out << 'R';
- mangleType(T->getPointeeType());
-}
-
-// <type> ::= O <type> # rvalue reference-to (C++0x)
-void CXXNameMangler::mangleType(const RValueReferenceType *T) {
- Out << 'O';
- mangleType(T->getPointeeType());
-}
-
-// <type> ::= C <type> # complex pair (C 2000)
-void CXXNameMangler::mangleType(const ComplexType *T) {
- Out << 'C';
- mangleType(T->getElementType());
-}
-
-// ARM's ABI for Neon vector types specifies that they should be mangled as
-// if they are structs (to match ARM's initial implementation). The
-// vector type must be one of the special types predefined by ARM.
-void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
- QualType EltType = T->getElementType();
- assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
- const char *EltName = 0;
- if (T->getVectorKind() == VectorType::NeonPolyVector) {
- switch (cast<BuiltinType>(EltType)->getKind()) {
- case BuiltinType::SChar: EltName = "poly8_t"; break;
- case BuiltinType::Short: EltName = "poly16_t"; break;
- default: llvm_unreachable("unexpected Neon polynomial vector element type");
- }
- } else {
- switch (cast<BuiltinType>(EltType)->getKind()) {
- case BuiltinType::SChar: EltName = "int8_t"; break;
- case BuiltinType::UChar: EltName = "uint8_t"; break;
- case BuiltinType::Short: EltName = "int16_t"; break;
- case BuiltinType::UShort: EltName = "uint16_t"; break;
- case BuiltinType::Int: EltName = "int32_t"; break;
- case BuiltinType::UInt: EltName = "uint32_t"; break;
- case BuiltinType::LongLong: EltName = "int64_t"; break;
- case BuiltinType::ULongLong: EltName = "uint64_t"; break;
- case BuiltinType::Float: EltName = "float32_t"; break;
- default: llvm_unreachable("unexpected Neon vector element type");
- }
- }
- const char *BaseName = 0;
- unsigned BitSize = (T->getNumElements() *
- getASTContext().getTypeSize(EltType));
- if (BitSize == 64)
- BaseName = "__simd64_";
- else {
- assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
- BaseName = "__simd128_";
- }
- Out << strlen(BaseName) + strlen(EltName);
- Out << BaseName << EltName;
-}
-
-// GNU extension: vector types
-// <type> ::= <vector-type>
-// <vector-type> ::= Dv <positive dimension number> _
-// <extended element type>
-// ::= Dv [<dimension expression>] _ <element type>
-// <extended element type> ::= <element type>
-// ::= p # AltiVec vector pixel
-// ::= b # Altivec vector bool
-void CXXNameMangler::mangleType(const VectorType *T) {
- if ((T->getVectorKind() == VectorType::NeonVector ||
- T->getVectorKind() == VectorType::NeonPolyVector)) {
- mangleNeonVectorType(T);
- return;
- }
- Out << "Dv" << T->getNumElements() << '_';
- if (T->getVectorKind() == VectorType::AltiVecPixel)
- Out << 'p';
- else if (T->getVectorKind() == VectorType::AltiVecBool)
- Out << 'b';
- else
- mangleType(T->getElementType());
-}
-void CXXNameMangler::mangleType(const ExtVectorType *T) {
- mangleType(static_cast<const VectorType*>(T));
-}
-void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
- Out << "Dv";
- mangleExpression(T->getSizeExpr());
- Out << '_';
- mangleType(T->getElementType());
-}
-
-void CXXNameMangler::mangleType(const PackExpansionType *T) {
- // <type> ::= Dp <type> # pack expansion (C++0x)
- Out << "Dp";
- mangleType(T->getPattern());
-}
-
-void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
- mangleSourceName(T->getDecl()->getIdentifier());
-}
-
-void CXXNameMangler::mangleType(const ObjCObjectType *T) {
- // We don't allow overloading by different protocol qualification,
- // so mangling them isn't necessary.
- mangleType(T->getBaseType());
-}
-
-void CXXNameMangler::mangleType(const BlockPointerType *T) {
- Out << "U13block_pointer";
- mangleType(T->getPointeeType());
-}
-
-void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
- // Mangle injected class name types as if the user had written the
- // specialization out fully. It may not actually be possible to see
- // this mangling, though.
- mangleType(T->getInjectedSpecializationType());
-}
-
-void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
- if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
- mangleName(TD, T->getArgs(), T->getNumArgs());
- } else {
- if (mangleSubstitution(QualType(T, 0)))
- return;
-
- mangleTemplatePrefix(T->getTemplateName());
-
- // FIXME: GCC does not appear to mangle the template arguments when
- // the template in question is a dependent template name. Should we
- // emulate that badness?
- mangleTemplateArgs(T->getArgs(), T->getNumArgs());
- addSubstitution(QualType(T, 0));
- }
-}
-
-void CXXNameMangler::mangleType(const DependentNameType *T) {
- // Typename types are always nested
- Out << 'N';
- manglePrefix(T->getQualifier());
- mangleSourceName(T->getIdentifier());
- Out << 'E';
-}
-
-void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
- // Dependently-scoped template types are nested if they have a prefix.
- Out << 'N';
-
- // TODO: avoid making this TemplateName.
- TemplateName Prefix =
- getASTContext().getDependentTemplateName(T->getQualifier(),
- T->getIdentifier());
- mangleTemplatePrefix(Prefix);
-
- // FIXME: GCC does not appear to mangle the template arguments when
- // the template in question is a dependent template name. Should we
- // emulate that badness?
- mangleTemplateArgs(T->getArgs(), T->getNumArgs());
- Out << 'E';
-}
-
-void CXXNameMangler::mangleType(const TypeOfType *T) {
- // FIXME: this is pretty unsatisfactory, but there isn't an obvious
- // "extension with parameters" mangling.
- Out << "u6typeof";
-}
-
-void CXXNameMangler::mangleType(const TypeOfExprType *T) {
- // FIXME: this is pretty unsatisfactory, but there isn't an obvious
- // "extension with parameters" mangling.
- Out << "u6typeof";
-}
-
-void CXXNameMangler::mangleType(const DecltypeType *T) {
- Expr *E = T->getUnderlyingExpr();
-
- // type ::= Dt <expression> E # decltype of an id-expression
- // # or class member access
- // ::= DT <expression> E # decltype of an expression
-
- // This purports to be an exhaustive list of id-expressions and
- // class member accesses. Note that we do not ignore parentheses;
- // parentheses change the semantics of decltype for these
- // expressions (and cause the mangler to use the other form).
- if (isa<DeclRefExpr>(E) ||
- isa<MemberExpr>(E) ||
- isa<UnresolvedLookupExpr>(E) ||
- isa<DependentScopeDeclRefExpr>(E) ||
- isa<CXXDependentScopeMemberExpr>(E) ||
- isa<UnresolvedMemberExpr>(E))
- Out << "Dt";
- else
- Out << "DT";
- mangleExpression(E);
- Out << 'E';
-}
-
-void CXXNameMangler::mangleType(const UnaryTransformType *T) {
- // If this is dependent, we need to record that. If not, we simply
- // mangle it as the underlying type since they are equivalent.
- if (T->isDependentType()) {
- Out << 'U';
-
- switch (T->getUTTKind()) {
- case UnaryTransformType::EnumUnderlyingType:
- Out << "3eut";
- break;
- }
- }
-
- mangleType(T->getUnderlyingType());
-}
-
-void CXXNameMangler::mangleType(const AutoType *T) {
- QualType D = T->getDeducedType();
- // <builtin-type> ::= Da # dependent auto
- if (D.isNull())
- Out << "Da";
- else
- mangleType(D);
-}
-
-void CXXNameMangler::mangleType(const AtomicType *T) {
- // <type> ::= U <source-name> <type> # vendor extended type qualifier
- // (Until there's a standardized mangling...)
- Out << "U7_Atomic";
- mangleType(T->getValueType());
-}
-
-void CXXNameMangler::mangleIntegerLiteral(QualType T,
- const llvm::APSInt &Value) {
- // <expr-primary> ::= L <type> <value number> E # integer literal
- Out << 'L';
-
- mangleType(T);
- if (T->isBooleanType()) {
- // Boolean values are encoded as 0/1.
- Out << (Value.getBoolValue() ? '1' : '0');
- } else {
- mangleNumber(Value);
- }
- Out << 'E';
-
-}
-
-/// Mangles a member expression.
-void CXXNameMangler::mangleMemberExpr(const Expr *base,
- bool isArrow,
- NestedNameSpecifier *qualifier,
- NamedDecl *firstQualifierLookup,
- DeclarationName member,
- unsigned arity) {
- // <expression> ::= dt <expression> <unresolved-name>
- // ::= pt <expression> <unresolved-name>
- if (base) {
- if (base->isImplicitCXXThis()) {
- // Note: GCC mangles member expressions to the implicit 'this' as
- // *this., whereas we represent them as this->. The Itanium C++ ABI
- // does not specify anything here, so we follow GCC.
- Out << "dtdefpT";
- } else {
- Out << (isArrow ? "pt" : "dt");
- mangleExpression(base);
- }
- }
- mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity);
-}
-
-/// Look at the callee of the given call expression and determine if
-/// it's a parenthesized id-expression which would have triggered ADL
-/// otherwise.
-static bool isParenthesizedADLCallee(const CallExpr *call) {
- const Expr *callee = call->getCallee();
- const Expr *fn = callee->IgnoreParens();
-
- // Must be parenthesized. IgnoreParens() skips __extension__ nodes,
- // too, but for those to appear in the callee, it would have to be
- // parenthesized.
- if (callee == fn) return false;
-
- // Must be an unresolved lookup.
- const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
- if (!lookup) return false;
-
- assert(!lookup->requiresADL());
-
- // Must be an unqualified lookup.
- if (lookup->getQualifier()) return false;
-
- // Must not have found a class member. Note that if one is a class
- // member, they're all class members.
- if (lookup->getNumDecls() > 0 &&
- (*lookup->decls_begin())->isCXXClassMember())
- return false;
-
- // Otherwise, ADL would have been triggered.
- return true;
-}
-
-void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
- // <expression> ::= <unary operator-name> <expression>
- // ::= <binary operator-name> <expression> <expression>
- // ::= <trinary operator-name> <expression> <expression> <expression>
- // ::= cv <type> expression # conversion with one argument
- // ::= cv <type> _ <expression>* E # conversion with a different number of arguments
- // ::= st <type> # sizeof (a type)
- // ::= at <type> # alignof (a type)
- // ::= <template-param>
- // ::= <function-param>
- // ::= sr <type> <unqualified-name> # dependent name
- // ::= sr <type> <unqualified-name> <template-args> # dependent template-id
- // ::= ds <expression> <expression> # expr.*expr
- // ::= sZ <template-param> # size of a parameter pack
- // ::= sZ <function-param> # size of a function parameter pack
- // ::= <expr-primary>
- // <expr-primary> ::= L <type> <value number> E # integer literal
- // ::= L <type <value float> E # floating literal
- // ::= L <mangled-name> E # external name
- // ::= fpT # 'this' expression
- QualType ImplicitlyConvertedToType;
-
-recurse:
- switch (E->getStmtClass()) {
- case Expr::NoStmtClass:
-#define ABSTRACT_STMT(Type)
-#define EXPR(Type, Base)
-#define STMT(Type, Base) \
- case Expr::Type##Class:
-#include "clang/AST/StmtNodes.inc"
- // fallthrough
-
- // These all can only appear in local or variable-initialization
- // contexts and so should never appear in a mangling.
- case Expr::AddrLabelExprClass:
- case Expr::DesignatedInitExprClass:
- case Expr::ImplicitValueInitExprClass:
- case Expr::ParenListExprClass:
- case Expr::LambdaExprClass:
- llvm_unreachable("unexpected statement kind");
-
- // FIXME: invent manglings for all these.
- case Expr::BlockExprClass:
- case Expr::CXXPseudoDestructorExprClass:
- case Expr::ChooseExprClass:
- case Expr::CompoundLiteralExprClass:
- case Expr::ExtVectorElementExprClass:
- case Expr::GenericSelectionExprClass:
- case Expr::ObjCEncodeExprClass:
- case Expr::ObjCIsaExprClass:
- case Expr::ObjCIvarRefExprClass:
- case Expr::ObjCMessageExprClass:
- case Expr::ObjCPropertyRefExprClass:
- case Expr::ObjCProtocolExprClass:
- case Expr::ObjCSelectorExprClass:
- case Expr::ObjCStringLiteralClass:
- case Expr::ObjCBoxedExprClass:
- case Expr::ObjCArrayLiteralClass:
- case Expr::ObjCDictionaryLiteralClass:
- case Expr::ObjCSubscriptRefExprClass:
- case Expr::ObjCIndirectCopyRestoreExprClass:
- case Expr::OffsetOfExprClass:
- case Expr::PredefinedExprClass:
- case Expr::ShuffleVectorExprClass:
- case Expr::StmtExprClass:
- case Expr::UnaryTypeTraitExprClass:
- case Expr::BinaryTypeTraitExprClass:
- case Expr::TypeTraitExprClass:
- case Expr::ArrayTypeTraitExprClass:
- case Expr::ExpressionTraitExprClass:
- case Expr::VAArgExprClass:
- case Expr::CXXUuidofExprClass:
- case Expr::CUDAKernelCallExprClass:
- case Expr::AsTypeExprClass:
- case Expr::PseudoObjectExprClass:
- case Expr::AtomicExprClass:
- {
- // As bad as this diagnostic is, it's better than crashing.
- DiagnosticsEngine &Diags = Context.getDiags();
- unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
- "cannot yet mangle expression type %0");
- Diags.Report(E->getExprLoc(), DiagID)
- << E->getStmtClassName() << E->getSourceRange();
- break;
- }
-
- // Even gcc-4.5 doesn't mangle this.
- case Expr::BinaryConditionalOperatorClass: {
- DiagnosticsEngine &Diags = Context.getDiags();
- unsigned DiagID =
- Diags.getCustomDiagID(DiagnosticsEngine::Error,
- "?: operator with omitted middle operand cannot be mangled");
- Diags.Report(E->getExprLoc(), DiagID)
- << E->getStmtClassName() << E->getSourceRange();
- break;
- }
-
- // These are used for internal purposes and cannot be meaningfully mangled.
- case Expr::OpaqueValueExprClass:
- llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
-
- case Expr::InitListExprClass: {
- // Proposal by Jason Merrill, 2012-01-03
- Out << "il";
- const InitListExpr *InitList = cast<InitListExpr>(E);
- for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
- mangleExpression(InitList->getInit(i));
- Out << "E";
- break;
- }
-
- case Expr::CXXDefaultArgExprClass:
- mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
- break;
-
- case Expr::SubstNonTypeTemplateParmExprClass:
- mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
- Arity);
- break;
-
- case Expr::UserDefinedLiteralClass:
- // We follow g++'s approach of mangling a UDL as a call to the literal
- // operator.
- case Expr::CXXMemberCallExprClass: // fallthrough
- case Expr::CallExprClass: {
- const CallExpr *CE = cast<CallExpr>(E);
-
- // <expression> ::= cp <simple-id> <expression>* E
- // We use this mangling only when the call would use ADL except
- // for being parenthesized. Per discussion with David
- // Vandervoorde, 2011.04.25.
- if (isParenthesizedADLCallee(CE)) {
- Out << "cp";
- // The callee here is a parenthesized UnresolvedLookupExpr with
- // no qualifier and should always get mangled as a <simple-id>
- // anyway.
-
- // <expression> ::= cl <expression>* E
- } else {
- Out << "cl";
- }
-
- mangleExpression(CE->getCallee(), CE->getNumArgs());
- for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
- mangleExpression(CE->getArg(I));
- Out << 'E';
- break;
- }
-
- case Expr::CXXNewExprClass: {
- const CXXNewExpr *New = cast<CXXNewExpr>(E);
- if (New->isGlobalNew()) Out << "gs";
- Out << (New->isArray() ? "na" : "nw");
- for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
- E = New->placement_arg_end(); I != E; ++I)
- mangleExpression(*I);
- Out << '_';
- mangleType(New->getAllocatedType());
- if (New->hasInitializer()) {
- // Proposal by Jason Merrill, 2012-01-03
- if (New->getInitializationStyle() == CXXNewExpr::ListInit)
- Out << "il";
- else
- Out << "pi";
- const Expr *Init = New->getInitializer();
- if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
- // Directly inline the initializers.
- for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
- E = CCE->arg_end();
- I != E; ++I)
- mangleExpression(*I);
- } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
- for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
- mangleExpression(PLE->getExpr(i));
- } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
- isa<InitListExpr>(Init)) {
- // Only take InitListExprs apart for list-initialization.
- const InitListExpr *InitList = cast<InitListExpr>(Init);
- for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
- mangleExpression(InitList->getInit(i));
- } else
- mangleExpression(Init);
- }
- Out << 'E';
- break;
- }
-
- case Expr::MemberExprClass: {
- const MemberExpr *ME = cast<MemberExpr>(E);
- mangleMemberExpr(ME->getBase(), ME->isArrow(),
- ME->getQualifier(), 0, ME->getMemberDecl()->getDeclName(),
- Arity);
- break;
- }
-
- case Expr::UnresolvedMemberExprClass: {
- const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
- mangleMemberExpr(ME->getBase(), ME->isArrow(),
- ME->getQualifier(), 0, ME->getMemberName(),
- Arity);
- if (ME->hasExplicitTemplateArgs())
- mangleTemplateArgs(ME->getExplicitTemplateArgs());
- break;
- }
-
- case Expr::CXXDependentScopeMemberExprClass: {
- const CXXDependentScopeMemberExpr *ME
- = cast<CXXDependentScopeMemberExpr>(E);
- mangleMemberExpr(ME->getBase(), ME->isArrow(),
- ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
- ME->getMember(), Arity);
- if (ME->hasExplicitTemplateArgs())
- mangleTemplateArgs(ME->getExplicitTemplateArgs());
- break;
- }
-
- case Expr::UnresolvedLookupExprClass: {
- const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
- mangleUnresolvedName(ULE->getQualifier(), 0, ULE->getName(), Arity);
-
- // All the <unresolved-name> productions end in a
- // base-unresolved-name, where <template-args> are just tacked
- // onto the end.
- if (ULE->hasExplicitTemplateArgs())
- mangleTemplateArgs(ULE->getExplicitTemplateArgs());
- break;
- }
-
- case Expr::CXXUnresolvedConstructExprClass: {
- const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
- unsigned N = CE->arg_size();
-
- Out << "cv";
- mangleType(CE->getType());
- if (N != 1) Out << '_';
- for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
- if (N != 1) Out << 'E';
- break;
- }
-
- case Expr::CXXTemporaryObjectExprClass:
- case Expr::CXXConstructExprClass: {
- const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
- unsigned N = CE->getNumArgs();
-
- // Proposal by Jason Merrill, 2012-01-03
- if (CE->isListInitialization())
- Out << "tl";
- else
- Out << "cv";
- mangleType(CE->getType());
- if (N != 1) Out << '_';
- for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
- if (N != 1) Out << 'E';
- break;
- }
-
- case Expr::CXXScalarValueInitExprClass:
- Out <<"cv";
- mangleType(E->getType());
- Out <<"_E";
- break;
-
- case Expr::CXXNoexceptExprClass:
- Out << "nx";
- mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
- break;
-
- case Expr::UnaryExprOrTypeTraitExprClass: {
- const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
-
- if (!SAE->isInstantiationDependent()) {
- // Itanium C++ ABI:
- // If the operand of a sizeof or alignof operator is not
- // instantiation-dependent it is encoded as an integer literal
- // reflecting the result of the operator.
- //
- // If the result of the operator is implicitly converted to a known
- // integer type, that type is used for the literal; otherwise, the type
- // of std::size_t or std::ptrdiff_t is used.
- QualType T = (ImplicitlyConvertedToType.isNull() ||
- !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
- : ImplicitlyConvertedToType;
- llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
- mangleIntegerLiteral(T, V);
- break;
- }
-
- switch(SAE->getKind()) {
- case UETT_SizeOf:
- Out << 's';
- break;
- case UETT_AlignOf:
- Out << 'a';
- break;
- case UETT_VecStep:
- DiagnosticsEngine &Diags = Context.getDiags();
- unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
- "cannot yet mangle vec_step expression");
- Diags.Report(DiagID);
- return;
- }
- if (SAE->isArgumentType()) {
- Out << 't';
- mangleType(SAE->getArgumentType());
- } else {
- Out << 'z';
- mangleExpression(SAE->getArgumentExpr());
- }
- break;
- }
-
- case Expr::CXXThrowExprClass: {
- const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
-
- // Proposal from David Vandervoorde, 2010.06.30
- if (TE->getSubExpr()) {
- Out << "tw";
- mangleExpression(TE->getSubExpr());
- } else {
- Out << "tr";
- }
- break;
- }
-
- case Expr::CXXTypeidExprClass: {
- const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
-
- // Proposal from David Vandervoorde, 2010.06.30
- if (TIE->isTypeOperand()) {
- Out << "ti";
- mangleType(TIE->getTypeOperand());
- } else {
- Out << "te";
- mangleExpression(TIE->getExprOperand());
- }
- break;
- }
-
- case Expr::CXXDeleteExprClass: {
- const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
-
- // Proposal from David Vandervoorde, 2010.06.30
- if (DE->isGlobalDelete()) Out << "gs";
- Out << (DE->isArrayForm() ? "da" : "dl");
- mangleExpression(DE->getArgument());
- break;
- }
-
- case Expr::UnaryOperatorClass: {
- const UnaryOperator *UO = cast<UnaryOperator>(E);
- mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
- /*Arity=*/1);
- mangleExpression(UO->getSubExpr());
- break;
- }
-
- case Expr::ArraySubscriptExprClass: {
- const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
-
- // Array subscript is treated as a syntactically weird form of
- // binary operator.
- Out << "ix";
- mangleExpression(AE->getLHS());
- mangleExpression(AE->getRHS());
- break;
- }
-
- case Expr::CompoundAssignOperatorClass: // fallthrough
- case Expr::BinaryOperatorClass: {
- const BinaryOperator *BO = cast<BinaryOperator>(E);
- if (BO->getOpcode() == BO_PtrMemD)
- Out << "ds";
- else
- mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
- /*Arity=*/2);
- mangleExpression(BO->getLHS());
- mangleExpression(BO->getRHS());
- break;
- }
-
- case Expr::ConditionalOperatorClass: {
- const ConditionalOperator *CO = cast<ConditionalOperator>(E);
- mangleOperatorName(OO_Conditional, /*Arity=*/3);
- mangleExpression(CO->getCond());
- mangleExpression(CO->getLHS(), Arity);
- mangleExpression(CO->getRHS(), Arity);
- break;
- }
-
- case Expr::ImplicitCastExprClass: {
- ImplicitlyConvertedToType = E->getType();
- E = cast<ImplicitCastExpr>(E)->getSubExpr();
- goto recurse;
- }
-
- case Expr::ObjCBridgedCastExprClass: {
- // Mangle ownership casts as a vendor extended operator __bridge,
- // __bridge_transfer, or __bridge_retain.
- StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
- Out << "v1U" << Kind.size() << Kind;
- }
- // Fall through to mangle the cast itself.
-
- case Expr::CStyleCastExprClass:
- case Expr::CXXStaticCastExprClass:
- case Expr::CXXDynamicCastExprClass:
- case Expr::CXXReinterpretCastExprClass:
- case Expr::CXXConstCastExprClass:
- case Expr::CXXFunctionalCastExprClass: {
- const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
- Out << "cv";
- mangleType(ECE->getType());
- mangleExpression(ECE->getSubExpr());
- break;
- }
-
- case Expr::CXXOperatorCallExprClass: {
- const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
- unsigned NumArgs = CE->getNumArgs();
- mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
- // Mangle the arguments.
- for (unsigned i = 0; i != NumArgs; ++i)
- mangleExpression(CE->getArg(i));
- break;
- }
-
- case Expr::ParenExprClass:
- mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
- break;
-
- case Expr::DeclRefExprClass: {
- const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
-
- switch (D->getKind()) {
- default:
- // <expr-primary> ::= L <mangled-name> E # external name
- Out << 'L';
- mangle(D, "_Z");
- Out << 'E';
- break;
-
- case Decl::ParmVar:
- mangleFunctionParam(cast<ParmVarDecl>(D));
- break;
-
- case Decl::EnumConstant: {
- const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
- mangleIntegerLiteral(ED->getType(), ED->getInitVal());
- break;
- }
-
- case Decl::NonTypeTemplateParm: {
- const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
- mangleTemplateParameter(PD->getIndex());
- break;
- }
-
- }
-
- break;
- }
-
- case Expr::SubstNonTypeTemplateParmPackExprClass:
- // FIXME: not clear how to mangle this!
- // template <unsigned N...> class A {
- // template <class U...> void foo(U (&x)[N]...);
- // };
- Out << "_SUBSTPACK_";
- break;
-
- case Expr::FunctionParmPackExprClass: {
- // FIXME: not clear how to mangle this!
- const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
- Out << "v110_SUBSTPACK";
- mangleFunctionParam(FPPE->getParameterPack());
- break;
- }
-
- case Expr::DependentScopeDeclRefExprClass: {
- const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
- mangleUnresolvedName(DRE->getQualifier(), 0, DRE->getDeclName(), Arity);
-
- // All the <unresolved-name> productions end in a
- // base-unresolved-name, where <template-args> are just tacked
- // onto the end.
- if (DRE->hasExplicitTemplateArgs())
- mangleTemplateArgs(DRE->getExplicitTemplateArgs());
- break;
- }
-
- case Expr::CXXBindTemporaryExprClass:
- mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
- break;
-
- case Expr::ExprWithCleanupsClass:
- mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
- break;
-
- case Expr::FloatingLiteralClass: {
- const FloatingLiteral *FL = cast<FloatingLiteral>(E);
- Out << 'L';
- mangleType(FL->getType());
- mangleFloat(FL->getValue());
- Out << 'E';
- break;
- }
-
- case Expr::CharacterLiteralClass:
- Out << 'L';
- mangleType(E->getType());
- Out << cast<CharacterLiteral>(E)->getValue();
- Out << 'E';
- break;
-
- // FIXME. __objc_yes/__objc_no are mangled same as true/false
- case Expr::ObjCBoolLiteralExprClass:
- Out << "Lb";
- Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
- Out << 'E';
- break;
-
- case Expr::CXXBoolLiteralExprClass:
- Out << "Lb";
- Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
- Out << 'E';
- break;
-
- case Expr::IntegerLiteralClass: {
- llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
- if (E->getType()->isSignedIntegerType())
- Value.setIsSigned(true);
- mangleIntegerLiteral(E->getType(), Value);
- break;
- }
-
- case Expr::ImaginaryLiteralClass: {
- const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
- // Mangle as if a complex literal.
- // Proposal from David Vandevoorde, 2010.06.30.
- Out << 'L';
- mangleType(E->getType());
- if (const FloatingLiteral *Imag =
- dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
- // Mangle a floating-point zero of the appropriate type.
- mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
- Out << '_';
- mangleFloat(Imag->getValue());
- } else {
- Out << "0_";
- llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
- if (IE->getSubExpr()->getType()->isSignedIntegerType())
- Value.setIsSigned(true);
- mangleNumber(Value);
- }
- Out << 'E';
- break;
- }
-
- case Expr::StringLiteralClass: {
- // Revised proposal from David Vandervoorde, 2010.07.15.
- Out << 'L';
- assert(isa<ConstantArrayType>(E->getType()));
- mangleType(E->getType());
- Out << 'E';
- break;
- }
-
- case Expr::GNUNullExprClass:
- // FIXME: should this really be mangled the same as nullptr?
- // fallthrough
-
- case Expr::CXXNullPtrLiteralExprClass: {
- // Proposal from David Vandervoorde, 2010.06.30, as
- // modified by ABI list discussion.
- Out << "LDnE";
- break;
- }
-
- case Expr::PackExpansionExprClass:
- Out << "sp";
- mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
- break;
-
- case Expr::SizeOfPackExprClass: {
- Out << "sZ";
- const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
- if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
- mangleTemplateParameter(TTP->getIndex());
- else if (const NonTypeTemplateParmDecl *NTTP
- = dyn_cast<NonTypeTemplateParmDecl>(Pack))
- mangleTemplateParameter(NTTP->getIndex());
- else if (const TemplateTemplateParmDecl *TempTP
- = dyn_cast<TemplateTemplateParmDecl>(Pack))
- mangleTemplateParameter(TempTP->getIndex());
- else
- mangleFunctionParam(cast<ParmVarDecl>(Pack));
- break;
- }
-
- case Expr::MaterializeTemporaryExprClass: {
- mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
- break;
- }
-
- case Expr::CXXThisExprClass:
- Out << "fpT";
- break;
- }
-}
-
-/// Mangle an expression which refers to a parameter variable.
-///
-/// <expression> ::= <function-param>
-/// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0
-/// <function-param> ::= fp <top-level CV-qualifiers>
-/// <parameter-2 non-negative number> _ # L == 0, I > 0
-/// <function-param> ::= fL <L-1 non-negative number>
-/// p <top-level CV-qualifiers> _ # L > 0, I == 0
-/// <function-param> ::= fL <L-1 non-negative number>
-/// p <top-level CV-qualifiers>
-/// <I-1 non-negative number> _ # L > 0, I > 0
-///
-/// L is the nesting depth of the parameter, defined as 1 if the
-/// parameter comes from the innermost function prototype scope
-/// enclosing the current context, 2 if from the next enclosing
-/// function prototype scope, and so on, with one special case: if
-/// we've processed the full parameter clause for the innermost
-/// function type, then L is one less. This definition conveniently
-/// makes it irrelevant whether a function's result type was written
-/// trailing or leading, but is otherwise overly complicated; the
-/// numbering was first designed without considering references to
-/// parameter in locations other than return types, and then the
-/// mangling had to be generalized without changing the existing
-/// manglings.
-///
-/// I is the zero-based index of the parameter within its parameter
-/// declaration clause. Note that the original ABI document describes
-/// this using 1-based ordinals.
-void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
- unsigned parmDepth = parm->getFunctionScopeDepth();
- unsigned parmIndex = parm->getFunctionScopeIndex();
-
- // Compute 'L'.
- // parmDepth does not include the declaring function prototype.
- // FunctionTypeDepth does account for that.
- assert(parmDepth < FunctionTypeDepth.getDepth());
- unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
- if (FunctionTypeDepth.isInResultType())
- nestingDepth--;
-
- if (nestingDepth == 0) {
- Out << "fp";
- } else {
- Out << "fL" << (nestingDepth - 1) << 'p';
- }
-
- // Top-level qualifiers. We don't have to worry about arrays here,
- // because parameters declared as arrays should already have been
- // transformed to have pointer type. FIXME: apparently these don't
- // get mangled if used as an rvalue of a known non-class type?
- assert(!parm->getType()->isArrayType()
- && "parameter's type is still an array type?");
- mangleQualifiers(parm->getType().getQualifiers());
-
- // Parameter index.
- if (parmIndex != 0) {
- Out << (parmIndex - 1);
- }
- Out << '_';
-}
-
-void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
- // <ctor-dtor-name> ::= C1 # complete object constructor
- // ::= C2 # base object constructor
- // ::= C3 # complete object allocating constructor
- //
- switch (T) {
- case Ctor_Complete:
- Out << "C1";
- break;
- case Ctor_Base:
- Out << "C2";
- break;
- case Ctor_CompleteAllocating:
- Out << "C3";
- break;
- }
-}
-
-void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
- // <ctor-dtor-name> ::= D0 # deleting destructor
- // ::= D1 # complete object destructor
- // ::= D2 # base object destructor
- //
- switch (T) {
- case Dtor_Deleting:
- Out << "D0";
- break;
- case Dtor_Complete:
- Out << "D1";
- break;
- case Dtor_Base:
- Out << "D2";
- break;
- }
-}
-
-void CXXNameMangler::mangleTemplateArgs(
- const ASTTemplateArgumentListInfo &TemplateArgs) {
- // <template-args> ::= I <template-arg>+ E
- Out << 'I';
- for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
- mangleTemplateArg(TemplateArgs.getTemplateArgs()[i].getArgument());
- Out << 'E';
-}
-
-void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
- // <template-args> ::= I <template-arg>+ E
- Out << 'I';
- for (unsigned i = 0, e = AL.size(); i != e; ++i)
- mangleTemplateArg(AL[i]);
- Out << 'E';
-}
-
-void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
- unsigned NumTemplateArgs) {
- // <template-args> ::= I <template-arg>+ E
- Out << 'I';
- for (unsigned i = 0; i != NumTemplateArgs; ++i)
- mangleTemplateArg(TemplateArgs[i]);
- Out << 'E';
-}
-
-void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
- // <template-arg> ::= <type> # type or template
- // ::= X <expression> E # expression
- // ::= <expr-primary> # simple expressions
- // ::= J <template-arg>* E # argument pack
- // ::= sp <expression> # pack expansion of (C++0x)
- if (!A.isInstantiationDependent() || A.isDependent())
- A = Context.getASTContext().getCanonicalTemplateArgument(A);
-
- switch (A.getKind()) {
- case TemplateArgument::Null:
- llvm_unreachable("Cannot mangle NULL template argument");
-
- case TemplateArgument::Type:
- mangleType(A.getAsType());
- break;
- case TemplateArgument::Template:
- // This is mangled as <type>.
- mangleType(A.getAsTemplate());
- break;
- case TemplateArgument::TemplateExpansion:
- // <type> ::= Dp <type> # pack expansion (C++0x)
- Out << "Dp";
- mangleType(A.getAsTemplateOrTemplatePattern());
- break;
- case TemplateArgument::Expression: {
- // It's possible to end up with a DeclRefExpr here in certain
- // dependent cases, in which case we should mangle as a
- // declaration.
- const Expr *E = A.getAsExpr()->IgnoreParens();
- if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
- const ValueDecl *D = DRE->getDecl();
- if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
- Out << "L";
- mangle(D, "_Z");
- Out << 'E';
- break;
- }
- }
-
- Out << 'X';
- mangleExpression(E);
- Out << 'E';
- break;
- }
- case TemplateArgument::Integral:
- mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
- break;
- case TemplateArgument::Declaration: {
- // <expr-primary> ::= L <mangled-name> E # external name
- // Clang produces AST's where pointer-to-member-function expressions
- // and pointer-to-function expressions are represented as a declaration not
- // an expression. We compensate for it here to produce the correct mangling.
- ValueDecl *D = A.getAsDecl();
- bool compensateMangling = !A.isDeclForReferenceParam();
- if (compensateMangling) {
- Out << 'X';
- mangleOperatorName(OO_Amp, 1);
- }
-
- Out << 'L';
- // References to external entities use the mangled name; if the name would
- // not normally be manged then mangle it as unqualified.
- //
- // FIXME: The ABI specifies that external names here should have _Z, but
- // gcc leaves this off.
- if (compensateMangling)
- mangle(D, "_Z");
- else
- mangle(D, "Z");
- Out << 'E';
-
- if (compensateMangling)
- Out << 'E';
-
- break;
- }
- case TemplateArgument::NullPtr: {
- // <expr-primary> ::= L <type> 0 E
- Out << 'L';
- mangleType(A.getNullPtrType());
- Out << "0E";
- break;
- }
- case TemplateArgument::Pack: {
- // Note: proposal by Mike Herrick on 12/20/10
- Out << 'J';
- for (TemplateArgument::pack_iterator PA = A.pack_begin(),
- PAEnd = A.pack_end();
- PA != PAEnd; ++PA)
- mangleTemplateArg(*PA);
- Out << 'E';
- }
- }
-}
-
-void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
- // <template-param> ::= T_ # first template parameter
- // ::= T <parameter-2 non-negative number> _
- if (Index == 0)
- Out << "T_";
- else
- Out << 'T' << (Index - 1) << '_';
-}
-
-void CXXNameMangler::mangleExistingSubstitution(QualType type) {
- bool result = mangleSubstitution(type);
- assert(result && "no existing substitution for type");
- (void) result;
-}
-
-void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
- bool result = mangleSubstitution(tname);
- assert(result && "no existing substitution for template name");
- (void) result;
-}
-
-// <substitution> ::= S <seq-id> _
-// ::= S_
-bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
- // Try one of the standard substitutions first.
- if (mangleStandardSubstitution(ND))
- return true;
-
- ND = cast<NamedDecl>(ND->getCanonicalDecl());
- return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
-}
-
-/// \brief Determine whether the given type has any qualifiers that are
-/// relevant for substitutions.
-static bool hasMangledSubstitutionQualifiers(QualType T) {
- Qualifiers Qs = T.getQualifiers();
- return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
-}
-
-bool CXXNameMangler::mangleSubstitution(QualType T) {
- if (!hasMangledSubstitutionQualifiers(T)) {
- if (const RecordType *RT = T->getAs<RecordType>())
- return mangleSubstitution(RT->getDecl());
- }
-
- uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
-
- return mangleSubstitution(TypePtr);
-}
-
-bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
- if (TemplateDecl *TD = Template.getAsTemplateDecl())
- return mangleSubstitution(TD);
-
- Template = Context.getASTContext().getCanonicalTemplateName(Template);
- return mangleSubstitution(
- reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
-}
-
-bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
- llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
- if (I == Substitutions.end())
- return false;
-
- unsigned SeqID = I->second;
- if (SeqID == 0)
- Out << "S_";
- else {
- SeqID--;
-
- // <seq-id> is encoded in base-36, using digits and upper case letters.
- char Buffer[10];
- char *BufferPtr = llvm::array_endof(Buffer);
-
- if (SeqID == 0) *--BufferPtr = '0';
-
- while (SeqID) {
- assert(BufferPtr > Buffer && "Buffer overflow!");
-
- char c = static_cast<char>(SeqID % 36);
-
- *--BufferPtr = (c < 10 ? '0' + c : 'A' + c - 10);
- SeqID /= 36;
- }
-
- Out << 'S'
- << StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
- << '_';
- }
-
- return true;
-}
-
-static bool isCharType(QualType T) {
- if (T.isNull())
- return false;
-
- return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
- T->isSpecificBuiltinType(BuiltinType::Char_U);
-}
-
-/// isCharSpecialization - Returns whether a given type is a template
-/// specialization of a given name with a single argument of type char.
-static bool isCharSpecialization(QualType T, const char *Name) {
- if (T.isNull())
- return false;
-
- const RecordType *RT = T->getAs<RecordType>();
- if (!RT)
- return false;
-
- const ClassTemplateSpecializationDecl *SD =
- dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
- if (!SD)
- return false;
-
- if (!isStdNamespace(getEffectiveDeclContext(SD)))
- return false;
-
- const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
- if (TemplateArgs.size() != 1)
- return false;
-
- if (!isCharType(TemplateArgs[0].getAsType()))
- return false;
-
- return SD->getIdentifier()->getName() == Name;
-}
-
-template <std::size_t StrLen>
-static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
- const char (&Str)[StrLen]) {
- if (!SD->getIdentifier()->isStr(Str))
- return false;
-
- const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
- if (TemplateArgs.size() != 2)
- return false;
-
- if (!isCharType(TemplateArgs[0].getAsType()))
- return false;
-
- if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
- return false;
-
- return true;
-}
-
-bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
- // <substitution> ::= St # ::std::
- if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
- if (isStd(NS)) {
- Out << "St";
- return true;
- }
- }
-
- if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
- if (!isStdNamespace(getEffectiveDeclContext(TD)))
- return false;
-
- // <substitution> ::= Sa # ::std::allocator
- if (TD->getIdentifier()->isStr("allocator")) {
- Out << "Sa";
- return true;
- }
-
- // <<substitution> ::= Sb # ::std::basic_string
- if (TD->getIdentifier()->isStr("basic_string")) {
- Out << "Sb";
- return true;
- }
- }
-
- if (const ClassTemplateSpecializationDecl *SD =
- dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
- if (!isStdNamespace(getEffectiveDeclContext(SD)))
- return false;
-
- // <substitution> ::= Ss # ::std::basic_string<char,
- // ::std::char_traits<char>,
- // ::std::allocator<char> >
- if (SD->getIdentifier()->isStr("basic_string")) {
- const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
-
- if (TemplateArgs.size() != 3)
- return false;
-
- if (!isCharType(TemplateArgs[0].getAsType()))
- return false;
-
- if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
- return false;
-
- if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
- return false;
-
- Out << "Ss";
- return true;
- }
-
- // <substitution> ::= Si # ::std::basic_istream<char,
- // ::std::char_traits<char> >
- if (isStreamCharSpecialization(SD, "basic_istream")) {
- Out << "Si";
- return true;
- }
-
- // <substitution> ::= So # ::std::basic_ostream<char,
- // ::std::char_traits<char> >
- if (isStreamCharSpecialization(SD, "basic_ostream")) {
- Out << "So";
- return true;
- }
-
- // <substitution> ::= Sd # ::std::basic_iostream<char,
- // ::std::char_traits<char> >
- if (isStreamCharSpecialization(SD, "basic_iostream")) {
- Out << "Sd";
- return true;
- }
- }
- return false;
-}
-
-void CXXNameMangler::addSubstitution(QualType T) {
- if (!hasMangledSubstitutionQualifiers(T)) {
- if (const RecordType *RT = T->getAs<RecordType>()) {
- addSubstitution(RT->getDecl());
- return;
- }
- }
-
- uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
- addSubstitution(TypePtr);
-}
-
-void CXXNameMangler::addSubstitution(TemplateName Template) {
- if (TemplateDecl *TD = Template.getAsTemplateDecl())
- return addSubstitution(TD);
-
- Template = Context.getASTContext().getCanonicalTemplateName(Template);
- addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
-}
-
-void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
- assert(!Substitutions.count(Ptr) && "Substitution already exists!");
- Substitutions[Ptr] = SeqID++;
-}
-
-//
-
-/// \brief Mangles the name of the declaration D and emits that name to the
-/// given output stream.
-///
-/// If the declaration D requires a mangled name, this routine will emit that
-/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
-/// and this routine will return false. In this case, the caller should just
-/// emit the identifier of the declaration (\c D->getIdentifier()) as its
-/// name.
-void ItaniumMangleContext::mangleName(const NamedDecl *D,
- raw_ostream &Out) {
- assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
- "Invalid mangleName() call, argument is not a variable or function!");
- assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
- "Invalid mangleName() call on 'structor decl!");
-
- PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
- getASTContext().getSourceManager(),
- "Mangling declaration");
-
- CXXNameMangler Mangler(*this, Out, D);
- return Mangler.mangle(D);
-}
-
-void ItaniumMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
- CXXCtorType Type,
- raw_ostream &Out) {
- CXXNameMangler Mangler(*this, Out, D, Type);
- Mangler.mangle(D);
-}
-
-void ItaniumMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
- CXXDtorType Type,
- raw_ostream &Out) {
- CXXNameMangler Mangler(*this, Out, D, Type);
- Mangler.mangle(D);
-}
-
-void ItaniumMangleContext::mangleThunk(const CXXMethodDecl *MD,
- const ThunkInfo &Thunk,
- raw_ostream &Out) {
- // <special-name> ::= T <call-offset> <base encoding>
- // # base is the nominal target function of thunk
- // <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
- // # base is the nominal target function of thunk
- // # first call-offset is 'this' adjustment
- // # second call-offset is result adjustment
-
- assert(!isa<CXXDestructorDecl>(MD) &&
- "Use mangleCXXDtor for destructor decls!");
- CXXNameMangler Mangler(*this, Out);
- Mangler.getStream() << "_ZT";
- if (!Thunk.Return.isEmpty())
- Mangler.getStream() << 'c';
-
- // Mangle the 'this' pointer adjustment.
- Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);
-
- // Mangle the return pointer adjustment if there is one.
- if (!Thunk.Return.isEmpty())
- Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
- Thunk.Return.VBaseOffsetOffset);
-
- Mangler.mangleFunctionEncoding(MD);
-}
-
-void
-ItaniumMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
- CXXDtorType Type,
- const ThisAdjustment &ThisAdjustment,
- raw_ostream &Out) {
- // <special-name> ::= T <call-offset> <base encoding>
- // # base is the nominal target function of thunk
- CXXNameMangler Mangler(*this, Out, DD, Type);
- Mangler.getStream() << "_ZT";
-
- // Mangle the 'this' pointer adjustment.
- Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
- ThisAdjustment.VCallOffsetOffset);
-
- Mangler.mangleFunctionEncoding(DD);
-}
-
-/// mangleGuardVariable - Returns the mangled name for a guard variable
-/// for the passed in VarDecl.
-void ItaniumMangleContext::mangleItaniumGuardVariable(const VarDecl *D,
- raw_ostream &Out) {
- // <special-name> ::= GV <object name> # Guard variable for one-time
- // # initialization
- CXXNameMangler Mangler(*this, Out);
- Mangler.getStream() << "_ZGV";
- Mangler.mangleName(D);
-}
-
-void ItaniumMangleContext::mangleReferenceTemporary(const VarDecl *D,
- raw_ostream &Out) {
- // We match the GCC mangling here.
- // <special-name> ::= GR <object name>
- CXXNameMangler Mangler(*this, Out);
- Mangler.getStream() << "_ZGR";
- Mangler.mangleName(D);
-}
-
-void ItaniumMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
- raw_ostream &Out) {
- // <special-name> ::= TV <type> # virtual table
- CXXNameMangler Mangler(*this, Out);
- Mangler.getStream() << "_ZTV";
- Mangler.mangleNameOrStandardSubstitution(RD);
-}
-
-void ItaniumMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
- raw_ostream &Out) {
- // <special-name> ::= TT <type> # VTT structure
- CXXNameMangler Mangler(*this, Out);
- Mangler.getStream() << "_ZTT";
- Mangler.mangleNameOrStandardSubstitution(RD);
-}
-
-void ItaniumMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
- int64_t Offset,
- const CXXRecordDecl *Type,
- raw_ostream &Out) {
- // <special-name> ::= TC <type> <offset number> _ <base type>
- CXXNameMangler Mangler(*this, Out);
- Mangler.getStream() << "_ZTC";
- Mangler.mangleNameOrStandardSubstitution(RD);
- Mangler.getStream() << Offset;
- Mangler.getStream() << '_';
- Mangler.mangleNameOrStandardSubstitution(Type);
-}
-
-void ItaniumMangleContext::mangleCXXRTTI(QualType Ty,
- raw_ostream &Out) {
- // <special-name> ::= TI <type> # typeinfo structure
- assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
- CXXNameMangler Mangler(*this, Out);
- Mangler.getStream() << "_ZTI";
- Mangler.mangleType(Ty);
-}
-
-void ItaniumMangleContext::mangleCXXRTTIName(QualType Ty,
- raw_ostream &Out) {
- // <special-name> ::= TS <type> # typeinfo name (null terminated byte string)
- CXXNameMangler Mangler(*this, Out);
- Mangler.getStream() << "_ZTS";
- Mangler.mangleType(Ty);
-}
-
-MangleContext *clang::createItaniumMangleContext(ASTContext &Context,
- DiagnosticsEngine &Diags) {
- return new ItaniumMangleContext(Context, Diags);
-}
+//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Implements C++ name mangling according to the Itanium C++ ABI,
+// which is used in GCC 3.2 and newer (and many compilers that are
+// ABI-compatible with GCC):
+//
+// http://www.codesourcery.com/public/cxx-abi/abi.html
+//
+//===----------------------------------------------------------------------===//
+#include "clang/AST/Mangle.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/Basic/ABI.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+
+#define MANGLE_CHECKER 0
+
+#if MANGLE_CHECKER
+#include <cxxabi.h>
+#endif
+
+using namespace clang;
+
+namespace {
+
+/// \brief Retrieve the declaration context that should be used when mangling
+/// the given declaration.
+static const DeclContext *getEffectiveDeclContext(const Decl *D) {
+ // The ABI assumes that lambda closure types that occur within
+ // default arguments live in the context of the function. However, due to
+ // the way in which Clang parses and creates function declarations, this is
+ // not the case: the lambda closure type ends up living in the context
+ // where the function itself resides, because the function declaration itself
+ // had not yet been created. Fix the context here.
+ if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
+ if (RD->isLambda())
+ if (ParmVarDecl *ContextParam
+ = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
+ return ContextParam->getDeclContext();
+ }
+
+ return D->getDeclContext();
+}
+
+static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
+ return getEffectiveDeclContext(cast<Decl>(DC));
+}
+
+static const CXXRecordDecl *GetLocalClassDecl(const NamedDecl *ND) {
+ const DeclContext *DC = dyn_cast<DeclContext>(ND);
+ if (!DC)
+ DC = getEffectiveDeclContext(ND);
+ while (!DC->isNamespace() && !DC->isTranslationUnit()) {
+ const DeclContext *Parent = getEffectiveDeclContext(cast<Decl>(DC));
+ if (isa<FunctionDecl>(Parent))
+ return dyn_cast<CXXRecordDecl>(DC);
+ DC = Parent;
+ }
+ return 0;
+}
+
+static const FunctionDecl *getStructor(const FunctionDecl *fn) {
+ if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
+ return ftd->getTemplatedDecl();
+
+ return fn;
+}
+
+static const NamedDecl *getStructor(const NamedDecl *decl) {
+ const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
+ return (fn ? getStructor(fn) : decl);
+}
+
+static const unsigned UnknownArity = ~0U;
+
+class ItaniumMangleContext : public MangleContext {
+ llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
+ unsigned Discriminator;
+ llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
+
+public:
+ explicit ItaniumMangleContext(ASTContext &Context,
+ DiagnosticsEngine &Diags)
+ : MangleContext(Context, Diags) { }
+
+ uint64_t getAnonymousStructId(const TagDecl *TD) {
+ std::pair<llvm::DenseMap<const TagDecl *,
+ uint64_t>::iterator, bool> Result =
+ AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
+ return Result.first->second;
+ }
+
+ void startNewFunction() {
+ MangleContext::startNewFunction();
+ mangleInitDiscriminator();
+ }
+
+ /// @name Mangler Entry Points
+ /// @{
+
+ bool shouldMangleDeclName(const NamedDecl *D);
+ void mangleName(const NamedDecl *D, raw_ostream &);
+ void mangleThunk(const CXXMethodDecl *MD,
+ const ThunkInfo &Thunk,
+ raw_ostream &);
+ void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
+ const ThisAdjustment &ThisAdjustment,
+ raw_ostream &);
+ void mangleReferenceTemporary(const VarDecl *D,
+ raw_ostream &);
+ void mangleCXXVTable(const CXXRecordDecl *RD,
+ raw_ostream &);
+ void mangleCXXVTT(const CXXRecordDecl *RD,
+ raw_ostream &);
+ void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
+ const CXXRecordDecl *Type,
+ raw_ostream &);
+ void mangleCXXRTTI(QualType T, raw_ostream &);
+ void mangleCXXRTTIName(QualType T, raw_ostream &);
+ void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
+ raw_ostream &);
+ void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
+ raw_ostream &);
+
+ void mangleItaniumGuardVariable(const VarDecl *D, raw_ostream &);
+
+ void mangleInitDiscriminator() {
+ Discriminator = 0;
+ }
+
+ bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
+ // Lambda closure types with external linkage (indicated by a
+ // non-zero lambda mangling number) have their own numbering scheme, so
+ // they do not need a discriminator.
+ if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND))
+ if (RD->isLambda() && RD->getLambdaManglingNumber() > 0)
+ return false;
+
+ unsigned &discriminator = Uniquifier[ND];
+ if (!discriminator)
+ discriminator = ++Discriminator;
+ if (discriminator == 1)
+ return false;
+ disc = discriminator-2;
+ return true;
+ }
+ /// @}
+};
+
+/// CXXNameMangler - Manage the mangling of a single name.
+class CXXNameMangler {
+ ItaniumMangleContext &Context;
+ raw_ostream &Out;
+
+ /// The "structor" is the top-level declaration being mangled, if
+ /// that's not a template specialization; otherwise it's the pattern
+ /// for that specialization.
+ const NamedDecl *Structor;
+ unsigned StructorType;
+
+ /// SeqID - The next subsitution sequence number.
+ unsigned SeqID;
+
+ class FunctionTypeDepthState {
+ unsigned Bits;
+
+ enum { InResultTypeMask = 1 };
+
+ public:
+ FunctionTypeDepthState() : Bits(0) {}
+
+ /// The number of function types we're inside.
+ unsigned getDepth() const {
+ return Bits >> 1;
+ }
+
+ /// True if we're in the return type of the innermost function type.
+ bool isInResultType() const {
+ return Bits & InResultTypeMask;
+ }
+
+ FunctionTypeDepthState push() {
+ FunctionTypeDepthState tmp = *this;
+ Bits = (Bits & ~InResultTypeMask) + 2;
+ return tmp;
+ }
+
+ void enterResultType() {
+ Bits |= InResultTypeMask;
+ }
+
+ void leaveResultType() {
+ Bits &= ~InResultTypeMask;
+ }
+
+ void pop(FunctionTypeDepthState saved) {
+ assert(getDepth() == saved.getDepth() + 1);
+ Bits = saved.Bits;
+ }
+
+ } FunctionTypeDepth;
+
+ llvm::DenseMap<uintptr_t, unsigned> Substitutions;
+
+ ASTContext &getASTContext() const { return Context.getASTContext(); }
+
+public:
+ CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
+ const NamedDecl *D = 0)
+ : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
+ SeqID(0) {
+ // These can't be mangled without a ctor type or dtor type.
+ assert(!D || (!isa<CXXDestructorDecl>(D) &&
+ !isa<CXXConstructorDecl>(D)));
+ }
+ CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
+ const CXXConstructorDecl *D, CXXCtorType Type)
+ : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
+ SeqID(0) { }
+ CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
+ const CXXDestructorDecl *D, CXXDtorType Type)
+ : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
+ SeqID(0) { }
+
+#if MANGLE_CHECKER
+ ~CXXNameMangler() {
+ if (Out.str()[0] == '\01')
+ return;
+
+ int status = 0;
+ char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
+ assert(status == 0 && "Could not demangle mangled name!");
+ free(result);
+ }
+#endif
+ raw_ostream &getStream() { return Out; }
+
+ void mangle(const NamedDecl *D, StringRef Prefix = "_Z");
+ void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
+ void mangleNumber(const llvm::APSInt &I);
+ void mangleNumber(int64_t Number);
+ void mangleFloat(const llvm::APFloat &F);
+ void mangleFunctionEncoding(const FunctionDecl *FD);
+ void mangleName(const NamedDecl *ND);
+ void mangleType(QualType T);
+ void mangleNameOrStandardSubstitution(const NamedDecl *ND);
+
+private:
+ bool mangleSubstitution(const NamedDecl *ND);
+ bool mangleSubstitution(QualType T);
+ bool mangleSubstitution(TemplateName Template);
+ bool mangleSubstitution(uintptr_t Ptr);
+
+ void mangleExistingSubstitution(QualType type);
+ void mangleExistingSubstitution(TemplateName name);
+
+ bool mangleStandardSubstitution(const NamedDecl *ND);
+
+ void addSubstitution(const NamedDecl *ND) {
+ ND = cast<NamedDecl>(ND->getCanonicalDecl());
+
+ addSubstitution(reinterpret_cast<uintptr_t>(ND));
+ }
+ void addSubstitution(QualType T);
+ void addSubstitution(TemplateName Template);
+ void addSubstitution(uintptr_t Ptr);
+
+ void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
+ NamedDecl *firstQualifierLookup,
+ bool recursive = false);
+ void mangleUnresolvedName(NestedNameSpecifier *qualifier,
+ NamedDecl *firstQualifierLookup,
+ DeclarationName name,
+ unsigned KnownArity = UnknownArity);
+
+ void mangleName(const TemplateDecl *TD,
+ const TemplateArgument *TemplateArgs,
+ unsigned NumTemplateArgs);
+ void mangleUnqualifiedName(const NamedDecl *ND) {
+ mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
+ }
+ void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
+ unsigned KnownArity);
+ void mangleUnscopedName(const NamedDecl *ND);
+ void mangleUnscopedTemplateName(const TemplateDecl *ND);
+ void mangleUnscopedTemplateName(TemplateName);
+ void mangleSourceName(const IdentifierInfo *II);
+ void mangleLocalName(const NamedDecl *ND);
+ void mangleLambda(const CXXRecordDecl *Lambda);
+ void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
+ bool NoFunction=false);
+ void mangleNestedName(const TemplateDecl *TD,
+ const TemplateArgument *TemplateArgs,
+ unsigned NumTemplateArgs);
+ void manglePrefix(NestedNameSpecifier *qualifier);
+ void manglePrefix(const DeclContext *DC, bool NoFunction=false);
+ void manglePrefix(QualType type);
+ void mangleTemplatePrefix(const TemplateDecl *ND);
+ void mangleTemplatePrefix(TemplateName Template);
+ void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
+ void mangleQualifiers(Qualifiers Quals);
+ void mangleRefQualifier(RefQualifierKind RefQualifier);
+
+ void mangleObjCMethodName(const ObjCMethodDecl *MD);
+
+ // Declare manglers for every type class.
+#define ABSTRACT_TYPE(CLASS, PARENT)
+#define NON_CANONICAL_TYPE(CLASS, PARENT)
+#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
+#include "clang/AST/TypeNodes.def"
+
+ void mangleType(const TagType*);
+ void mangleType(TemplateName);
+ void mangleBareFunctionType(const FunctionType *T,
+ bool MangleReturnType);
+ void mangleNeonVectorType(const VectorType *T);
+
+ void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
+ void mangleMemberExpr(const Expr *base, bool isArrow,
+ NestedNameSpecifier *qualifier,
+ NamedDecl *firstQualifierLookup,
+ DeclarationName name,
+ unsigned knownArity);
+ void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
+ void mangleCXXCtorType(CXXCtorType T);
+ void mangleCXXDtorType(CXXDtorType T);
+
+ void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
+ void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
+ unsigned NumTemplateArgs);
+ void mangleTemplateArgs(const TemplateArgumentList &AL);
+ void mangleTemplateArg(TemplateArgument A);
+
+ void mangleTemplateParameter(unsigned Index);
+
+ void mangleFunctionParam(const ParmVarDecl *parm);
+};
+
+}
+
+static bool isInCLinkageSpecification(const Decl *D) {
+ D = D->getCanonicalDecl();
+ for (const DeclContext *DC = getEffectiveDeclContext(D);
+ !DC->isTranslationUnit(); DC = getEffectiveParentContext(DC)) {
+ if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
+ return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
+ }
+
+ return false;
+}
+
+bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) {
+ // In C, functions with no attributes never need to be mangled. Fastpath them.
+ if (!getASTContext().getLangOpts().CPlusPlus && !D->hasAttrs())
+ return false;
+
+ // Any decl can be declared with __asm("foo") on it, and this takes precedence
+ // over all other naming in the .o file.
+ if (D->hasAttr<AsmLabelAttr>())
+ return true;
+
+ // Clang's "overloadable" attribute extension to C/C++ implies name mangling
+ // (always) as does passing a C++ member function and a function
+ // whose name is not a simple identifier.
+ const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
+ if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||
+ !FD->getDeclName().isIdentifier()))
+ return true;
+
+ // Otherwise, no mangling is done outside C++ mode.
+ if (!getASTContext().getLangOpts().CPlusPlus)
+ return false;
+
+ // Variables at global scope with non-internal linkage are not mangled
+ if (!FD) {
+ const DeclContext *DC = getEffectiveDeclContext(D);
+ // Check for extern variable declared locally.
+ if (DC->isFunctionOrMethod() && D->hasLinkage())
+ while (!DC->isNamespace() && !DC->isTranslationUnit())
+ DC = getEffectiveParentContext(DC);
+ if (DC->isTranslationUnit() && D->getLinkage() != InternalLinkage)
+ return false;
+ }
+
+ // Class members are always mangled.
+ if (getEffectiveDeclContext(D)->isRecord())
+ return true;
+
+ // C functions and "main" are not mangled.
+ if ((FD && FD->isMain()) || isInCLinkageSpecification(D))
+ return false;
+
+ return true;
+}
+
+void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
+ // Any decl can be declared with __asm("foo") on it, and this takes precedence
+ // over all other naming in the .o file.
+ if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
+ // If we have an asm name, then we use it as the mangling.
+
+ // Adding the prefix can cause problems when one file has a "foo" and
+ // another has a "\01foo". That is known to happen on ELF with the
+ // tricks normally used for producing aliases (PR9177). Fortunately the
+ // llvm mangler on ELF is a nop, so we can just avoid adding the \01
+ // marker. We also avoid adding the marker if this is an alias for an
+ // LLVM intrinsic.
+ StringRef UserLabelPrefix =
+ getASTContext().getTargetInfo().getUserLabelPrefix();
+ if (!UserLabelPrefix.empty() && !ALA->getLabel().startswith("llvm."))
+ Out << '\01'; // LLVM IR Marker for __asm("foo")
+
+ Out << ALA->getLabel();
+ return;
+ }
+
+ // <mangled-name> ::= _Z <encoding>
+ // ::= <data name>
+ // ::= <special-name>
+ Out << Prefix;
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
+ mangleFunctionEncoding(FD);
+ else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
+ mangleName(VD);
+ else
+ mangleName(cast<FieldDecl>(D));
+}
+
+void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
+ // <encoding> ::= <function name> <bare-function-type>
+ mangleName(FD);
+
+ // Don't mangle in the type if this isn't a decl we should typically mangle.
+ if (!Context.shouldMangleDeclName(FD))
+ return;
+
+ // Whether the mangling of a function type includes the return type depends on
+ // the context and the nature of the function. The rules for deciding whether
+ // the return type is included are:
+ //
+ // 1. Template functions (names or types) have return types encoded, with
+ // the exceptions listed below.
+ // 2. Function types not appearing as part of a function name mangling,
+ // e.g. parameters, pointer types, etc., have return type encoded, with the
+ // exceptions listed below.
+ // 3. Non-template function names do not have return types encoded.
+ //
+ // The exceptions mentioned in (1) and (2) above, for which the return type is
+ // never included, are
+ // 1. Constructors.
+ // 2. Destructors.
+ // 3. Conversion operator functions, e.g. operator int.
+ bool MangleReturnType = false;
+ if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
+ if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
+ isa<CXXConversionDecl>(FD)))
+ MangleReturnType = true;
+
+ // Mangle the type of the primary template.
+ FD = PrimaryTemplate->getTemplatedDecl();
+ }
+
+ mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
+ MangleReturnType);
+}
+
+static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
+ while (isa<LinkageSpecDecl>(DC)) {
+ DC = getEffectiveParentContext(DC);
+ }
+
+ return DC;
+}
+
+/// isStd - Return whether a given namespace is the 'std' namespace.
+static bool isStd(const NamespaceDecl *NS) {
+ if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
+ ->isTranslationUnit())
+ return false;
+
+ const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
+ return II && II->isStr("std");
+}
+
+// isStdNamespace - Return whether a given decl context is a toplevel 'std'
+// namespace.
+static bool isStdNamespace(const DeclContext *DC) {
+ if (!DC->isNamespace())
+ return false;
+
+ return isStd(cast<NamespaceDecl>(DC));
+}
+
+static const TemplateDecl *
+isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
+ // Check if we have a function template.
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
+ if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
+ TemplateArgs = FD->getTemplateSpecializationArgs();
+ return TD;
+ }
+ }
+
+ // Check if we have a class template.
+ if (const ClassTemplateSpecializationDecl *Spec =
+ dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
+ TemplateArgs = &Spec->getTemplateArgs();
+ return Spec->getSpecializedTemplate();
+ }
+
+ return 0;
+}
+
+static bool isLambda(const NamedDecl *ND) {
+ const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
+ if (!Record)
+ return false;
+
+ return Record->isLambda();
+}
+
+void CXXNameMangler::mangleName(const NamedDecl *ND) {
+ // <name> ::= <nested-name>
+ // ::= <unscoped-name>
+ // ::= <unscoped-template-name> <template-args>
+ // ::= <local-name>
+ //
+ const DeclContext *DC = getEffectiveDeclContext(ND);
+
+ // If this is an extern variable declared locally, the relevant DeclContext
+ // is that of the containing namespace, or the translation unit.
+ // FIXME: This is a hack; extern variables declared locally should have
+ // a proper semantic declaration context!
+ if (isa<FunctionDecl>(DC) && ND->hasLinkage() && !isLambda(ND))
+ while (!DC->isNamespace() && !DC->isTranslationUnit())
+ DC = getEffectiveParentContext(DC);
+ else if (GetLocalClassDecl(ND)) {
+ mangleLocalName(ND);
+ return;
+ }
+
+ DC = IgnoreLinkageSpecDecls(DC);
+
+ if (DC->isTranslationUnit() || isStdNamespace(DC)) {
+ // Check if we have a template.
+ const TemplateArgumentList *TemplateArgs = 0;
+ if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
+ mangleUnscopedTemplateName(TD);
+ mangleTemplateArgs(*TemplateArgs);
+ return;
+ }
+
+ mangleUnscopedName(ND);
+ return;
+ }
+
+ if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) {
+ mangleLocalName(ND);
+ return;
+ }
+
+ mangleNestedName(ND, DC);
+}
+void CXXNameMangler::mangleName(const TemplateDecl *TD,
+ const TemplateArgument *TemplateArgs,
+ unsigned NumTemplateArgs) {
+ const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
+
+ if (DC->isTranslationUnit() || isStdNamespace(DC)) {
+ mangleUnscopedTemplateName(TD);
+ mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
+ } else {
+ mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
+ }
+}
+
+void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
+ // <unscoped-name> ::= <unqualified-name>
+ // ::= St <unqualified-name> # ::std::
+
+ if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
+ Out << "St";
+
+ mangleUnqualifiedName(ND);
+}
+
+void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
+ // <unscoped-template-name> ::= <unscoped-name>
+ // ::= <substitution>
+ if (mangleSubstitution(ND))
+ return;
+
+ // <template-template-param> ::= <template-param>
+ if (const TemplateTemplateParmDecl *TTP
+ = dyn_cast<TemplateTemplateParmDecl>(ND)) {
+ mangleTemplateParameter(TTP->getIndex());
+ return;
+ }
+
+ mangleUnscopedName(ND->getTemplatedDecl());
+ addSubstitution(ND);
+}
+
+void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
+ // <unscoped-template-name> ::= <unscoped-name>
+ // ::= <substitution>
+ if (TemplateDecl *TD = Template.getAsTemplateDecl())
+ return mangleUnscopedTemplateName(TD);
+
+ if (mangleSubstitution(Template))
+ return;
+
+ DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
+ assert(Dependent && "Not a dependent template name?");
+ if (const IdentifierInfo *Id = Dependent->getIdentifier())
+ mangleSourceName(Id);
+ else
+ mangleOperatorName(Dependent->getOperator(), UnknownArity);
+
+ addSubstitution(Template);
+}
+
+void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
+ // ABI:
+ // Floating-point literals are encoded using a fixed-length
+ // lowercase hexadecimal string corresponding to the internal
+ // representation (IEEE on Itanium), high-order bytes first,
+ // without leading zeroes. For example: "Lf bf800000 E" is -1.0f
+ // on Itanium.
+ // The 'without leading zeroes' thing seems to be an editorial
+ // mistake; see the discussion on cxx-abi-dev beginning on
+ // 2012-01-16.
+
+ // Our requirements here are just barely weird enough to justify
+ // using a custom algorithm instead of post-processing APInt::toString().
+
+ llvm::APInt valueBits = f.bitcastToAPInt();
+ unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
+ assert(numCharacters != 0);
+
+ // Allocate a buffer of the right number of characters.
+ llvm::SmallVector<char, 20> buffer;
+ buffer.set_size(numCharacters);
+
+ // Fill the buffer left-to-right.
+ for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
+ // The bit-index of the next hex digit.
+ unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
+
+ // Project out 4 bits starting at 'digitIndex'.
+ llvm::integerPart hexDigit
+ = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
+ hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
+ hexDigit &= 0xF;
+
+ // Map that over to a lowercase hex digit.
+ static const char charForHex[16] = {
+ '0', '1', '2', '3', '4', '5', '6', '7',
+ '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
+ };
+ buffer[stringIndex] = charForHex[hexDigit];
+ }
+
+ Out.write(buffer.data(), numCharacters);
+}
+
+void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
+ if (Value.isSigned() && Value.isNegative()) {
+ Out << 'n';
+ Value.abs().print(Out, /*signed*/ false);
+ } else {
+ Value.print(Out, /*signed*/ false);
+ }
+}
+
+void CXXNameMangler::mangleNumber(int64_t Number) {
+ // <number> ::= [n] <non-negative decimal integer>
+ if (Number < 0) {
+ Out << 'n';
+ Number = -Number;
+ }
+
+ Out << Number;
+}
+
+void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
+ // <call-offset> ::= h <nv-offset> _
+ // ::= v <v-offset> _
+ // <nv-offset> ::= <offset number> # non-virtual base override
+ // <v-offset> ::= <offset number> _ <virtual offset number>
+ // # virtual base override, with vcall offset
+ if (!Virtual) {
+ Out << 'h';
+ mangleNumber(NonVirtual);
+ Out << '_';
+ return;
+ }
+
+ Out << 'v';
+ mangleNumber(NonVirtual);
+ Out << '_';
+ mangleNumber(Virtual);
+ Out << '_';
+}
+
+void CXXNameMangler::manglePrefix(QualType type) {
+ if (const TemplateSpecializationType *TST =
+ type->getAs<TemplateSpecializationType>()) {
+ if (!mangleSubstitution(QualType(TST, 0))) {
+ mangleTemplatePrefix(TST->getTemplateName());
+
+ // FIXME: GCC does not appear to mangle the template arguments when
+ // the template in question is a dependent template name. Should we
+ // emulate that badness?
+ mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
+ addSubstitution(QualType(TST, 0));
+ }
+ } else if (const DependentTemplateSpecializationType *DTST
+ = type->getAs<DependentTemplateSpecializationType>()) {
+ TemplateName Template
+ = getASTContext().getDependentTemplateName(DTST->getQualifier(),
+ DTST->getIdentifier());
+ mangleTemplatePrefix(Template);
+
+ // FIXME: GCC does not appear to mangle the template arguments when
+ // the template in question is a dependent template name. Should we
+ // emulate that badness?
+ mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
+ } else {
+ // We use the QualType mangle type variant here because it handles
+ // substitutions.
+ mangleType(type);
+ }
+}
+
+/// Mangle everything prior to the base-unresolved-name in an unresolved-name.
+///
+/// \param firstQualifierLookup - the entity found by unqualified lookup
+/// for the first name in the qualifier, if this is for a member expression
+/// \param recursive - true if this is being called recursively,
+/// i.e. if there is more prefix "to the right".
+void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
+ NamedDecl *firstQualifierLookup,
+ bool recursive) {
+
+ // x, ::x
+ // <unresolved-name> ::= [gs] <base-unresolved-name>
+
+ // T::x / decltype(p)::x
+ // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
+
+ // T::N::x /decltype(p)::N::x
+ // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
+ // <base-unresolved-name>
+
+ // A::x, N::y, A<T>::z; "gs" means leading "::"
+ // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
+ // <base-unresolved-name>
+
+ switch (qualifier->getKind()) {
+ case NestedNameSpecifier::Global:
+ Out << "gs";
+
+ // We want an 'sr' unless this is the entire NNS.
+ if (recursive)
+ Out << "sr";
+
+ // We never want an 'E' here.
+ return;
+
+ case NestedNameSpecifier::Namespace:
+ if (qualifier->getPrefix())
+ mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
+ /*recursive*/ true);
+ else
+ Out << "sr";
+ mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
+ break;
+ case NestedNameSpecifier::NamespaceAlias:
+ if (qualifier->getPrefix())
+ mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
+ /*recursive*/ true);
+ else
+ Out << "sr";
+ mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
+ break;
+
+ case NestedNameSpecifier::TypeSpec:
+ case NestedNameSpecifier::TypeSpecWithTemplate: {
+ const Type *type = qualifier->getAsType();
+
+ // We only want to use an unresolved-type encoding if this is one of:
+ // - a decltype
+ // - a template type parameter
+ // - a template template parameter with arguments
+ // In all of these cases, we should have no prefix.
+ if (qualifier->getPrefix()) {
+ mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
+ /*recursive*/ true);
+ } else {
+ // Otherwise, all the cases want this.
+ Out << "sr";
+ }
+
+ // Only certain other types are valid as prefixes; enumerate them.
+ switch (type->getTypeClass()) {
+ case Type::Builtin:
+ case Type::Complex:
+ case Type::Pointer:
+ case Type::BlockPointer:
+ case Type::LValueReference:
+ case Type::RValueReference:
+ case Type::MemberPointer:
+ case Type::ConstantArray:
+ case Type::IncompleteArray:
+ case Type::VariableArray:
+ case Type::DependentSizedArray:
+ case Type::DependentSizedExtVector:
+ case Type::Vector:
+ case Type::ExtVector:
+ case Type::FunctionProto:
+ case Type::FunctionNoProto:
+ case Type::Enum:
+ case Type::Paren:
+ case Type::Elaborated:
+ case Type::Attributed:
+ case Type::Auto:
+ case Type::PackExpansion:
+ case Type::ObjCObject:
+ case Type::ObjCInterface:
+ case Type::ObjCObjectPointer:
+ case Type::Atomic:
+ llvm_unreachable("type is illegal as a nested name specifier");
+
+ case Type::SubstTemplateTypeParmPack:
+ // FIXME: not clear how to mangle this!
+ // template <class T...> class A {
+ // template <class U...> void foo(decltype(T::foo(U())) x...);
+ // };
+ Out << "_SUBSTPACK_";
+ break;
+
+ // <unresolved-type> ::= <template-param>
+ // ::= <decltype>
+ // ::= <template-template-param> <template-args>
+ // (this last is not official yet)
+ case Type::TypeOfExpr:
+ case Type::TypeOf:
+ case Type::Decltype:
+ case Type::TemplateTypeParm:
+ case Type::UnaryTransform:
+ case Type::SubstTemplateTypeParm:
+ unresolvedType:
+ assert(!qualifier->getPrefix());
+
+ // We only get here recursively if we're followed by identifiers.
+ if (recursive) Out << 'N';
+
+ // This seems to do everything we want. It's not really
+ // sanctioned for a substituted template parameter, though.
+ mangleType(QualType(type, 0));
+
+ // We never want to print 'E' directly after an unresolved-type,
+ // so we return directly.
+ return;
+
+ case Type::Typedef:
+ mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier());
+ break;
+
+ case Type::UnresolvedUsing:
+ mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl()
+ ->getIdentifier());
+ break;
+
+ case Type::Record:
+ mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier());
+ break;
+
+ case Type::TemplateSpecialization: {
+ const TemplateSpecializationType *tst
+ = cast<TemplateSpecializationType>(type);
+ TemplateName name = tst->getTemplateName();
+ switch (name.getKind()) {
+ case TemplateName::Template:
+ case TemplateName::QualifiedTemplate: {
+ TemplateDecl *temp = name.getAsTemplateDecl();
+
+ // If the base is a template template parameter, this is an
+ // unresolved type.
+ assert(temp && "no template for template specialization type");
+ if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType;
+
+ mangleSourceName(temp->getIdentifier());
+ break;
+ }
+
+ case TemplateName::OverloadedTemplate:
+ case TemplateName::DependentTemplate:
+ llvm_unreachable("invalid base for a template specialization type");
+
+ case TemplateName::SubstTemplateTemplateParm: {
+ SubstTemplateTemplateParmStorage *subst
+ = name.getAsSubstTemplateTemplateParm();
+ mangleExistingSubstitution(subst->getReplacement());
+ break;
+ }
+
+ case TemplateName::SubstTemplateTemplateParmPack: {
+ // FIXME: not clear how to mangle this!
+ // template <template <class U> class T...> class A {
+ // template <class U...> void foo(decltype(T<U>::foo) x...);
+ // };
+ Out << "_SUBSTPACK_";
+ break;
+ }
+ }
+
+ mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
+ break;
+ }
+
+ case Type::InjectedClassName:
+ mangleSourceName(cast<InjectedClassNameType>(type)->getDecl()
+ ->getIdentifier());
+ break;
+
+ case Type::DependentName:
+ mangleSourceName(cast<DependentNameType>(type)->getIdentifier());
+ break;
+
+ case Type::DependentTemplateSpecialization: {
+ const DependentTemplateSpecializationType *tst
+ = cast<DependentTemplateSpecializationType>(type);
+ mangleSourceName(tst->getIdentifier());
+ mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
+ break;
+ }
+ }
+ break;
+ }
+
+ case NestedNameSpecifier::Identifier:
+ // Member expressions can have these without prefixes.
+ if (qualifier->getPrefix()) {
+ mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
+ /*recursive*/ true);
+ } else if (firstQualifierLookup) {
+
+ // Try to make a proper qualifier out of the lookup result, and
+ // then just recurse on that.
+ NestedNameSpecifier *newQualifier;
+ if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) {
+ QualType type = getASTContext().getTypeDeclType(typeDecl);
+
+ // Pretend we had a different nested name specifier.
+ newQualifier = NestedNameSpecifier::Create(getASTContext(),
+ /*prefix*/ 0,
+ /*template*/ false,
+ type.getTypePtr());
+ } else if (NamespaceDecl *nspace =
+ dyn_cast<NamespaceDecl>(firstQualifierLookup)) {
+ newQualifier = NestedNameSpecifier::Create(getASTContext(),
+ /*prefix*/ 0,
+ nspace);
+ } else if (NamespaceAliasDecl *alias =
+ dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) {
+ newQualifier = NestedNameSpecifier::Create(getASTContext(),
+ /*prefix*/ 0,
+ alias);
+ } else {
+ // No sensible mangling to do here.
+ newQualifier = 0;
+ }
+
+ if (newQualifier)
+ return mangleUnresolvedPrefix(newQualifier, /*lookup*/ 0, recursive);
+
+ } else {
+ Out << "sr";
+ }
+
+ mangleSourceName(qualifier->getAsIdentifier());
+ break;
+ }
+
+ // If this was the innermost part of the NNS, and we fell out to
+ // here, append an 'E'.
+ if (!recursive)
+ Out << 'E';
+}
+
+/// Mangle an unresolved-name, which is generally used for names which
+/// weren't resolved to specific entities.
+void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
+ NamedDecl *firstQualifierLookup,
+ DeclarationName name,
+ unsigned knownArity) {
+ if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup);
+ mangleUnqualifiedName(0, name, knownArity);
+}
+
+static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
+ assert(RD->isAnonymousStructOrUnion() &&
+ "Expected anonymous struct or union!");
+
+ for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
+ I != E; ++I) {
+ if (I->getIdentifier())
+ return *I;
+
+ if (const RecordType *RT = I->getType()->getAs<RecordType>())
+ if (const FieldDecl *NamedDataMember =
+ FindFirstNamedDataMember(RT->getDecl()))
+ return NamedDataMember;
+ }
+
+ // We didn't find a named data member.
+ return 0;
+}
+
+void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
+ DeclarationName Name,
+ unsigned KnownArity) {
+ // <unqualified-name> ::= <operator-name>
+ // ::= <ctor-dtor-name>
+ // ::= <source-name>
+ switch (Name.getNameKind()) {
+ case DeclarationName::Identifier: {
+ if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
+ // We must avoid conflicts between internally- and externally-
+ // linked variable and function declaration names in the same TU:
+ // void test() { extern void foo(); }
+ // static void foo();
+ // This naming convention is the same as that followed by GCC,
+ // though it shouldn't actually matter.
+ if (ND && ND->getLinkage() == InternalLinkage &&
+ getEffectiveDeclContext(ND)->isFileContext())
+ Out << 'L';
+
+ mangleSourceName(II);
+ break;
+ }
+
+ // Otherwise, an anonymous entity. We must have a declaration.
+ assert(ND && "mangling empty name without declaration");
+
+ if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
+ if (NS->isAnonymousNamespace()) {
+ // This is how gcc mangles these names.
+ Out << "12_GLOBAL__N_1";
+ break;
+ }
+ }
+
+ if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
+ // We must have an anonymous union or struct declaration.
+ const RecordDecl *RD =
+ cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
+
+ // Itanium C++ ABI 5.1.2:
+ //
+ // For the purposes of mangling, the name of an anonymous union is
+ // considered to be the name of the first named data member found by a
+ // pre-order, depth-first, declaration-order walk of the data members of
+ // the anonymous union. If there is no such data member (i.e., if all of
+ // the data members in the union are unnamed), then there is no way for
+ // a program to refer to the anonymous union, and there is therefore no
+ // need to mangle its name.
+ const FieldDecl *FD = FindFirstNamedDataMember(RD);
+
+ // It's actually possible for various reasons for us to get here
+ // with an empty anonymous struct / union. Fortunately, it
+ // doesn't really matter what name we generate.
+ if (!FD) break;
+ assert(FD->getIdentifier() && "Data member name isn't an identifier!");
+
+ mangleSourceName(FD->getIdentifier());
+ break;
+ }
+
+ // We must have an anonymous struct.
+ const TagDecl *TD = cast<TagDecl>(ND);
+ if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
+ assert(TD->getDeclContext() == D->getDeclContext() &&
+ "Typedef should not be in another decl context!");
+ assert(D->getDeclName().getAsIdentifierInfo() &&
+ "Typedef was not named!");
+ mangleSourceName(D->getDeclName().getAsIdentifierInfo());
+ break;
+ }
+
+ // <unnamed-type-name> ::= <closure-type-name>
+ //
+ // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
+ // <lambda-sig> ::= <parameter-type>+ # Parameter types or 'v' for 'void'.
+ if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
+ if (Record->isLambda() && Record->getLambdaManglingNumber()) {
+ mangleLambda(Record);
+ break;
+ }
+ }
+
+ int UnnamedMangle = Context.getASTContext().getUnnamedTagManglingNumber(TD);
+ if (UnnamedMangle != -1) {
+ Out << "Ut";
+ if (UnnamedMangle != 0)
+ Out << llvm::utostr(UnnamedMangle - 1);
+ Out << '_';
+ break;
+ }
+
+ // Get a unique id for the anonymous struct.
+ uint64_t AnonStructId = Context.getAnonymousStructId(TD);
+
+ // Mangle it as a source name in the form
+ // [n] $_<id>
+ // where n is the length of the string.
+ SmallString<8> Str;
+ Str += "$_";
+ Str += llvm::utostr(AnonStructId);
+
+ Out << Str.size();
+ Out << Str.str();
+ break;
+ }
+
+ case DeclarationName::ObjCZeroArgSelector:
+ case DeclarationName::ObjCOneArgSelector:
+ case DeclarationName::ObjCMultiArgSelector:
+ llvm_unreachable("Can't mangle Objective-C selector names here!");
+
+ case DeclarationName::CXXConstructorName:
+ if (ND == Structor)
+ // If the named decl is the C++ constructor we're mangling, use the type
+ // we were given.
+ mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
+ else
+ // Otherwise, use the complete constructor name. This is relevant if a
+ // class with a constructor is declared within a constructor.
+ mangleCXXCtorType(Ctor_Complete);
+ break;
+
+ case DeclarationName::CXXDestructorName:
+ if (ND == Structor)
+ // If the named decl is the C++ destructor we're mangling, use the type we
+ // were given.
+ mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
+ else
+ // Otherwise, use the complete destructor name. This is relevant if a
+ // class with a destructor is declared within a destructor.
+ mangleCXXDtorType(Dtor_Complete);
+ break;
+
+ case DeclarationName::CXXConversionFunctionName:
+ // <operator-name> ::= cv <type> # (cast)
+ Out << "cv";
+ mangleType(Name.getCXXNameType());
+ break;
+
+ case DeclarationName::CXXOperatorName: {
+ unsigned Arity;
+ if (ND) {
+ Arity = cast<FunctionDecl>(ND)->getNumParams();
+
+ // If we have a C++ member function, we need to include the 'this' pointer.
+ // FIXME: This does not make sense for operators that are static, but their
+ // names stay the same regardless of the arity (operator new for instance).
+ if (isa<CXXMethodDecl>(ND))
+ Arity++;
+ } else
+ Arity = KnownArity;
+
+ mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
+ break;
+ }
+
+ case DeclarationName::CXXLiteralOperatorName:
+ // FIXME: This mangling is not yet official.
+ Out << "li";
+ mangleSourceName(Name.getCXXLiteralIdentifier());
+ break;
+
+ case DeclarationName::CXXUsingDirective:
+ llvm_unreachable("Can't mangle a using directive name!");
+ }
+}
+
+void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
+ // <source-name> ::= <positive length number> <identifier>
+ // <number> ::= [n] <non-negative decimal integer>
+ // <identifier> ::= <unqualified source code identifier>
+ Out << II->getLength() << II->getName();
+}
+
+void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
+ const DeclContext *DC,
+ bool NoFunction) {
+ // <nested-name>
+ // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
+ // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
+ // <template-args> E
+
+ Out << 'N';
+ if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
+ mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
+ mangleRefQualifier(Method->getRefQualifier());
+ }
+
+ // Check if we have a template.
+ const TemplateArgumentList *TemplateArgs = 0;
+ if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
+ mangleTemplatePrefix(TD);
+ mangleTemplateArgs(*TemplateArgs);
+ }
+ else {
+ manglePrefix(DC, NoFunction);
+ mangleUnqualifiedName(ND);
+ }
+
+ Out << 'E';
+}
+void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
+ const TemplateArgument *TemplateArgs,
+ unsigned NumTemplateArgs) {
+ // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
+
+ Out << 'N';
+
+ mangleTemplatePrefix(TD);
+ mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
+
+ Out << 'E';
+}
+
+void CXXNameMangler::mangleLocalName(const NamedDecl *ND) {
+ // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
+ // := Z <function encoding> E s [<discriminator>]
+ // <local-name> := Z <function encoding> E d [ <parameter number> ]
+ // _ <entity name>
+ // <discriminator> := _ <non-negative number>
+ const DeclContext *DC = getEffectiveDeclContext(ND);
+ if (isa<ObjCMethodDecl>(DC) && isa<FunctionDecl>(ND)) {
+ // Don't add objc method name mangling to locally declared function
+ mangleUnqualifiedName(ND);
+ return;
+ }
+
+ Out << 'Z';
+
+ if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) {
+ mangleObjCMethodName(MD);
+ } else if (const CXXRecordDecl *RD = GetLocalClassDecl(ND)) {
+ mangleFunctionEncoding(cast<FunctionDecl>(getEffectiveDeclContext(RD)));
+ Out << 'E';
+
+ // The parameter number is omitted for the last parameter, 0 for the
+ // second-to-last parameter, 1 for the third-to-last parameter, etc. The
+ // <entity name> will of course contain a <closure-type-name>: Its
+ // numbering will be local to the particular argument in which it appears
+ // -- other default arguments do not affect its encoding.
+ bool SkipDiscriminator = false;
+ if (RD->isLambda()) {
+ if (const ParmVarDecl *Parm
+ = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) {
+ if (const FunctionDecl *Func
+ = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
+ Out << 'd';
+ unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
+ if (Num > 1)
+ mangleNumber(Num - 2);
+ Out << '_';
+ SkipDiscriminator = true;
+ }
+ }
+ }
+
+ // Mangle the name relative to the closest enclosing function.
+ if (ND == RD) // equality ok because RD derived from ND above
+ mangleUnqualifiedName(ND);
+ else
+ mangleNestedName(ND, DC, true /*NoFunction*/);
+
+ if (!SkipDiscriminator) {
+ unsigned disc;
+ if (Context.getNextDiscriminator(RD, disc)) {
+ if (disc < 10)
+ Out << '_' << disc;
+ else
+ Out << "__" << disc << '_';
+ }
+ }
+
+ return;
+ }
+ else
+ mangleFunctionEncoding(cast<FunctionDecl>(DC));
+
+ Out << 'E';
+ mangleUnqualifiedName(ND);
+}
+
+void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
+ // If the context of a closure type is an initializer for a class member
+ // (static or nonstatic), it is encoded in a qualified name with a final
+ // <prefix> of the form:
+ //
+ // <data-member-prefix> := <member source-name> M
+ //
+ // Technically, the data-member-prefix is part of the <prefix>. However,
+ // since a closure type will always be mangled with a prefix, it's easier
+ // to emit that last part of the prefix here.
+ if (Decl *Context = Lambda->getLambdaContextDecl()) {
+ if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
+ Context->getDeclContext()->isRecord()) {
+ if (const IdentifierInfo *Name
+ = cast<NamedDecl>(Context)->getIdentifier()) {
+ mangleSourceName(Name);
+ Out << 'M';
+ }
+ }
+ }
+
+ Out << "Ul";
+ const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
+ getAs<FunctionProtoType>();
+ mangleBareFunctionType(Proto, /*MangleReturnType=*/false);
+ Out << "E";
+
+ // The number is omitted for the first closure type with a given
+ // <lambda-sig> in a given context; it is n-2 for the nth closure type
+ // (in lexical order) with that same <lambda-sig> and context.
+ //
+ // The AST keeps track of the number for us.
+ unsigned Number = Lambda->getLambdaManglingNumber();
+ assert(Number > 0 && "Lambda should be mangled as an unnamed class");
+ if (Number > 1)
+ mangleNumber(Number - 2);
+ Out << '_';
+}
+
+void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
+ switch (qualifier->getKind()) {
+ case NestedNameSpecifier::Global:
+ // nothing
+ return;
+
+ case NestedNameSpecifier::Namespace:
+ mangleName(qualifier->getAsNamespace());
+ return;
+
+ case NestedNameSpecifier::NamespaceAlias:
+ mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
+ return;
+
+ case NestedNameSpecifier::TypeSpec:
+ case NestedNameSpecifier::TypeSpecWithTemplate:
+ manglePrefix(QualType(qualifier->getAsType(), 0));
+ return;
+
+ case NestedNameSpecifier::Identifier:
+ // Member expressions can have these without prefixes, but that
+ // should end up in mangleUnresolvedPrefix instead.
+ assert(qualifier->getPrefix());
+ manglePrefix(qualifier->getPrefix());
+
+ mangleSourceName(qualifier->getAsIdentifier());
+ return;
+ }
+
+ llvm_unreachable("unexpected nested name specifier");
+}
+
+void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
+ // <prefix> ::= <prefix> <unqualified-name>
+ // ::= <template-prefix> <template-args>
+ // ::= <template-param>
+ // ::= # empty
+ // ::= <substitution>
+
+ DC = IgnoreLinkageSpecDecls(DC);
+
+ if (DC->isTranslationUnit())
+ return;
+
+ if (const BlockDecl *Block = dyn_cast<BlockDecl>(DC)) {
+ manglePrefix(getEffectiveParentContext(DC), NoFunction);
+ SmallString<64> Name;
+ llvm::raw_svector_ostream NameStream(Name);
+ Context.mangleBlock(Block, NameStream);
+ NameStream.flush();
+ Out << Name.size() << Name;
+ return;
+ }
+
+ const NamedDecl *ND = cast<NamedDecl>(DC);
+ if (mangleSubstitution(ND))
+ return;
+
+ // Check if we have a template.
+ const TemplateArgumentList *TemplateArgs = 0;
+ if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
+ mangleTemplatePrefix(TD);
+ mangleTemplateArgs(*TemplateArgs);
+ }
+ else if(NoFunction && (isa<FunctionDecl>(ND) || isa<ObjCMethodDecl>(ND)))
+ return;
+ else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(ND))
+ mangleObjCMethodName(Method);
+ else {
+ manglePrefix(getEffectiveDeclContext(ND), NoFunction);
+ mangleUnqualifiedName(ND);
+ }
+
+ addSubstitution(ND);
+}
+
+void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
+ // <template-prefix> ::= <prefix> <template unqualified-name>
+ // ::= <template-param>
+ // ::= <substitution>
+ if (TemplateDecl *TD = Template.getAsTemplateDecl())
+ return mangleTemplatePrefix(TD);
+
+ if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
+ manglePrefix(Qualified->getQualifier());
+
+ if (OverloadedTemplateStorage *Overloaded
+ = Template.getAsOverloadedTemplate()) {
+ mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(),
+ UnknownArity);
+ return;
+ }
+
+ DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
+ assert(Dependent && "Unknown template name kind?");
+ manglePrefix(Dependent->getQualifier());
+ mangleUnscopedTemplateName(Template);
+}
+
+void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) {
+ // <template-prefix> ::= <prefix> <template unqualified-name>
+ // ::= <template-param>
+ // ::= <substitution>
+ // <template-template-param> ::= <template-param>
+ // <substitution>
+
+ if (mangleSubstitution(ND))
+ return;
+
+ // <template-template-param> ::= <template-param>
+ if (const TemplateTemplateParmDecl *TTP
+ = dyn_cast<TemplateTemplateParmDecl>(ND)) {
+ mangleTemplateParameter(TTP->getIndex());
+ return;
+ }
+
+ manglePrefix(getEffectiveDeclContext(ND));
+ mangleUnqualifiedName(ND->getTemplatedDecl());
+ addSubstitution(ND);
+}
+
+/// Mangles a template name under the production <type>. Required for
+/// template template arguments.
+/// <type> ::= <class-enum-type>
+/// ::= <template-param>
+/// ::= <substitution>
+void CXXNameMangler::mangleType(TemplateName TN) {
+ if (mangleSubstitution(TN))
+ return;
+
+ TemplateDecl *TD = 0;
+
+ switch (TN.getKind()) {
+ case TemplateName::QualifiedTemplate:
+ TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
+ goto HaveDecl;
+
+ case TemplateName::Template:
+ TD = TN.getAsTemplateDecl();
+ goto HaveDecl;
+
+ HaveDecl:
+ if (isa<TemplateTemplateParmDecl>(TD))
+ mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
+ else
+ mangleName(TD);
+ break;
+
+ case TemplateName::OverloadedTemplate:
+ llvm_unreachable("can't mangle an overloaded template name as a <type>");
+
+ case TemplateName::DependentTemplate: {
+ const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
+ assert(Dependent->isIdentifier());
+
+ // <class-enum-type> ::= <name>
+ // <name> ::= <nested-name>
+ mangleUnresolvedPrefix(Dependent->getQualifier(), 0);
+ mangleSourceName(Dependent->getIdentifier());
+ break;
+ }
+
+ case TemplateName::SubstTemplateTemplateParm: {
+ // Substituted template parameters are mangled as the substituted
+ // template. This will check for the substitution twice, which is
+ // fine, but we have to return early so that we don't try to *add*
+ // the substitution twice.
+ SubstTemplateTemplateParmStorage *subst
+ = TN.getAsSubstTemplateTemplateParm();
+ mangleType(subst->getReplacement());
+ return;
+ }
+
+ case TemplateName::SubstTemplateTemplateParmPack: {
+ // FIXME: not clear how to mangle this!
+ // template <template <class> class T...> class A {
+ // template <template <class> class U...> void foo(B<T,U> x...);
+ // };
+ Out << "_SUBSTPACK_";
+ break;
+ }
+ }
+
+ addSubstitution(TN);
+}
+
+void
+CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
+ switch (OO) {
+ // <operator-name> ::= nw # new
+ case OO_New: Out << "nw"; break;
+ // ::= na # new[]
+ case OO_Array_New: Out << "na"; break;
+ // ::= dl # delete
+ case OO_Delete: Out << "dl"; break;
+ // ::= da # delete[]
+ case OO_Array_Delete: Out << "da"; break;
+ // ::= ps # + (unary)
+ // ::= pl # + (binary or unknown)
+ case OO_Plus:
+ Out << (Arity == 1? "ps" : "pl"); break;
+ // ::= ng # - (unary)
+ // ::= mi # - (binary or unknown)
+ case OO_Minus:
+ Out << (Arity == 1? "ng" : "mi"); break;
+ // ::= ad # & (unary)
+ // ::= an # & (binary or unknown)
+ case OO_Amp:
+ Out << (Arity == 1? "ad" : "an"); break;
+ // ::= de # * (unary)
+ // ::= ml # * (binary or unknown)
+ case OO_Star:
+ // Use binary when unknown.
+ Out << (Arity == 1? "de" : "ml"); break;
+ // ::= co # ~
+ case OO_Tilde: Out << "co"; break;
+ // ::= dv # /
+ case OO_Slash: Out << "dv"; break;
+ // ::= rm # %
+ case OO_Percent: Out << "rm"; break;
+ // ::= or # |
+ case OO_Pipe: Out << "or"; break;
+ // ::= eo # ^
+ case OO_Caret: Out << "eo"; break;
+ // ::= aS # =
+ case OO_Equal: Out << "aS"; break;
+ // ::= pL # +=
+ case OO_PlusEqual: Out << "pL"; break;
+ // ::= mI # -=
+ case OO_MinusEqual: Out << "mI"; break;
+ // ::= mL # *=
+ case OO_StarEqual: Out << "mL"; break;
+ // ::= dV # /=
+ case OO_SlashEqual: Out << "dV"; break;
+ // ::= rM # %=
+ case OO_PercentEqual: Out << "rM"; break;
+ // ::= aN # &=
+ case OO_AmpEqual: Out << "aN"; break;
+ // ::= oR # |=
+ case OO_PipeEqual: Out << "oR"; break;
+ // ::= eO # ^=
+ case OO_CaretEqual: Out << "eO"; break;
+ // ::= ls # <<
+ case OO_LessLess: Out << "ls"; break;
+ // ::= rs # >>
+ case OO_GreaterGreater: Out << "rs"; break;
+ // ::= lS # <<=
+ case OO_LessLessEqual: Out << "lS"; break;
+ // ::= rS # >>=
+ case OO_GreaterGreaterEqual: Out << "rS"; break;
+ // ::= eq # ==
+ case OO_EqualEqual: Out << "eq"; break;
+ // ::= ne # !=
+ case OO_ExclaimEqual: Out << "ne"; break;
+ // ::= lt # <
+ case OO_Less: Out << "lt"; break;
+ // ::= gt # >
+ case OO_Greater: Out << "gt"; break;
+ // ::= le # <=
+ case OO_LessEqual: Out << "le"; break;
+ // ::= ge # >=
+ case OO_GreaterEqual: Out << "ge"; break;
+ // ::= nt # !
+ case OO_Exclaim: Out << "nt"; break;
+ // ::= aa # &&
+ case OO_AmpAmp: Out << "aa"; break;
+ // ::= oo # ||
+ case OO_PipePipe: Out << "oo"; break;
+ // ::= pp # ++
+ case OO_PlusPlus: Out << "pp"; break;
+ // ::= mm # --
+ case OO_MinusMinus: Out << "mm"; break;
+ // ::= cm # ,
+ case OO_Comma: Out << "cm"; break;
+ // ::= pm # ->*
+ case OO_ArrowStar: Out << "pm"; break;
+ // ::= pt # ->
+ case OO_Arrow: Out << "pt"; break;
+ // ::= cl # ()
+ case OO_Call: Out << "cl"; break;
+ // ::= ix # []
+ case OO_Subscript: Out << "ix"; break;
+
+ // ::= qu # ?
+ // The conditional operator can't be overloaded, but we still handle it when
+ // mangling expressions.
+ case OO_Conditional: Out << "qu"; break;
+
+ case OO_None:
+ case NUM_OVERLOADED_OPERATORS:
+ llvm_unreachable("Not an overloaded operator");
+ }
+}
+
+void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
+ // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const
+ if (Quals.hasRestrict())
+ Out << 'r';
+ if (Quals.hasVolatile())
+ Out << 'V';
+ if (Quals.hasConst())
+ Out << 'K';
+
+ if (Quals.hasAddressSpace()) {
+ // Extension:
+ //
+ // <type> ::= U <address-space-number>
+ //
+ // where <address-space-number> is a source name consisting of 'AS'
+ // followed by the address space <number>.
+ SmallString<64> ASString;
+ ASString = "AS" + llvm::utostr_32(Quals.getAddressSpace());
+ Out << 'U' << ASString.size() << ASString;
+ }
+
+ StringRef LifetimeName;
+ switch (Quals.getObjCLifetime()) {
+ // Objective-C ARC Extension:
+ //
+ // <type> ::= U "__strong"
+ // <type> ::= U "__weak"
+ // <type> ::= U "__autoreleasing"
+ case Qualifiers::OCL_None:
+ break;
+
+ case Qualifiers::OCL_Weak:
+ LifetimeName = "__weak";
+ break;
+
+ case Qualifiers::OCL_Strong:
+ LifetimeName = "__strong";
+ break;
+
+ case Qualifiers::OCL_Autoreleasing:
+ LifetimeName = "__autoreleasing";
+ break;
+
+ case Qualifiers::OCL_ExplicitNone:
+ // The __unsafe_unretained qualifier is *not* mangled, so that
+ // __unsafe_unretained types in ARC produce the same manglings as the
+ // equivalent (but, naturally, unqualified) types in non-ARC, providing
+ // better ABI compatibility.
+ //
+ // It's safe to do this because unqualified 'id' won't show up
+ // in any type signatures that need to be mangled.
+ break;
+ }
+ if (!LifetimeName.empty())
+ Out << 'U' << LifetimeName.size() << LifetimeName;
+}
+
+void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
+ // <ref-qualifier> ::= R # lvalue reference
+ // ::= O # rvalue-reference
+ // Proposal to Itanium C++ ABI list on 1/26/11
+ switch (RefQualifier) {
+ case RQ_None:
+ break;
+
+ case RQ_LValue:
+ Out << 'R';
+ break;
+
+ case RQ_RValue:
+ Out << 'O';
+ break;
+ }
+}
+
+void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
+ Context.mangleObjCMethodName(MD, Out);
+}
+
+void CXXNameMangler::mangleType(QualType T) {
+ // If our type is instantiation-dependent but not dependent, we mangle
+ // it as it was written in the source, removing any top-level sugar.
+ // Otherwise, use the canonical type.
+ //
+ // FIXME: This is an approximation of the instantiation-dependent name
+ // mangling rules, since we should really be using the type as written and
+ // augmented via semantic analysis (i.e., with implicit conversions and
+ // default template arguments) for any instantiation-dependent type.
+ // Unfortunately, that requires several changes to our AST:
+ // - Instantiation-dependent TemplateSpecializationTypes will need to be
+ // uniqued, so that we can handle substitutions properly
+ // - Default template arguments will need to be represented in the
+ // TemplateSpecializationType, since they need to be mangled even though
+ // they aren't written.
+ // - Conversions on non-type template arguments need to be expressed, since
+ // they can affect the mangling of sizeof/alignof.
+ if (!T->isInstantiationDependentType() || T->isDependentType())
+ T = T.getCanonicalType();
+ else {
+ // Desugar any types that are purely sugar.
+ do {
+ // Don't desugar through template specialization types that aren't
+ // type aliases. We need to mangle the template arguments as written.
+ if (const TemplateSpecializationType *TST
+ = dyn_cast<TemplateSpecializationType>(T))
+ if (!TST->isTypeAlias())
+ break;
+
+ QualType Desugared
+ = T.getSingleStepDesugaredType(Context.getASTContext());
+ if (Desugared == T)
+ break;
+
+ T = Desugared;
+ } while (true);
+ }
+ SplitQualType split = T.split();
+ Qualifiers quals = split.Quals;
+ const Type *ty = split.Ty;
+
+ bool isSubstitutable = quals || !isa<BuiltinType>(T);
+ if (isSubstitutable && mangleSubstitution(T))
+ return;
+
+ // If we're mangling a qualified array type, push the qualifiers to
+ // the element type.
+ if (quals && isa<ArrayType>(T)) {
+ ty = Context.getASTContext().getAsArrayType(T);
+ quals = Qualifiers();
+
+ // Note that we don't update T: we want to add the
+ // substitution at the original type.
+ }
+
+ if (quals) {
+ mangleQualifiers(quals);
+ // Recurse: even if the qualified type isn't yet substitutable,
+ // the unqualified type might be.
+ mangleType(QualType(ty, 0));
+ } else {
+ switch (ty->getTypeClass()) {
+#define ABSTRACT_TYPE(CLASS, PARENT)
+#define NON_CANONICAL_TYPE(CLASS, PARENT) \
+ case Type::CLASS: \
+ llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
+ return;
+#define TYPE(CLASS, PARENT) \
+ case Type::CLASS: \
+ mangleType(static_cast<const CLASS##Type*>(ty)); \
+ break;
+#include "clang/AST/TypeNodes.def"
+ }
+ }
+
+ // Add the substitution.
+ if (isSubstitutable)
+ addSubstitution(T);
+}
+
+void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
+ if (!mangleStandardSubstitution(ND))
+ mangleName(ND);
+}
+
+void CXXNameMangler::mangleType(const BuiltinType *T) {
+ // <type> ::= <builtin-type>
+ // <builtin-type> ::= v # void
+ // ::= w # wchar_t
+ // ::= b # bool
+ // ::= c # char
+ // ::= a # signed char
+ // ::= h # unsigned char
+ // ::= s # short
+ // ::= t # unsigned short
+ // ::= i # int
+ // ::= j # unsigned int
+ // ::= l # long
+ // ::= m # unsigned long
+ // ::= x # long long, __int64
+ // ::= y # unsigned long long, __int64
+ // ::= n # __int128
+ // UNSUPPORTED: ::= o # unsigned __int128
+ // ::= f # float
+ // ::= d # double
+ // ::= e # long double, __float80
+ // UNSUPPORTED: ::= g # __float128
+ // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits)
+ // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits)
+ // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits)
+ // ::= Dh # IEEE 754r half-precision floating point (16 bits)
+ // ::= Di # char32_t
+ // ::= Ds # char16_t
+ // ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
+ // ::= u <source-name> # vendor extended type
+ switch (T->getKind()) {
+ case BuiltinType::Void: Out << 'v'; break;
+ case BuiltinType::Bool: Out << 'b'; break;
+ case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
+ case BuiltinType::UChar: Out << 'h'; break;
+ case BuiltinType::UShort: Out << 't'; break;
+ case BuiltinType::UInt: Out << 'j'; break;
+ case BuiltinType::ULong: Out << 'm'; break;
+ case BuiltinType::ULongLong: Out << 'y'; break;
+ case BuiltinType::UInt128: Out << 'o'; break;
+ case BuiltinType::SChar: Out << 'a'; break;
+ case BuiltinType::WChar_S:
+ case BuiltinType::WChar_U: Out << 'w'; break;
+ case BuiltinType::Char16: Out << "Ds"; break;
+ case BuiltinType::Char32: Out << "Di"; break;
+ case BuiltinType::Short: Out << 's'; break;
+ case BuiltinType::Int: Out << 'i'; break;
+ case BuiltinType::Long: Out << 'l'; break;
+ case BuiltinType::LongLong: Out << 'x'; break;
+ case BuiltinType::Int128: Out << 'n'; break;
+ case BuiltinType::Half: Out << "Dh"; break;
+ case BuiltinType::Float: Out << 'f'; break;
+ case BuiltinType::Double: Out << 'd'; break;
+ case BuiltinType::LongDouble: Out << 'e'; break;
+ case BuiltinType::NullPtr: Out << "Dn"; break;
+
+#define BUILTIN_TYPE(Id, SingletonId)
+#define PLACEHOLDER_TYPE(Id, SingletonId) \
+ case BuiltinType::Id:
+#include "clang/AST/BuiltinTypes.def"
+ case BuiltinType::Dependent:
+ llvm_unreachable("mangling a placeholder type");
+ case BuiltinType::ObjCId: Out << "11objc_object"; break;
+ case BuiltinType::ObjCClass: Out << "10objc_class"; break;
+ case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
+ }
+}
+
+// <type> ::= <function-type>
+// <function-type> ::= [<CV-qualifiers>] F [Y]
+// <bare-function-type> [<ref-qualifier>] E
+// (Proposal to cxx-abi-dev, 2012-05-11)
+void CXXNameMangler::mangleType(const FunctionProtoType *T) {
+ // Mangle CV-qualifiers, if present. These are 'this' qualifiers,
+ // e.g. "const" in "int (A::*)() const".
+ mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));
+
+ Out << 'F';
+
+ // FIXME: We don't have enough information in the AST to produce the 'Y'
+ // encoding for extern "C" function types.
+ mangleBareFunctionType(T, /*MangleReturnType=*/true);
+
+ // Mangle the ref-qualifier, if present.
+ mangleRefQualifier(T->getRefQualifier());
+
+ Out << 'E';
+}
+void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
+ llvm_unreachable("Can't mangle K&R function prototypes");
+}
+void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
+ bool MangleReturnType) {
+ // We should never be mangling something without a prototype.
+ const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
+
+ // Record that we're in a function type. See mangleFunctionParam
+ // for details on what we're trying to achieve here.
+ FunctionTypeDepthState saved = FunctionTypeDepth.push();
+
+ // <bare-function-type> ::= <signature type>+
+ if (MangleReturnType) {
+ FunctionTypeDepth.enterResultType();
+ mangleType(Proto->getResultType());
+ FunctionTypeDepth.leaveResultType();
+ }
+
+ if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
+ // <builtin-type> ::= v # void
+ Out << 'v';
+
+ FunctionTypeDepth.pop(saved);
+ return;
+ }
+
+ for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
+ ArgEnd = Proto->arg_type_end();
+ Arg != ArgEnd; ++Arg)
+ mangleType(Context.getASTContext().getSignatureParameterType(*Arg));
+
+ FunctionTypeDepth.pop(saved);
+
+ // <builtin-type> ::= z # ellipsis
+ if (Proto->isVariadic())
+ Out << 'z';
+}
+
+// <type> ::= <class-enum-type>
+// <class-enum-type> ::= <name>
+void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
+ mangleName(T->getDecl());
+}
+
+// <type> ::= <class-enum-type>
+// <class-enum-type> ::= <name>
+void CXXNameMangler::mangleType(const EnumType *T) {
+ mangleType(static_cast<const TagType*>(T));
+}
+void CXXNameMangler::mangleType(const RecordType *T) {
+ mangleType(static_cast<const TagType*>(T));
+}
+void CXXNameMangler::mangleType(const TagType *T) {
+ mangleName(T->getDecl());
+}
+
+// <type> ::= <array-type>
+// <array-type> ::= A <positive dimension number> _ <element type>
+// ::= A [<dimension expression>] _ <element type>
+void CXXNameMangler::mangleType(const ConstantArrayType *T) {
+ Out << 'A' << T->getSize() << '_';
+ mangleType(T->getElementType());
+}
+void CXXNameMangler::mangleType(const VariableArrayType *T) {
+ Out << 'A';
+ // decayed vla types (size 0) will just be skipped.
+ if (T->getSizeExpr())
+ mangleExpression(T->getSizeExpr());
+ Out << '_';
+ mangleType(T->getElementType());
+}
+void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
+ Out << 'A';
+ mangleExpression(T->getSizeExpr());
+ Out << '_';
+ mangleType(T->getElementType());
+}
+void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
+ Out << "A_";
+ mangleType(T->getElementType());
+}
+
+// <type> ::= <pointer-to-member-type>
+// <pointer-to-member-type> ::= M <class type> <member type>
+void CXXNameMangler::mangleType(const MemberPointerType *T) {
+ Out << 'M';
+ mangleType(QualType(T->getClass(), 0));
+ QualType PointeeType = T->getPointeeType();
+ if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
+ mangleType(FPT);
+
+ // Itanium C++ ABI 5.1.8:
+ //
+ // The type of a non-static member function is considered to be different,
+ // for the purposes of substitution, from the type of a namespace-scope or
+ // static member function whose type appears similar. The types of two
+ // non-static member functions are considered to be different, for the
+ // purposes of substitution, if the functions are members of different
+ // classes. In other words, for the purposes of substitution, the class of
+ // which the function is a member is considered part of the type of
+ // function.
+
+ // Given that we already substitute member function pointers as a
+ // whole, the net effect of this rule is just to unconditionally
+ // suppress substitution on the function type in a member pointer.
+ // We increment the SeqID here to emulate adding an entry to the
+ // substitution table.
+ ++SeqID;
+ } else
+ mangleType(PointeeType);
+}
+
+// <type> ::= <template-param>
+void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
+ mangleTemplateParameter(T->getIndex());
+}
+
+// <type> ::= <template-param>
+void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
+ // FIXME: not clear how to mangle this!
+ // template <class T...> class A {
+ // template <class U...> void foo(T(*)(U) x...);
+ // };
+ Out << "_SUBSTPACK_";
+}
+
+// <type> ::= P <type> # pointer-to
+void CXXNameMangler::mangleType(const PointerType *T) {
+ Out << 'P';
+ mangleType(T->getPointeeType());
+}
+void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
+ Out << 'P';
+ mangleType(T->getPointeeType());
+}
+
+// <type> ::= R <type> # reference-to
+void CXXNameMangler::mangleType(const LValueReferenceType *T) {
+ Out << 'R';
+ mangleType(T->getPointeeType());
+}
+
+// <type> ::= O <type> # rvalue reference-to (C++0x)
+void CXXNameMangler::mangleType(const RValueReferenceType *T) {
+ Out << 'O';
+ mangleType(T->getPointeeType());
+}
+
+// <type> ::= C <type> # complex pair (C 2000)
+void CXXNameMangler::mangleType(const ComplexType *T) {
+ Out << 'C';
+ mangleType(T->getElementType());
+}
+
+// ARM's ABI for Neon vector types specifies that they should be mangled as
+// if they are structs (to match ARM's initial implementation). The
+// vector type must be one of the special types predefined by ARM.
+void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
+ QualType EltType = T->getElementType();
+ assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
+ const char *EltName = 0;
+ if (T->getVectorKind() == VectorType::NeonPolyVector) {
+ switch (cast<BuiltinType>(EltType)->getKind()) {
+ case BuiltinType::SChar: EltName = "poly8_t"; break;
+ case BuiltinType::Short: EltName = "poly16_t"; break;
+ default: llvm_unreachable("unexpected Neon polynomial vector element type");
+ }
+ } else {
+ switch (cast<BuiltinType>(EltType)->getKind()) {
+ case BuiltinType::SChar: EltName = "int8_t"; break;
+ case BuiltinType::UChar: EltName = "uint8_t"; break;
+ case BuiltinType::Short: EltName = "int16_t"; break;
+ case BuiltinType::UShort: EltName = "uint16_t"; break;
+ case BuiltinType::Int: EltName = "int32_t"; break;
+ case BuiltinType::UInt: EltName = "uint32_t"; break;
+ case BuiltinType::LongLong: EltName = "int64_t"; break;
+ case BuiltinType::ULongLong: EltName = "uint64_t"; break;
+ case BuiltinType::Float: EltName = "float32_t"; break;
+ default: llvm_unreachable("unexpected Neon vector element type");
+ }
+ }
+ const char *BaseName = 0;
+ unsigned BitSize = (T->getNumElements() *
+ getASTContext().getTypeSize(EltType));
+ if (BitSize == 64)
+ BaseName = "__simd64_";
+ else {
+ assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
+ BaseName = "__simd128_";
+ }
+ Out << strlen(BaseName) + strlen(EltName);
+ Out << BaseName << EltName;
+}
+
+// GNU extension: vector types
+// <type> ::= <vector-type>
+// <vector-type> ::= Dv <positive dimension number> _
+// <extended element type>
+// ::= Dv [<dimension expression>] _ <element type>
+// <extended element type> ::= <element type>
+// ::= p # AltiVec vector pixel
+// ::= b # Altivec vector bool
+void CXXNameMangler::mangleType(const VectorType *T) {
+ if ((T->getVectorKind() == VectorType::NeonVector ||
+ T->getVectorKind() == VectorType::NeonPolyVector)) {
+ mangleNeonVectorType(T);
+ return;
+ }
+ Out << "Dv" << T->getNumElements() << '_';
+ if (T->getVectorKind() == VectorType::AltiVecPixel)
+ Out << 'p';
+ else if (T->getVectorKind() == VectorType::AltiVecBool)
+ Out << 'b';
+ else
+ mangleType(T->getElementType());
+}
+void CXXNameMangler::mangleType(const ExtVectorType *T) {
+ mangleType(static_cast<const VectorType*>(T));
+}
+void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
+ Out << "Dv";
+ mangleExpression(T->getSizeExpr());
+ Out << '_';
+ mangleType(T->getElementType());
+}
+
+void CXXNameMangler::mangleType(const PackExpansionType *T) {
+ // <type> ::= Dp <type> # pack expansion (C++0x)
+ Out << "Dp";
+ mangleType(T->getPattern());
+}
+
+void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
+ mangleSourceName(T->getDecl()->getIdentifier());
+}
+
+void CXXNameMangler::mangleType(const ObjCObjectType *T) {
+ // We don't allow overloading by different protocol qualification,
+ // so mangling them isn't necessary.
+ mangleType(T->getBaseType());
+}
+
+void CXXNameMangler::mangleType(const BlockPointerType *T) {
+ Out << "U13block_pointer";
+ mangleType(T->getPointeeType());
+}
+
+void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
+ // Mangle injected class name types as if the user had written the
+ // specialization out fully. It may not actually be possible to see
+ // this mangling, though.
+ mangleType(T->getInjectedSpecializationType());
+}
+
+void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
+ if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
+ mangleName(TD, T->getArgs(), T->getNumArgs());
+ } else {
+ if (mangleSubstitution(QualType(T, 0)))
+ return;
+
+ mangleTemplatePrefix(T->getTemplateName());
+
+ // FIXME: GCC does not appear to mangle the template arguments when
+ // the template in question is a dependent template name. Should we
+ // emulate that badness?
+ mangleTemplateArgs(T->getArgs(), T->getNumArgs());
+ addSubstitution(QualType(T, 0));
+ }
+}
+
+void CXXNameMangler::mangleType(const DependentNameType *T) {
+ // Typename types are always nested
+ Out << 'N';
+ manglePrefix(T->getQualifier());
+ mangleSourceName(T->getIdentifier());
+ Out << 'E';
+}
+
+void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
+ // Dependently-scoped template types are nested if they have a prefix.
+ Out << 'N';
+
+ // TODO: avoid making this TemplateName.
+ TemplateName Prefix =
+ getASTContext().getDependentTemplateName(T->getQualifier(),
+ T->getIdentifier());
+ mangleTemplatePrefix(Prefix);
+
+ // FIXME: GCC does not appear to mangle the template arguments when
+ // the template in question is a dependent template name. Should we
+ // emulate that badness?
+ mangleTemplateArgs(T->getArgs(), T->getNumArgs());
+ Out << 'E';
+}
+
+void CXXNameMangler::mangleType(const TypeOfType *T) {
+ // FIXME: this is pretty unsatisfactory, but there isn't an obvious
+ // "extension with parameters" mangling.
+ Out << "u6typeof";
+}
+
+void CXXNameMangler::mangleType(const TypeOfExprType *T) {
+ // FIXME: this is pretty unsatisfactory, but there isn't an obvious
+ // "extension with parameters" mangling.
+ Out << "u6typeof";
+}
+
+void CXXNameMangler::mangleType(const DecltypeType *T) {
+ Expr *E = T->getUnderlyingExpr();
+
+ // type ::= Dt <expression> E # decltype of an id-expression
+ // # or class member access
+ // ::= DT <expression> E # decltype of an expression
+
+ // This purports to be an exhaustive list of id-expressions and
+ // class member accesses. Note that we do not ignore parentheses;
+ // parentheses change the semantics of decltype for these
+ // expressions (and cause the mangler to use the other form).
+ if (isa<DeclRefExpr>(E) ||
+ isa<MemberExpr>(E) ||
+ isa<UnresolvedLookupExpr>(E) ||
+ isa<DependentScopeDeclRefExpr>(E) ||
+ isa<CXXDependentScopeMemberExpr>(E) ||
+ isa<UnresolvedMemberExpr>(E))
+ Out << "Dt";
+ else
+ Out << "DT";
+ mangleExpression(E);
+ Out << 'E';
+}
+
+void CXXNameMangler::mangleType(const UnaryTransformType *T) {
+ // If this is dependent, we need to record that. If not, we simply
+ // mangle it as the underlying type since they are equivalent.
+ if (T->isDependentType()) {
+ Out << 'U';
+
+ switch (T->getUTTKind()) {
+ case UnaryTransformType::EnumUnderlyingType:
+ Out << "3eut";
+ break;
+ }
+ }
+
+ mangleType(T->getUnderlyingType());
+}
+
+void CXXNameMangler::mangleType(const AutoType *T) {
+ QualType D = T->getDeducedType();
+ // <builtin-type> ::= Da # dependent auto
+ if (D.isNull())
+ Out << "Da";
+ else
+ mangleType(D);
+}
+
+void CXXNameMangler::mangleType(const AtomicType *T) {
+ // <type> ::= U <source-name> <type> # vendor extended type qualifier
+ // (Until there's a standardized mangling...)
+ Out << "U7_Atomic";
+ mangleType(T->getValueType());
+}
+
+void CXXNameMangler::mangleIntegerLiteral(QualType T,
+ const llvm::APSInt &Value) {
+ // <expr-primary> ::= L <type> <value number> E # integer literal
+ Out << 'L';
+
+ mangleType(T);
+ if (T->isBooleanType()) {
+ // Boolean values are encoded as 0/1.
+ Out << (Value.getBoolValue() ? '1' : '0');
+ } else {
+ mangleNumber(Value);
+ }
+ Out << 'E';
+
+}
+
+/// Mangles a member expression.
+void CXXNameMangler::mangleMemberExpr(const Expr *base,
+ bool isArrow,
+ NestedNameSpecifier *qualifier,
+ NamedDecl *firstQualifierLookup,
+ DeclarationName member,
+ unsigned arity) {
+ // <expression> ::= dt <expression> <unresolved-name>
+ // ::= pt <expression> <unresolved-name>
+ if (base) {
+ if (base->isImplicitCXXThis()) {
+ // Note: GCC mangles member expressions to the implicit 'this' as
+ // *this., whereas we represent them as this->. The Itanium C++ ABI
+ // does not specify anything here, so we follow GCC.
+ Out << "dtdefpT";
+ } else {
+ Out << (isArrow ? "pt" : "dt");
+ mangleExpression(base);
+ }
+ }
+ mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity);
+}
+
+/// Look at the callee of the given call expression and determine if
+/// it's a parenthesized id-expression which would have triggered ADL
+/// otherwise.
+static bool isParenthesizedADLCallee(const CallExpr *call) {
+ const Expr *callee = call->getCallee();
+ const Expr *fn = callee->IgnoreParens();
+
+ // Must be parenthesized. IgnoreParens() skips __extension__ nodes,
+ // too, but for those to appear in the callee, it would have to be
+ // parenthesized.
+ if (callee == fn) return false;
+
+ // Must be an unresolved lookup.
+ const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
+ if (!lookup) return false;
+
+ assert(!lookup->requiresADL());
+
+ // Must be an unqualified lookup.
+ if (lookup->getQualifier()) return false;
+
+ // Must not have found a class member. Note that if one is a class
+ // member, they're all class members.
+ if (lookup->getNumDecls() > 0 &&
+ (*lookup->decls_begin())->isCXXClassMember())
+ return false;
+
+ // Otherwise, ADL would have been triggered.
+ return true;
+}
+
+void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
+ // <expression> ::= <unary operator-name> <expression>
+ // ::= <binary operator-name> <expression> <expression>
+ // ::= <trinary operator-name> <expression> <expression> <expression>
+ // ::= cv <type> expression # conversion with one argument
+ // ::= cv <type> _ <expression>* E # conversion with a different number of arguments
+ // ::= st <type> # sizeof (a type)
+ // ::= at <type> # alignof (a type)
+ // ::= <template-param>
+ // ::= <function-param>
+ // ::= sr <type> <unqualified-name> # dependent name
+ // ::= sr <type> <unqualified-name> <template-args> # dependent template-id
+ // ::= ds <expression> <expression> # expr.*expr
+ // ::= sZ <template-param> # size of a parameter pack
+ // ::= sZ <function-param> # size of a function parameter pack
+ // ::= <expr-primary>
+ // <expr-primary> ::= L <type> <value number> E # integer literal
+ // ::= L <type <value float> E # floating literal
+ // ::= L <mangled-name> E # external name
+ // ::= fpT # 'this' expression
+ QualType ImplicitlyConvertedToType;
+
+recurse:
+ switch (E->getStmtClass()) {
+ case Expr::NoStmtClass:
+#define ABSTRACT_STMT(Type)
+#define EXPR(Type, Base)
+#define STMT(Type, Base) \
+ case Expr::Type##Class:
+#include "clang/AST/StmtNodes.inc"
+ // fallthrough
+
+ // These all can only appear in local or variable-initialization
+ // contexts and so should never appear in a mangling.
+ case Expr::AddrLabelExprClass:
+ case Expr::DesignatedInitExprClass:
+ case Expr::ImplicitValueInitExprClass:
+ case Expr::ParenListExprClass:
+ case Expr::LambdaExprClass:
+ llvm_unreachable("unexpected statement kind");
+
+ // FIXME: invent manglings for all these.
+ case Expr::BlockExprClass:
+ case Expr::CXXPseudoDestructorExprClass:
+ case Expr::ChooseExprClass:
+ case Expr::CompoundLiteralExprClass:
+ case Expr::ExtVectorElementExprClass:
+ case Expr::GenericSelectionExprClass:
+ case Expr::ObjCEncodeExprClass:
+ case Expr::ObjCIsaExprClass:
+ case Expr::ObjCIvarRefExprClass:
+ case Expr::ObjCMessageExprClass:
+ case Expr::ObjCPropertyRefExprClass:
+ case Expr::ObjCProtocolExprClass:
+ case Expr::ObjCSelectorExprClass:
+ case Expr::ObjCStringLiteralClass:
+ case Expr::ObjCBoxedExprClass:
+ case Expr::ObjCArrayLiteralClass:
+ case Expr::ObjCDictionaryLiteralClass:
+ case Expr::ObjCSubscriptRefExprClass:
+ case Expr::ObjCIndirectCopyRestoreExprClass:
+ case Expr::OffsetOfExprClass:
+ case Expr::PredefinedExprClass:
+ case Expr::ShuffleVectorExprClass:
+ case Expr::StmtExprClass:
+ case Expr::UnaryTypeTraitExprClass:
+ case Expr::BinaryTypeTraitExprClass:
+ case Expr::TypeTraitExprClass:
+ case Expr::ArrayTypeTraitExprClass:
+ case Expr::ExpressionTraitExprClass:
+ case Expr::VAArgExprClass:
+ case Expr::CXXUuidofExprClass:
+ case Expr::CUDAKernelCallExprClass:
+ case Expr::AsTypeExprClass:
+ case Expr::PseudoObjectExprClass:
+ case Expr::AtomicExprClass:
+ {
+ // As bad as this diagnostic is, it's better than crashing.
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot yet mangle expression type %0");
+ Diags.Report(E->getExprLoc(), DiagID)
+ << E->getStmtClassName() << E->getSourceRange();
+ break;
+ }
+
+ // Even gcc-4.5 doesn't mangle this.
+ case Expr::BinaryConditionalOperatorClass: {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID =
+ Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "?: operator with omitted middle operand cannot be mangled");
+ Diags.Report(E->getExprLoc(), DiagID)
+ << E->getStmtClassName() << E->getSourceRange();
+ break;
+ }
+
+ // These are used for internal purposes and cannot be meaningfully mangled.
+ case Expr::OpaqueValueExprClass:
+ llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
+
+ case Expr::InitListExprClass: {
+ // Proposal by Jason Merrill, 2012-01-03
+ Out << "il";
+ const InitListExpr *InitList = cast<InitListExpr>(E);
+ for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
+ mangleExpression(InitList->getInit(i));
+ Out << "E";
+ break;
+ }
+
+ case Expr::CXXDefaultArgExprClass:
+ mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
+ break;
+
+ case Expr::SubstNonTypeTemplateParmExprClass:
+ mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
+ Arity);
+ break;
+
+ case Expr::UserDefinedLiteralClass:
+ // We follow g++'s approach of mangling a UDL as a call to the literal
+ // operator.
+ case Expr::CXXMemberCallExprClass: // fallthrough
+ case Expr::CallExprClass: {
+ const CallExpr *CE = cast<CallExpr>(E);
+
+ // <expression> ::= cp <simple-id> <expression>* E
+ // We use this mangling only when the call would use ADL except
+ // for being parenthesized. Per discussion with David
+ // Vandervoorde, 2011.04.25.
+ if (isParenthesizedADLCallee(CE)) {
+ Out << "cp";
+ // The callee here is a parenthesized UnresolvedLookupExpr with
+ // no qualifier and should always get mangled as a <simple-id>
+ // anyway.
+
+ // <expression> ::= cl <expression>* E
+ } else {
+ Out << "cl";
+ }
+
+ mangleExpression(CE->getCallee(), CE->getNumArgs());
+ for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
+ mangleExpression(CE->getArg(I));
+ Out << 'E';
+ break;
+ }
+
+ case Expr::CXXNewExprClass: {
+ const CXXNewExpr *New = cast<CXXNewExpr>(E);
+ if (New->isGlobalNew()) Out << "gs";
+ Out << (New->isArray() ? "na" : "nw");
+ for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
+ E = New->placement_arg_end(); I != E; ++I)
+ mangleExpression(*I);
+ Out << '_';
+ mangleType(New->getAllocatedType());
+ if (New->hasInitializer()) {
+ // Proposal by Jason Merrill, 2012-01-03
+ if (New->getInitializationStyle() == CXXNewExpr::ListInit)
+ Out << "il";
+ else
+ Out << "pi";
+ const Expr *Init = New->getInitializer();
+ if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
+ // Directly inline the initializers.
+ for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
+ E = CCE->arg_end();
+ I != E; ++I)
+ mangleExpression(*I);
+ } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
+ for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
+ mangleExpression(PLE->getExpr(i));
+ } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
+ isa<InitListExpr>(Init)) {
+ // Only take InitListExprs apart for list-initialization.
+ const InitListExpr *InitList = cast<InitListExpr>(Init);
+ for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
+ mangleExpression(InitList->getInit(i));
+ } else
+ mangleExpression(Init);
+ }
+ Out << 'E';
+ break;
+ }
+
+ case Expr::MemberExprClass: {
+ const MemberExpr *ME = cast<MemberExpr>(E);
+ mangleMemberExpr(ME->getBase(), ME->isArrow(),
+ ME->getQualifier(), 0, ME->getMemberDecl()->getDeclName(),
+ Arity);
+ break;
+ }
+
+ case Expr::UnresolvedMemberExprClass: {
+ const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
+ mangleMemberExpr(ME->getBase(), ME->isArrow(),
+ ME->getQualifier(), 0, ME->getMemberName(),
+ Arity);
+ if (ME->hasExplicitTemplateArgs())
+ mangleTemplateArgs(ME->getExplicitTemplateArgs());
+ break;
+ }
+
+ case Expr::CXXDependentScopeMemberExprClass: {
+ const CXXDependentScopeMemberExpr *ME
+ = cast<CXXDependentScopeMemberExpr>(E);
+ mangleMemberExpr(ME->getBase(), ME->isArrow(),
+ ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
+ ME->getMember(), Arity);
+ if (ME->hasExplicitTemplateArgs())
+ mangleTemplateArgs(ME->getExplicitTemplateArgs());
+ break;
+ }
+
+ case Expr::UnresolvedLookupExprClass: {
+ const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
+ mangleUnresolvedName(ULE->getQualifier(), 0, ULE->getName(), Arity);
+
+ // All the <unresolved-name> productions end in a
+ // base-unresolved-name, where <template-args> are just tacked
+ // onto the end.
+ if (ULE->hasExplicitTemplateArgs())
+ mangleTemplateArgs(ULE->getExplicitTemplateArgs());
+ break;
+ }
+
+ case Expr::CXXUnresolvedConstructExprClass: {
+ const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
+ unsigned N = CE->arg_size();
+
+ Out << "cv";
+ mangleType(CE->getType());
+ if (N != 1) Out << '_';
+ for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
+ if (N != 1) Out << 'E';
+ break;
+ }
+
+ case Expr::CXXTemporaryObjectExprClass:
+ case Expr::CXXConstructExprClass: {
+ const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
+ unsigned N = CE->getNumArgs();
+
+ // Proposal by Jason Merrill, 2012-01-03
+ if (CE->isListInitialization())
+ Out << "tl";
+ else
+ Out << "cv";
+ mangleType(CE->getType());
+ if (N != 1) Out << '_';
+ for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
+ if (N != 1) Out << 'E';
+ break;
+ }
+
+ case Expr::CXXScalarValueInitExprClass:
+ Out <<"cv";
+ mangleType(E->getType());
+ Out <<"_E";
+ break;
+
+ case Expr::CXXNoexceptExprClass:
+ Out << "nx";
+ mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
+ break;
+
+ case Expr::UnaryExprOrTypeTraitExprClass: {
+ const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
+
+ if (!SAE->isInstantiationDependent()) {
+ // Itanium C++ ABI:
+ // If the operand of a sizeof or alignof operator is not
+ // instantiation-dependent it is encoded as an integer literal
+ // reflecting the result of the operator.
+ //
+ // If the result of the operator is implicitly converted to a known
+ // integer type, that type is used for the literal; otherwise, the type
+ // of std::size_t or std::ptrdiff_t is used.
+ QualType T = (ImplicitlyConvertedToType.isNull() ||
+ !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
+ : ImplicitlyConvertedToType;
+ llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
+ mangleIntegerLiteral(T, V);
+ break;
+ }
+
+ switch(SAE->getKind()) {
+ case UETT_SizeOf:
+ Out << 's';
+ break;
+ case UETT_AlignOf:
+ Out << 'a';
+ break;
+ case UETT_VecStep:
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot yet mangle vec_step expression");
+ Diags.Report(DiagID);
+ return;
+ }
+ if (SAE->isArgumentType()) {
+ Out << 't';
+ mangleType(SAE->getArgumentType());
+ } else {
+ Out << 'z';
+ mangleExpression(SAE->getArgumentExpr());
+ }
+ break;
+ }
+
+ case Expr::CXXThrowExprClass: {
+ const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
+
+ // Proposal from David Vandervoorde, 2010.06.30
+ if (TE->getSubExpr()) {
+ Out << "tw";
+ mangleExpression(TE->getSubExpr());
+ } else {
+ Out << "tr";
+ }
+ break;
+ }
+
+ case Expr::CXXTypeidExprClass: {
+ const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
+
+ // Proposal from David Vandervoorde, 2010.06.30
+ if (TIE->isTypeOperand()) {
+ Out << "ti";
+ mangleType(TIE->getTypeOperand());
+ } else {
+ Out << "te";
+ mangleExpression(TIE->getExprOperand());
+ }
+ break;
+ }
+
+ case Expr::CXXDeleteExprClass: {
+ const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
+
+ // Proposal from David Vandervoorde, 2010.06.30
+ if (DE->isGlobalDelete()) Out << "gs";
+ Out << (DE->isArrayForm() ? "da" : "dl");
+ mangleExpression(DE->getArgument());
+ break;
+ }
+
+ case Expr::UnaryOperatorClass: {
+ const UnaryOperator *UO = cast<UnaryOperator>(E);
+ mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
+ /*Arity=*/1);
+ mangleExpression(UO->getSubExpr());
+ break;
+ }
+
+ case Expr::ArraySubscriptExprClass: {
+ const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
+
+ // Array subscript is treated as a syntactically weird form of
+ // binary operator.
+ Out << "ix";
+ mangleExpression(AE->getLHS());
+ mangleExpression(AE->getRHS());
+ break;
+ }
+
+ case Expr::CompoundAssignOperatorClass: // fallthrough
+ case Expr::BinaryOperatorClass: {
+ const BinaryOperator *BO = cast<BinaryOperator>(E);
+ if (BO->getOpcode() == BO_PtrMemD)
+ Out << "ds";
+ else
+ mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
+ /*Arity=*/2);
+ mangleExpression(BO->getLHS());
+ mangleExpression(BO->getRHS());
+ break;
+ }
+
+ case Expr::ConditionalOperatorClass: {
+ const ConditionalOperator *CO = cast<ConditionalOperator>(E);
+ mangleOperatorName(OO_Conditional, /*Arity=*/3);
+ mangleExpression(CO->getCond());
+ mangleExpression(CO->getLHS(), Arity);
+ mangleExpression(CO->getRHS(), Arity);
+ break;
+ }
+
+ case Expr::ImplicitCastExprClass: {
+ ImplicitlyConvertedToType = E->getType();
+ E = cast<ImplicitCastExpr>(E)->getSubExpr();
+ goto recurse;
+ }
+
+ case Expr::ObjCBridgedCastExprClass: {
+ // Mangle ownership casts as a vendor extended operator __bridge,
+ // __bridge_transfer, or __bridge_retain.
+ StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
+ Out << "v1U" << Kind.size() << Kind;
+ }
+ // Fall through to mangle the cast itself.
+
+ case Expr::CStyleCastExprClass:
+ case Expr::CXXStaticCastExprClass:
+ case Expr::CXXDynamicCastExprClass:
+ case Expr::CXXReinterpretCastExprClass:
+ case Expr::CXXConstCastExprClass:
+ case Expr::CXXFunctionalCastExprClass: {
+ const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
+ Out << "cv";
+ mangleType(ECE->getType());
+ mangleExpression(ECE->getSubExpr());
+ break;
+ }
+
+ case Expr::CXXOperatorCallExprClass: {
+ const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
+ unsigned NumArgs = CE->getNumArgs();
+ mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
+ // Mangle the arguments.
+ for (unsigned i = 0; i != NumArgs; ++i)
+ mangleExpression(CE->getArg(i));
+ break;
+ }
+
+ case Expr::ParenExprClass:
+ mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
+ break;
+
+ case Expr::DeclRefExprClass: {
+ const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
+
+ switch (D->getKind()) {
+ default:
+ // <expr-primary> ::= L <mangled-name> E # external name
+ Out << 'L';
+ mangle(D, "_Z");
+ Out << 'E';
+ break;
+
+ case Decl::ParmVar:
+ mangleFunctionParam(cast<ParmVarDecl>(D));
+ break;
+
+ case Decl::EnumConstant: {
+ const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
+ mangleIntegerLiteral(ED->getType(), ED->getInitVal());
+ break;
+ }
+
+ case Decl::NonTypeTemplateParm: {
+ const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
+ mangleTemplateParameter(PD->getIndex());
+ break;
+ }
+
+ }
+
+ break;
+ }
+
+ case Expr::SubstNonTypeTemplateParmPackExprClass:
+ // FIXME: not clear how to mangle this!
+ // template <unsigned N...> class A {
+ // template <class U...> void foo(U (&x)[N]...);
+ // };
+ Out << "_SUBSTPACK_";
+ break;
+
+ case Expr::FunctionParmPackExprClass: {
+ // FIXME: not clear how to mangle this!
+ const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
+ Out << "v110_SUBSTPACK";
+ mangleFunctionParam(FPPE->getParameterPack());
+ break;
+ }
+
+ case Expr::DependentScopeDeclRefExprClass: {
+ const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
+ mangleUnresolvedName(DRE->getQualifier(), 0, DRE->getDeclName(), Arity);
+
+ // All the <unresolved-name> productions end in a
+ // base-unresolved-name, where <template-args> are just tacked
+ // onto the end.
+ if (DRE->hasExplicitTemplateArgs())
+ mangleTemplateArgs(DRE->getExplicitTemplateArgs());
+ break;
+ }
+
+ case Expr::CXXBindTemporaryExprClass:
+ mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
+ break;
+
+ case Expr::ExprWithCleanupsClass:
+ mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
+ break;
+
+ case Expr::FloatingLiteralClass: {
+ const FloatingLiteral *FL = cast<FloatingLiteral>(E);
+ Out << 'L';
+ mangleType(FL->getType());
+ mangleFloat(FL->getValue());
+ Out << 'E';
+ break;
+ }
+
+ case Expr::CharacterLiteralClass:
+ Out << 'L';
+ mangleType(E->getType());
+ Out << cast<CharacterLiteral>(E)->getValue();
+ Out << 'E';
+ break;
+
+ // FIXME. __objc_yes/__objc_no are mangled same as true/false
+ case Expr::ObjCBoolLiteralExprClass:
+ Out << "Lb";
+ Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
+ Out << 'E';
+ break;
+
+ case Expr::CXXBoolLiteralExprClass:
+ Out << "Lb";
+ Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
+ Out << 'E';
+ break;
+
+ case Expr::IntegerLiteralClass: {
+ llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
+ if (E->getType()->isSignedIntegerType())
+ Value.setIsSigned(true);
+ mangleIntegerLiteral(E->getType(), Value);
+ break;
+ }
+
+ case Expr::ImaginaryLiteralClass: {
+ const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
+ // Mangle as if a complex literal.
+ // Proposal from David Vandevoorde, 2010.06.30.
+ Out << 'L';
+ mangleType(E->getType());
+ if (const FloatingLiteral *Imag =
+ dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
+ // Mangle a floating-point zero of the appropriate type.
+ mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
+ Out << '_';
+ mangleFloat(Imag->getValue());
+ } else {
+ Out << "0_";
+ llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
+ if (IE->getSubExpr()->getType()->isSignedIntegerType())
+ Value.setIsSigned(true);
+ mangleNumber(Value);
+ }
+ Out << 'E';
+ break;
+ }
+
+ case Expr::StringLiteralClass: {
+ // Revised proposal from David Vandervoorde, 2010.07.15.
+ Out << 'L';
+ assert(isa<ConstantArrayType>(E->getType()));
+ mangleType(E->getType());
+ Out << 'E';
+ break;
+ }
+
+ case Expr::GNUNullExprClass:
+ // FIXME: should this really be mangled the same as nullptr?
+ // fallthrough
+
+ case Expr::CXXNullPtrLiteralExprClass: {
+ // Proposal from David Vandervoorde, 2010.06.30, as
+ // modified by ABI list discussion.
+ Out << "LDnE";
+ break;
+ }
+
+ case Expr::PackExpansionExprClass:
+ Out << "sp";
+ mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
+ break;
+
+ case Expr::SizeOfPackExprClass: {
+ Out << "sZ";
+ const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
+ if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
+ mangleTemplateParameter(TTP->getIndex());
+ else if (const NonTypeTemplateParmDecl *NTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(Pack))
+ mangleTemplateParameter(NTTP->getIndex());
+ else if (const TemplateTemplateParmDecl *TempTP
+ = dyn_cast<TemplateTemplateParmDecl>(Pack))
+ mangleTemplateParameter(TempTP->getIndex());
+ else
+ mangleFunctionParam(cast<ParmVarDecl>(Pack));
+ break;
+ }
+
+ case Expr::MaterializeTemporaryExprClass: {
+ mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
+ break;
+ }
+
+ case Expr::CXXThisExprClass:
+ Out << "fpT";
+ break;
+ }
+}
+
+/// Mangle an expression which refers to a parameter variable.
+///
+/// <expression> ::= <function-param>
+/// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0
+/// <function-param> ::= fp <top-level CV-qualifiers>
+/// <parameter-2 non-negative number> _ # L == 0, I > 0
+/// <function-param> ::= fL <L-1 non-negative number>
+/// p <top-level CV-qualifiers> _ # L > 0, I == 0
+/// <function-param> ::= fL <L-1 non-negative number>
+/// p <top-level CV-qualifiers>
+/// <I-1 non-negative number> _ # L > 0, I > 0
+///
+/// L is the nesting depth of the parameter, defined as 1 if the
+/// parameter comes from the innermost function prototype scope
+/// enclosing the current context, 2 if from the next enclosing
+/// function prototype scope, and so on, with one special case: if
+/// we've processed the full parameter clause for the innermost
+/// function type, then L is one less. This definition conveniently
+/// makes it irrelevant whether a function's result type was written
+/// trailing or leading, but is otherwise overly complicated; the
+/// numbering was first designed without considering references to
+/// parameter in locations other than return types, and then the
+/// mangling had to be generalized without changing the existing
+/// manglings.
+///
+/// I is the zero-based index of the parameter within its parameter
+/// declaration clause. Note that the original ABI document describes
+/// this using 1-based ordinals.
+void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
+ unsigned parmDepth = parm->getFunctionScopeDepth();
+ unsigned parmIndex = parm->getFunctionScopeIndex();
+
+ // Compute 'L'.
+ // parmDepth does not include the declaring function prototype.
+ // FunctionTypeDepth does account for that.
+ assert(parmDepth < FunctionTypeDepth.getDepth());
+ unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
+ if (FunctionTypeDepth.isInResultType())
+ nestingDepth--;
+
+ if (nestingDepth == 0) {
+ Out << "fp";
+ } else {
+ Out << "fL" << (nestingDepth - 1) << 'p';
+ }
+
+ // Top-level qualifiers. We don't have to worry about arrays here,
+ // because parameters declared as arrays should already have been
+ // transformed to have pointer type. FIXME: apparently these don't
+ // get mangled if used as an rvalue of a known non-class type?
+ assert(!parm->getType()->isArrayType()
+ && "parameter's type is still an array type?");
+ mangleQualifiers(parm->getType().getQualifiers());
+
+ // Parameter index.
+ if (parmIndex != 0) {
+ Out << (parmIndex - 1);
+ }
+ Out << '_';
+}
+
+void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
+ // <ctor-dtor-name> ::= C1 # complete object constructor
+ // ::= C2 # base object constructor
+ // ::= C3 # complete object allocating constructor
+ //
+ switch (T) {
+ case Ctor_Complete:
+ Out << "C1";
+ break;
+ case Ctor_Base:
+ Out << "C2";
+ break;
+ case Ctor_CompleteAllocating:
+ Out << "C3";
+ break;
+ }
+}
+
+void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
+ // <ctor-dtor-name> ::= D0 # deleting destructor
+ // ::= D1 # complete object destructor
+ // ::= D2 # base object destructor
+ //
+ switch (T) {
+ case Dtor_Deleting:
+ Out << "D0";
+ break;
+ case Dtor_Complete:
+ Out << "D1";
+ break;
+ case Dtor_Base:
+ Out << "D2";
+ break;
+ }
+}
+
+void CXXNameMangler::mangleTemplateArgs(
+ const ASTTemplateArgumentListInfo &TemplateArgs) {
+ // <template-args> ::= I <template-arg>+ E
+ Out << 'I';
+ for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
+ mangleTemplateArg(TemplateArgs.getTemplateArgs()[i].getArgument());
+ Out << 'E';
+}
+
+void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
+ // <template-args> ::= I <template-arg>+ E
+ Out << 'I';
+ for (unsigned i = 0, e = AL.size(); i != e; ++i)
+ mangleTemplateArg(AL[i]);
+ Out << 'E';
+}
+
+void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
+ unsigned NumTemplateArgs) {
+ // <template-args> ::= I <template-arg>+ E
+ Out << 'I';
+ for (unsigned i = 0; i != NumTemplateArgs; ++i)
+ mangleTemplateArg(TemplateArgs[i]);
+ Out << 'E';
+}
+
+void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
+ // <template-arg> ::= <type> # type or template
+ // ::= X <expression> E # expression
+ // ::= <expr-primary> # simple expressions
+ // ::= J <template-arg>* E # argument pack
+ // ::= sp <expression> # pack expansion of (C++0x)
+ if (!A.isInstantiationDependent() || A.isDependent())
+ A = Context.getASTContext().getCanonicalTemplateArgument(A);
+
+ switch (A.getKind()) {
+ case TemplateArgument::Null:
+ llvm_unreachable("Cannot mangle NULL template argument");
+
+ case TemplateArgument::Type:
+ mangleType(A.getAsType());
+ break;
+ case TemplateArgument::Template:
+ // This is mangled as <type>.
+ mangleType(A.getAsTemplate());
+ break;
+ case TemplateArgument::TemplateExpansion:
+ // <type> ::= Dp <type> # pack expansion (C++0x)
+ Out << "Dp";
+ mangleType(A.getAsTemplateOrTemplatePattern());
+ break;
+ case TemplateArgument::Expression: {
+ // It's possible to end up with a DeclRefExpr here in certain
+ // dependent cases, in which case we should mangle as a
+ // declaration.
+ const Expr *E = A.getAsExpr()->IgnoreParens();
+ if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
+ const ValueDecl *D = DRE->getDecl();
+ if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
+ Out << "L";
+ mangle(D, "_Z");
+ Out << 'E';
+ break;
+ }
+ }
+
+ Out << 'X';
+ mangleExpression(E);
+ Out << 'E';
+ break;
+ }
+ case TemplateArgument::Integral:
+ mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
+ break;
+ case TemplateArgument::Declaration: {
+ // <expr-primary> ::= L <mangled-name> E # external name
+ // Clang produces AST's where pointer-to-member-function expressions
+ // and pointer-to-function expressions are represented as a declaration not
+ // an expression. We compensate for it here to produce the correct mangling.
+ ValueDecl *D = A.getAsDecl();
+ bool compensateMangling = !A.isDeclForReferenceParam();
+ if (compensateMangling) {
+ Out << 'X';
+ mangleOperatorName(OO_Amp, 1);
+ }
+
+ Out << 'L';
+ // References to external entities use the mangled name; if the name would
+ // not normally be manged then mangle it as unqualified.
+ //
+ // FIXME: The ABI specifies that external names here should have _Z, but
+ // gcc leaves this off.
+ if (compensateMangling)
+ mangle(D, "_Z");
+ else
+ mangle(D, "Z");
+ Out << 'E';
+
+ if (compensateMangling)
+ Out << 'E';
+
+ break;
+ }
+ case TemplateArgument::NullPtr: {
+ // <expr-primary> ::= L <type> 0 E
+ Out << 'L';
+ mangleType(A.getNullPtrType());
+ Out << "0E";
+ break;
+ }
+ case TemplateArgument::Pack: {
+ // Note: proposal by Mike Herrick on 12/20/10
+ Out << 'J';
+ for (TemplateArgument::pack_iterator PA = A.pack_begin(),
+ PAEnd = A.pack_end();
+ PA != PAEnd; ++PA)
+ mangleTemplateArg(*PA);
+ Out << 'E';
+ }
+ }
+}
+
+void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
+ // <template-param> ::= T_ # first template parameter
+ // ::= T <parameter-2 non-negative number> _
+ if (Index == 0)
+ Out << "T_";
+ else
+ Out << 'T' << (Index - 1) << '_';
+}
+
+void CXXNameMangler::mangleExistingSubstitution(QualType type) {
+ bool result = mangleSubstitution(type);
+ assert(result && "no existing substitution for type");
+ (void) result;
+}
+
+void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
+ bool result = mangleSubstitution(tname);
+ assert(result && "no existing substitution for template name");
+ (void) result;
+}
+
+// <substitution> ::= S <seq-id> _
+// ::= S_
+bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
+ // Try one of the standard substitutions first.
+ if (mangleStandardSubstitution(ND))
+ return true;
+
+ ND = cast<NamedDecl>(ND->getCanonicalDecl());
+ return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
+}
+
+/// \brief Determine whether the given type has any qualifiers that are
+/// relevant for substitutions.
+static bool hasMangledSubstitutionQualifiers(QualType T) {
+ Qualifiers Qs = T.getQualifiers();
+ return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
+}
+
+bool CXXNameMangler::mangleSubstitution(QualType T) {
+ if (!hasMangledSubstitutionQualifiers(T)) {
+ if (const RecordType *RT = T->getAs<RecordType>())
+ return mangleSubstitution(RT->getDecl());
+ }
+
+ uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
+
+ return mangleSubstitution(TypePtr);
+}
+
+bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
+ if (TemplateDecl *TD = Template.getAsTemplateDecl())
+ return mangleSubstitution(TD);
+
+ Template = Context.getASTContext().getCanonicalTemplateName(Template);
+ return mangleSubstitution(
+ reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
+}
+
+bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
+ llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
+ if (I == Substitutions.end())
+ return false;
+
+ unsigned SeqID = I->second;
+ if (SeqID == 0)
+ Out << "S_";
+ else {
+ SeqID--;
+
+ // <seq-id> is encoded in base-36, using digits and upper case letters.
+ char Buffer[10];
+ char *BufferPtr = llvm::array_endof(Buffer);
+
+ if (SeqID == 0) *--BufferPtr = '0';
+
+ while (SeqID) {
+ assert(BufferPtr > Buffer && "Buffer overflow!");
+
+ char c = static_cast<char>(SeqID % 36);
+
+ *--BufferPtr = (c < 10 ? '0' + c : 'A' + c - 10);
+ SeqID /= 36;
+ }
+
+ Out << 'S'
+ << StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
+ << '_';
+ }
+
+ return true;
+}
+
+static bool isCharType(QualType T) {
+ if (T.isNull())
+ return false;
+
+ return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
+ T->isSpecificBuiltinType(BuiltinType::Char_U);
+}
+
+/// isCharSpecialization - Returns whether a given type is a template
+/// specialization of a given name with a single argument of type char.
+static bool isCharSpecialization(QualType T, const char *Name) {
+ if (T.isNull())
+ return false;
+
+ const RecordType *RT = T->getAs<RecordType>();
+ if (!RT)
+ return false;
+
+ const ClassTemplateSpecializationDecl *SD =
+ dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
+ if (!SD)
+ return false;
+
+ if (!isStdNamespace(getEffectiveDeclContext(SD)))
+ return false;
+
+ const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
+ if (TemplateArgs.size() != 1)
+ return false;
+
+ if (!isCharType(TemplateArgs[0].getAsType()))
+ return false;
+
+ return SD->getIdentifier()->getName() == Name;
+}
+
+template <std::size_t StrLen>
+static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
+ const char (&Str)[StrLen]) {
+ if (!SD->getIdentifier()->isStr(Str))
+ return false;
+
+ const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
+ if (TemplateArgs.size() != 2)
+ return false;
+
+ if (!isCharType(TemplateArgs[0].getAsType()))
+ return false;
+
+ if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
+ return false;
+
+ return true;
+}
+
+bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
+ // <substitution> ::= St # ::std::
+ if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
+ if (isStd(NS)) {
+ Out << "St";
+ return true;
+ }
+ }
+
+ if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
+ if (!isStdNamespace(getEffectiveDeclContext(TD)))
+ return false;
+
+ // <substitution> ::= Sa # ::std::allocator
+ if (TD->getIdentifier()->isStr("allocator")) {
+ Out << "Sa";
+ return true;
+ }
+
+ // <<substitution> ::= Sb # ::std::basic_string
+ if (TD->getIdentifier()->isStr("basic_string")) {
+ Out << "Sb";
+ return true;
+ }
+ }
+
+ if (const ClassTemplateSpecializationDecl *SD =
+ dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
+ if (!isStdNamespace(getEffectiveDeclContext(SD)))
+ return false;
+
+ // <substitution> ::= Ss # ::std::basic_string<char,
+ // ::std::char_traits<char>,
+ // ::std::allocator<char> >
+ if (SD->getIdentifier()->isStr("basic_string")) {
+ const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
+
+ if (TemplateArgs.size() != 3)
+ return false;
+
+ if (!isCharType(TemplateArgs[0].getAsType()))
+ return false;
+
+ if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
+ return false;
+
+ if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
+ return false;
+
+ Out << "Ss";
+ return true;
+ }
+
+ // <substitution> ::= Si # ::std::basic_istream<char,
+ // ::std::char_traits<char> >
+ if (isStreamCharSpecialization(SD, "basic_istream")) {
+ Out << "Si";
+ return true;
+ }
+
+ // <substitution> ::= So # ::std::basic_ostream<char,
+ // ::std::char_traits<char> >
+ if (isStreamCharSpecialization(SD, "basic_ostream")) {
+ Out << "So";
+ return true;
+ }
+
+ // <substitution> ::= Sd # ::std::basic_iostream<char,
+ // ::std::char_traits<char> >
+ if (isStreamCharSpecialization(SD, "basic_iostream")) {
+ Out << "Sd";
+ return true;
+ }
+ }
+ return false;
+}
+
+void CXXNameMangler::addSubstitution(QualType T) {
+ if (!hasMangledSubstitutionQualifiers(T)) {
+ if (const RecordType *RT = T->getAs<RecordType>()) {
+ addSubstitution(RT->getDecl());
+ return;
+ }
+ }
+
+ uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
+ addSubstitution(TypePtr);
+}
+
+void CXXNameMangler::addSubstitution(TemplateName Template) {
+ if (TemplateDecl *TD = Template.getAsTemplateDecl())
+ return addSubstitution(TD);
+
+ Template = Context.getASTContext().getCanonicalTemplateName(Template);
+ addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
+}
+
+void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
+ assert(!Substitutions.count(Ptr) && "Substitution already exists!");
+ Substitutions[Ptr] = SeqID++;
+}
+
+//
+
+/// \brief Mangles the name of the declaration D and emits that name to the
+/// given output stream.
+///
+/// If the declaration D requires a mangled name, this routine will emit that
+/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
+/// and this routine will return false. In this case, the caller should just
+/// emit the identifier of the declaration (\c D->getIdentifier()) as its
+/// name.
+void ItaniumMangleContext::mangleName(const NamedDecl *D,
+ raw_ostream &Out) {
+ assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
+ "Invalid mangleName() call, argument is not a variable or function!");
+ assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
+ "Invalid mangleName() call on 'structor decl!");
+
+ PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
+ getASTContext().getSourceManager(),
+ "Mangling declaration");
+
+ CXXNameMangler Mangler(*this, Out, D);
+ return Mangler.mangle(D);
+}
+
+void ItaniumMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
+ CXXCtorType Type,
+ raw_ostream &Out) {
+ CXXNameMangler Mangler(*this, Out, D, Type);
+ Mangler.mangle(D);
+}
+
+void ItaniumMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
+ CXXDtorType Type,
+ raw_ostream &Out) {
+ CXXNameMangler Mangler(*this, Out, D, Type);
+ Mangler.mangle(D);
+}
+
+void ItaniumMangleContext::mangleThunk(const CXXMethodDecl *MD,
+ const ThunkInfo &Thunk,
+ raw_ostream &Out) {
+ // <special-name> ::= T <call-offset> <base encoding>
+ // # base is the nominal target function of thunk
+ // <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
+ // # base is the nominal target function of thunk
+ // # first call-offset is 'this' adjustment
+ // # second call-offset is result adjustment
+
+ assert(!isa<CXXDestructorDecl>(MD) &&
+ "Use mangleCXXDtor for destructor decls!");
+ CXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "_ZT";
+ if (!Thunk.Return.isEmpty())
+ Mangler.getStream() << 'c';
+
+ // Mangle the 'this' pointer adjustment.
+ Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);
+
+ // Mangle the return pointer adjustment if there is one.
+ if (!Thunk.Return.isEmpty())
+ Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
+ Thunk.Return.VBaseOffsetOffset);
+
+ Mangler.mangleFunctionEncoding(MD);
+}
+
+void
+ItaniumMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
+ CXXDtorType Type,
+ const ThisAdjustment &ThisAdjustment,
+ raw_ostream &Out) {
+ // <special-name> ::= T <call-offset> <base encoding>
+ // # base is the nominal target function of thunk
+ CXXNameMangler Mangler(*this, Out, DD, Type);
+ Mangler.getStream() << "_ZT";
+
+ // Mangle the 'this' pointer adjustment.
+ Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
+ ThisAdjustment.VCallOffsetOffset);
+
+ Mangler.mangleFunctionEncoding(DD);
+}
+
+/// mangleGuardVariable - Returns the mangled name for a guard variable
+/// for the passed in VarDecl.
+void ItaniumMangleContext::mangleItaniumGuardVariable(const VarDecl *D,
+ raw_ostream &Out) {
+ // <special-name> ::= GV <object name> # Guard variable for one-time
+ // # initialization
+ CXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "_ZGV";
+ Mangler.mangleName(D);
+}
+
+void ItaniumMangleContext::mangleReferenceTemporary(const VarDecl *D,
+ raw_ostream &Out) {
+ // We match the GCC mangling here.
+ // <special-name> ::= GR <object name>
+ CXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "_ZGR";
+ Mangler.mangleName(D);
+}
+
+void ItaniumMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
+ raw_ostream &Out) {
+ // <special-name> ::= TV <type> # virtual table
+ CXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "_ZTV";
+ Mangler.mangleNameOrStandardSubstitution(RD);
+}
+
+void ItaniumMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
+ raw_ostream &Out) {
+ // <special-name> ::= TT <type> # VTT structure
+ CXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "_ZTT";
+ Mangler.mangleNameOrStandardSubstitution(RD);
+}
+
+void ItaniumMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
+ int64_t Offset,
+ const CXXRecordDecl *Type,
+ raw_ostream &Out) {
+ // <special-name> ::= TC <type> <offset number> _ <base type>
+ CXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "_ZTC";
+ Mangler.mangleNameOrStandardSubstitution(RD);
+ Mangler.getStream() << Offset;
+ Mangler.getStream() << '_';
+ Mangler.mangleNameOrStandardSubstitution(Type);
+}
+
+void ItaniumMangleContext::mangleCXXRTTI(QualType Ty,
+ raw_ostream &Out) {
+ // <special-name> ::= TI <type> # typeinfo structure
+ assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
+ CXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "_ZTI";
+ Mangler.mangleType(Ty);
+}
+
+void ItaniumMangleContext::mangleCXXRTTIName(QualType Ty,
+ raw_ostream &Out) {
+ // <special-name> ::= TS <type> # typeinfo name (null terminated byte string)
+ CXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "_ZTS";
+ Mangler.mangleType(Ty);
+}
+
+MangleContext *clang::createItaniumMangleContext(ASTContext &Context,
+ DiagnosticsEngine &Diags) {
+ return new ItaniumMangleContext(Context, Diags);
+}
OpenPOWER on IntegriCloud