summaryrefslogtreecommitdiffstats
path: root/clang/lib/AST/Expr.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'clang/lib/AST/Expr.cpp')
-rw-r--r--clang/lib/AST/Expr.cpp1391
1 files changed, 1391 insertions, 0 deletions
diff --git a/clang/lib/AST/Expr.cpp b/clang/lib/AST/Expr.cpp
new file mode 100644
index 00000000000..11fcc419a51
--- /dev/null
+++ b/clang/lib/AST/Expr.cpp
@@ -0,0 +1,1391 @@
+//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Expr class and subclasses.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/Expr.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Basic/IdentifierTable.h"
+#include "clang/Basic/TargetInfo.h"
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// Primary Expressions.
+//===----------------------------------------------------------------------===//
+
+StringLiteral::StringLiteral(const char *strData, unsigned byteLength,
+ bool Wide, QualType t, SourceLocation firstLoc,
+ SourceLocation lastLoc) :
+ Expr(StringLiteralClass, t) {
+ // OPTIMIZE: could allocate this appended to the StringLiteral.
+ char *AStrData = new char[byteLength];
+ memcpy(AStrData, strData, byteLength);
+ StrData = AStrData;
+ ByteLength = byteLength;
+ IsWide = Wide;
+ firstTokLoc = firstLoc;
+ lastTokLoc = lastLoc;
+}
+
+StringLiteral::~StringLiteral() {
+ delete[] StrData;
+}
+
+bool UnaryOperator::isPostfix(Opcode Op) {
+ switch (Op) {
+ case PostInc:
+ case PostDec:
+ return true;
+ default:
+ return false;
+ }
+}
+
+/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
+/// corresponds to, e.g. "sizeof" or "[pre]++".
+const char *UnaryOperator::getOpcodeStr(Opcode Op) {
+ switch (Op) {
+ default: assert(0 && "Unknown unary operator");
+ case PostInc: return "++";
+ case PostDec: return "--";
+ case PreInc: return "++";
+ case PreDec: return "--";
+ case AddrOf: return "&";
+ case Deref: return "*";
+ case Plus: return "+";
+ case Minus: return "-";
+ case Not: return "~";
+ case LNot: return "!";
+ case Real: return "__real";
+ case Imag: return "__imag";
+ case SizeOf: return "sizeof";
+ case AlignOf: return "alignof";
+ case Extension: return "__extension__";
+ case OffsetOf: return "__builtin_offsetof";
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Postfix Operators.
+//===----------------------------------------------------------------------===//
+
+
+CallExpr::CallExpr(Expr *fn, Expr **args, unsigned numargs, QualType t,
+ SourceLocation rparenloc)
+ : Expr(CallExprClass, t), NumArgs(numargs) {
+ SubExprs = new Expr*[numargs+1];
+ SubExprs[FN] = fn;
+ for (unsigned i = 0; i != numargs; ++i)
+ SubExprs[i+ARGS_START] = args[i];
+ RParenLoc = rparenloc;
+}
+
+/// setNumArgs - This changes the number of arguments present in this call.
+/// Any orphaned expressions are deleted by this, and any new operands are set
+/// to null.
+void CallExpr::setNumArgs(unsigned NumArgs) {
+ // No change, just return.
+ if (NumArgs == getNumArgs()) return;
+
+ // If shrinking # arguments, just delete the extras and forgot them.
+ if (NumArgs < getNumArgs()) {
+ for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
+ delete getArg(i);
+ this->NumArgs = NumArgs;
+ return;
+ }
+
+ // Otherwise, we are growing the # arguments. New an bigger argument array.
+ Expr **NewSubExprs = new Expr*[NumArgs+1];
+ // Copy over args.
+ for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
+ NewSubExprs[i] = SubExprs[i];
+ // Null out new args.
+ for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
+ NewSubExprs[i] = 0;
+
+ delete[] SubExprs;
+ SubExprs = NewSubExprs;
+ this->NumArgs = NumArgs;
+}
+
+bool CallExpr::isBuiltinConstantExpr() const {
+ // All simple function calls (e.g. func()) are implicitly cast to pointer to
+ // function. As a result, we try and obtain the DeclRefExpr from the
+ // ImplicitCastExpr.
+ const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
+ if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
+ return false;
+
+ const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
+ if (!DRE)
+ return false;
+
+ const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
+ if (!FDecl)
+ return false;
+
+ unsigned builtinID = FDecl->getIdentifier()->getBuiltinID();
+ if (!builtinID)
+ return false;
+
+ // We have a builtin that is a constant expression
+ if (builtinID == Builtin::BI__builtin___CFStringMakeConstantString)
+ return true;
+ return false;
+}
+
+bool CallExpr::isBuiltinClassifyType(llvm::APSInt &Result) const {
+ // The following enum mimics gcc's internal "typeclass.h" file.
+ enum gcc_type_class {
+ no_type_class = -1,
+ void_type_class, integer_type_class, char_type_class,
+ enumeral_type_class, boolean_type_class,
+ pointer_type_class, reference_type_class, offset_type_class,
+ real_type_class, complex_type_class,
+ function_type_class, method_type_class,
+ record_type_class, union_type_class,
+ array_type_class, string_type_class,
+ lang_type_class
+ };
+ Result.setIsSigned(true);
+
+ // All simple function calls (e.g. func()) are implicitly cast to pointer to
+ // function. As a result, we try and obtain the DeclRefExpr from the
+ // ImplicitCastExpr.
+ const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
+ if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
+ return false;
+ const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
+ if (!DRE)
+ return false;
+
+ // We have a DeclRefExpr.
+ if (strcmp(DRE->getDecl()->getName(), "__builtin_classify_type") == 0) {
+ // If no argument was supplied, default to "no_type_class". This isn't
+ // ideal, however it's what gcc does.
+ Result = static_cast<uint64_t>(no_type_class);
+ if (NumArgs >= 1) {
+ QualType argType = getArg(0)->getType();
+
+ if (argType->isVoidType())
+ Result = void_type_class;
+ else if (argType->isEnumeralType())
+ Result = enumeral_type_class;
+ else if (argType->isBooleanType())
+ Result = boolean_type_class;
+ else if (argType->isCharType())
+ Result = string_type_class; // gcc doesn't appear to use char_type_class
+ else if (argType->isIntegerType())
+ Result = integer_type_class;
+ else if (argType->isPointerType())
+ Result = pointer_type_class;
+ else if (argType->isReferenceType())
+ Result = reference_type_class;
+ else if (argType->isRealType())
+ Result = real_type_class;
+ else if (argType->isComplexType())
+ Result = complex_type_class;
+ else if (argType->isFunctionType())
+ Result = function_type_class;
+ else if (argType->isStructureType())
+ Result = record_type_class;
+ else if (argType->isUnionType())
+ Result = union_type_class;
+ else if (argType->isArrayType())
+ Result = array_type_class;
+ else if (argType->isUnionType())
+ Result = union_type_class;
+ else // FIXME: offset_type_class, method_type_class, & lang_type_class?
+ assert(0 && "CallExpr::isBuiltinClassifyType(): unimplemented type");
+ }
+ return true;
+ }
+ return false;
+}
+
+/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
+/// corresponds to, e.g. "<<=".
+const char *BinaryOperator::getOpcodeStr(Opcode Op) {
+ switch (Op) {
+ default: assert(0 && "Unknown binary operator");
+ case Mul: return "*";
+ case Div: return "/";
+ case Rem: return "%";
+ case Add: return "+";
+ case Sub: return "-";
+ case Shl: return "<<";
+ case Shr: return ">>";
+ case LT: return "<";
+ case GT: return ">";
+ case LE: return "<=";
+ case GE: return ">=";
+ case EQ: return "==";
+ case NE: return "!=";
+ case And: return "&";
+ case Xor: return "^";
+ case Or: return "|";
+ case LAnd: return "&&";
+ case LOr: return "||";
+ case Assign: return "=";
+ case MulAssign: return "*=";
+ case DivAssign: return "/=";
+ case RemAssign: return "%=";
+ case AddAssign: return "+=";
+ case SubAssign: return "-=";
+ case ShlAssign: return "<<=";
+ case ShrAssign: return ">>=";
+ case AndAssign: return "&=";
+ case XorAssign: return "^=";
+ case OrAssign: return "|=";
+ case Comma: return ",";
+ }
+}
+
+InitListExpr::InitListExpr(SourceLocation lbraceloc,
+ Expr **initexprs, unsigned numinits,
+ SourceLocation rbraceloc)
+ : Expr(InitListExprClass, QualType())
+ , NumInits(numinits)
+ , LBraceLoc(lbraceloc)
+ , RBraceLoc(rbraceloc)
+{
+ InitExprs = new Expr*[numinits];
+ for (unsigned i = 0; i != numinits; i++)
+ InitExprs[i] = initexprs[i];
+}
+
+//===----------------------------------------------------------------------===//
+// Generic Expression Routines
+//===----------------------------------------------------------------------===//
+
+/// hasLocalSideEffect - Return true if this immediate expression has side
+/// effects, not counting any sub-expressions.
+bool Expr::hasLocalSideEffect() const {
+ switch (getStmtClass()) {
+ default:
+ return false;
+ case ParenExprClass:
+ return cast<ParenExpr>(this)->getSubExpr()->hasLocalSideEffect();
+ case UnaryOperatorClass: {
+ const UnaryOperator *UO = cast<UnaryOperator>(this);
+
+ switch (UO->getOpcode()) {
+ default: return false;
+ case UnaryOperator::PostInc:
+ case UnaryOperator::PostDec:
+ case UnaryOperator::PreInc:
+ case UnaryOperator::PreDec:
+ return true; // ++/--
+
+ case UnaryOperator::Deref:
+ // Dereferencing a volatile pointer is a side-effect.
+ return getType().isVolatileQualified();
+ case UnaryOperator::Real:
+ case UnaryOperator::Imag:
+ // accessing a piece of a volatile complex is a side-effect.
+ return UO->getSubExpr()->getType().isVolatileQualified();
+
+ case UnaryOperator::Extension:
+ return UO->getSubExpr()->hasLocalSideEffect();
+ }
+ }
+ case BinaryOperatorClass: {
+ const BinaryOperator *BinOp = cast<BinaryOperator>(this);
+ // Consider comma to have side effects if the LHS and RHS both do.
+ if (BinOp->getOpcode() == BinaryOperator::Comma)
+ return BinOp->getLHS()->hasLocalSideEffect() &&
+ BinOp->getRHS()->hasLocalSideEffect();
+
+ return BinOp->isAssignmentOp();
+ }
+ case CompoundAssignOperatorClass:
+ return true;
+
+ case ConditionalOperatorClass: {
+ const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
+ return Exp->getCond()->hasLocalSideEffect()
+ || (Exp->getLHS() && Exp->getLHS()->hasLocalSideEffect())
+ || (Exp->getRHS() && Exp->getRHS()->hasLocalSideEffect());
+ }
+
+ case MemberExprClass:
+ case ArraySubscriptExprClass:
+ // If the base pointer or element is to a volatile pointer/field, accessing
+ // if is a side effect.
+ return getType().isVolatileQualified();
+
+ case CallExprClass:
+ // TODO: check attributes for pure/const. "void foo() { strlen("bar"); }"
+ // should warn.
+ return true;
+ case ObjCMessageExprClass:
+ return true;
+
+ case CastExprClass:
+ // If this is a cast to void, check the operand. Otherwise, the result of
+ // the cast is unused.
+ if (getType()->isVoidType())
+ return cast<CastExpr>(this)->getSubExpr()->hasLocalSideEffect();
+ return false;
+ }
+}
+
+/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
+/// incomplete type other than void. Nonarray expressions that can be lvalues:
+/// - name, where name must be a variable
+/// - e[i]
+/// - (e), where e must be an lvalue
+/// - e.name, where e must be an lvalue
+/// - e->name
+/// - *e, the type of e cannot be a function type
+/// - string-constant
+/// - (__real__ e) and (__imag__ e) where e is an lvalue [GNU extension]
+/// - reference type [C++ [expr]]
+///
+Expr::isLvalueResult Expr::isLvalue() const {
+ // first, check the type (C99 6.3.2.1)
+ if (TR->isFunctionType()) // from isObjectType()
+ return LV_NotObjectType;
+
+ // Allow qualified void which is an incomplete type other than void (yuck).
+ if (TR->isVoidType() && !TR.getCanonicalType().getCVRQualifiers())
+ return LV_IncompleteVoidType;
+
+ if (TR->isReferenceType()) // C++ [expr]
+ return LV_Valid;
+
+ // the type looks fine, now check the expression
+ switch (getStmtClass()) {
+ case StringLiteralClass: // C99 6.5.1p4
+ return LV_Valid;
+ case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
+ // For vectors, make sure base is an lvalue (i.e. not a function call).
+ if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
+ return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue();
+ return LV_Valid;
+ case DeclRefExprClass: // C99 6.5.1p2
+ if (isa<VarDecl>(cast<DeclRefExpr>(this)->getDecl()))
+ return LV_Valid;
+ break;
+ case MemberExprClass: { // C99 6.5.2.3p4
+ const MemberExpr *m = cast<MemberExpr>(this);
+ return m->isArrow() ? LV_Valid : m->getBase()->isLvalue();
+ }
+ case UnaryOperatorClass:
+ if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
+ return LV_Valid; // C99 6.5.3p4
+
+ if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real ||
+ cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag)
+ return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(); // GNU.
+ break;
+ case ParenExprClass: // C99 6.5.1p5
+ return cast<ParenExpr>(this)->getSubExpr()->isLvalue();
+ case CompoundLiteralExprClass: // C99 6.5.2.5p5
+ return LV_Valid;
+ case OCUVectorElementExprClass:
+ if (cast<OCUVectorElementExpr>(this)->containsDuplicateElements())
+ return LV_DuplicateVectorComponents;
+ return LV_Valid;
+ case ObjCIvarRefExprClass: // ObjC instance variables are lvalues.
+ return LV_Valid;
+ case PreDefinedExprClass:
+ return LV_Valid;
+ default:
+ break;
+ }
+ return LV_InvalidExpression;
+}
+
+/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
+/// does not have an incomplete type, does not have a const-qualified type, and
+/// if it is a structure or union, does not have any member (including,
+/// recursively, any member or element of all contained aggregates or unions)
+/// with a const-qualified type.
+Expr::isModifiableLvalueResult Expr::isModifiableLvalue() const {
+ isLvalueResult lvalResult = isLvalue();
+
+ switch (lvalResult) {
+ case LV_Valid: break;
+ case LV_NotObjectType: return MLV_NotObjectType;
+ case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
+ case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
+ case LV_InvalidExpression: return MLV_InvalidExpression;
+ }
+ if (TR.isConstQualified())
+ return MLV_ConstQualified;
+ if (TR->isArrayType())
+ return MLV_ArrayType;
+ if (TR->isIncompleteType())
+ return MLV_IncompleteType;
+
+ if (const RecordType *r = dyn_cast<RecordType>(TR.getCanonicalType())) {
+ if (r->hasConstFields())
+ return MLV_ConstQualified;
+ }
+ return MLV_Valid;
+}
+
+/// hasGlobalStorage - Return true if this expression has static storage
+/// duration. This means that the address of this expression is a link-time
+/// constant.
+bool Expr::hasGlobalStorage() const {
+ switch (getStmtClass()) {
+ default:
+ return false;
+ case ParenExprClass:
+ return cast<ParenExpr>(this)->getSubExpr()->hasGlobalStorage();
+ case ImplicitCastExprClass:
+ return cast<ImplicitCastExpr>(this)->getSubExpr()->hasGlobalStorage();
+ case CompoundLiteralExprClass:
+ return cast<CompoundLiteralExpr>(this)->isFileScope();
+ case DeclRefExprClass: {
+ const Decl *D = cast<DeclRefExpr>(this)->getDecl();
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D))
+ return VD->hasGlobalStorage();
+ return false;
+ }
+ case MemberExprClass: {
+ const MemberExpr *M = cast<MemberExpr>(this);
+ return !M->isArrow() && M->getBase()->hasGlobalStorage();
+ }
+ case ArraySubscriptExprClass:
+ return cast<ArraySubscriptExpr>(this)->getBase()->hasGlobalStorage();
+ case PreDefinedExprClass:
+ return true;
+ }
+}
+
+Expr* Expr::IgnoreParens() {
+ Expr* E = this;
+ while (ParenExpr* P = dyn_cast<ParenExpr>(E))
+ E = P->getSubExpr();
+
+ return E;
+}
+
+/// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr
+/// or CastExprs or ImplicitCastExprs, returning their operand.
+Expr *Expr::IgnoreParenCasts() {
+ Expr *E = this;
+ while (true) {
+ if (ParenExpr *P = dyn_cast<ParenExpr>(E))
+ E = P->getSubExpr();
+ else if (CastExpr *P = dyn_cast<CastExpr>(E))
+ E = P->getSubExpr();
+ else if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E))
+ E = P->getSubExpr();
+ else
+ return E;
+ }
+}
+
+
+bool Expr::isConstantExpr(ASTContext &Ctx, SourceLocation *Loc) const {
+ switch (getStmtClass()) {
+ default:
+ if (Loc) *Loc = getLocStart();
+ return false;
+ case ParenExprClass:
+ return cast<ParenExpr>(this)->getSubExpr()->isConstantExpr(Ctx, Loc);
+ case StringLiteralClass:
+ case ObjCStringLiteralClass:
+ case FloatingLiteralClass:
+ case IntegerLiteralClass:
+ case CharacterLiteralClass:
+ case ImaginaryLiteralClass:
+ case TypesCompatibleExprClass:
+ case CXXBoolLiteralExprClass:
+ return true;
+ case CallExprClass: {
+ const CallExpr *CE = cast<CallExpr>(this);
+ llvm::APSInt Result(32);
+ Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
+ if (CE->isBuiltinClassifyType(Result))
+ return true;
+ if (CE->isBuiltinConstantExpr())
+ return true;
+ if (Loc) *Loc = getLocStart();
+ return false;
+ }
+ case DeclRefExprClass: {
+ const Decl *D = cast<DeclRefExpr>(this)->getDecl();
+ // Accept address of function.
+ if (isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D))
+ return true;
+ if (Loc) *Loc = getLocStart();
+ if (isa<VarDecl>(D))
+ return TR->isArrayType();
+ return false;
+ }
+ case CompoundLiteralExprClass:
+ if (Loc) *Loc = getLocStart();
+ // Allow "(int []){2,4}", since the array will be converted to a pointer.
+ // Allow "(vector type){2,4}" since the elements are all constant.
+ return TR->isArrayType() || TR->isVectorType();
+ case UnaryOperatorClass: {
+ const UnaryOperator *Exp = cast<UnaryOperator>(this);
+
+ // C99 6.6p9
+ if (Exp->getOpcode() == UnaryOperator::AddrOf) {
+ if (!Exp->getSubExpr()->hasGlobalStorage()) {
+ if (Loc) *Loc = getLocStart();
+ return false;
+ }
+ return true;
+ }
+
+ // Get the operand value. If this is sizeof/alignof, do not evalute the
+ // operand. This affects C99 6.6p3.
+ if (!Exp->isSizeOfAlignOfOp() &&
+ Exp->getOpcode() != UnaryOperator::OffsetOf &&
+ !Exp->getSubExpr()->isConstantExpr(Ctx, Loc))
+ return false;
+
+ switch (Exp->getOpcode()) {
+ // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
+ // See C99 6.6p3.
+ default:
+ if (Loc) *Loc = Exp->getOperatorLoc();
+ return false;
+ case UnaryOperator::Extension:
+ return true; // FIXME: this is wrong.
+ case UnaryOperator::SizeOf:
+ case UnaryOperator::AlignOf:
+ case UnaryOperator::OffsetOf:
+ // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
+ if (!Exp->getSubExpr()->getType()->isConstantSizeType()) {
+ if (Loc) *Loc = Exp->getOperatorLoc();
+ return false;
+ }
+ return true;
+ case UnaryOperator::LNot:
+ case UnaryOperator::Plus:
+ case UnaryOperator::Minus:
+ case UnaryOperator::Not:
+ return true;
+ }
+ }
+ case SizeOfAlignOfTypeExprClass: {
+ const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(this);
+ // alignof always evaluates to a constant.
+ if (Exp->isSizeOf() && !Exp->getArgumentType()->isVoidType() &&
+ !Exp->getArgumentType()->isConstantSizeType()) {
+ if (Loc) *Loc = Exp->getOperatorLoc();
+ return false;
+ }
+ return true;
+ }
+ case BinaryOperatorClass: {
+ const BinaryOperator *Exp = cast<BinaryOperator>(this);
+
+ // The LHS of a constant expr is always evaluated and needed.
+ if (!Exp->getLHS()->isConstantExpr(Ctx, Loc))
+ return false;
+
+ if (!Exp->getRHS()->isConstantExpr(Ctx, Loc))
+ return false;
+ return true;
+ }
+ case ImplicitCastExprClass:
+ case CastExprClass: {
+ const Expr *SubExpr;
+ SourceLocation CastLoc;
+ if (const CastExpr *C = dyn_cast<CastExpr>(this)) {
+ SubExpr = C->getSubExpr();
+ CastLoc = C->getLParenLoc();
+ } else {
+ SubExpr = cast<ImplicitCastExpr>(this)->getSubExpr();
+ CastLoc = getLocStart();
+ }
+ if (!SubExpr->isConstantExpr(Ctx, Loc)) {
+ if (Loc) *Loc = SubExpr->getLocStart();
+ return false;
+ }
+ return true;
+ }
+ case ConditionalOperatorClass: {
+ const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
+ if (!Exp->getCond()->isConstantExpr(Ctx, Loc) ||
+ // Handle the GNU extension for missing LHS.
+ !(Exp->getLHS() && Exp->getLHS()->isConstantExpr(Ctx, Loc)) ||
+ !Exp->getRHS()->isConstantExpr(Ctx, Loc))
+ return false;
+ return true;
+ }
+ case InitListExprClass: {
+ const InitListExpr *Exp = cast<InitListExpr>(this);
+ unsigned numInits = Exp->getNumInits();
+ for (unsigned i = 0; i < numInits; i++) {
+ if (!Exp->getInit(i)->isConstantExpr(Ctx, Loc)) {
+ if (Loc) *Loc = Exp->getInit(i)->getLocStart();
+ return false;
+ }
+ }
+ return true;
+ }
+ }
+}
+
+/// isIntegerConstantExpr - this recursive routine will test if an expression is
+/// an integer constant expression. Note: With the introduction of VLA's in
+/// C99 the result of the sizeof operator is no longer always a constant
+/// expression. The generalization of the wording to include any subexpression
+/// that is not evaluated (C99 6.6p3) means that nonconstant subexpressions
+/// can appear as operands to other operators (e.g. &&, ||, ?:). For instance,
+/// "0 || f()" can be treated as a constant expression. In C90 this expression,
+/// occurring in a context requiring a constant, would have been a constraint
+/// violation. FIXME: This routine currently implements C90 semantics.
+/// To properly implement C99 semantics this routine will need to evaluate
+/// expressions involving operators previously mentioned.
+
+/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
+/// comma, etc
+///
+/// FIXME: This should ext-warn on overflow during evaluation! ISO C does not
+/// permit this. This includes things like (int)1e1000
+///
+/// FIXME: Handle offsetof. Two things to do: Handle GCC's __builtin_offsetof
+/// to support gcc 4.0+ and handle the idiom GCC recognizes with a null pointer
+/// cast+dereference.
+bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
+ SourceLocation *Loc, bool isEvaluated) const {
+ switch (getStmtClass()) {
+ default:
+ if (Loc) *Loc = getLocStart();
+ return false;
+ case ParenExprClass:
+ return cast<ParenExpr>(this)->getSubExpr()->
+ isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated);
+ case IntegerLiteralClass:
+ Result = cast<IntegerLiteral>(this)->getValue();
+ break;
+ case CharacterLiteralClass: {
+ const CharacterLiteral *CL = cast<CharacterLiteral>(this);
+ Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
+ Result = CL->getValue();
+ Result.setIsUnsigned(!getType()->isSignedIntegerType());
+ break;
+ }
+ case TypesCompatibleExprClass: {
+ const TypesCompatibleExpr *TCE = cast<TypesCompatibleExpr>(this);
+ Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
+ Result = Ctx.typesAreCompatible(TCE->getArgType1(), TCE->getArgType2());
+ break;
+ }
+ case CallExprClass: {
+ const CallExpr *CE = cast<CallExpr>(this);
+ Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
+ if (CE->isBuiltinClassifyType(Result))
+ break;
+ if (Loc) *Loc = getLocStart();
+ return false;
+ }
+ case DeclRefExprClass:
+ if (const EnumConstantDecl *D =
+ dyn_cast<EnumConstantDecl>(cast<DeclRefExpr>(this)->getDecl())) {
+ Result = D->getInitVal();
+ break;
+ }
+ if (Loc) *Loc = getLocStart();
+ return false;
+ case UnaryOperatorClass: {
+ const UnaryOperator *Exp = cast<UnaryOperator>(this);
+
+ // Get the operand value. If this is sizeof/alignof, do not evalute the
+ // operand. This affects C99 6.6p3.
+ if (!Exp->isSizeOfAlignOfOp() && !Exp->isOffsetOfOp() &&
+ !Exp->getSubExpr()->isIntegerConstantExpr(Result, Ctx, Loc,isEvaluated))
+ return false;
+
+ switch (Exp->getOpcode()) {
+ // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
+ // See C99 6.6p3.
+ default:
+ if (Loc) *Loc = Exp->getOperatorLoc();
+ return false;
+ case UnaryOperator::Extension:
+ return true; // FIXME: this is wrong.
+ case UnaryOperator::SizeOf:
+ case UnaryOperator::AlignOf:
+ // Return the result in the right width.
+ Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
+
+ // sizeof(void) and __alignof__(void) = 1 as a gcc extension.
+ if (Exp->getSubExpr()->getType()->isVoidType()) {
+ Result = 1;
+ break;
+ }
+
+ // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
+ if (!Exp->getSubExpr()->getType()->isConstantSizeType()) {
+ if (Loc) *Loc = Exp->getOperatorLoc();
+ return false;
+ }
+
+ // Get information about the size or align.
+ if (Exp->getSubExpr()->getType()->isFunctionType()) {
+ // GCC extension: sizeof(function) = 1.
+ Result = Exp->getOpcode() == UnaryOperator::AlignOf ? 4 : 1;
+ } else {
+ unsigned CharSize = Ctx.Target.getCharWidth();
+ if (Exp->getOpcode() == UnaryOperator::AlignOf)
+ Result = Ctx.getTypeAlign(Exp->getSubExpr()->getType()) / CharSize;
+ else
+ Result = Ctx.getTypeSize(Exp->getSubExpr()->getType()) / CharSize;
+ }
+ break;
+ case UnaryOperator::LNot: {
+ bool Val = Result == 0;
+ Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
+ Result = Val;
+ break;
+ }
+ case UnaryOperator::Plus:
+ break;
+ case UnaryOperator::Minus:
+ Result = -Result;
+ break;
+ case UnaryOperator::Not:
+ Result = ~Result;
+ break;
+ case UnaryOperator::OffsetOf:
+ Result = Exp->evaluateOffsetOf(Ctx);
+ }
+ break;
+ }
+ case SizeOfAlignOfTypeExprClass: {
+ const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(this);
+
+ // Return the result in the right width.
+ Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
+
+ // sizeof(void) and __alignof__(void) = 1 as a gcc extension.
+ if (Exp->getArgumentType()->isVoidType()) {
+ Result = 1;
+ break;
+ }
+
+ // alignof always evaluates to a constant, sizeof does if arg is not VLA.
+ if (Exp->isSizeOf() && !Exp->getArgumentType()->isConstantSizeType()) {
+ if (Loc) *Loc = Exp->getOperatorLoc();
+ return false;
+ }
+
+ // Get information about the size or align.
+ if (Exp->getArgumentType()->isFunctionType()) {
+ // GCC extension: sizeof(function) = 1.
+ Result = Exp->isSizeOf() ? 1 : 4;
+ } else {
+ unsigned CharSize = Ctx.Target.getCharWidth();
+ if (Exp->isSizeOf())
+ Result = Ctx.getTypeSize(Exp->getArgumentType()) / CharSize;
+ else
+ Result = Ctx.getTypeAlign(Exp->getArgumentType()) / CharSize;
+ }
+ break;
+ }
+ case BinaryOperatorClass: {
+ const BinaryOperator *Exp = cast<BinaryOperator>(this);
+
+ // The LHS of a constant expr is always evaluated and needed.
+ if (!Exp->getLHS()->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
+ return false;
+
+ llvm::APSInt RHS(Result);
+
+ // The short-circuiting &&/|| operators don't necessarily evaluate their
+ // RHS. Make sure to pass isEvaluated down correctly.
+ if (Exp->isLogicalOp()) {
+ bool RHSEval;
+ if (Exp->getOpcode() == BinaryOperator::LAnd)
+ RHSEval = Result != 0;
+ else {
+ assert(Exp->getOpcode() == BinaryOperator::LOr &&"Unexpected logical");
+ RHSEval = Result == 0;
+ }
+
+ if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Ctx, Loc,
+ isEvaluated & RHSEval))
+ return false;
+ } else {
+ if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Ctx, Loc, isEvaluated))
+ return false;
+ }
+
+ switch (Exp->getOpcode()) {
+ default:
+ if (Loc) *Loc = getLocStart();
+ return false;
+ case BinaryOperator::Mul:
+ Result *= RHS;
+ break;
+ case BinaryOperator::Div:
+ if (RHS == 0) {
+ if (!isEvaluated) break;
+ if (Loc) *Loc = getLocStart();
+ return false;
+ }
+ Result /= RHS;
+ break;
+ case BinaryOperator::Rem:
+ if (RHS == 0) {
+ if (!isEvaluated) break;
+ if (Loc) *Loc = getLocStart();
+ return false;
+ }
+ Result %= RHS;
+ break;
+ case BinaryOperator::Add: Result += RHS; break;
+ case BinaryOperator::Sub: Result -= RHS; break;
+ case BinaryOperator::Shl:
+ Result <<=
+ static_cast<uint32_t>(RHS.getLimitedValue(Result.getBitWidth()-1));
+ break;
+ case BinaryOperator::Shr:
+ Result >>=
+ static_cast<uint32_t>(RHS.getLimitedValue(Result.getBitWidth()-1));
+ break;
+ case BinaryOperator::LT: Result = Result < RHS; break;
+ case BinaryOperator::GT: Result = Result > RHS; break;
+ case BinaryOperator::LE: Result = Result <= RHS; break;
+ case BinaryOperator::GE: Result = Result >= RHS; break;
+ case BinaryOperator::EQ: Result = Result == RHS; break;
+ case BinaryOperator::NE: Result = Result != RHS; break;
+ case BinaryOperator::And: Result &= RHS; break;
+ case BinaryOperator::Xor: Result ^= RHS; break;
+ case BinaryOperator::Or: Result |= RHS; break;
+ case BinaryOperator::LAnd:
+ Result = Result != 0 && RHS != 0;
+ break;
+ case BinaryOperator::LOr:
+ Result = Result != 0 || RHS != 0;
+ break;
+
+ case BinaryOperator::Comma:
+ // C99 6.6p3: "shall not contain assignment, ..., or comma operators,
+ // *except* when they are contained within a subexpression that is not
+ // evaluated". Note that Assignment can never happen due to constraints
+ // on the LHS subexpr, so we don't need to check it here.
+ if (isEvaluated) {
+ if (Loc) *Loc = getLocStart();
+ return false;
+ }
+
+ // The result of the constant expr is the RHS.
+ Result = RHS;
+ return true;
+ }
+
+ assert(!Exp->isAssignmentOp() && "LHS can't be a constant expr!");
+ break;
+ }
+ case ImplicitCastExprClass:
+ case CastExprClass: {
+ const Expr *SubExpr;
+ SourceLocation CastLoc;
+ if (const CastExpr *C = dyn_cast<CastExpr>(this)) {
+ SubExpr = C->getSubExpr();
+ CastLoc = C->getLParenLoc();
+ } else {
+ SubExpr = cast<ImplicitCastExpr>(this)->getSubExpr();
+ CastLoc = getLocStart();
+ }
+
+ // C99 6.6p6: shall only convert arithmetic types to integer types.
+ if (!SubExpr->getType()->isArithmeticType() ||
+ !getType()->isIntegerType()) {
+ if (Loc) *Loc = SubExpr->getLocStart();
+ return false;
+ }
+
+ uint32_t DestWidth = static_cast<uint32_t>(Ctx.getTypeSize(getType()));
+
+ // Handle simple integer->integer casts.
+ if (SubExpr->getType()->isIntegerType()) {
+ if (!SubExpr->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
+ return false;
+
+ // Figure out if this is a truncate, extend or noop cast.
+ // If the input is signed, do a sign extend, noop, or truncate.
+ if (getType()->isBooleanType()) {
+ // Conversion to bool compares against zero.
+ Result = Result != 0;
+ Result.zextOrTrunc(DestWidth);
+ } else if (SubExpr->getType()->isSignedIntegerType())
+ Result.sextOrTrunc(DestWidth);
+ else // If the input is unsigned, do a zero extend, noop, or truncate.
+ Result.zextOrTrunc(DestWidth);
+ break;
+ }
+
+ // Allow floating constants that are the immediate operands of casts or that
+ // are parenthesized.
+ const Expr *Operand = SubExpr;
+ while (const ParenExpr *PE = dyn_cast<ParenExpr>(Operand))
+ Operand = PE->getSubExpr();
+
+ // If this isn't a floating literal, we can't handle it.
+ const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(Operand);
+ if (!FL) {
+ if (Loc) *Loc = Operand->getLocStart();
+ return false;
+ }
+
+ // If the destination is boolean, compare against zero.
+ if (getType()->isBooleanType()) {
+ Result = !FL->getValue().isZero();
+ Result.zextOrTrunc(DestWidth);
+ break;
+ }
+
+ // Determine whether we are converting to unsigned or signed.
+ bool DestSigned = getType()->isSignedIntegerType();
+
+ // TODO: Warn on overflow, but probably not here: isIntegerConstantExpr can
+ // be called multiple times per AST.
+ uint64_t Space[4];
+ (void)FL->getValue().convertToInteger(Space, DestWidth, DestSigned,
+ llvm::APFloat::rmTowardZero);
+ Result = llvm::APInt(DestWidth, 4, Space);
+ break;
+ }
+ case ConditionalOperatorClass: {
+ const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
+
+ if (!Exp->getCond()->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
+ return false;
+
+ const Expr *TrueExp = Exp->getLHS();
+ const Expr *FalseExp = Exp->getRHS();
+ if (Result == 0) std::swap(TrueExp, FalseExp);
+
+ // Evaluate the false one first, discard the result.
+ if (FalseExp && !FalseExp->isIntegerConstantExpr(Result, Ctx, Loc, false))
+ return false;
+ // Evalute the true one, capture the result.
+ if (TrueExp &&
+ !TrueExp->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
+ return false;
+ break;
+ }
+ }
+
+ // Cases that are valid constant exprs fall through to here.
+ Result.setIsUnsigned(getType()->isUnsignedIntegerType());
+ return true;
+}
+
+/// isNullPointerConstant - C99 6.3.2.3p3 - Return true if this is either an
+/// integer constant expression with the value zero, or if this is one that is
+/// cast to void*.
+bool Expr::isNullPointerConstant(ASTContext &Ctx) const {
+ // Strip off a cast to void*, if it exists.
+ if (const CastExpr *CE = dyn_cast<CastExpr>(this)) {
+ // Check that it is a cast to void*.
+ if (const PointerType *PT = CE->getType()->getAsPointerType()) {
+ QualType Pointee = PT->getPointeeType();
+ if (Pointee.getCVRQualifiers() == 0 &&
+ Pointee->isVoidType() && // to void*
+ CE->getSubExpr()->getType()->isIntegerType()) // from int.
+ return CE->getSubExpr()->isNullPointerConstant(Ctx);
+ }
+ } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
+ // Ignore the ImplicitCastExpr type entirely.
+ return ICE->getSubExpr()->isNullPointerConstant(Ctx);
+ } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
+ // Accept ((void*)0) as a null pointer constant, as many other
+ // implementations do.
+ return PE->getSubExpr()->isNullPointerConstant(Ctx);
+ }
+
+ // This expression must be an integer type.
+ if (!getType()->isIntegerType())
+ return false;
+
+ // If we have an integer constant expression, we need to *evaluate* it and
+ // test for the value 0.
+ llvm::APSInt Val(32);
+ return isIntegerConstantExpr(Val, Ctx, 0, true) && Val == 0;
+}
+
+unsigned OCUVectorElementExpr::getNumElements() const {
+ return strlen(Accessor.getName());
+}
+
+
+/// getComponentType - Determine whether the components of this access are
+/// "point" "color" or "texture" elements.
+OCUVectorElementExpr::ElementType
+OCUVectorElementExpr::getElementType() const {
+ // derive the component type, no need to waste space.
+ const char *compStr = Accessor.getName();
+
+ if (OCUVectorType::getPointAccessorIdx(*compStr) != -1) return Point;
+ if (OCUVectorType::getColorAccessorIdx(*compStr) != -1) return Color;
+
+ assert(OCUVectorType::getTextureAccessorIdx(*compStr) != -1 &&
+ "getComponentType(): Illegal accessor");
+ return Texture;
+}
+
+/// containsDuplicateElements - Return true if any element access is
+/// repeated.
+bool OCUVectorElementExpr::containsDuplicateElements() const {
+ const char *compStr = Accessor.getName();
+ unsigned length = strlen(compStr);
+
+ for (unsigned i = 0; i < length-1; i++) {
+ const char *s = compStr+i;
+ for (const char c = *s++; *s; s++)
+ if (c == *s)
+ return true;
+ }
+ return false;
+}
+
+/// getEncodedElementAccess - We encode fields with two bits per component.
+unsigned OCUVectorElementExpr::getEncodedElementAccess() const {
+ const char *compStr = Accessor.getName();
+ unsigned length = getNumElements();
+
+ unsigned Result = 0;
+
+ while (length--) {
+ Result <<= 2;
+ int Idx = OCUVectorType::getAccessorIdx(compStr[length]);
+ assert(Idx != -1 && "Invalid accessor letter");
+ Result |= Idx;
+ }
+ return Result;
+}
+
+// constructor for instance messages.
+ObjCMessageExpr::ObjCMessageExpr(Expr *receiver, Selector selInfo,
+ QualType retType, ObjCMethodDecl *mproto,
+ SourceLocation LBrac, SourceLocation RBrac,
+ Expr **ArgExprs, unsigned nargs)
+ : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
+ MethodProto(mproto), ClassName(0) {
+ NumArgs = nargs;
+ SubExprs = new Expr*[NumArgs+1];
+ SubExprs[RECEIVER] = receiver;
+ if (NumArgs) {
+ for (unsigned i = 0; i != NumArgs; ++i)
+ SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
+ }
+ LBracloc = LBrac;
+ RBracloc = RBrac;
+}
+
+// constructor for class messages.
+// FIXME: clsName should be typed to ObjCInterfaceType
+ObjCMessageExpr::ObjCMessageExpr(IdentifierInfo *clsName, Selector selInfo,
+ QualType retType, ObjCMethodDecl *mproto,
+ SourceLocation LBrac, SourceLocation RBrac,
+ Expr **ArgExprs, unsigned nargs)
+ : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
+ MethodProto(mproto), ClassName(clsName) {
+ NumArgs = nargs;
+ SubExprs = new Expr*[NumArgs+1];
+ SubExprs[RECEIVER] = 0;
+ if (NumArgs) {
+ for (unsigned i = 0; i != NumArgs; ++i)
+ SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
+ }
+ LBracloc = LBrac;
+ RBracloc = RBrac;
+}
+
+
+bool ChooseExpr::isConditionTrue(ASTContext &C) const {
+ llvm::APSInt CondVal(32);
+ bool IsConst = getCond()->isIntegerConstantExpr(CondVal, C);
+ assert(IsConst && "Condition of choose expr must be i-c-e"); IsConst=IsConst;
+ return CondVal != 0;
+}
+
+static int64_t evaluateOffsetOf(ASTContext& C, const Expr *E)
+{
+ if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
+ QualType Ty = ME->getBase()->getType();
+
+ RecordDecl *RD = Ty->getAsRecordType()->getDecl();
+ const ASTRecordLayout &RL = C.getASTRecordLayout(RD);
+ FieldDecl *FD = ME->getMemberDecl();
+
+ // FIXME: This is linear time.
+ unsigned i = 0, e = 0;
+ for (i = 0, e = RD->getNumMembers(); i != e; i++) {
+ if (RD->getMember(i) == FD)
+ break;
+ }
+
+ return RL.getFieldOffset(i) + evaluateOffsetOf(C, ME->getBase());
+ } else if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) {
+ const Expr *Base = ASE->getBase();
+ llvm::APSInt Idx(32);
+ bool ICE = ASE->getIdx()->isIntegerConstantExpr(Idx, C);
+ assert(ICE && "Array index is not a constant integer!");
+
+ int64_t size = C.getTypeSize(ASE->getType());
+ size *= Idx.getSExtValue();
+
+ return size + evaluateOffsetOf(C, Base);
+ } else if (isa<CompoundLiteralExpr>(E))
+ return 0;
+
+ assert(0 && "Unknown offsetof subexpression!");
+ return 0;
+}
+
+int64_t UnaryOperator::evaluateOffsetOf(ASTContext& C) const
+{
+ assert(Opc == OffsetOf && "Unary operator not offsetof!");
+
+ unsigned CharSize = C.Target.getCharWidth();
+ return ::evaluateOffsetOf(C, Val) / CharSize;
+}
+
+//===----------------------------------------------------------------------===//
+// Child Iterators for iterating over subexpressions/substatements
+//===----------------------------------------------------------------------===//
+
+// DeclRefExpr
+Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
+Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
+
+// ObjCIvarRefExpr
+Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return child_iterator(); }
+Stmt::child_iterator ObjCIvarRefExpr::child_end() { return child_iterator(); }
+
+// PreDefinedExpr
+Stmt::child_iterator PreDefinedExpr::child_begin() { return child_iterator(); }
+Stmt::child_iterator PreDefinedExpr::child_end() { return child_iterator(); }
+
+// IntegerLiteral
+Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
+Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
+
+// CharacterLiteral
+Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator(); }
+Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
+
+// FloatingLiteral
+Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
+Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
+
+// ImaginaryLiteral
+Stmt::child_iterator ImaginaryLiteral::child_begin() {
+ return reinterpret_cast<Stmt**>(&Val);
+}
+Stmt::child_iterator ImaginaryLiteral::child_end() {
+ return reinterpret_cast<Stmt**>(&Val)+1;
+}
+
+// StringLiteral
+Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
+Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
+
+// ParenExpr
+Stmt::child_iterator ParenExpr::child_begin() {
+ return reinterpret_cast<Stmt**>(&Val);
+}
+Stmt::child_iterator ParenExpr::child_end() {
+ return reinterpret_cast<Stmt**>(&Val)+1;
+}
+
+// UnaryOperator
+Stmt::child_iterator UnaryOperator::child_begin() {
+ return reinterpret_cast<Stmt**>(&Val);
+}
+Stmt::child_iterator UnaryOperator::child_end() {
+ return reinterpret_cast<Stmt**>(&Val+1);
+}
+
+// SizeOfAlignOfTypeExpr
+Stmt::child_iterator SizeOfAlignOfTypeExpr::child_begin() {
+ // If the type is a VLA type (and not a typedef), the size expression of the
+ // VLA needs to be treated as an executable expression.
+ if (VariableArrayType* T = dyn_cast<VariableArrayType>(Ty.getTypePtr()))
+ return child_iterator(T);
+ else
+ return child_iterator();
+}
+Stmt::child_iterator SizeOfAlignOfTypeExpr::child_end() {
+ return child_iterator();
+}
+
+// ArraySubscriptExpr
+Stmt::child_iterator ArraySubscriptExpr::child_begin() {
+ return reinterpret_cast<Stmt**>(&SubExprs);
+}
+Stmt::child_iterator ArraySubscriptExpr::child_end() {
+ return reinterpret_cast<Stmt**>(&SubExprs)+END_EXPR;
+}
+
+// CallExpr
+Stmt::child_iterator CallExpr::child_begin() {
+ return reinterpret_cast<Stmt**>(&SubExprs[0]);
+}
+Stmt::child_iterator CallExpr::child_end() {
+ return reinterpret_cast<Stmt**>(&SubExprs[NumArgs+ARGS_START]);
+}
+
+// MemberExpr
+Stmt::child_iterator MemberExpr::child_begin() {
+ return reinterpret_cast<Stmt**>(&Base);
+}
+Stmt::child_iterator MemberExpr::child_end() {
+ return reinterpret_cast<Stmt**>(&Base)+1;
+}
+
+// OCUVectorElementExpr
+Stmt::child_iterator OCUVectorElementExpr::child_begin() {
+ return reinterpret_cast<Stmt**>(&Base);
+}
+Stmt::child_iterator OCUVectorElementExpr::child_end() {
+ return reinterpret_cast<Stmt**>(&Base)+1;
+}
+
+// CompoundLiteralExpr
+Stmt::child_iterator CompoundLiteralExpr::child_begin() {
+ return reinterpret_cast<Stmt**>(&Init);
+}
+Stmt::child_iterator CompoundLiteralExpr::child_end() {
+ return reinterpret_cast<Stmt**>(&Init)+1;
+}
+
+// ImplicitCastExpr
+Stmt::child_iterator ImplicitCastExpr::child_begin() {
+ return reinterpret_cast<Stmt**>(&Op);
+}
+Stmt::child_iterator ImplicitCastExpr::child_end() {
+ return reinterpret_cast<Stmt**>(&Op)+1;
+}
+
+// CastExpr
+Stmt::child_iterator CastExpr::child_begin() {
+ return reinterpret_cast<Stmt**>(&Op);
+}
+Stmt::child_iterator CastExpr::child_end() {
+ return reinterpret_cast<Stmt**>(&Op)+1;
+}
+
+// BinaryOperator
+Stmt::child_iterator BinaryOperator::child_begin() {
+ return reinterpret_cast<Stmt**>(&SubExprs);
+}
+Stmt::child_iterator BinaryOperator::child_end() {
+ return reinterpret_cast<Stmt**>(&SubExprs)+END_EXPR;
+}
+
+// ConditionalOperator
+Stmt::child_iterator ConditionalOperator::child_begin() {
+ return reinterpret_cast<Stmt**>(&SubExprs);
+}
+Stmt::child_iterator ConditionalOperator::child_end() {
+ return reinterpret_cast<Stmt**>(&SubExprs)+END_EXPR;
+}
+
+// AddrLabelExpr
+Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
+Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
+
+// StmtExpr
+Stmt::child_iterator StmtExpr::child_begin() {
+ return reinterpret_cast<Stmt**>(&SubStmt);
+}
+Stmt::child_iterator StmtExpr::child_end() {
+ return reinterpret_cast<Stmt**>(&SubStmt)+1;
+}
+
+// TypesCompatibleExpr
+Stmt::child_iterator TypesCompatibleExpr::child_begin() {
+ return child_iterator();
+}
+
+Stmt::child_iterator TypesCompatibleExpr::child_end() {
+ return child_iterator();
+}
+
+// ChooseExpr
+Stmt::child_iterator ChooseExpr::child_begin() {
+ return reinterpret_cast<Stmt**>(&SubExprs);
+}
+
+Stmt::child_iterator ChooseExpr::child_end() {
+ return reinterpret_cast<Stmt**>(&SubExprs)+END_EXPR;
+}
+
+// OverloadExpr
+Stmt::child_iterator OverloadExpr::child_begin() {
+ return reinterpret_cast<Stmt**>(&SubExprs[0]);
+}
+Stmt::child_iterator OverloadExpr::child_end() {
+ return reinterpret_cast<Stmt**>(&SubExprs[NumExprs]);
+}
+
+// VAArgExpr
+Stmt::child_iterator VAArgExpr::child_begin() {
+ return reinterpret_cast<Stmt**>(&Val);
+}
+
+Stmt::child_iterator VAArgExpr::child_end() {
+ return reinterpret_cast<Stmt**>(&Val)+1;
+}
+
+// InitListExpr
+Stmt::child_iterator InitListExpr::child_begin() {
+ return reinterpret_cast<Stmt**>(&InitExprs[0]);
+}
+Stmt::child_iterator InitListExpr::child_end() {
+ return reinterpret_cast<Stmt**>(&InitExprs[NumInits]);
+}
+
+// ObjCStringLiteral
+Stmt::child_iterator ObjCStringLiteral::child_begin() {
+ return child_iterator();
+}
+Stmt::child_iterator ObjCStringLiteral::child_end() {
+ return child_iterator();
+}
+
+// ObjCEncodeExpr
+Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
+Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
+
+// ObjCSelectorExpr
+Stmt::child_iterator ObjCSelectorExpr::child_begin() {
+ return child_iterator();
+}
+Stmt::child_iterator ObjCSelectorExpr::child_end() {
+ return child_iterator();
+}
+
+// ObjCProtocolExpr
+Stmt::child_iterator ObjCProtocolExpr::child_begin() {
+ return child_iterator();
+}
+Stmt::child_iterator ObjCProtocolExpr::child_end() {
+ return child_iterator();
+}
+
+// ObjCMessageExpr
+Stmt::child_iterator ObjCMessageExpr::child_begin() {
+ return reinterpret_cast<Stmt**>(&SubExprs[0]);
+}
+Stmt::child_iterator ObjCMessageExpr::child_end() {
+ return reinterpret_cast<Stmt**>(&SubExprs[getNumArgs()+ARGS_START]);
+}
+
OpenPOWER on IntegriCloud