diff options
Diffstat (limited to 'clang/lib/AST/Expr.cpp')
-rw-r--r-- | clang/lib/AST/Expr.cpp | 1391 |
1 files changed, 1391 insertions, 0 deletions
diff --git a/clang/lib/AST/Expr.cpp b/clang/lib/AST/Expr.cpp new file mode 100644 index 00000000000..11fcc419a51 --- /dev/null +++ b/clang/lib/AST/Expr.cpp @@ -0,0 +1,1391 @@ +//===--- Expr.cpp - Expression AST Node Implementation --------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the Expr class and subclasses. +// +//===----------------------------------------------------------------------===// + +#include "clang/AST/Expr.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/StmtVisitor.h" +#include "clang/Basic/IdentifierTable.h" +#include "clang/Basic/TargetInfo.h" +using namespace clang; + +//===----------------------------------------------------------------------===// +// Primary Expressions. +//===----------------------------------------------------------------------===// + +StringLiteral::StringLiteral(const char *strData, unsigned byteLength, + bool Wide, QualType t, SourceLocation firstLoc, + SourceLocation lastLoc) : + Expr(StringLiteralClass, t) { + // OPTIMIZE: could allocate this appended to the StringLiteral. + char *AStrData = new char[byteLength]; + memcpy(AStrData, strData, byteLength); + StrData = AStrData; + ByteLength = byteLength; + IsWide = Wide; + firstTokLoc = firstLoc; + lastTokLoc = lastLoc; +} + +StringLiteral::~StringLiteral() { + delete[] StrData; +} + +bool UnaryOperator::isPostfix(Opcode Op) { + switch (Op) { + case PostInc: + case PostDec: + return true; + default: + return false; + } +} + +/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it +/// corresponds to, e.g. "sizeof" or "[pre]++". +const char *UnaryOperator::getOpcodeStr(Opcode Op) { + switch (Op) { + default: assert(0 && "Unknown unary operator"); + case PostInc: return "++"; + case PostDec: return "--"; + case PreInc: return "++"; + case PreDec: return "--"; + case AddrOf: return "&"; + case Deref: return "*"; + case Plus: return "+"; + case Minus: return "-"; + case Not: return "~"; + case LNot: return "!"; + case Real: return "__real"; + case Imag: return "__imag"; + case SizeOf: return "sizeof"; + case AlignOf: return "alignof"; + case Extension: return "__extension__"; + case OffsetOf: return "__builtin_offsetof"; + } +} + +//===----------------------------------------------------------------------===// +// Postfix Operators. +//===----------------------------------------------------------------------===// + + +CallExpr::CallExpr(Expr *fn, Expr **args, unsigned numargs, QualType t, + SourceLocation rparenloc) + : Expr(CallExprClass, t), NumArgs(numargs) { + SubExprs = new Expr*[numargs+1]; + SubExprs[FN] = fn; + for (unsigned i = 0; i != numargs; ++i) + SubExprs[i+ARGS_START] = args[i]; + RParenLoc = rparenloc; +} + +/// setNumArgs - This changes the number of arguments present in this call. +/// Any orphaned expressions are deleted by this, and any new operands are set +/// to null. +void CallExpr::setNumArgs(unsigned NumArgs) { + // No change, just return. + if (NumArgs == getNumArgs()) return; + + // If shrinking # arguments, just delete the extras and forgot them. + if (NumArgs < getNumArgs()) { + for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i) + delete getArg(i); + this->NumArgs = NumArgs; + return; + } + + // Otherwise, we are growing the # arguments. New an bigger argument array. + Expr **NewSubExprs = new Expr*[NumArgs+1]; + // Copy over args. + for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i) + NewSubExprs[i] = SubExprs[i]; + // Null out new args. + for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i) + NewSubExprs[i] = 0; + + delete[] SubExprs; + SubExprs = NewSubExprs; + this->NumArgs = NumArgs; +} + +bool CallExpr::isBuiltinConstantExpr() const { + // All simple function calls (e.g. func()) are implicitly cast to pointer to + // function. As a result, we try and obtain the DeclRefExpr from the + // ImplicitCastExpr. + const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee()); + if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()). + return false; + + const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()); + if (!DRE) + return false; + + const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()); + if (!FDecl) + return false; + + unsigned builtinID = FDecl->getIdentifier()->getBuiltinID(); + if (!builtinID) + return false; + + // We have a builtin that is a constant expression + if (builtinID == Builtin::BI__builtin___CFStringMakeConstantString) + return true; + return false; +} + +bool CallExpr::isBuiltinClassifyType(llvm::APSInt &Result) const { + // The following enum mimics gcc's internal "typeclass.h" file. + enum gcc_type_class { + no_type_class = -1, + void_type_class, integer_type_class, char_type_class, + enumeral_type_class, boolean_type_class, + pointer_type_class, reference_type_class, offset_type_class, + real_type_class, complex_type_class, + function_type_class, method_type_class, + record_type_class, union_type_class, + array_type_class, string_type_class, + lang_type_class + }; + Result.setIsSigned(true); + + // All simple function calls (e.g. func()) are implicitly cast to pointer to + // function. As a result, we try and obtain the DeclRefExpr from the + // ImplicitCastExpr. + const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee()); + if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()). + return false; + const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()); + if (!DRE) + return false; + + // We have a DeclRefExpr. + if (strcmp(DRE->getDecl()->getName(), "__builtin_classify_type") == 0) { + // If no argument was supplied, default to "no_type_class". This isn't + // ideal, however it's what gcc does. + Result = static_cast<uint64_t>(no_type_class); + if (NumArgs >= 1) { + QualType argType = getArg(0)->getType(); + + if (argType->isVoidType()) + Result = void_type_class; + else if (argType->isEnumeralType()) + Result = enumeral_type_class; + else if (argType->isBooleanType()) + Result = boolean_type_class; + else if (argType->isCharType()) + Result = string_type_class; // gcc doesn't appear to use char_type_class + else if (argType->isIntegerType()) + Result = integer_type_class; + else if (argType->isPointerType()) + Result = pointer_type_class; + else if (argType->isReferenceType()) + Result = reference_type_class; + else if (argType->isRealType()) + Result = real_type_class; + else if (argType->isComplexType()) + Result = complex_type_class; + else if (argType->isFunctionType()) + Result = function_type_class; + else if (argType->isStructureType()) + Result = record_type_class; + else if (argType->isUnionType()) + Result = union_type_class; + else if (argType->isArrayType()) + Result = array_type_class; + else if (argType->isUnionType()) + Result = union_type_class; + else // FIXME: offset_type_class, method_type_class, & lang_type_class? + assert(0 && "CallExpr::isBuiltinClassifyType(): unimplemented type"); + } + return true; + } + return false; +} + +/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it +/// corresponds to, e.g. "<<=". +const char *BinaryOperator::getOpcodeStr(Opcode Op) { + switch (Op) { + default: assert(0 && "Unknown binary operator"); + case Mul: return "*"; + case Div: return "/"; + case Rem: return "%"; + case Add: return "+"; + case Sub: return "-"; + case Shl: return "<<"; + case Shr: return ">>"; + case LT: return "<"; + case GT: return ">"; + case LE: return "<="; + case GE: return ">="; + case EQ: return "=="; + case NE: return "!="; + case And: return "&"; + case Xor: return "^"; + case Or: return "|"; + case LAnd: return "&&"; + case LOr: return "||"; + case Assign: return "="; + case MulAssign: return "*="; + case DivAssign: return "/="; + case RemAssign: return "%="; + case AddAssign: return "+="; + case SubAssign: return "-="; + case ShlAssign: return "<<="; + case ShrAssign: return ">>="; + case AndAssign: return "&="; + case XorAssign: return "^="; + case OrAssign: return "|="; + case Comma: return ","; + } +} + +InitListExpr::InitListExpr(SourceLocation lbraceloc, + Expr **initexprs, unsigned numinits, + SourceLocation rbraceloc) + : Expr(InitListExprClass, QualType()) + , NumInits(numinits) + , LBraceLoc(lbraceloc) + , RBraceLoc(rbraceloc) +{ + InitExprs = new Expr*[numinits]; + for (unsigned i = 0; i != numinits; i++) + InitExprs[i] = initexprs[i]; +} + +//===----------------------------------------------------------------------===// +// Generic Expression Routines +//===----------------------------------------------------------------------===// + +/// hasLocalSideEffect - Return true if this immediate expression has side +/// effects, not counting any sub-expressions. +bool Expr::hasLocalSideEffect() const { + switch (getStmtClass()) { + default: + return false; + case ParenExprClass: + return cast<ParenExpr>(this)->getSubExpr()->hasLocalSideEffect(); + case UnaryOperatorClass: { + const UnaryOperator *UO = cast<UnaryOperator>(this); + + switch (UO->getOpcode()) { + default: return false; + case UnaryOperator::PostInc: + case UnaryOperator::PostDec: + case UnaryOperator::PreInc: + case UnaryOperator::PreDec: + return true; // ++/-- + + case UnaryOperator::Deref: + // Dereferencing a volatile pointer is a side-effect. + return getType().isVolatileQualified(); + case UnaryOperator::Real: + case UnaryOperator::Imag: + // accessing a piece of a volatile complex is a side-effect. + return UO->getSubExpr()->getType().isVolatileQualified(); + + case UnaryOperator::Extension: + return UO->getSubExpr()->hasLocalSideEffect(); + } + } + case BinaryOperatorClass: { + const BinaryOperator *BinOp = cast<BinaryOperator>(this); + // Consider comma to have side effects if the LHS and RHS both do. + if (BinOp->getOpcode() == BinaryOperator::Comma) + return BinOp->getLHS()->hasLocalSideEffect() && + BinOp->getRHS()->hasLocalSideEffect(); + + return BinOp->isAssignmentOp(); + } + case CompoundAssignOperatorClass: + return true; + + case ConditionalOperatorClass: { + const ConditionalOperator *Exp = cast<ConditionalOperator>(this); + return Exp->getCond()->hasLocalSideEffect() + || (Exp->getLHS() && Exp->getLHS()->hasLocalSideEffect()) + || (Exp->getRHS() && Exp->getRHS()->hasLocalSideEffect()); + } + + case MemberExprClass: + case ArraySubscriptExprClass: + // If the base pointer or element is to a volatile pointer/field, accessing + // if is a side effect. + return getType().isVolatileQualified(); + + case CallExprClass: + // TODO: check attributes for pure/const. "void foo() { strlen("bar"); }" + // should warn. + return true; + case ObjCMessageExprClass: + return true; + + case CastExprClass: + // If this is a cast to void, check the operand. Otherwise, the result of + // the cast is unused. + if (getType()->isVoidType()) + return cast<CastExpr>(this)->getSubExpr()->hasLocalSideEffect(); + return false; + } +} + +/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an +/// incomplete type other than void. Nonarray expressions that can be lvalues: +/// - name, where name must be a variable +/// - e[i] +/// - (e), where e must be an lvalue +/// - e.name, where e must be an lvalue +/// - e->name +/// - *e, the type of e cannot be a function type +/// - string-constant +/// - (__real__ e) and (__imag__ e) where e is an lvalue [GNU extension] +/// - reference type [C++ [expr]] +/// +Expr::isLvalueResult Expr::isLvalue() const { + // first, check the type (C99 6.3.2.1) + if (TR->isFunctionType()) // from isObjectType() + return LV_NotObjectType; + + // Allow qualified void which is an incomplete type other than void (yuck). + if (TR->isVoidType() && !TR.getCanonicalType().getCVRQualifiers()) + return LV_IncompleteVoidType; + + if (TR->isReferenceType()) // C++ [expr] + return LV_Valid; + + // the type looks fine, now check the expression + switch (getStmtClass()) { + case StringLiteralClass: // C99 6.5.1p4 + return LV_Valid; + case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2)))) + // For vectors, make sure base is an lvalue (i.e. not a function call). + if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType()) + return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(); + return LV_Valid; + case DeclRefExprClass: // C99 6.5.1p2 + if (isa<VarDecl>(cast<DeclRefExpr>(this)->getDecl())) + return LV_Valid; + break; + case MemberExprClass: { // C99 6.5.2.3p4 + const MemberExpr *m = cast<MemberExpr>(this); + return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(); + } + case UnaryOperatorClass: + if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref) + return LV_Valid; // C99 6.5.3p4 + + if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real || + cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag) + return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(); // GNU. + break; + case ParenExprClass: // C99 6.5.1p5 + return cast<ParenExpr>(this)->getSubExpr()->isLvalue(); + case CompoundLiteralExprClass: // C99 6.5.2.5p5 + return LV_Valid; + case OCUVectorElementExprClass: + if (cast<OCUVectorElementExpr>(this)->containsDuplicateElements()) + return LV_DuplicateVectorComponents; + return LV_Valid; + case ObjCIvarRefExprClass: // ObjC instance variables are lvalues. + return LV_Valid; + case PreDefinedExprClass: + return LV_Valid; + default: + break; + } + return LV_InvalidExpression; +} + +/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type, +/// does not have an incomplete type, does not have a const-qualified type, and +/// if it is a structure or union, does not have any member (including, +/// recursively, any member or element of all contained aggregates or unions) +/// with a const-qualified type. +Expr::isModifiableLvalueResult Expr::isModifiableLvalue() const { + isLvalueResult lvalResult = isLvalue(); + + switch (lvalResult) { + case LV_Valid: break; + case LV_NotObjectType: return MLV_NotObjectType; + case LV_IncompleteVoidType: return MLV_IncompleteVoidType; + case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents; + case LV_InvalidExpression: return MLV_InvalidExpression; + } + if (TR.isConstQualified()) + return MLV_ConstQualified; + if (TR->isArrayType()) + return MLV_ArrayType; + if (TR->isIncompleteType()) + return MLV_IncompleteType; + + if (const RecordType *r = dyn_cast<RecordType>(TR.getCanonicalType())) { + if (r->hasConstFields()) + return MLV_ConstQualified; + } + return MLV_Valid; +} + +/// hasGlobalStorage - Return true if this expression has static storage +/// duration. This means that the address of this expression is a link-time +/// constant. +bool Expr::hasGlobalStorage() const { + switch (getStmtClass()) { + default: + return false; + case ParenExprClass: + return cast<ParenExpr>(this)->getSubExpr()->hasGlobalStorage(); + case ImplicitCastExprClass: + return cast<ImplicitCastExpr>(this)->getSubExpr()->hasGlobalStorage(); + case CompoundLiteralExprClass: + return cast<CompoundLiteralExpr>(this)->isFileScope(); + case DeclRefExprClass: { + const Decl *D = cast<DeclRefExpr>(this)->getDecl(); + if (const VarDecl *VD = dyn_cast<VarDecl>(D)) + return VD->hasGlobalStorage(); + return false; + } + case MemberExprClass: { + const MemberExpr *M = cast<MemberExpr>(this); + return !M->isArrow() && M->getBase()->hasGlobalStorage(); + } + case ArraySubscriptExprClass: + return cast<ArraySubscriptExpr>(this)->getBase()->hasGlobalStorage(); + case PreDefinedExprClass: + return true; + } +} + +Expr* Expr::IgnoreParens() { + Expr* E = this; + while (ParenExpr* P = dyn_cast<ParenExpr>(E)) + E = P->getSubExpr(); + + return E; +} + +/// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr +/// or CastExprs or ImplicitCastExprs, returning their operand. +Expr *Expr::IgnoreParenCasts() { + Expr *E = this; + while (true) { + if (ParenExpr *P = dyn_cast<ParenExpr>(E)) + E = P->getSubExpr(); + else if (CastExpr *P = dyn_cast<CastExpr>(E)) + E = P->getSubExpr(); + else if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) + E = P->getSubExpr(); + else + return E; + } +} + + +bool Expr::isConstantExpr(ASTContext &Ctx, SourceLocation *Loc) const { + switch (getStmtClass()) { + default: + if (Loc) *Loc = getLocStart(); + return false; + case ParenExprClass: + return cast<ParenExpr>(this)->getSubExpr()->isConstantExpr(Ctx, Loc); + case StringLiteralClass: + case ObjCStringLiteralClass: + case FloatingLiteralClass: + case IntegerLiteralClass: + case CharacterLiteralClass: + case ImaginaryLiteralClass: + case TypesCompatibleExprClass: + case CXXBoolLiteralExprClass: + return true; + case CallExprClass: { + const CallExpr *CE = cast<CallExpr>(this); + llvm::APSInt Result(32); + Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType()))); + if (CE->isBuiltinClassifyType(Result)) + return true; + if (CE->isBuiltinConstantExpr()) + return true; + if (Loc) *Loc = getLocStart(); + return false; + } + case DeclRefExprClass: { + const Decl *D = cast<DeclRefExpr>(this)->getDecl(); + // Accept address of function. + if (isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D)) + return true; + if (Loc) *Loc = getLocStart(); + if (isa<VarDecl>(D)) + return TR->isArrayType(); + return false; + } + case CompoundLiteralExprClass: + if (Loc) *Loc = getLocStart(); + // Allow "(int []){2,4}", since the array will be converted to a pointer. + // Allow "(vector type){2,4}" since the elements are all constant. + return TR->isArrayType() || TR->isVectorType(); + case UnaryOperatorClass: { + const UnaryOperator *Exp = cast<UnaryOperator>(this); + + // C99 6.6p9 + if (Exp->getOpcode() == UnaryOperator::AddrOf) { + if (!Exp->getSubExpr()->hasGlobalStorage()) { + if (Loc) *Loc = getLocStart(); + return false; + } + return true; + } + + // Get the operand value. If this is sizeof/alignof, do not evalute the + // operand. This affects C99 6.6p3. + if (!Exp->isSizeOfAlignOfOp() && + Exp->getOpcode() != UnaryOperator::OffsetOf && + !Exp->getSubExpr()->isConstantExpr(Ctx, Loc)) + return false; + + switch (Exp->getOpcode()) { + // Address, indirect, pre/post inc/dec, etc are not valid constant exprs. + // See C99 6.6p3. + default: + if (Loc) *Loc = Exp->getOperatorLoc(); + return false; + case UnaryOperator::Extension: + return true; // FIXME: this is wrong. + case UnaryOperator::SizeOf: + case UnaryOperator::AlignOf: + case UnaryOperator::OffsetOf: + // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2. + if (!Exp->getSubExpr()->getType()->isConstantSizeType()) { + if (Loc) *Loc = Exp->getOperatorLoc(); + return false; + } + return true; + case UnaryOperator::LNot: + case UnaryOperator::Plus: + case UnaryOperator::Minus: + case UnaryOperator::Not: + return true; + } + } + case SizeOfAlignOfTypeExprClass: { + const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(this); + // alignof always evaluates to a constant. + if (Exp->isSizeOf() && !Exp->getArgumentType()->isVoidType() && + !Exp->getArgumentType()->isConstantSizeType()) { + if (Loc) *Loc = Exp->getOperatorLoc(); + return false; + } + return true; + } + case BinaryOperatorClass: { + const BinaryOperator *Exp = cast<BinaryOperator>(this); + + // The LHS of a constant expr is always evaluated and needed. + if (!Exp->getLHS()->isConstantExpr(Ctx, Loc)) + return false; + + if (!Exp->getRHS()->isConstantExpr(Ctx, Loc)) + return false; + return true; + } + case ImplicitCastExprClass: + case CastExprClass: { + const Expr *SubExpr; + SourceLocation CastLoc; + if (const CastExpr *C = dyn_cast<CastExpr>(this)) { + SubExpr = C->getSubExpr(); + CastLoc = C->getLParenLoc(); + } else { + SubExpr = cast<ImplicitCastExpr>(this)->getSubExpr(); + CastLoc = getLocStart(); + } + if (!SubExpr->isConstantExpr(Ctx, Loc)) { + if (Loc) *Loc = SubExpr->getLocStart(); + return false; + } + return true; + } + case ConditionalOperatorClass: { + const ConditionalOperator *Exp = cast<ConditionalOperator>(this); + if (!Exp->getCond()->isConstantExpr(Ctx, Loc) || + // Handle the GNU extension for missing LHS. + !(Exp->getLHS() && Exp->getLHS()->isConstantExpr(Ctx, Loc)) || + !Exp->getRHS()->isConstantExpr(Ctx, Loc)) + return false; + return true; + } + case InitListExprClass: { + const InitListExpr *Exp = cast<InitListExpr>(this); + unsigned numInits = Exp->getNumInits(); + for (unsigned i = 0; i < numInits; i++) { + if (!Exp->getInit(i)->isConstantExpr(Ctx, Loc)) { + if (Loc) *Loc = Exp->getInit(i)->getLocStart(); + return false; + } + } + return true; + } + } +} + +/// isIntegerConstantExpr - this recursive routine will test if an expression is +/// an integer constant expression. Note: With the introduction of VLA's in +/// C99 the result of the sizeof operator is no longer always a constant +/// expression. The generalization of the wording to include any subexpression +/// that is not evaluated (C99 6.6p3) means that nonconstant subexpressions +/// can appear as operands to other operators (e.g. &&, ||, ?:). For instance, +/// "0 || f()" can be treated as a constant expression. In C90 this expression, +/// occurring in a context requiring a constant, would have been a constraint +/// violation. FIXME: This routine currently implements C90 semantics. +/// To properly implement C99 semantics this routine will need to evaluate +/// expressions involving operators previously mentioned. + +/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero, +/// comma, etc +/// +/// FIXME: This should ext-warn on overflow during evaluation! ISO C does not +/// permit this. This includes things like (int)1e1000 +/// +/// FIXME: Handle offsetof. Two things to do: Handle GCC's __builtin_offsetof +/// to support gcc 4.0+ and handle the idiom GCC recognizes with a null pointer +/// cast+dereference. +bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx, + SourceLocation *Loc, bool isEvaluated) const { + switch (getStmtClass()) { + default: + if (Loc) *Loc = getLocStart(); + return false; + case ParenExprClass: + return cast<ParenExpr>(this)->getSubExpr()-> + isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated); + case IntegerLiteralClass: + Result = cast<IntegerLiteral>(this)->getValue(); + break; + case CharacterLiteralClass: { + const CharacterLiteral *CL = cast<CharacterLiteral>(this); + Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType()))); + Result = CL->getValue(); + Result.setIsUnsigned(!getType()->isSignedIntegerType()); + break; + } + case TypesCompatibleExprClass: { + const TypesCompatibleExpr *TCE = cast<TypesCompatibleExpr>(this); + Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType()))); + Result = Ctx.typesAreCompatible(TCE->getArgType1(), TCE->getArgType2()); + break; + } + case CallExprClass: { + const CallExpr *CE = cast<CallExpr>(this); + Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType()))); + if (CE->isBuiltinClassifyType(Result)) + break; + if (Loc) *Loc = getLocStart(); + return false; + } + case DeclRefExprClass: + if (const EnumConstantDecl *D = + dyn_cast<EnumConstantDecl>(cast<DeclRefExpr>(this)->getDecl())) { + Result = D->getInitVal(); + break; + } + if (Loc) *Loc = getLocStart(); + return false; + case UnaryOperatorClass: { + const UnaryOperator *Exp = cast<UnaryOperator>(this); + + // Get the operand value. If this is sizeof/alignof, do not evalute the + // operand. This affects C99 6.6p3. + if (!Exp->isSizeOfAlignOfOp() && !Exp->isOffsetOfOp() && + !Exp->getSubExpr()->isIntegerConstantExpr(Result, Ctx, Loc,isEvaluated)) + return false; + + switch (Exp->getOpcode()) { + // Address, indirect, pre/post inc/dec, etc are not valid constant exprs. + // See C99 6.6p3. + default: + if (Loc) *Loc = Exp->getOperatorLoc(); + return false; + case UnaryOperator::Extension: + return true; // FIXME: this is wrong. + case UnaryOperator::SizeOf: + case UnaryOperator::AlignOf: + // Return the result in the right width. + Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType()))); + + // sizeof(void) and __alignof__(void) = 1 as a gcc extension. + if (Exp->getSubExpr()->getType()->isVoidType()) { + Result = 1; + break; + } + + // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2. + if (!Exp->getSubExpr()->getType()->isConstantSizeType()) { + if (Loc) *Loc = Exp->getOperatorLoc(); + return false; + } + + // Get information about the size or align. + if (Exp->getSubExpr()->getType()->isFunctionType()) { + // GCC extension: sizeof(function) = 1. + Result = Exp->getOpcode() == UnaryOperator::AlignOf ? 4 : 1; + } else { + unsigned CharSize = Ctx.Target.getCharWidth(); + if (Exp->getOpcode() == UnaryOperator::AlignOf) + Result = Ctx.getTypeAlign(Exp->getSubExpr()->getType()) / CharSize; + else + Result = Ctx.getTypeSize(Exp->getSubExpr()->getType()) / CharSize; + } + break; + case UnaryOperator::LNot: { + bool Val = Result == 0; + Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType()))); + Result = Val; + break; + } + case UnaryOperator::Plus: + break; + case UnaryOperator::Minus: + Result = -Result; + break; + case UnaryOperator::Not: + Result = ~Result; + break; + case UnaryOperator::OffsetOf: + Result = Exp->evaluateOffsetOf(Ctx); + } + break; + } + case SizeOfAlignOfTypeExprClass: { + const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(this); + + // Return the result in the right width. + Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType()))); + + // sizeof(void) and __alignof__(void) = 1 as a gcc extension. + if (Exp->getArgumentType()->isVoidType()) { + Result = 1; + break; + } + + // alignof always evaluates to a constant, sizeof does if arg is not VLA. + if (Exp->isSizeOf() && !Exp->getArgumentType()->isConstantSizeType()) { + if (Loc) *Loc = Exp->getOperatorLoc(); + return false; + } + + // Get information about the size or align. + if (Exp->getArgumentType()->isFunctionType()) { + // GCC extension: sizeof(function) = 1. + Result = Exp->isSizeOf() ? 1 : 4; + } else { + unsigned CharSize = Ctx.Target.getCharWidth(); + if (Exp->isSizeOf()) + Result = Ctx.getTypeSize(Exp->getArgumentType()) / CharSize; + else + Result = Ctx.getTypeAlign(Exp->getArgumentType()) / CharSize; + } + break; + } + case BinaryOperatorClass: { + const BinaryOperator *Exp = cast<BinaryOperator>(this); + + // The LHS of a constant expr is always evaluated and needed. + if (!Exp->getLHS()->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated)) + return false; + + llvm::APSInt RHS(Result); + + // The short-circuiting &&/|| operators don't necessarily evaluate their + // RHS. Make sure to pass isEvaluated down correctly. + if (Exp->isLogicalOp()) { + bool RHSEval; + if (Exp->getOpcode() == BinaryOperator::LAnd) + RHSEval = Result != 0; + else { + assert(Exp->getOpcode() == BinaryOperator::LOr &&"Unexpected logical"); + RHSEval = Result == 0; + } + + if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Ctx, Loc, + isEvaluated & RHSEval)) + return false; + } else { + if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Ctx, Loc, isEvaluated)) + return false; + } + + switch (Exp->getOpcode()) { + default: + if (Loc) *Loc = getLocStart(); + return false; + case BinaryOperator::Mul: + Result *= RHS; + break; + case BinaryOperator::Div: + if (RHS == 0) { + if (!isEvaluated) break; + if (Loc) *Loc = getLocStart(); + return false; + } + Result /= RHS; + break; + case BinaryOperator::Rem: + if (RHS == 0) { + if (!isEvaluated) break; + if (Loc) *Loc = getLocStart(); + return false; + } + Result %= RHS; + break; + case BinaryOperator::Add: Result += RHS; break; + case BinaryOperator::Sub: Result -= RHS; break; + case BinaryOperator::Shl: + Result <<= + static_cast<uint32_t>(RHS.getLimitedValue(Result.getBitWidth()-1)); + break; + case BinaryOperator::Shr: + Result >>= + static_cast<uint32_t>(RHS.getLimitedValue(Result.getBitWidth()-1)); + break; + case BinaryOperator::LT: Result = Result < RHS; break; + case BinaryOperator::GT: Result = Result > RHS; break; + case BinaryOperator::LE: Result = Result <= RHS; break; + case BinaryOperator::GE: Result = Result >= RHS; break; + case BinaryOperator::EQ: Result = Result == RHS; break; + case BinaryOperator::NE: Result = Result != RHS; break; + case BinaryOperator::And: Result &= RHS; break; + case BinaryOperator::Xor: Result ^= RHS; break; + case BinaryOperator::Or: Result |= RHS; break; + case BinaryOperator::LAnd: + Result = Result != 0 && RHS != 0; + break; + case BinaryOperator::LOr: + Result = Result != 0 || RHS != 0; + break; + + case BinaryOperator::Comma: + // C99 6.6p3: "shall not contain assignment, ..., or comma operators, + // *except* when they are contained within a subexpression that is not + // evaluated". Note that Assignment can never happen due to constraints + // on the LHS subexpr, so we don't need to check it here. + if (isEvaluated) { + if (Loc) *Loc = getLocStart(); + return false; + } + + // The result of the constant expr is the RHS. + Result = RHS; + return true; + } + + assert(!Exp->isAssignmentOp() && "LHS can't be a constant expr!"); + break; + } + case ImplicitCastExprClass: + case CastExprClass: { + const Expr *SubExpr; + SourceLocation CastLoc; + if (const CastExpr *C = dyn_cast<CastExpr>(this)) { + SubExpr = C->getSubExpr(); + CastLoc = C->getLParenLoc(); + } else { + SubExpr = cast<ImplicitCastExpr>(this)->getSubExpr(); + CastLoc = getLocStart(); + } + + // C99 6.6p6: shall only convert arithmetic types to integer types. + if (!SubExpr->getType()->isArithmeticType() || + !getType()->isIntegerType()) { + if (Loc) *Loc = SubExpr->getLocStart(); + return false; + } + + uint32_t DestWidth = static_cast<uint32_t>(Ctx.getTypeSize(getType())); + + // Handle simple integer->integer casts. + if (SubExpr->getType()->isIntegerType()) { + if (!SubExpr->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated)) + return false; + + // Figure out if this is a truncate, extend or noop cast. + // If the input is signed, do a sign extend, noop, or truncate. + if (getType()->isBooleanType()) { + // Conversion to bool compares against zero. + Result = Result != 0; + Result.zextOrTrunc(DestWidth); + } else if (SubExpr->getType()->isSignedIntegerType()) + Result.sextOrTrunc(DestWidth); + else // If the input is unsigned, do a zero extend, noop, or truncate. + Result.zextOrTrunc(DestWidth); + break; + } + + // Allow floating constants that are the immediate operands of casts or that + // are parenthesized. + const Expr *Operand = SubExpr; + while (const ParenExpr *PE = dyn_cast<ParenExpr>(Operand)) + Operand = PE->getSubExpr(); + + // If this isn't a floating literal, we can't handle it. + const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(Operand); + if (!FL) { + if (Loc) *Loc = Operand->getLocStart(); + return false; + } + + // If the destination is boolean, compare against zero. + if (getType()->isBooleanType()) { + Result = !FL->getValue().isZero(); + Result.zextOrTrunc(DestWidth); + break; + } + + // Determine whether we are converting to unsigned or signed. + bool DestSigned = getType()->isSignedIntegerType(); + + // TODO: Warn on overflow, but probably not here: isIntegerConstantExpr can + // be called multiple times per AST. + uint64_t Space[4]; + (void)FL->getValue().convertToInteger(Space, DestWidth, DestSigned, + llvm::APFloat::rmTowardZero); + Result = llvm::APInt(DestWidth, 4, Space); + break; + } + case ConditionalOperatorClass: { + const ConditionalOperator *Exp = cast<ConditionalOperator>(this); + + if (!Exp->getCond()->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated)) + return false; + + const Expr *TrueExp = Exp->getLHS(); + const Expr *FalseExp = Exp->getRHS(); + if (Result == 0) std::swap(TrueExp, FalseExp); + + // Evaluate the false one first, discard the result. + if (FalseExp && !FalseExp->isIntegerConstantExpr(Result, Ctx, Loc, false)) + return false; + // Evalute the true one, capture the result. + if (TrueExp && + !TrueExp->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated)) + return false; + break; + } + } + + // Cases that are valid constant exprs fall through to here. + Result.setIsUnsigned(getType()->isUnsignedIntegerType()); + return true; +} + +/// isNullPointerConstant - C99 6.3.2.3p3 - Return true if this is either an +/// integer constant expression with the value zero, or if this is one that is +/// cast to void*. +bool Expr::isNullPointerConstant(ASTContext &Ctx) const { + // Strip off a cast to void*, if it exists. + if (const CastExpr *CE = dyn_cast<CastExpr>(this)) { + // Check that it is a cast to void*. + if (const PointerType *PT = CE->getType()->getAsPointerType()) { + QualType Pointee = PT->getPointeeType(); + if (Pointee.getCVRQualifiers() == 0 && + Pointee->isVoidType() && // to void* + CE->getSubExpr()->getType()->isIntegerType()) // from int. + return CE->getSubExpr()->isNullPointerConstant(Ctx); + } + } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { + // Ignore the ImplicitCastExpr type entirely. + return ICE->getSubExpr()->isNullPointerConstant(Ctx); + } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { + // Accept ((void*)0) as a null pointer constant, as many other + // implementations do. + return PE->getSubExpr()->isNullPointerConstant(Ctx); + } + + // This expression must be an integer type. + if (!getType()->isIntegerType()) + return false; + + // If we have an integer constant expression, we need to *evaluate* it and + // test for the value 0. + llvm::APSInt Val(32); + return isIntegerConstantExpr(Val, Ctx, 0, true) && Val == 0; +} + +unsigned OCUVectorElementExpr::getNumElements() const { + return strlen(Accessor.getName()); +} + + +/// getComponentType - Determine whether the components of this access are +/// "point" "color" or "texture" elements. +OCUVectorElementExpr::ElementType +OCUVectorElementExpr::getElementType() const { + // derive the component type, no need to waste space. + const char *compStr = Accessor.getName(); + + if (OCUVectorType::getPointAccessorIdx(*compStr) != -1) return Point; + if (OCUVectorType::getColorAccessorIdx(*compStr) != -1) return Color; + + assert(OCUVectorType::getTextureAccessorIdx(*compStr) != -1 && + "getComponentType(): Illegal accessor"); + return Texture; +} + +/// containsDuplicateElements - Return true if any element access is +/// repeated. +bool OCUVectorElementExpr::containsDuplicateElements() const { + const char *compStr = Accessor.getName(); + unsigned length = strlen(compStr); + + for (unsigned i = 0; i < length-1; i++) { + const char *s = compStr+i; + for (const char c = *s++; *s; s++) + if (c == *s) + return true; + } + return false; +} + +/// getEncodedElementAccess - We encode fields with two bits per component. +unsigned OCUVectorElementExpr::getEncodedElementAccess() const { + const char *compStr = Accessor.getName(); + unsigned length = getNumElements(); + + unsigned Result = 0; + + while (length--) { + Result <<= 2; + int Idx = OCUVectorType::getAccessorIdx(compStr[length]); + assert(Idx != -1 && "Invalid accessor letter"); + Result |= Idx; + } + return Result; +} + +// constructor for instance messages. +ObjCMessageExpr::ObjCMessageExpr(Expr *receiver, Selector selInfo, + QualType retType, ObjCMethodDecl *mproto, + SourceLocation LBrac, SourceLocation RBrac, + Expr **ArgExprs, unsigned nargs) + : Expr(ObjCMessageExprClass, retType), SelName(selInfo), + MethodProto(mproto), ClassName(0) { + NumArgs = nargs; + SubExprs = new Expr*[NumArgs+1]; + SubExprs[RECEIVER] = receiver; + if (NumArgs) { + for (unsigned i = 0; i != NumArgs; ++i) + SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]); + } + LBracloc = LBrac; + RBracloc = RBrac; +} + +// constructor for class messages. +// FIXME: clsName should be typed to ObjCInterfaceType +ObjCMessageExpr::ObjCMessageExpr(IdentifierInfo *clsName, Selector selInfo, + QualType retType, ObjCMethodDecl *mproto, + SourceLocation LBrac, SourceLocation RBrac, + Expr **ArgExprs, unsigned nargs) + : Expr(ObjCMessageExprClass, retType), SelName(selInfo), + MethodProto(mproto), ClassName(clsName) { + NumArgs = nargs; + SubExprs = new Expr*[NumArgs+1]; + SubExprs[RECEIVER] = 0; + if (NumArgs) { + for (unsigned i = 0; i != NumArgs; ++i) + SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]); + } + LBracloc = LBrac; + RBracloc = RBrac; +} + + +bool ChooseExpr::isConditionTrue(ASTContext &C) const { + llvm::APSInt CondVal(32); + bool IsConst = getCond()->isIntegerConstantExpr(CondVal, C); + assert(IsConst && "Condition of choose expr must be i-c-e"); IsConst=IsConst; + return CondVal != 0; +} + +static int64_t evaluateOffsetOf(ASTContext& C, const Expr *E) +{ + if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { + QualType Ty = ME->getBase()->getType(); + + RecordDecl *RD = Ty->getAsRecordType()->getDecl(); + const ASTRecordLayout &RL = C.getASTRecordLayout(RD); + FieldDecl *FD = ME->getMemberDecl(); + + // FIXME: This is linear time. + unsigned i = 0, e = 0; + for (i = 0, e = RD->getNumMembers(); i != e; i++) { + if (RD->getMember(i) == FD) + break; + } + + return RL.getFieldOffset(i) + evaluateOffsetOf(C, ME->getBase()); + } else if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) { + const Expr *Base = ASE->getBase(); + llvm::APSInt Idx(32); + bool ICE = ASE->getIdx()->isIntegerConstantExpr(Idx, C); + assert(ICE && "Array index is not a constant integer!"); + + int64_t size = C.getTypeSize(ASE->getType()); + size *= Idx.getSExtValue(); + + return size + evaluateOffsetOf(C, Base); + } else if (isa<CompoundLiteralExpr>(E)) + return 0; + + assert(0 && "Unknown offsetof subexpression!"); + return 0; +} + +int64_t UnaryOperator::evaluateOffsetOf(ASTContext& C) const +{ + assert(Opc == OffsetOf && "Unary operator not offsetof!"); + + unsigned CharSize = C.Target.getCharWidth(); + return ::evaluateOffsetOf(C, Val) / CharSize; +} + +//===----------------------------------------------------------------------===// +// Child Iterators for iterating over subexpressions/substatements +//===----------------------------------------------------------------------===// + +// DeclRefExpr +Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); } +Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); } + +// ObjCIvarRefExpr +Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return child_iterator(); } +Stmt::child_iterator ObjCIvarRefExpr::child_end() { return child_iterator(); } + +// PreDefinedExpr +Stmt::child_iterator PreDefinedExpr::child_begin() { return child_iterator(); } +Stmt::child_iterator PreDefinedExpr::child_end() { return child_iterator(); } + +// IntegerLiteral +Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); } +Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); } + +// CharacterLiteral +Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator(); } +Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); } + +// FloatingLiteral +Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); } +Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); } + +// ImaginaryLiteral +Stmt::child_iterator ImaginaryLiteral::child_begin() { + return reinterpret_cast<Stmt**>(&Val); +} +Stmt::child_iterator ImaginaryLiteral::child_end() { + return reinterpret_cast<Stmt**>(&Val)+1; +} + +// StringLiteral +Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); } +Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); } + +// ParenExpr +Stmt::child_iterator ParenExpr::child_begin() { + return reinterpret_cast<Stmt**>(&Val); +} +Stmt::child_iterator ParenExpr::child_end() { + return reinterpret_cast<Stmt**>(&Val)+1; +} + +// UnaryOperator +Stmt::child_iterator UnaryOperator::child_begin() { + return reinterpret_cast<Stmt**>(&Val); +} +Stmt::child_iterator UnaryOperator::child_end() { + return reinterpret_cast<Stmt**>(&Val+1); +} + +// SizeOfAlignOfTypeExpr +Stmt::child_iterator SizeOfAlignOfTypeExpr::child_begin() { + // If the type is a VLA type (and not a typedef), the size expression of the + // VLA needs to be treated as an executable expression. + if (VariableArrayType* T = dyn_cast<VariableArrayType>(Ty.getTypePtr())) + return child_iterator(T); + else + return child_iterator(); +} +Stmt::child_iterator SizeOfAlignOfTypeExpr::child_end() { + return child_iterator(); +} + +// ArraySubscriptExpr +Stmt::child_iterator ArraySubscriptExpr::child_begin() { + return reinterpret_cast<Stmt**>(&SubExprs); +} +Stmt::child_iterator ArraySubscriptExpr::child_end() { + return reinterpret_cast<Stmt**>(&SubExprs)+END_EXPR; +} + +// CallExpr +Stmt::child_iterator CallExpr::child_begin() { + return reinterpret_cast<Stmt**>(&SubExprs[0]); +} +Stmt::child_iterator CallExpr::child_end() { + return reinterpret_cast<Stmt**>(&SubExprs[NumArgs+ARGS_START]); +} + +// MemberExpr +Stmt::child_iterator MemberExpr::child_begin() { + return reinterpret_cast<Stmt**>(&Base); +} +Stmt::child_iterator MemberExpr::child_end() { + return reinterpret_cast<Stmt**>(&Base)+1; +} + +// OCUVectorElementExpr +Stmt::child_iterator OCUVectorElementExpr::child_begin() { + return reinterpret_cast<Stmt**>(&Base); +} +Stmt::child_iterator OCUVectorElementExpr::child_end() { + return reinterpret_cast<Stmt**>(&Base)+1; +} + +// CompoundLiteralExpr +Stmt::child_iterator CompoundLiteralExpr::child_begin() { + return reinterpret_cast<Stmt**>(&Init); +} +Stmt::child_iterator CompoundLiteralExpr::child_end() { + return reinterpret_cast<Stmt**>(&Init)+1; +} + +// ImplicitCastExpr +Stmt::child_iterator ImplicitCastExpr::child_begin() { + return reinterpret_cast<Stmt**>(&Op); +} +Stmt::child_iterator ImplicitCastExpr::child_end() { + return reinterpret_cast<Stmt**>(&Op)+1; +} + +// CastExpr +Stmt::child_iterator CastExpr::child_begin() { + return reinterpret_cast<Stmt**>(&Op); +} +Stmt::child_iterator CastExpr::child_end() { + return reinterpret_cast<Stmt**>(&Op)+1; +} + +// BinaryOperator +Stmt::child_iterator BinaryOperator::child_begin() { + return reinterpret_cast<Stmt**>(&SubExprs); +} +Stmt::child_iterator BinaryOperator::child_end() { + return reinterpret_cast<Stmt**>(&SubExprs)+END_EXPR; +} + +// ConditionalOperator +Stmt::child_iterator ConditionalOperator::child_begin() { + return reinterpret_cast<Stmt**>(&SubExprs); +} +Stmt::child_iterator ConditionalOperator::child_end() { + return reinterpret_cast<Stmt**>(&SubExprs)+END_EXPR; +} + +// AddrLabelExpr +Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); } +Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); } + +// StmtExpr +Stmt::child_iterator StmtExpr::child_begin() { + return reinterpret_cast<Stmt**>(&SubStmt); +} +Stmt::child_iterator StmtExpr::child_end() { + return reinterpret_cast<Stmt**>(&SubStmt)+1; +} + +// TypesCompatibleExpr +Stmt::child_iterator TypesCompatibleExpr::child_begin() { + return child_iterator(); +} + +Stmt::child_iterator TypesCompatibleExpr::child_end() { + return child_iterator(); +} + +// ChooseExpr +Stmt::child_iterator ChooseExpr::child_begin() { + return reinterpret_cast<Stmt**>(&SubExprs); +} + +Stmt::child_iterator ChooseExpr::child_end() { + return reinterpret_cast<Stmt**>(&SubExprs)+END_EXPR; +} + +// OverloadExpr +Stmt::child_iterator OverloadExpr::child_begin() { + return reinterpret_cast<Stmt**>(&SubExprs[0]); +} +Stmt::child_iterator OverloadExpr::child_end() { + return reinterpret_cast<Stmt**>(&SubExprs[NumExprs]); +} + +// VAArgExpr +Stmt::child_iterator VAArgExpr::child_begin() { + return reinterpret_cast<Stmt**>(&Val); +} + +Stmt::child_iterator VAArgExpr::child_end() { + return reinterpret_cast<Stmt**>(&Val)+1; +} + +// InitListExpr +Stmt::child_iterator InitListExpr::child_begin() { + return reinterpret_cast<Stmt**>(&InitExprs[0]); +} +Stmt::child_iterator InitListExpr::child_end() { + return reinterpret_cast<Stmt**>(&InitExprs[NumInits]); +} + +// ObjCStringLiteral +Stmt::child_iterator ObjCStringLiteral::child_begin() { + return child_iterator(); +} +Stmt::child_iterator ObjCStringLiteral::child_end() { + return child_iterator(); +} + +// ObjCEncodeExpr +Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); } +Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); } + +// ObjCSelectorExpr +Stmt::child_iterator ObjCSelectorExpr::child_begin() { + return child_iterator(); +} +Stmt::child_iterator ObjCSelectorExpr::child_end() { + return child_iterator(); +} + +// ObjCProtocolExpr +Stmt::child_iterator ObjCProtocolExpr::child_begin() { + return child_iterator(); +} +Stmt::child_iterator ObjCProtocolExpr::child_end() { + return child_iterator(); +} + +// ObjCMessageExpr +Stmt::child_iterator ObjCMessageExpr::child_begin() { + return reinterpret_cast<Stmt**>(&SubExprs[0]); +} +Stmt::child_iterator ObjCMessageExpr::child_end() { + return reinterpret_cast<Stmt**>(&SubExprs[getNumArgs()+ARGS_START]); +} + |