summaryrefslogtreecommitdiffstats
path: root/clang/lib/AST/ASTContext.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'clang/lib/AST/ASTContext.cpp')
-rw-r--r--clang/lib/AST/ASTContext.cpp1853
1 files changed, 1853 insertions, 0 deletions
diff --git a/clang/lib/AST/ASTContext.cpp b/clang/lib/AST/ASTContext.cpp
new file mode 100644
index 00000000000..db4d53aa481
--- /dev/null
+++ b/clang/lib/AST/ASTContext.cpp
@@ -0,0 +1,1853 @@
+//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the ASTContext interface.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Bitcode/Serialize.h"
+#include "llvm/Bitcode/Deserialize.h"
+
+using namespace clang;
+
+enum FloatingRank {
+ FloatRank, DoubleRank, LongDoubleRank
+};
+
+ASTContext::~ASTContext() {
+ // Deallocate all the types.
+ while (!Types.empty()) {
+ if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(Types.back())) {
+ // Destroy the object, but don't call delete. These are malloc'd.
+ FT->~FunctionTypeProto();
+ free(FT);
+ } else {
+ delete Types.back();
+ }
+ Types.pop_back();
+ }
+}
+
+void ASTContext::PrintStats() const {
+ fprintf(stderr, "*** AST Context Stats:\n");
+ fprintf(stderr, " %d types total.\n", (int)Types.size());
+ unsigned NumBuiltin = 0, NumPointer = 0, NumArray = 0, NumFunctionP = 0;
+ unsigned NumVector = 0, NumComplex = 0;
+ unsigned NumFunctionNP = 0, NumTypeName = 0, NumTagged = 0, NumReference = 0;
+
+ unsigned NumTagStruct = 0, NumTagUnion = 0, NumTagEnum = 0, NumTagClass = 0;
+ unsigned NumObjCInterfaces = 0, NumObjCQualifiedInterfaces = 0;
+ unsigned NumObjCQualifiedIds = 0;
+
+ for (unsigned i = 0, e = Types.size(); i != e; ++i) {
+ Type *T = Types[i];
+ if (isa<BuiltinType>(T))
+ ++NumBuiltin;
+ else if (isa<PointerType>(T))
+ ++NumPointer;
+ else if (isa<ReferenceType>(T))
+ ++NumReference;
+ else if (isa<ComplexType>(T))
+ ++NumComplex;
+ else if (isa<ArrayType>(T))
+ ++NumArray;
+ else if (isa<VectorType>(T))
+ ++NumVector;
+ else if (isa<FunctionTypeNoProto>(T))
+ ++NumFunctionNP;
+ else if (isa<FunctionTypeProto>(T))
+ ++NumFunctionP;
+ else if (isa<TypedefType>(T))
+ ++NumTypeName;
+ else if (TagType *TT = dyn_cast<TagType>(T)) {
+ ++NumTagged;
+ switch (TT->getDecl()->getKind()) {
+ default: assert(0 && "Unknown tagged type!");
+ case Decl::Struct: ++NumTagStruct; break;
+ case Decl::Union: ++NumTagUnion; break;
+ case Decl::Class: ++NumTagClass; break;
+ case Decl::Enum: ++NumTagEnum; break;
+ }
+ } else if (isa<ObjCInterfaceType>(T))
+ ++NumObjCInterfaces;
+ else if (isa<ObjCQualifiedInterfaceType>(T))
+ ++NumObjCQualifiedInterfaces;
+ else if (isa<ObjCQualifiedIdType>(T))
+ ++NumObjCQualifiedIds;
+ else {
+ QualType(T, 0).dump();
+ assert(0 && "Unknown type!");
+ }
+ }
+
+ fprintf(stderr, " %d builtin types\n", NumBuiltin);
+ fprintf(stderr, " %d pointer types\n", NumPointer);
+ fprintf(stderr, " %d reference types\n", NumReference);
+ fprintf(stderr, " %d complex types\n", NumComplex);
+ fprintf(stderr, " %d array types\n", NumArray);
+ fprintf(stderr, " %d vector types\n", NumVector);
+ fprintf(stderr, " %d function types with proto\n", NumFunctionP);
+ fprintf(stderr, " %d function types with no proto\n", NumFunctionNP);
+ fprintf(stderr, " %d typename (typedef) types\n", NumTypeName);
+ fprintf(stderr, " %d tagged types\n", NumTagged);
+ fprintf(stderr, " %d struct types\n", NumTagStruct);
+ fprintf(stderr, " %d union types\n", NumTagUnion);
+ fprintf(stderr, " %d class types\n", NumTagClass);
+ fprintf(stderr, " %d enum types\n", NumTagEnum);
+ fprintf(stderr, " %d interface types\n", NumObjCInterfaces);
+ fprintf(stderr, " %d protocol qualified interface types\n",
+ NumObjCQualifiedInterfaces);
+ fprintf(stderr, " %d protocol qualified id types\n",
+ NumObjCQualifiedIds);
+ fprintf(stderr, "Total bytes = %d\n", int(NumBuiltin*sizeof(BuiltinType)+
+ NumPointer*sizeof(PointerType)+NumArray*sizeof(ArrayType)+
+ NumComplex*sizeof(ComplexType)+NumVector*sizeof(VectorType)+
+ NumFunctionP*sizeof(FunctionTypeProto)+
+ NumFunctionNP*sizeof(FunctionTypeNoProto)+
+ NumTypeName*sizeof(TypedefType)+NumTagged*sizeof(TagType)));
+}
+
+
+void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
+ Types.push_back((R = QualType(new BuiltinType(K),0)).getTypePtr());
+}
+
+void ASTContext::InitBuiltinTypes() {
+ assert(VoidTy.isNull() && "Context reinitialized?");
+
+ // C99 6.2.5p19.
+ InitBuiltinType(VoidTy, BuiltinType::Void);
+
+ // C99 6.2.5p2.
+ InitBuiltinType(BoolTy, BuiltinType::Bool);
+ // C99 6.2.5p3.
+ if (Target.isCharSigned())
+ InitBuiltinType(CharTy, BuiltinType::Char_S);
+ else
+ InitBuiltinType(CharTy, BuiltinType::Char_U);
+ // C99 6.2.5p4.
+ InitBuiltinType(SignedCharTy, BuiltinType::SChar);
+ InitBuiltinType(ShortTy, BuiltinType::Short);
+ InitBuiltinType(IntTy, BuiltinType::Int);
+ InitBuiltinType(LongTy, BuiltinType::Long);
+ InitBuiltinType(LongLongTy, BuiltinType::LongLong);
+
+ // C99 6.2.5p6.
+ InitBuiltinType(UnsignedCharTy, BuiltinType::UChar);
+ InitBuiltinType(UnsignedShortTy, BuiltinType::UShort);
+ InitBuiltinType(UnsignedIntTy, BuiltinType::UInt);
+ InitBuiltinType(UnsignedLongTy, BuiltinType::ULong);
+ InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong);
+
+ // C99 6.2.5p10.
+ InitBuiltinType(FloatTy, BuiltinType::Float);
+ InitBuiltinType(DoubleTy, BuiltinType::Double);
+ InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble);
+
+ // C99 6.2.5p11.
+ FloatComplexTy = getComplexType(FloatTy);
+ DoubleComplexTy = getComplexType(DoubleTy);
+ LongDoubleComplexTy = getComplexType(LongDoubleTy);
+
+ BuiltinVaListType = QualType();
+ ObjCIdType = QualType();
+ IdStructType = 0;
+ ObjCClassType = QualType();
+ ClassStructType = 0;
+
+ ObjCConstantStringType = QualType();
+
+ // void * type
+ VoidPtrTy = getPointerType(VoidTy);
+}
+
+//===----------------------------------------------------------------------===//
+// Type Sizing and Analysis
+//===----------------------------------------------------------------------===//
+
+/// getTypeSize - Return the size of the specified type, in bits. This method
+/// does not work on incomplete types.
+std::pair<uint64_t, unsigned>
+ASTContext::getTypeInfo(QualType T) {
+ T = T.getCanonicalType();
+ uint64_t Width;
+ unsigned Align;
+ switch (T->getTypeClass()) {
+ case Type::TypeName: assert(0 && "Not a canonical type!");
+ case Type::FunctionNoProto:
+ case Type::FunctionProto:
+ default:
+ assert(0 && "Incomplete types have no size!");
+ case Type::VariableArray:
+ assert(0 && "VLAs not implemented yet!");
+ case Type::ConstantArray: {
+ ConstantArrayType *CAT = cast<ConstantArrayType>(T);
+
+ std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
+ Width = EltInfo.first*CAT->getSize().getZExtValue();
+ Align = EltInfo.second;
+ break;
+ }
+ case Type::OCUVector:
+ case Type::Vector: {
+ std::pair<uint64_t, unsigned> EltInfo =
+ getTypeInfo(cast<VectorType>(T)->getElementType());
+ Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
+ // FIXME: Vector alignment is not the alignment of its elements.
+ Align = EltInfo.second;
+ break;
+ }
+
+ case Type::Builtin:
+ // FIXME: need to use TargetInfo to derive the target specific sizes. This
+ // implementation will suffice for play with vector support.
+ switch (cast<BuiltinType>(T)->getKind()) {
+ default: assert(0 && "Unknown builtin type!");
+ case BuiltinType::Void:
+ assert(0 && "Incomplete types have no size!");
+ case BuiltinType::Bool:
+ Width = Target.getBoolWidth();
+ Align = Target.getBoolAlign();
+ break;
+ case BuiltinType::Char_S:
+ case BuiltinType::Char_U:
+ case BuiltinType::UChar:
+ case BuiltinType::SChar:
+ Width = Target.getCharWidth();
+ Align = Target.getCharAlign();
+ break;
+ case BuiltinType::UShort:
+ case BuiltinType::Short:
+ Width = Target.getShortWidth();
+ Align = Target.getShortAlign();
+ break;
+ case BuiltinType::UInt:
+ case BuiltinType::Int:
+ Width = Target.getIntWidth();
+ Align = Target.getIntAlign();
+ break;
+ case BuiltinType::ULong:
+ case BuiltinType::Long:
+ Width = Target.getLongWidth();
+ Align = Target.getLongAlign();
+ break;
+ case BuiltinType::ULongLong:
+ case BuiltinType::LongLong:
+ Width = Target.getLongLongWidth();
+ Align = Target.getLongLongAlign();
+ break;
+ case BuiltinType::Float:
+ Width = Target.getFloatWidth();
+ Align = Target.getFloatAlign();
+ break;
+ case BuiltinType::Double:
+ Width = Target.getDoubleWidth();
+ Align = Target.getDoubleAlign();
+ break;
+ case BuiltinType::LongDouble:
+ Width = Target.getLongDoubleWidth();
+ Align = Target.getLongDoubleAlign();
+ break;
+ }
+ break;
+ case Type::ASQual:
+ // FIXME: Pointers into different addr spaces could have different sizes and
+ // alignment requirements: getPointerInfo should take an AddrSpace.
+ return getTypeInfo(QualType(cast<ASQualType>(T)->getBaseType(), 0));
+ case Type::ObjCQualifiedId:
+ Width = Target.getPointerWidth(0);
+ Align = Target.getPointerAlign(0);
+ break;
+ case Type::Pointer: {
+ unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
+ Width = Target.getPointerWidth(AS);
+ Align = Target.getPointerAlign(AS);
+ break;
+ }
+ case Type::Reference:
+ // "When applied to a reference or a reference type, the result is the size
+ // of the referenced type." C++98 5.3.3p2: expr.sizeof.
+ // FIXME: This is wrong for struct layout: a reference in a struct has
+ // pointer size.
+ return getTypeInfo(cast<ReferenceType>(T)->getReferenceeType());
+
+ case Type::Complex: {
+ // Complex types have the same alignment as their elements, but twice the
+ // size.
+ std::pair<uint64_t, unsigned> EltInfo =
+ getTypeInfo(cast<ComplexType>(T)->getElementType());
+ Width = EltInfo.first*2;
+ Align = EltInfo.second;
+ break;
+ }
+ case Type::Tagged:
+ TagType *TT = cast<TagType>(T);
+ if (RecordType *RT = dyn_cast<RecordType>(TT)) {
+ const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
+ Width = Layout.getSize();
+ Align = Layout.getAlignment();
+ } else if (EnumDecl *ED = dyn_cast<EnumDecl>(TT->getDecl())) {
+ return getTypeInfo(ED->getIntegerType());
+ } else {
+ assert(0 && "Unimplemented type sizes!");
+ }
+ break;
+ }
+
+ assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
+ return std::make_pair(Width, Align);
+}
+
+/// getASTRecordLayout - Get or compute information about the layout of the
+/// specified record (struct/union/class), which indicates its size and field
+/// position information.
+const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
+ assert(D->isDefinition() && "Cannot get layout of forward declarations!");
+
+ // Look up this layout, if already laid out, return what we have.
+ const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
+ if (Entry) return *Entry;
+
+ // Allocate and assign into ASTRecordLayouts here. The "Entry" reference can
+ // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
+ ASTRecordLayout *NewEntry = new ASTRecordLayout();
+ Entry = NewEntry;
+
+ uint64_t *FieldOffsets = new uint64_t[D->getNumMembers()];
+ uint64_t RecordSize = 0;
+ unsigned RecordAlign = 8; // Default alignment = 1 byte = 8 bits.
+
+ if (D->getKind() != Decl::Union) {
+ if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
+ RecordAlign = std::max(RecordAlign, AA->getAlignment());
+
+ bool StructIsPacked = D->getAttr<PackedAttr>();
+
+ // Layout each field, for now, just sequentially, respecting alignment. In
+ // the future, this will need to be tweakable by targets.
+ for (unsigned i = 0, e = D->getNumMembers(); i != e; ++i) {
+ const FieldDecl *FD = D->getMember(i);
+ bool FieldIsPacked = StructIsPacked || FD->getAttr<PackedAttr>();
+ uint64_t FieldSize;
+ unsigned FieldAlign;
+
+ if (const Expr *BitWidthExpr = FD->getBitWidth()) {
+ llvm::APSInt I(32);
+ bool BitWidthIsICE =
+ BitWidthExpr->isIntegerConstantExpr(I, *this);
+ assert (BitWidthIsICE && "Invalid BitField size expression");
+ FieldSize = I.getZExtValue();
+
+ std::pair<uint64_t, unsigned> TypeInfo = getTypeInfo(FD->getType());
+ uint64_t TypeSize = TypeInfo.first;
+
+ if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
+ FieldAlign = AA->getAlignment();
+ else if (FieldIsPacked)
+ FieldAlign = 8;
+ else {
+ // FIXME: This is X86 specific, use 32-bit alignment for long long.
+ if (FD->getType()->isIntegerType() && TypeInfo.second > 32)
+ FieldAlign = 32;
+ else
+ FieldAlign = TypeInfo.second;
+ }
+
+ // Check if we need to add padding to give the field the correct
+ // alignment.
+ if (RecordSize % FieldAlign + FieldSize > TypeSize)
+ RecordSize = (RecordSize+FieldAlign-1) & ~(FieldAlign-1);
+
+ } else {
+ if (FD->getType()->isIncompleteType()) {
+ // This must be a flexible array member; we can't directly
+ // query getTypeInfo about these, so we figure it out here.
+ // Flexible array members don't have any size, but they
+ // have to be aligned appropriately for their element type.
+
+ if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
+ FieldAlign = AA->getAlignment();
+ else if (FieldIsPacked)
+ FieldAlign = 8;
+ else {
+ const ArrayType* ATy = FD->getType()->getAsArrayType();
+ FieldAlign = getTypeAlign(ATy->getElementType());
+ }
+ FieldSize = 0;
+ } else {
+ std::pair<uint64_t, unsigned> FieldInfo = getTypeInfo(FD->getType());
+ FieldSize = FieldInfo.first;
+
+ if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
+ FieldAlign = AA->getAlignment();
+ else if (FieldIsPacked)
+ FieldAlign = 8;
+ else
+ FieldAlign = FieldInfo.second;
+ }
+
+ // Round up the current record size to the field's alignment boundary.
+ RecordSize = (RecordSize+FieldAlign-1) & ~(FieldAlign-1);
+ }
+
+ // Place this field at the current location.
+ FieldOffsets[i] = RecordSize;
+
+ // Reserve space for this field.
+ RecordSize += FieldSize;
+
+ // Remember max struct/class alignment.
+ RecordAlign = std::max(RecordAlign, FieldAlign);
+ }
+
+ // Finally, round the size of the total struct up to the alignment of the
+ // struct itself.
+ RecordSize = (RecordSize+RecordAlign-1) & ~(RecordAlign-1);
+ } else {
+ // Union layout just puts each member at the start of the record.
+ for (unsigned i = 0, e = D->getNumMembers(); i != e; ++i) {
+ const FieldDecl *FD = D->getMember(i);
+ std::pair<uint64_t, unsigned> FieldInfo = getTypeInfo(FD->getType());
+ uint64_t FieldSize = FieldInfo.first;
+ unsigned FieldAlign = FieldInfo.second;
+
+ // FIXME: This is X86 specific, use 32-bit alignment for long long.
+ if (FD->getType()->isIntegerType() && FieldAlign > 32)
+ FieldAlign = 32;
+
+ // Round up the current record size to the field's alignment boundary.
+ RecordSize = std::max(RecordSize, FieldSize);
+
+ // Place this field at the start of the record.
+ FieldOffsets[i] = 0;
+
+ // Remember max struct/class alignment.
+ RecordAlign = std::max(RecordAlign, FieldAlign);
+ }
+ }
+
+ NewEntry->SetLayout(RecordSize, RecordAlign, FieldOffsets);
+ return *NewEntry;
+}
+
+//===----------------------------------------------------------------------===//
+// Type creation/memoization methods
+//===----------------------------------------------------------------------===//
+
+QualType ASTContext::getASQualType(QualType T, unsigned AddressSpace) {
+ if (T.getCanonicalType().getAddressSpace() == AddressSpace)
+ return T;
+
+ // Type's cannot have multiple ASQuals, therefore we know we only have to deal
+ // with CVR qualifiers from here on out.
+ assert(T.getCanonicalType().getAddressSpace() == 0 &&
+ "Type is already address space qualified");
+
+ // Check if we've already instantiated an address space qual'd type of this
+ // type.
+ llvm::FoldingSetNodeID ID;
+ ASQualType::Profile(ID, T.getTypePtr(), AddressSpace);
+ void *InsertPos = 0;
+ if (ASQualType *ASQy = ASQualTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(ASQy, 0);
+
+ // If the base type isn't canonical, this won't be a canonical type either,
+ // so fill in the canonical type field.
+ QualType Canonical;
+ if (!T->isCanonical()) {
+ Canonical = getASQualType(T.getCanonicalType(), AddressSpace);
+
+ // Get the new insert position for the node we care about.
+ ASQualType *NewIP = ASQualTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(NewIP == 0 && "Shouldn't be in the map!");
+ }
+ ASQualType *New = new ASQualType(T.getTypePtr(), Canonical, AddressSpace);
+ ASQualTypes.InsertNode(New, InsertPos);
+ Types.push_back(New);
+ return QualType(New, T.getCVRQualifiers());
+}
+
+
+/// getComplexType - Return the uniqued reference to the type for a complex
+/// number with the specified element type.
+QualType ASTContext::getComplexType(QualType T) {
+ // Unique pointers, to guarantee there is only one pointer of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ ComplexType::Profile(ID, T);
+
+ void *InsertPos = 0;
+ if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(CT, 0);
+
+ // If the pointee type isn't canonical, this won't be a canonical type either,
+ // so fill in the canonical type field.
+ QualType Canonical;
+ if (!T->isCanonical()) {
+ Canonical = getComplexType(T.getCanonicalType());
+
+ // Get the new insert position for the node we care about.
+ ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(NewIP == 0 && "Shouldn't be in the map!");
+ }
+ ComplexType *New = new ComplexType(T, Canonical);
+ Types.push_back(New);
+ ComplexTypes.InsertNode(New, InsertPos);
+ return QualType(New, 0);
+}
+
+
+/// getPointerType - Return the uniqued reference to the type for a pointer to
+/// the specified type.
+QualType ASTContext::getPointerType(QualType T) {
+ // Unique pointers, to guarantee there is only one pointer of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ PointerType::Profile(ID, T);
+
+ void *InsertPos = 0;
+ if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(PT, 0);
+
+ // If the pointee type isn't canonical, this won't be a canonical type either,
+ // so fill in the canonical type field.
+ QualType Canonical;
+ if (!T->isCanonical()) {
+ Canonical = getPointerType(T.getCanonicalType());
+
+ // Get the new insert position for the node we care about.
+ PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(NewIP == 0 && "Shouldn't be in the map!");
+ }
+ PointerType *New = new PointerType(T, Canonical);
+ Types.push_back(New);
+ PointerTypes.InsertNode(New, InsertPos);
+ return QualType(New, 0);
+}
+
+/// getReferenceType - Return the uniqued reference to the type for a reference
+/// to the specified type.
+QualType ASTContext::getReferenceType(QualType T) {
+ // Unique pointers, to guarantee there is only one pointer of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ ReferenceType::Profile(ID, T);
+
+ void *InsertPos = 0;
+ if (ReferenceType *RT = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(RT, 0);
+
+ // If the referencee type isn't canonical, this won't be a canonical type
+ // either, so fill in the canonical type field.
+ QualType Canonical;
+ if (!T->isCanonical()) {
+ Canonical = getReferenceType(T.getCanonicalType());
+
+ // Get the new insert position for the node we care about.
+ ReferenceType *NewIP = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(NewIP == 0 && "Shouldn't be in the map!");
+ }
+
+ ReferenceType *New = new ReferenceType(T, Canonical);
+ Types.push_back(New);
+ ReferenceTypes.InsertNode(New, InsertPos);
+ return QualType(New, 0);
+}
+
+/// getConstantArrayType - Return the unique reference to the type for an
+/// array of the specified element type.
+QualType ASTContext::getConstantArrayType(QualType EltTy,
+ const llvm::APInt &ArySize,
+ ArrayType::ArraySizeModifier ASM,
+ unsigned EltTypeQuals) {
+ llvm::FoldingSetNodeID ID;
+ ConstantArrayType::Profile(ID, EltTy, ArySize);
+
+ void *InsertPos = 0;
+ if (ConstantArrayType *ATP =
+ ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(ATP, 0);
+
+ // If the element type isn't canonical, this won't be a canonical type either,
+ // so fill in the canonical type field.
+ QualType Canonical;
+ if (!EltTy->isCanonical()) {
+ Canonical = getConstantArrayType(EltTy.getCanonicalType(), ArySize,
+ ASM, EltTypeQuals);
+ // Get the new insert position for the node we care about.
+ ConstantArrayType *NewIP =
+ ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
+
+ assert(NewIP == 0 && "Shouldn't be in the map!");
+ }
+
+ ConstantArrayType *New = new ConstantArrayType(EltTy, Canonical, ArySize,
+ ASM, EltTypeQuals);
+ ConstantArrayTypes.InsertNode(New, InsertPos);
+ Types.push_back(New);
+ return QualType(New, 0);
+}
+
+/// getVariableArrayType - Returns a non-unique reference to the type for a
+/// variable array of the specified element type.
+QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
+ ArrayType::ArraySizeModifier ASM,
+ unsigned EltTypeQuals) {
+ // Since we don't unique expressions, it isn't possible to unique VLA's
+ // that have an expression provided for their size.
+
+ VariableArrayType *New = new VariableArrayType(EltTy, QualType(), NumElts,
+ ASM, EltTypeQuals);
+
+ VariableArrayTypes.push_back(New);
+ Types.push_back(New);
+ return QualType(New, 0);
+}
+
+QualType ASTContext::getIncompleteArrayType(QualType EltTy,
+ ArrayType::ArraySizeModifier ASM,
+ unsigned EltTypeQuals) {
+ llvm::FoldingSetNodeID ID;
+ IncompleteArrayType::Profile(ID, EltTy);
+
+ void *InsertPos = 0;
+ if (IncompleteArrayType *ATP =
+ IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(ATP, 0);
+
+ // If the element type isn't canonical, this won't be a canonical type
+ // either, so fill in the canonical type field.
+ QualType Canonical;
+
+ if (!EltTy->isCanonical()) {
+ Canonical = getIncompleteArrayType(EltTy.getCanonicalType(),
+ ASM, EltTypeQuals);
+
+ // Get the new insert position for the node we care about.
+ IncompleteArrayType *NewIP =
+ IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
+
+ assert(NewIP == 0 && "Shouldn't be in the map!");
+ }
+
+ IncompleteArrayType *New = new IncompleteArrayType(EltTy, Canonical,
+ ASM, EltTypeQuals);
+
+ IncompleteArrayTypes.InsertNode(New, InsertPos);
+ Types.push_back(New);
+ return QualType(New, 0);
+}
+
+/// getVectorType - Return the unique reference to a vector type of
+/// the specified element type and size. VectorType must be a built-in type.
+QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
+ BuiltinType *baseType;
+
+ baseType = dyn_cast<BuiltinType>(vecType.getCanonicalType().getTypePtr());
+ assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
+
+ // Check if we've already instantiated a vector of this type.
+ llvm::FoldingSetNodeID ID;
+ VectorType::Profile(ID, vecType, NumElts, Type::Vector);
+ void *InsertPos = 0;
+ if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(VTP, 0);
+
+ // If the element type isn't canonical, this won't be a canonical type either,
+ // so fill in the canonical type field.
+ QualType Canonical;
+ if (!vecType->isCanonical()) {
+ Canonical = getVectorType(vecType.getCanonicalType(), NumElts);
+
+ // Get the new insert position for the node we care about.
+ VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(NewIP == 0 && "Shouldn't be in the map!");
+ }
+ VectorType *New = new VectorType(vecType, NumElts, Canonical);
+ VectorTypes.InsertNode(New, InsertPos);
+ Types.push_back(New);
+ return QualType(New, 0);
+}
+
+/// getOCUVectorType - Return the unique reference to an OCU vector type of
+/// the specified element type and size. VectorType must be a built-in type.
+QualType ASTContext::getOCUVectorType(QualType vecType, unsigned NumElts) {
+ BuiltinType *baseType;
+
+ baseType = dyn_cast<BuiltinType>(vecType.getCanonicalType().getTypePtr());
+ assert(baseType != 0 && "getOCUVectorType(): Expecting a built-in type");
+
+ // Check if we've already instantiated a vector of this type.
+ llvm::FoldingSetNodeID ID;
+ VectorType::Profile(ID, vecType, NumElts, Type::OCUVector);
+ void *InsertPos = 0;
+ if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(VTP, 0);
+
+ // If the element type isn't canonical, this won't be a canonical type either,
+ // so fill in the canonical type field.
+ QualType Canonical;
+ if (!vecType->isCanonical()) {
+ Canonical = getOCUVectorType(vecType.getCanonicalType(), NumElts);
+
+ // Get the new insert position for the node we care about.
+ VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(NewIP == 0 && "Shouldn't be in the map!");
+ }
+ OCUVectorType *New = new OCUVectorType(vecType, NumElts, Canonical);
+ VectorTypes.InsertNode(New, InsertPos);
+ Types.push_back(New);
+ return QualType(New, 0);
+}
+
+/// getFunctionTypeNoProto - Return a K&R style C function type like 'int()'.
+///
+QualType ASTContext::getFunctionTypeNoProto(QualType ResultTy) {
+ // Unique functions, to guarantee there is only one function of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ FunctionTypeNoProto::Profile(ID, ResultTy);
+
+ void *InsertPos = 0;
+ if (FunctionTypeNoProto *FT =
+ FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(FT, 0);
+
+ QualType Canonical;
+ if (!ResultTy->isCanonical()) {
+ Canonical = getFunctionTypeNoProto(ResultTy.getCanonicalType());
+
+ // Get the new insert position for the node we care about.
+ FunctionTypeNoProto *NewIP =
+ FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos);
+ assert(NewIP == 0 && "Shouldn't be in the map!");
+ }
+
+ FunctionTypeNoProto *New = new FunctionTypeNoProto(ResultTy, Canonical);
+ Types.push_back(New);
+ FunctionTypeNoProtos.InsertNode(New, InsertPos);
+ return QualType(New, 0);
+}
+
+/// getFunctionType - Return a normal function type with a typed argument
+/// list. isVariadic indicates whether the argument list includes '...'.
+QualType ASTContext::getFunctionType(QualType ResultTy, QualType *ArgArray,
+ unsigned NumArgs, bool isVariadic) {
+ // Unique functions, to guarantee there is only one function of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ FunctionTypeProto::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic);
+
+ void *InsertPos = 0;
+ if (FunctionTypeProto *FTP =
+ FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(FTP, 0);
+
+ // Determine whether the type being created is already canonical or not.
+ bool isCanonical = ResultTy->isCanonical();
+ for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
+ if (!ArgArray[i]->isCanonical())
+ isCanonical = false;
+
+ // If this type isn't canonical, get the canonical version of it.
+ QualType Canonical;
+ if (!isCanonical) {
+ llvm::SmallVector<QualType, 16> CanonicalArgs;
+ CanonicalArgs.reserve(NumArgs);
+ for (unsigned i = 0; i != NumArgs; ++i)
+ CanonicalArgs.push_back(ArgArray[i].getCanonicalType());
+
+ Canonical = getFunctionType(ResultTy.getCanonicalType(),
+ &CanonicalArgs[0], NumArgs,
+ isVariadic);
+
+ // Get the new insert position for the node we care about.
+ FunctionTypeProto *NewIP =
+ FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos);
+ assert(NewIP == 0 && "Shouldn't be in the map!");
+ }
+
+ // FunctionTypeProto objects are not allocated with new because they have a
+ // variable size array (for parameter types) at the end of them.
+ FunctionTypeProto *FTP =
+ (FunctionTypeProto*)malloc(sizeof(FunctionTypeProto) +
+ NumArgs*sizeof(QualType));
+ new (FTP) FunctionTypeProto(ResultTy, ArgArray, NumArgs, isVariadic,
+ Canonical);
+ Types.push_back(FTP);
+ FunctionTypeProtos.InsertNode(FTP, InsertPos);
+ return QualType(FTP, 0);
+}
+
+/// getTypedefType - Return the unique reference to the type for the
+/// specified typename decl.
+QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
+ if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
+
+ QualType Canonical = Decl->getUnderlyingType().getCanonicalType();
+ Decl->TypeForDecl = new TypedefType(Type::TypeName, Decl, Canonical);
+ Types.push_back(Decl->TypeForDecl);
+ return QualType(Decl->TypeForDecl, 0);
+}
+
+/// getObjCInterfaceType - Return the unique reference to the type for the
+/// specified ObjC interface decl.
+QualType ASTContext::getObjCInterfaceType(ObjCInterfaceDecl *Decl) {
+ if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
+
+ Decl->TypeForDecl = new ObjCInterfaceType(Type::ObjCInterface, Decl);
+ Types.push_back(Decl->TypeForDecl);
+ return QualType(Decl->TypeForDecl, 0);
+}
+
+/// getObjCQualifiedInterfaceType - Return a
+/// ObjCQualifiedInterfaceType type for the given interface decl and
+/// the conforming protocol list.
+QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
+ ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
+ llvm::FoldingSetNodeID ID;
+ ObjCQualifiedInterfaceType::Profile(ID, Protocols, NumProtocols);
+
+ void *InsertPos = 0;
+ if (ObjCQualifiedInterfaceType *QT =
+ ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(QT, 0);
+
+ // No Match;
+ ObjCQualifiedInterfaceType *QType =
+ new ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols);
+ Types.push_back(QType);
+ ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos);
+ return QualType(QType, 0);
+}
+
+/// getObjCQualifiedIdType - Return a
+/// getObjCQualifiedIdType type for the 'id' decl and
+/// the conforming protocol list.
+QualType ASTContext::getObjCQualifiedIdType(QualType idType,
+ ObjCProtocolDecl **Protocols,
+ unsigned NumProtocols) {
+ llvm::FoldingSetNodeID ID;
+ ObjCQualifiedIdType::Profile(ID, Protocols, NumProtocols);
+
+ void *InsertPos = 0;
+ if (ObjCQualifiedIdType *QT =
+ ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(QT, 0);
+
+ // No Match;
+ QualType Canonical;
+ if (!idType->isCanonical()) {
+ Canonical = getObjCQualifiedIdType(idType.getCanonicalType(),
+ Protocols, NumProtocols);
+ ObjCQualifiedIdType *NewQT =
+ ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(NewQT == 0 && "Shouldn't be in the map!");
+ }
+
+ ObjCQualifiedIdType *QType =
+ new ObjCQualifiedIdType(Canonical, Protocols, NumProtocols);
+ Types.push_back(QType);
+ ObjCQualifiedIdTypes.InsertNode(QType, InsertPos);
+ return QualType(QType, 0);
+}
+
+/// getTypeOfExpr - Unlike many "get<Type>" functions, we can't unique
+/// TypeOfExpr AST's (since expression's are never shared). For example,
+/// multiple declarations that refer to "typeof(x)" all contain different
+/// DeclRefExpr's. This doesn't effect the type checker, since it operates
+/// on canonical type's (which are always unique).
+QualType ASTContext::getTypeOfExpr(Expr *tofExpr) {
+ QualType Canonical = tofExpr->getType().getCanonicalType();
+ TypeOfExpr *toe = new TypeOfExpr(tofExpr, Canonical);
+ Types.push_back(toe);
+ return QualType(toe, 0);
+}
+
+/// getTypeOfType - Unlike many "get<Type>" functions, we don't unique
+/// TypeOfType AST's. The only motivation to unique these nodes would be
+/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
+/// an issue. This doesn't effect the type checker, since it operates
+/// on canonical type's (which are always unique).
+QualType ASTContext::getTypeOfType(QualType tofType) {
+ QualType Canonical = tofType.getCanonicalType();
+ TypeOfType *tot = new TypeOfType(tofType, Canonical);
+ Types.push_back(tot);
+ return QualType(tot, 0);
+}
+
+/// getTagDeclType - Return the unique reference to the type for the
+/// specified TagDecl (struct/union/class/enum) decl.
+QualType ASTContext::getTagDeclType(TagDecl *Decl) {
+ assert (Decl);
+
+ // The decl stores the type cache.
+ if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
+
+ TagType* T = new TagType(Decl, QualType());
+ Types.push_back(T);
+ Decl->TypeForDecl = T;
+
+ return QualType(T, 0);
+}
+
+/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
+/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
+/// needs to agree with the definition in <stddef.h>.
+QualType ASTContext::getSizeType() const {
+ // On Darwin, size_t is defined as a "long unsigned int".
+ // FIXME: should derive from "Target".
+ return UnsignedLongTy;
+}
+
+/// getWcharType - Return the unique type for "wchar_t" (C99 7.17), the
+/// width of characters in wide strings, The value is target dependent and
+/// needs to agree with the definition in <stddef.h>.
+QualType ASTContext::getWcharType() const {
+ // On Darwin, wchar_t is defined as a "int".
+ // FIXME: should derive from "Target".
+ return IntTy;
+}
+
+/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
+/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
+QualType ASTContext::getPointerDiffType() const {
+ // On Darwin, ptrdiff_t is defined as a "int". This seems like a bug...
+ // FIXME: should derive from "Target".
+ return IntTy;
+}
+
+/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
+/// routine will assert if passed a built-in type that isn't an integer or enum.
+static int getIntegerRank(QualType t) {
+ if (const TagType *TT = dyn_cast<TagType>(t.getCanonicalType())) {
+ assert(TT->getDecl()->getKind() == Decl::Enum && "not an int or enum");
+ return 4;
+ }
+
+ const BuiltinType *BT = t.getCanonicalType()->getAsBuiltinType();
+ switch (BT->getKind()) {
+ default:
+ assert(0 && "getIntegerRank(): not a built-in integer");
+ case BuiltinType::Bool:
+ return 1;
+ case BuiltinType::Char_S:
+ case BuiltinType::Char_U:
+ case BuiltinType::SChar:
+ case BuiltinType::UChar:
+ return 2;
+ case BuiltinType::Short:
+ case BuiltinType::UShort:
+ return 3;
+ case BuiltinType::Int:
+ case BuiltinType::UInt:
+ return 4;
+ case BuiltinType::Long:
+ case BuiltinType::ULong:
+ return 5;
+ case BuiltinType::LongLong:
+ case BuiltinType::ULongLong:
+ return 6;
+ }
+}
+
+/// getFloatingRank - Return a relative rank for floating point types.
+/// This routine will assert if passed a built-in type that isn't a float.
+static int getFloatingRank(QualType T) {
+ T = T.getCanonicalType();
+ if (const ComplexType *CT = T->getAsComplexType())
+ return getFloatingRank(CT->getElementType());
+
+ switch (T->getAsBuiltinType()->getKind()) {
+ default: assert(0 && "getFloatingRank(): not a floating type");
+ case BuiltinType::Float: return FloatRank;
+ case BuiltinType::Double: return DoubleRank;
+ case BuiltinType::LongDouble: return LongDoubleRank;
+ }
+}
+
+/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
+/// point or a complex type (based on typeDomain/typeSize).
+/// 'typeDomain' is a real floating point or complex type.
+/// 'typeSize' is a real floating point or complex type.
+QualType ASTContext::getFloatingTypeOfSizeWithinDomain(
+ QualType typeSize, QualType typeDomain) const {
+ if (typeDomain->isComplexType()) {
+ switch (getFloatingRank(typeSize)) {
+ default: assert(0 && "getFloatingRank(): illegal value for rank");
+ case FloatRank: return FloatComplexTy;
+ case DoubleRank: return DoubleComplexTy;
+ case LongDoubleRank: return LongDoubleComplexTy;
+ }
+ }
+ if (typeDomain->isRealFloatingType()) {
+ switch (getFloatingRank(typeSize)) {
+ default: assert(0 && "getFloatingRank(): illegal value for rank");
+ case FloatRank: return FloatTy;
+ case DoubleRank: return DoubleTy;
+ case LongDoubleRank: return LongDoubleTy;
+ }
+ }
+ assert(0 && "getFloatingTypeOfSizeWithinDomain(): illegal domain");
+ //an invalid return value, but the assert
+ //will ensure that this code is never reached.
+ return VoidTy;
+}
+
+/// compareFloatingType - Handles 3 different combos:
+/// float/float, float/complex, complex/complex.
+/// If lt > rt, return 1. If lt == rt, return 0. If lt < rt, return -1.
+int ASTContext::compareFloatingType(QualType lt, QualType rt) {
+ if (getFloatingRank(lt) == getFloatingRank(rt))
+ return 0;
+ if (getFloatingRank(lt) > getFloatingRank(rt))
+ return 1;
+ return -1;
+}
+
+// maxIntegerType - Returns the highest ranked integer type. Handles 3 case:
+// unsigned/unsigned, signed/signed, signed/unsigned. C99 6.3.1.8p1.
+QualType ASTContext::maxIntegerType(QualType lhs, QualType rhs) {
+ if (lhs == rhs) return lhs;
+
+ bool t1Unsigned = lhs->isUnsignedIntegerType();
+ bool t2Unsigned = rhs->isUnsignedIntegerType();
+
+ if ((t1Unsigned && t2Unsigned) || (!t1Unsigned && !t2Unsigned))
+ return getIntegerRank(lhs) >= getIntegerRank(rhs) ? lhs : rhs;
+
+ // We have two integer types with differing signs
+ QualType unsignedType = t1Unsigned ? lhs : rhs;
+ QualType signedType = t1Unsigned ? rhs : lhs;
+
+ if (getIntegerRank(unsignedType) >= getIntegerRank(signedType))
+ return unsignedType;
+ else {
+ // FIXME: Need to check if the signed type can represent all values of the
+ // unsigned type. If it can, then the result is the signed type.
+ // If it can't, then the result is the unsigned version of the signed type.
+ // Should probably add a helper that returns a signed integer type from
+ // an unsigned (and vice versa). C99 6.3.1.8.
+ return signedType;
+ }
+}
+
+// getCFConstantStringType - Return the type used for constant CFStrings.
+QualType ASTContext::getCFConstantStringType() {
+ if (!CFConstantStringTypeDecl) {
+ CFConstantStringTypeDecl =
+ RecordDecl::Create(*this, Decl::Struct, SourceLocation(),
+ &Idents.get("NSConstantString"), 0);
+ QualType FieldTypes[4];
+
+ // const int *isa;
+ FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
+ // int flags;
+ FieldTypes[1] = IntTy;
+ // const char *str;
+ FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
+ // long length;
+ FieldTypes[3] = LongTy;
+ // Create fields
+ FieldDecl *FieldDecls[4];
+
+ for (unsigned i = 0; i < 4; ++i)
+ FieldDecls[i] = new FieldDecl(SourceLocation(), 0, FieldTypes[i]);
+
+ CFConstantStringTypeDecl->defineBody(FieldDecls, 4);
+ }
+
+ return getTagDeclType(CFConstantStringTypeDecl);
+}
+
+// This returns true if a type has been typedefed to BOOL:
+// typedef <type> BOOL;
+static bool isTypeTypedefedAsBOOL(QualType T) {
+ if (const TypedefType *TT = dyn_cast<TypedefType>(T))
+ return !strcmp(TT->getDecl()->getName(), "BOOL");
+
+ return false;
+}
+
+/// getObjCEncodingTypeSize returns size of type for objective-c encoding
+/// purpose.
+int ASTContext::getObjCEncodingTypeSize(QualType type) {
+ uint64_t sz = getTypeSize(type);
+
+ // Make all integer and enum types at least as large as an int
+ if (sz > 0 && type->isIntegralType())
+ sz = std::max(sz, getTypeSize(IntTy));
+ // Treat arrays as pointers, since that's how they're passed in.
+ else if (type->isArrayType())
+ sz = getTypeSize(VoidPtrTy);
+ return sz / getTypeSize(CharTy);
+}
+
+/// getObjCEncodingForMethodDecl - Return the encoded type for this method
+/// declaration.
+void ASTContext::getObjCEncodingForMethodDecl(ObjCMethodDecl *Decl,
+ std::string& S)
+{
+ // Encode type qualifer, 'in', 'inout', etc. for the return type.
+ getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
+ // Encode result type.
+ getObjCEncodingForType(Decl->getResultType(), S, EncodingRecordTypes);
+ // Compute size of all parameters.
+ // Start with computing size of a pointer in number of bytes.
+ // FIXME: There might(should) be a better way of doing this computation!
+ SourceLocation Loc;
+ int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
+ // The first two arguments (self and _cmd) are pointers; account for
+ // their size.
+ int ParmOffset = 2 * PtrSize;
+ int NumOfParams = Decl->getNumParams();
+ for (int i = 0; i < NumOfParams; i++) {
+ QualType PType = Decl->getParamDecl(i)->getType();
+ int sz = getObjCEncodingTypeSize (PType);
+ assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
+ ParmOffset += sz;
+ }
+ S += llvm::utostr(ParmOffset);
+ S += "@0:";
+ S += llvm::utostr(PtrSize);
+
+ // Argument types.
+ ParmOffset = 2 * PtrSize;
+ for (int i = 0; i < NumOfParams; i++) {
+ QualType PType = Decl->getParamDecl(i)->getType();
+ // Process argument qualifiers for user supplied arguments; such as,
+ // 'in', 'inout', etc.
+ getObjCEncodingForTypeQualifier(
+ Decl->getParamDecl(i)->getObjCDeclQualifier(), S);
+ getObjCEncodingForType(PType, S, EncodingRecordTypes);
+ S += llvm::utostr(ParmOffset);
+ ParmOffset += getObjCEncodingTypeSize(PType);
+ }
+}
+
+void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
+ llvm::SmallVector<const RecordType *, 8> &ERType) const
+{
+ // FIXME: This currently doesn't encode:
+ // @ An object (whether statically typed or typed id)
+ // # A class object (Class)
+ // : A method selector (SEL)
+ // {name=type...} A structure
+ // (name=type...) A union
+ // bnum A bit field of num bits
+
+ if (const BuiltinType *BT = T->getAsBuiltinType()) {
+ char encoding;
+ switch (BT->getKind()) {
+ case BuiltinType::Void:
+ encoding = 'v';
+ break;
+ case BuiltinType::Bool:
+ encoding = 'B';
+ break;
+ case BuiltinType::Char_U:
+ case BuiltinType::UChar:
+ encoding = 'C';
+ break;
+ case BuiltinType::UShort:
+ encoding = 'S';
+ break;
+ case BuiltinType::UInt:
+ encoding = 'I';
+ break;
+ case BuiltinType::ULong:
+ encoding = 'L';
+ break;
+ case BuiltinType::ULongLong:
+ encoding = 'Q';
+ break;
+ case BuiltinType::Char_S:
+ case BuiltinType::SChar:
+ encoding = 'c';
+ break;
+ case BuiltinType::Short:
+ encoding = 's';
+ break;
+ case BuiltinType::Int:
+ encoding = 'i';
+ break;
+ case BuiltinType::Long:
+ encoding = 'l';
+ break;
+ case BuiltinType::LongLong:
+ encoding = 'q';
+ break;
+ case BuiltinType::Float:
+ encoding = 'f';
+ break;
+ case BuiltinType::Double:
+ encoding = 'd';
+ break;
+ case BuiltinType::LongDouble:
+ encoding = 'd';
+ break;
+ default:
+ assert(0 && "Unhandled builtin type kind");
+ }
+
+ S += encoding;
+ }
+ else if (T->isObjCQualifiedIdType()) {
+ // Treat id<P...> same as 'id' for encoding purposes.
+ return getObjCEncodingForType(getObjCIdType(), S, ERType);
+
+ }
+ else if (const PointerType *PT = T->getAsPointerType()) {
+ QualType PointeeTy = PT->getPointeeType();
+ if (isObjCIdType(PointeeTy) || PointeeTy->isObjCInterfaceType()) {
+ S += '@';
+ return;
+ } else if (isObjCClassType(PointeeTy)) {
+ S += '#';
+ return;
+ } else if (isObjCSelType(PointeeTy)) {
+ S += ':';
+ return;
+ }
+
+ if (PointeeTy->isCharType()) {
+ // char pointer types should be encoded as '*' unless it is a
+ // type that has been typedef'd to 'BOOL'.
+ if (!isTypeTypedefedAsBOOL(PointeeTy)) {
+ S += '*';
+ return;
+ }
+ }
+
+ S += '^';
+ getObjCEncodingForType(PT->getPointeeType(), S, ERType);
+ } else if (const ArrayType *AT = T->getAsArrayType()) {
+ S += '[';
+
+ if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
+ S += llvm::utostr(CAT->getSize().getZExtValue());
+ else
+ assert(0 && "Unhandled array type!");
+
+ getObjCEncodingForType(AT->getElementType(), S, ERType);
+ S += ']';
+ } else if (T->getAsFunctionType()) {
+ S += '?';
+ } else if (const RecordType *RTy = T->getAsRecordType()) {
+ RecordDecl *RDecl= RTy->getDecl();
+ S += '{';
+ S += RDecl->getName();
+ bool found = false;
+ for (unsigned i = 0, e = ERType.size(); i != e; ++i)
+ if (ERType[i] == RTy) {
+ found = true;
+ break;
+ }
+ if (!found) {
+ ERType.push_back(RTy);
+ S += '=';
+ for (int i = 0; i < RDecl->getNumMembers(); i++) {
+ FieldDecl *field = RDecl->getMember(i);
+ getObjCEncodingForType(field->getType(), S, ERType);
+ }
+ assert(ERType.back() == RTy && "Record Type stack mismatch.");
+ ERType.pop_back();
+ }
+ S += '}';
+ } else if (T->isEnumeralType()) {
+ S += 'i';
+ } else
+ assert(0 && "@encode for type not implemented!");
+}
+
+void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
+ std::string& S) const {
+ if (QT & Decl::OBJC_TQ_In)
+ S += 'n';
+ if (QT & Decl::OBJC_TQ_Inout)
+ S += 'N';
+ if (QT & Decl::OBJC_TQ_Out)
+ S += 'o';
+ if (QT & Decl::OBJC_TQ_Bycopy)
+ S += 'O';
+ if (QT & Decl::OBJC_TQ_Byref)
+ S += 'R';
+ if (QT & Decl::OBJC_TQ_Oneway)
+ S += 'V';
+}
+
+void ASTContext::setBuiltinVaListType(QualType T)
+{
+ assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
+
+ BuiltinVaListType = T;
+}
+
+void ASTContext::setObjCIdType(TypedefDecl *TD)
+{
+ assert(ObjCIdType.isNull() && "'id' type already set!");
+
+ ObjCIdType = getTypedefType(TD);
+
+ // typedef struct objc_object *id;
+ const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
+ assert(ptr && "'id' incorrectly typed");
+ const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
+ assert(rec && "'id' incorrectly typed");
+ IdStructType = rec;
+}
+
+void ASTContext::setObjCSelType(TypedefDecl *TD)
+{
+ assert(ObjCSelType.isNull() && "'SEL' type already set!");
+
+ ObjCSelType = getTypedefType(TD);
+
+ // typedef struct objc_selector *SEL;
+ const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
+ assert(ptr && "'SEL' incorrectly typed");
+ const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
+ assert(rec && "'SEL' incorrectly typed");
+ SelStructType = rec;
+}
+
+void ASTContext::setObjCProtoType(QualType QT)
+{
+ assert(ObjCProtoType.isNull() && "'Protocol' type already set!");
+ ObjCProtoType = QT;
+}
+
+void ASTContext::setObjCClassType(TypedefDecl *TD)
+{
+ assert(ObjCClassType.isNull() && "'Class' type already set!");
+
+ ObjCClassType = getTypedefType(TD);
+
+ // typedef struct objc_class *Class;
+ const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
+ assert(ptr && "'Class' incorrectly typed");
+ const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
+ assert(rec && "'Class' incorrectly typed");
+ ClassStructType = rec;
+}
+
+void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
+ assert(ObjCConstantStringType.isNull() &&
+ "'NSConstantString' type already set!");
+
+ ObjCConstantStringType = getObjCInterfaceType(Decl);
+}
+
+bool ASTContext::builtinTypesAreCompatible(QualType lhs, QualType rhs) {
+ const BuiltinType *lBuiltin = lhs->getAsBuiltinType();
+ const BuiltinType *rBuiltin = rhs->getAsBuiltinType();
+
+ return lBuiltin->getKind() == rBuiltin->getKind();
+}
+
+/// objcTypesAreCompatible - This routine is called when two types
+/// are of different class; one is interface type or is
+/// a qualified interface type and the other type is of a different class.
+/// Example, II or II<P>.
+bool ASTContext::objcTypesAreCompatible(QualType lhs, QualType rhs) {
+ if (lhs->isObjCInterfaceType() && isObjCIdType(rhs))
+ return true;
+ else if (isObjCIdType(lhs) && rhs->isObjCInterfaceType())
+ return true;
+ if (ObjCInterfaceType *lhsIT =
+ dyn_cast<ObjCInterfaceType>(lhs.getCanonicalType().getTypePtr())) {
+ ObjCQualifiedInterfaceType *rhsQI =
+ dyn_cast<ObjCQualifiedInterfaceType>(rhs.getCanonicalType().getTypePtr());
+ return rhsQI && (lhsIT->getDecl() == rhsQI->getDecl());
+ }
+ else if (ObjCInterfaceType *rhsIT =
+ dyn_cast<ObjCInterfaceType>(rhs.getCanonicalType().getTypePtr())) {
+ ObjCQualifiedInterfaceType *lhsQI =
+ dyn_cast<ObjCQualifiedInterfaceType>(lhs.getCanonicalType().getTypePtr());
+ return lhsQI && (rhsIT->getDecl() == lhsQI->getDecl());
+ }
+ return false;
+}
+
+/// Check that 'lhs' and 'rhs' are compatible interface types. Both types
+/// must be canonical types.
+bool ASTContext::interfaceTypesAreCompatible(QualType lhs, QualType rhs) {
+ assert (lhs->isCanonical() &&
+ "interfaceTypesAreCompatible strip typedefs of lhs");
+ assert (rhs->isCanonical() &&
+ "interfaceTypesAreCompatible strip typedefs of rhs");
+ if (lhs == rhs)
+ return true;
+ ObjCInterfaceType *lhsIT = cast<ObjCInterfaceType>(lhs.getTypePtr());
+ ObjCInterfaceType *rhsIT = cast<ObjCInterfaceType>(rhs.getTypePtr());
+ ObjCInterfaceDecl *rhsIDecl = rhsIT->getDecl();
+ ObjCInterfaceDecl *lhsIDecl = lhsIT->getDecl();
+ // rhs is derived from lhs it is OK; else it is not OK.
+ while (rhsIDecl != NULL) {
+ if (rhsIDecl == lhsIDecl)
+ return true;
+ rhsIDecl = rhsIDecl->getSuperClass();
+ }
+ return false;
+}
+
+bool ASTContext::QualifiedInterfaceTypesAreCompatible(QualType lhs,
+ QualType rhs) {
+ ObjCQualifiedInterfaceType *lhsQI =
+ dyn_cast<ObjCQualifiedInterfaceType>(lhs.getCanonicalType().getTypePtr());
+ assert(lhsQI && "QualifiedInterfaceTypesAreCompatible - bad lhs type");
+ ObjCQualifiedInterfaceType *rhsQI =
+ dyn_cast<ObjCQualifiedInterfaceType>(rhs.getCanonicalType().getTypePtr());
+ assert(rhsQI && "QualifiedInterfaceTypesAreCompatible - bad rhs type");
+ if (!interfaceTypesAreCompatible(
+ getObjCInterfaceType(lhsQI->getDecl()).getCanonicalType(),
+ getObjCInterfaceType(rhsQI->getDecl()).getCanonicalType()))
+ return false;
+ /* All protocols in lhs must have a presense in rhs. */
+ for (unsigned i =0; i < lhsQI->getNumProtocols(); i++) {
+ bool match = false;
+ ObjCProtocolDecl *lhsProto = lhsQI->getProtocols(i);
+ for (unsigned j = 0; j < rhsQI->getNumProtocols(); j++) {
+ ObjCProtocolDecl *rhsProto = rhsQI->getProtocols(j);
+ if (lhsProto == rhsProto) {
+ match = true;
+ break;
+ }
+ }
+ if (!match)
+ return false;
+ }
+ return true;
+}
+
+/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
+/// inheritance hierarchy of 'rProto'.
+static bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
+ ObjCProtocolDecl *rProto) {
+ if (lProto == rProto)
+ return true;
+ ObjCProtocolDecl** RefPDecl = rProto->getReferencedProtocols();
+ for (unsigned i = 0; i < rProto->getNumReferencedProtocols(); i++)
+ if (ProtocolCompatibleWithProtocol(lProto, RefPDecl[i]))
+ return true;
+ return false;
+}
+
+/// ClassImplementsProtocol - Checks that 'lProto' protocol
+/// has been implemented in IDecl class, its super class or categories (if
+/// lookupCategory is true).
+static bool ClassImplementsProtocol(ObjCProtocolDecl *lProto,
+ ObjCInterfaceDecl *IDecl,
+ bool lookupCategory) {
+
+ // 1st, look up the class.
+ ObjCProtocolDecl **protoList = IDecl->getReferencedProtocols();
+ for (unsigned i = 0; i < IDecl->getNumIntfRefProtocols(); i++) {
+ if (ProtocolCompatibleWithProtocol(lProto, protoList[i]))
+ return true;
+ }
+
+ // 2nd, look up the category.
+ if (lookupCategory)
+ for (ObjCCategoryDecl *CDecl = IDecl->getCategoryList(); CDecl;
+ CDecl = CDecl->getNextClassCategory()) {
+ protoList = CDecl->getReferencedProtocols();
+ for (unsigned i = 0; i < CDecl->getNumReferencedProtocols(); i++) {
+ if (ProtocolCompatibleWithProtocol(lProto, protoList[i]))
+ return true;
+ }
+ }
+
+ // 3rd, look up the super class(s)
+ if (IDecl->getSuperClass())
+ return
+ ClassImplementsProtocol(lProto, IDecl->getSuperClass(), lookupCategory);
+
+ return false;
+}
+
+/// ObjCQualifiedIdTypesAreCompatible - Compares two types, at least
+/// one of which is a protocol qualified 'id' type. When 'compare'
+/// is true it is for comparison; when false, for assignment/initialization.
+bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs,
+ QualType rhs,
+ bool compare) {
+ // match id<P..> with an 'id' type in all cases.
+ if (const PointerType *PT = lhs->getAsPointerType()) {
+ QualType PointeeTy = PT->getPointeeType();
+ if (isObjCIdType(PointeeTy) || PointeeTy->isVoidType())
+ return true;
+
+ }
+ else if (const PointerType *PT = rhs->getAsPointerType()) {
+ QualType PointeeTy = PT->getPointeeType();
+ if (isObjCIdType(PointeeTy) || PointeeTy->isVoidType())
+ return true;
+
+ }
+
+ ObjCQualifiedInterfaceType *lhsQI = 0;
+ ObjCQualifiedInterfaceType *rhsQI = 0;
+ ObjCInterfaceDecl *lhsID = 0;
+ ObjCInterfaceDecl *rhsID = 0;
+ ObjCQualifiedIdType *lhsQID = dyn_cast<ObjCQualifiedIdType>(lhs);
+ ObjCQualifiedIdType *rhsQID = dyn_cast<ObjCQualifiedIdType>(rhs);
+
+ if (lhsQID) {
+ if (!rhsQID && rhs->getTypeClass() == Type::Pointer) {
+ QualType rtype =
+ cast<PointerType>(rhs.getCanonicalType())->getPointeeType();
+ rhsQI =
+ dyn_cast<ObjCQualifiedInterfaceType>(
+ rtype.getCanonicalType().getTypePtr());
+ if (!rhsQI) {
+ ObjCInterfaceType *IT = dyn_cast<ObjCInterfaceType>(
+ rtype.getCanonicalType().getTypePtr());
+ if (IT)
+ rhsID = IT->getDecl();
+ }
+ }
+ if (!rhsQI && !rhsQID && !rhsID)
+ return false;
+
+ unsigned numRhsProtocols = 0;
+ ObjCProtocolDecl **rhsProtoList = 0;
+ if (rhsQI) {
+ numRhsProtocols = rhsQI->getNumProtocols();
+ rhsProtoList = rhsQI->getReferencedProtocols();
+ }
+ else if (rhsQID) {
+ numRhsProtocols = rhsQID->getNumProtocols();
+ rhsProtoList = rhsQID->getReferencedProtocols();
+ }
+
+ for (unsigned i =0; i < lhsQID->getNumProtocols(); i++) {
+ ObjCProtocolDecl *lhsProto = lhsQID->getProtocols(i);
+ bool match = false;
+
+ // when comparing an id<P> on lhs with a static type on rhs,
+ // see if static class implements all of id's protocols, directly or
+ // through its super class and categories.
+ if (rhsID) {
+ if (ClassImplementsProtocol(lhsProto, rhsID, true))
+ match = true;
+ }
+ else for (unsigned j = 0; j < numRhsProtocols; j++) {
+ ObjCProtocolDecl *rhsProto = rhsProtoList[j];
+ if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
+ compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto)) {
+ match = true;
+ break;
+ }
+ }
+ if (!match)
+ return false;
+ }
+ }
+ else if (rhsQID) {
+ if (!lhsQID && lhs->getTypeClass() == Type::Pointer) {
+ QualType ltype =
+ cast<PointerType>(lhs.getCanonicalType())->getPointeeType();
+ lhsQI =
+ dyn_cast<ObjCQualifiedInterfaceType>(
+ ltype.getCanonicalType().getTypePtr());
+ if (!lhsQI) {
+ ObjCInterfaceType *IT = dyn_cast<ObjCInterfaceType>(
+ ltype.getCanonicalType().getTypePtr());
+ if (IT)
+ lhsID = IT->getDecl();
+ }
+ }
+ if (!lhsQI && !lhsQID && !lhsID)
+ return false;
+
+ unsigned numLhsProtocols = 0;
+ ObjCProtocolDecl **lhsProtoList = 0;
+ if (lhsQI) {
+ numLhsProtocols = lhsQI->getNumProtocols();
+ lhsProtoList = lhsQI->getReferencedProtocols();
+ }
+ else if (lhsQID) {
+ numLhsProtocols = lhsQID->getNumProtocols();
+ lhsProtoList = lhsQID->getReferencedProtocols();
+ }
+ bool match = false;
+ // for static type vs. qualified 'id' type, check that class implements
+ // one of 'id's protocols.
+ if (lhsID) {
+ for (unsigned j = 0; j < rhsQID->getNumProtocols(); j++) {
+ ObjCProtocolDecl *rhsProto = rhsQID->getProtocols(j);
+ if (ClassImplementsProtocol(rhsProto, lhsID, compare)) {
+ match = true;
+ break;
+ }
+ }
+ }
+ else for (unsigned i =0; i < numLhsProtocols; i++) {
+ match = false;
+ ObjCProtocolDecl *lhsProto = lhsProtoList[i];
+ for (unsigned j = 0; j < rhsQID->getNumProtocols(); j++) {
+ ObjCProtocolDecl *rhsProto = rhsQID->getProtocols(j);
+ if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
+ compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto)) {
+ match = true;
+ break;
+ }
+ }
+ }
+ if (!match)
+ return false;
+ }
+ return true;
+}
+
+bool ASTContext::vectorTypesAreCompatible(QualType lhs, QualType rhs) {
+ const VectorType *lVector = lhs->getAsVectorType();
+ const VectorType *rVector = rhs->getAsVectorType();
+
+ if ((lVector->getElementType().getCanonicalType() ==
+ rVector->getElementType().getCanonicalType()) &&
+ (lVector->getNumElements() == rVector->getNumElements()))
+ return true;
+ return false;
+}
+
+// C99 6.2.7p1: If both are complete types, then the following additional
+// requirements apply...FIXME (handle compatibility across source files).
+bool ASTContext::tagTypesAreCompatible(QualType lhs, QualType rhs) {
+ // "Class" and "id" are compatible built-in structure types.
+ if (isObjCIdType(lhs) && isObjCClassType(rhs) ||
+ isObjCClassType(lhs) && isObjCIdType(rhs))
+ return true;
+
+ // Within a translation unit a tag type is
+ // only compatible with itself.
+ return lhs.getCanonicalType() == rhs.getCanonicalType();
+}
+
+bool ASTContext::pointerTypesAreCompatible(QualType lhs, QualType rhs) {
+ // C99 6.7.5.1p2: For two pointer types to be compatible, both shall be
+ // identically qualified and both shall be pointers to compatible types.
+ if (lhs.getCVRQualifiers() != rhs.getCVRQualifiers() ||
+ lhs.getAddressSpace() != rhs.getAddressSpace())
+ return false;
+
+ QualType ltype = cast<PointerType>(lhs.getCanonicalType())->getPointeeType();
+ QualType rtype = cast<PointerType>(rhs.getCanonicalType())->getPointeeType();
+
+ return typesAreCompatible(ltype, rtype);
+}
+
+// C++ 5.17p6: When the left operand of an assignment operator denotes a
+// reference to T, the operation assigns to the object of type T denoted by the
+// reference.
+bool ASTContext::referenceTypesAreCompatible(QualType lhs, QualType rhs) {
+ QualType ltype = lhs;
+
+ if (lhs->isReferenceType())
+ ltype = cast<ReferenceType>(lhs.getCanonicalType())->getReferenceeType();
+
+ QualType rtype = rhs;
+
+ if (rhs->isReferenceType())
+ rtype = cast<ReferenceType>(rhs.getCanonicalType())->getReferenceeType();
+
+ return typesAreCompatible(ltype, rtype);
+}
+
+bool ASTContext::functionTypesAreCompatible(QualType lhs, QualType rhs) {
+ const FunctionType *lbase = cast<FunctionType>(lhs.getCanonicalType());
+ const FunctionType *rbase = cast<FunctionType>(rhs.getCanonicalType());
+ const FunctionTypeProto *lproto = dyn_cast<FunctionTypeProto>(lbase);
+ const FunctionTypeProto *rproto = dyn_cast<FunctionTypeProto>(rbase);
+
+ // first check the return types (common between C99 and K&R).
+ if (!typesAreCompatible(lbase->getResultType(), rbase->getResultType()))
+ return false;
+
+ if (lproto && rproto) { // two C99 style function prototypes
+ unsigned lproto_nargs = lproto->getNumArgs();
+ unsigned rproto_nargs = rproto->getNumArgs();
+
+ if (lproto_nargs != rproto_nargs)
+ return false;
+
+ // both prototypes have the same number of arguments.
+ if ((lproto->isVariadic() && !rproto->isVariadic()) ||
+ (rproto->isVariadic() && !lproto->isVariadic()))
+ return false;
+
+ // The use of ellipsis agree...now check the argument types.
+ for (unsigned i = 0; i < lproto_nargs; i++)
+ // C99 6.7.5.3p15: ...and each parameter declared with qualified type
+ // is taken as having the unqualified version of it's declared type.
+ if (!typesAreCompatible(lproto->getArgType(i).getUnqualifiedType(),
+ rproto->getArgType(i).getUnqualifiedType()))
+ return false;
+ return true;
+ }
+ if (!lproto && !rproto) // two K&R style function decls, nothing to do.
+ return true;
+
+ // we have a mixture of K&R style with C99 prototypes
+ const FunctionTypeProto *proto = lproto ? lproto : rproto;
+
+ if (proto->isVariadic())
+ return false;
+
+ // FIXME: Each parameter type T in the prototype must be compatible with the
+ // type resulting from applying the usual argument conversions to T.
+ return true;
+}
+
+bool ASTContext::arrayTypesAreCompatible(QualType lhs, QualType rhs) {
+ // Compatible arrays must have compatible element types
+ QualType ltype = lhs->getAsArrayType()->getElementType();
+ QualType rtype = rhs->getAsArrayType()->getElementType();
+
+ if (!typesAreCompatible(ltype, rtype))
+ return false;
+
+ // Compatible arrays must be the same size
+ if (const ConstantArrayType* LCAT = lhs->getAsConstantArrayType())
+ if (const ConstantArrayType* RCAT = rhs->getAsConstantArrayType())
+ return RCAT->getSize() == LCAT->getSize();
+
+ return true;
+}
+
+/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
+/// both shall have the identically qualified version of a compatible type.
+/// C99 6.2.7p1: Two types have compatible types if their types are the
+/// same. See 6.7.[2,3,5] for additional rules.
+bool ASTContext::typesAreCompatible(QualType lhs, QualType rhs) {
+ if (lhs.getCVRQualifiers() != rhs.getCVRQualifiers() ||
+ lhs.getAddressSpace() != rhs.getAddressSpace())
+ return false;
+
+ QualType lcanon = lhs.getCanonicalType();
+ QualType rcanon = rhs.getCanonicalType();
+
+ // If two types are identical, they are are compatible
+ if (lcanon == rcanon)
+ return true;
+
+ // C++ [expr]: If an expression initially has the type "reference to T", the
+ // type is adjusted to "T" prior to any further analysis, the expression
+ // designates the object or function denoted by the reference, and the
+ // expression is an lvalue.
+ if (ReferenceType *RT = dyn_cast<ReferenceType>(lcanon))
+ lcanon = RT->getReferenceeType();
+ if (ReferenceType *RT = dyn_cast<ReferenceType>(rcanon))
+ rcanon = RT->getReferenceeType();
+
+ Type::TypeClass LHSClass = lcanon->getTypeClass();
+ Type::TypeClass RHSClass = rcanon->getTypeClass();
+
+ // We want to consider the two function types to be the same for these
+ // comparisons, just force one to the other.
+ if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
+ if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
+
+ // Same as above for arrays
+ if (LHSClass == Type::VariableArray) LHSClass = Type::ConstantArray;
+ if (RHSClass == Type::VariableArray) RHSClass = Type::ConstantArray;
+ if (LHSClass == Type::IncompleteArray) LHSClass = Type::ConstantArray;
+ if (RHSClass == Type::IncompleteArray) RHSClass = Type::ConstantArray;
+
+ // If the canonical type classes don't match...
+ if (LHSClass != RHSClass) {
+ // For Objective-C, it is possible for two types to be compatible
+ // when their classes don't match (when dealing with "id"). If either type
+ // is an interface, we defer to objcTypesAreCompatible().
+ if (lcanon->isObjCInterfaceType() || rcanon->isObjCInterfaceType())
+ return objcTypesAreCompatible(lcanon, rcanon);
+
+ // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
+ // a signed integer type, or an unsigned integer type.
+ if (lcanon->isEnumeralType() && rcanon->isIntegralType()) {
+ EnumDecl* EDecl = cast<EnumDecl>(cast<TagType>(lcanon)->getDecl());
+ return EDecl->getIntegerType() == rcanon;
+ }
+ if (rcanon->isEnumeralType() && lcanon->isIntegralType()) {
+ EnumDecl* EDecl = cast<EnumDecl>(cast<TagType>(rcanon)->getDecl());
+ return EDecl->getIntegerType() == lcanon;
+ }
+
+ return false;
+ }
+ // The canonical type classes match.
+ switch (LHSClass) {
+ case Type::FunctionProto: assert(0 && "Canonicalized away above");
+ case Type::Pointer:
+ return pointerTypesAreCompatible(lcanon, rcanon);
+ case Type::ConstantArray:
+ case Type::VariableArray:
+ case Type::IncompleteArray:
+ return arrayTypesAreCompatible(lcanon, rcanon);
+ case Type::FunctionNoProto:
+ return functionTypesAreCompatible(lcanon, rcanon);
+ case Type::Tagged: // handle structures, unions
+ return tagTypesAreCompatible(lcanon, rcanon);
+ case Type::Builtin:
+ return builtinTypesAreCompatible(lcanon, rcanon);
+ case Type::ObjCInterface:
+ return interfaceTypesAreCompatible(lcanon, rcanon);
+ case Type::Vector:
+ case Type::OCUVector:
+ return vectorTypesAreCompatible(lcanon, rcanon);
+ case Type::ObjCQualifiedInterface:
+ return QualifiedInterfaceTypesAreCompatible(lcanon, rcanon);
+ default:
+ assert(0 && "unexpected type");
+ }
+ return true; // should never get here...
+}
+
+/// Emit - Serialize an ASTContext object to Bitcode.
+void ASTContext::Emit(llvm::Serializer& S) const {
+ S.EmitRef(SourceMgr);
+ S.EmitRef(Target);
+ S.EmitRef(Idents);
+ S.EmitRef(Selectors);
+
+ // Emit the size of the type vector so that we can reserve that size
+ // when we reconstitute the ASTContext object.
+ S.EmitInt(Types.size());
+
+ for (std::vector<Type*>::const_iterator I=Types.begin(), E=Types.end();
+ I!=E;++I)
+ (*I)->Emit(S);
+
+ // FIXME: S.EmitOwnedPtr(CFConstantStringTypeDecl);
+}
+
+ASTContext* ASTContext::Create(llvm::Deserializer& D) {
+ SourceManager &SM = D.ReadRef<SourceManager>();
+ TargetInfo &t = D.ReadRef<TargetInfo>();
+ IdentifierTable &idents = D.ReadRef<IdentifierTable>();
+ SelectorTable &sels = D.ReadRef<SelectorTable>();
+
+ unsigned size_reserve = D.ReadInt();
+
+ ASTContext* A = new ASTContext(SM,t,idents,sels,size_reserve);
+
+ for (unsigned i = 0; i < size_reserve; ++i)
+ Type::Create(*A,i,D);
+
+ // FIXME: A->CFConstantStringTypeDecl = D.ReadOwnedPtr<RecordDecl>();
+
+ return A;
+}
OpenPOWER on IntegriCloud