diff options
-rw-r--r-- | llvm/lib/Target/X86/X86ScheduleSLM.td | 158 |
1 files changed, 79 insertions, 79 deletions
diff --git a/llvm/lib/Target/X86/X86ScheduleSLM.td b/llvm/lib/Target/X86/X86ScheduleSLM.td index 8ba2cbcb984..6aa452367b2 100644 --- a/llvm/lib/Target/X86/X86ScheduleSLM.td +++ b/llvm/lib/Target/X86/X86ScheduleSLM.td @@ -32,19 +32,19 @@ def SLMModel : SchedMachineModel { let SchedModel = SLMModel in { // Silvermont has 5 reservation stations for micro-ops -def IEC_RSV0 : ProcResource<1>; -def IEC_RSV1 : ProcResource<1>; -def FPC_RSV0 : ProcResource<1> { let BufferSize = 1; } -def FPC_RSV1 : ProcResource<1> { let BufferSize = 1; } -def MEC_RSV : ProcResource<1>; +def SLM_IEC_RSV0 : ProcResource<1>; +def SLM_IEC_RSV1 : ProcResource<1>; +def SLM_FPC_RSV0 : ProcResource<1> { let BufferSize = 1; } +def SLM_FPC_RSV1 : ProcResource<1> { let BufferSize = 1; } +def SLM_MEC_RSV : ProcResource<1>; // Many micro-ops are capable of issuing on multiple ports. -def IEC_RSV01 : ProcResGroup<[IEC_RSV0, IEC_RSV1]>; -def FPC_RSV01 : ProcResGroup<[FPC_RSV0, FPC_RSV1]>; +def SLM_IEC_RSV01 : ProcResGroup<[SLM_IEC_RSV0, SLM_IEC_RSV1]>; +def SLM_FPC_RSV01 : ProcResGroup<[SLM_FPC_RSV0, SLM_FPC_RSV1]>; -def SMDivider : ProcResource<1>; -def SMFPMultiplier : ProcResource<1>; -def SMFPDivider : ProcResource<1>; +def SLMDivider : ProcResource<1>; +def SLMFPMultiplier : ProcResource<1>; +def SLMFPDivider : ProcResource<1>; // Loads are 3 cycles, so ReadAfterLd registers needn't be available until 3 // cycles after the memory operand. @@ -55,9 +55,9 @@ def : ReadAdvance<ReadAfterLd, 3>; // as two micro-ops when queued in the reservation station. // This multiclass defines the resource usage for variants with and without // folded loads. -multiclass SMWriteResPair<X86FoldableSchedWrite SchedRW, - list<ProcResourceKind> ExePorts, - int Lat, list<int> Res = [1], int UOps = 1> { +multiclass SLMWriteResPair<X86FoldableSchedWrite SchedRW, + list<ProcResourceKind> ExePorts, + int Lat, list<int> Res = [1], int UOps = 1> { // Register variant is using a single cycle on ExePort. def : WriteRes<SchedRW, ExePorts> { let Latency = Lat; @@ -67,7 +67,7 @@ multiclass SMWriteResPair<X86FoldableSchedWrite SchedRW, // Memory variant also uses a cycle on MEC_RSV and adds 3 cycles to the // latency. - def : WriteRes<SchedRW.Folded, !listconcat([MEC_RSV], ExePorts)> { + def : WriteRes<SchedRW.Folded, !listconcat([SLM_MEC_RSV], ExePorts)> { let Latency = !add(Lat, 3); let ResourceCycles = !listconcat([1], Res); let NumMicroOps = UOps; @@ -76,165 +76,165 @@ multiclass SMWriteResPair<X86FoldableSchedWrite SchedRW, // A folded store needs a cycle on MEC_RSV for the store data, but it does not // need an extra port cycle to recompute the address. -def : WriteRes<WriteRMW, [MEC_RSV]>; +def : WriteRes<WriteRMW, [SLM_MEC_RSV]>; -def : WriteRes<WriteStore, [IEC_RSV01, MEC_RSV]>; -def : WriteRes<WriteLoad, [MEC_RSV]> { let Latency = 3; } -def : WriteRes<WriteMove, [IEC_RSV01]>; +def : WriteRes<WriteStore, [SLM_IEC_RSV01, SLM_MEC_RSV]>; +def : WriteRes<WriteLoad, [SLM_MEC_RSV]> { let Latency = 3; } +def : WriteRes<WriteMove, [SLM_IEC_RSV01]>; def : WriteRes<WriteZero, []>; // Treat misc copies as a move. def : InstRW<[WriteMove], (instrs COPY)>; -defm : SMWriteResPair<WriteALU, [IEC_RSV01], 1>; -defm : SMWriteResPair<WriteIMul, [IEC_RSV1], 3>; -defm : SMWriteResPair<WriteShift, [IEC_RSV0], 1>; -defm : SMWriteResPair<WriteJump, [IEC_RSV1], 1>; +defm : SLMWriteResPair<WriteALU, [SLM_IEC_RSV01], 1>; +defm : SLMWriteResPair<WriteIMul, [SLM_IEC_RSV1], 3>; +defm : SLMWriteResPair<WriteShift, [SLM_IEC_RSV0], 1>; +defm : SLMWriteResPair<WriteJump, [SLM_IEC_RSV1], 1>; // This is for simple LEAs with one or two input operands. // The complex ones can only execute on port 1, and they require two cycles on // the port to read all inputs. We don't model that. -def : WriteRes<WriteLEA, [IEC_RSV1]>; +def : WriteRes<WriteLEA, [SLM_IEC_RSV1]>; // This is quite rough, latency depends on the dividend. -def : WriteRes<WriteIDiv, [IEC_RSV01, SMDivider]> { +def : WriteRes<WriteIDiv, [SLM_IEC_RSV01, SLMDivider]> { let Latency = 25; let ResourceCycles = [1, 25]; } -def : WriteRes<WriteIDivLd, [MEC_RSV, IEC_RSV01, SMDivider]> { +def : WriteRes<WriteIDivLd, [SLM_MEC_RSV, SLM_IEC_RSV01, SLMDivider]> { let Latency = 29; let ResourceCycles = [1, 1, 25]; } // Scalar and vector floating point. -def : WriteRes<WriteFStore, [FPC_RSV01, MEC_RSV]>; -def : WriteRes<WriteFLoad, [MEC_RSV]> { let Latency = 3; } -def : WriteRes<WriteFMove, [FPC_RSV01]>; - -defm : SMWriteResPair<WriteFAdd, [FPC_RSV1], 3>; -defm : SMWriteResPair<WriteFMul, [FPC_RSV0, SMFPMultiplier], 5, [1,2]>; -defm : SMWriteResPair<WriteFDiv, [FPC_RSV0, SMFPDivider], 34, [1,34]>; -defm : SMWriteResPair<WriteFRcp, [FPC_RSV0], 5>; -defm : SMWriteResPair<WriteFRsqrt, [FPC_RSV0], 5>; -defm : SMWriteResPair<WriteFSqrt, [FPC_RSV0], 15>; -defm : SMWriteResPair<WriteCvtF2I, [FPC_RSV01], 4>; -defm : SMWriteResPair<WriteCvtI2F, [FPC_RSV01], 4>; -defm : SMWriteResPair<WriteCvtF2F, [FPC_RSV01], 4>; -defm : SMWriteResPair<WriteFShuffle, [FPC_RSV0], 1>; -defm : SMWriteResPair<WriteFBlend, [FPC_RSV0], 1>; +def : WriteRes<WriteFStore, [SLM_FPC_RSV01, SLM_MEC_RSV]>; +def : WriteRes<WriteFLoad, [SLM_MEC_RSV]> { let Latency = 3; } +def : WriteRes<WriteFMove, [SLM_FPC_RSV01]>; + +defm : SLMWriteResPair<WriteFAdd, [SLM_FPC_RSV1], 3>; +defm : SLMWriteResPair<WriteFMul, [SLM_FPC_RSV0, SLMFPMultiplier], 5, [1,2]>; +defm : SLMWriteResPair<WriteFDiv, [SLM_FPC_RSV0, SLMFPDivider], 34, [1,34]>; +defm : SLMWriteResPair<WriteFRcp, [SLM_FPC_RSV0], 5>; +defm : SLMWriteResPair<WriteFRsqrt, [SLM_FPC_RSV0], 5>; +defm : SLMWriteResPair<WriteFSqrt, [SLM_FPC_RSV0], 15>; +defm : SLMWriteResPair<WriteCvtF2I, [SLM_FPC_RSV01], 4>; +defm : SLMWriteResPair<WriteCvtI2F, [SLM_FPC_RSV01], 4>; +defm : SLMWriteResPair<WriteCvtF2F, [SLM_FPC_RSV01], 4>; +defm : SLMWriteResPair<WriteFShuffle, [SLM_FPC_RSV0], 1>; +defm : SLMWriteResPair<WriteFBlend, [SLM_FPC_RSV0], 1>; // Vector integer operations. -def : WriteRes<WriteVecStore, [FPC_RSV01, MEC_RSV]>; -def : WriteRes<WriteVecLoad, [MEC_RSV]> { let Latency = 3; } -def : WriteRes<WriteVecMove, [FPC_RSV01]>; - -defm : SMWriteResPair<WriteVecShift, [FPC_RSV0], 1>; -defm : SMWriteResPair<WriteVecLogic, [FPC_RSV01], 1>; -defm : SMWriteResPair<WriteVecALU, [FPC_RSV01], 1>; -defm : SMWriteResPair<WriteVecIMul, [FPC_RSV0], 4>; -defm : SMWriteResPair<WriteShuffle, [FPC_RSV0], 1>; -defm : SMWriteResPair<WriteBlend, [FPC_RSV0], 1>; -defm : SMWriteResPair<WriteMPSAD, [FPC_RSV0], 7>; +def : WriteRes<WriteVecStore, [SLM_FPC_RSV01, SLM_MEC_RSV]>; +def : WriteRes<WriteVecLoad, [SLM_MEC_RSV]> { let Latency = 3; } +def : WriteRes<WriteVecMove, [SLM_FPC_RSV01]>; + +defm : SLMWriteResPair<WriteVecShift, [SLM_FPC_RSV0], 1>; +defm : SLMWriteResPair<WriteVecLogic, [SLM_FPC_RSV01], 1>; +defm : SLMWriteResPair<WriteVecALU, [SLM_FPC_RSV01], 1>; +defm : SLMWriteResPair<WriteVecIMul, [SLM_FPC_RSV0], 4>; +defm : SLMWriteResPair<WriteShuffle, [SLM_FPC_RSV0], 1>; +defm : SLMWriteResPair<WriteBlend, [SLM_FPC_RSV0], 1>; +defm : SLMWriteResPair<WriteMPSAD, [SLM_FPC_RSV0], 7>; //////////////////////////////////////////////////////////////////////////////// // Horizontal add/sub instructions. //////////////////////////////////////////////////////////////////////////////// -defm : SMWriteResPair<WriteFHAdd, [FPC_RSV01], 3, [2]>; -defm : SMWriteResPair<WritePHAdd, [FPC_RSV01], 1>; +defm : SLMWriteResPair<WriteFHAdd, [SLM_FPC_RSV01], 3, [2]>; +defm : SLMWriteResPair<WritePHAdd, [SLM_FPC_RSV01], 1>; // String instructions. // Packed Compare Implicit Length Strings, Return Mask -def : WriteRes<WritePCmpIStrM, [FPC_RSV0]> { +def : WriteRes<WritePCmpIStrM, [SLM_FPC_RSV0]> { let Latency = 13; let ResourceCycles = [13]; } -def : WriteRes<WritePCmpIStrMLd, [FPC_RSV0, MEC_RSV]> { +def : WriteRes<WritePCmpIStrMLd, [SLM_FPC_RSV0, SLM_MEC_RSV]> { let Latency = 13; let ResourceCycles = [13, 1]; } // Packed Compare Explicit Length Strings, Return Mask -def : WriteRes<WritePCmpEStrM, [FPC_RSV0]> { +def : WriteRes<WritePCmpEStrM, [SLM_FPC_RSV0]> { let Latency = 17; let ResourceCycles = [17]; } -def : WriteRes<WritePCmpEStrMLd, [FPC_RSV0, MEC_RSV]> { +def : WriteRes<WritePCmpEStrMLd, [SLM_FPC_RSV0, SLM_MEC_RSV]> { let Latency = 17; let ResourceCycles = [17, 1]; } // Packed Compare Implicit Length Strings, Return Index -def : WriteRes<WritePCmpIStrI, [FPC_RSV0]> { +def : WriteRes<WritePCmpIStrI, [SLM_FPC_RSV0]> { let Latency = 17; let ResourceCycles = [17]; } -def : WriteRes<WritePCmpIStrILd, [FPC_RSV0, MEC_RSV]> { +def : WriteRes<WritePCmpIStrILd, [SLM_FPC_RSV0, SLM_MEC_RSV]> { let Latency = 17; let ResourceCycles = [17, 1]; } // Packed Compare Explicit Length Strings, Return Index -def : WriteRes<WritePCmpEStrI, [FPC_RSV0]> { +def : WriteRes<WritePCmpEStrI, [SLM_FPC_RSV0]> { let Latency = 21; let ResourceCycles = [21]; } -def : WriteRes<WritePCmpEStrILd, [FPC_RSV0, MEC_RSV]> { +def : WriteRes<WritePCmpEStrILd, [SLM_FPC_RSV0, SLM_MEC_RSV]> { let Latency = 21; let ResourceCycles = [21, 1]; } // AES Instructions. -def : WriteRes<WriteAESDecEnc, [FPC_RSV0]> { +def : WriteRes<WriteAESDecEnc, [SLM_FPC_RSV0]> { let Latency = 8; let ResourceCycles = [5]; } -def : WriteRes<WriteAESDecEncLd, [FPC_RSV0, MEC_RSV]> { +def : WriteRes<WriteAESDecEncLd, [SLM_FPC_RSV0, SLM_MEC_RSV]> { let Latency = 8; let ResourceCycles = [5, 1]; } -def : WriteRes<WriteAESIMC, [FPC_RSV0]> { +def : WriteRes<WriteAESIMC, [SLM_FPC_RSV0]> { let Latency = 8; let ResourceCycles = [5]; } -def : WriteRes<WriteAESIMCLd, [FPC_RSV0, MEC_RSV]> { +def : WriteRes<WriteAESIMCLd, [SLM_FPC_RSV0, SLM_MEC_RSV]> { let Latency = 8; let ResourceCycles = [5, 1]; } -def : WriteRes<WriteAESKeyGen, [FPC_RSV0]> { +def : WriteRes<WriteAESKeyGen, [SLM_FPC_RSV0]> { let Latency = 8; let ResourceCycles = [5]; } -def : WriteRes<WriteAESKeyGenLd, [FPC_RSV0, MEC_RSV]> { +def : WriteRes<WriteAESKeyGenLd, [SLM_FPC_RSV0, SLM_MEC_RSV]> { let Latency = 8; let ResourceCycles = [5, 1]; } // Carry-less multiplication instructions. -def : WriteRes<WriteCLMul, [FPC_RSV0]> { +def : WriteRes<WriteCLMul, [SLM_FPC_RSV0]> { let Latency = 10; let ResourceCycles = [10]; } -def : WriteRes<WriteCLMulLd, [FPC_RSV0, MEC_RSV]> { +def : WriteRes<WriteCLMulLd, [SLM_FPC_RSV0, SLM_MEC_RSV]> { let Latency = 10; let ResourceCycles = [10, 1]; } -def : WriteRes<WriteSystem, [FPC_RSV0]> { let Latency = 100; } -def : WriteRes<WriteMicrocoded, [FPC_RSV0]> { let Latency = 100; } -def : WriteRes<WriteFence, [MEC_RSV]>; +def : WriteRes<WriteSystem, [SLM_FPC_RSV0]> { let Latency = 100; } +def : WriteRes<WriteMicrocoded, [SLM_FPC_RSV0]> { let Latency = 100; } +def : WriteRes<WriteFence, [SLM_MEC_RSV]>; def : WriteRes<WriteNop, []>; // AVX/FMA is not supported on that architecture, but we should define the basic // scheduling resources anyway. -def : WriteRes<WriteIMulH, [FPC_RSV0]>; -defm : SMWriteResPair<WriteVarBlend, [FPC_RSV0], 1>; -defm : SMWriteResPair<WriteFVarBlend, [FPC_RSV0], 1>; -defm : SMWriteResPair<WriteFShuffle256, [FPC_RSV0], 1>; -defm : SMWriteResPair<WriteShuffle256, [FPC_RSV0], 1>; -defm : SMWriteResPair<WriteVarVecShift, [FPC_RSV0], 1>; -defm : SMWriteResPair<WriteFMA, [FPC_RSV0], 1>; +def : WriteRes<WriteIMulH, [SLM_FPC_RSV0]>; +defm : SLMWriteResPair<WriteVarBlend, [SLM_FPC_RSV0], 1>; +defm : SLMWriteResPair<WriteFVarBlend, [SLM_FPC_RSV0], 1>; +defm : SLMWriteResPair<WriteFShuffle256, [SLM_FPC_RSV0], 1>; +defm : SLMWriteResPair<WriteShuffle256, [SLM_FPC_RSV0], 1>; +defm : SLMWriteResPair<WriteVarVecShift, [SLM_FPC_RSV0], 1>; +defm : SLMWriteResPair<WriteFMA, [SLM_FPC_RSV0], 1>; } // SchedModel |