diff options
| -rw-r--r-- | llvm/docs/LangRef.html | 5374 | 
1 files changed, 2598 insertions, 2776 deletions
| diff --git a/llvm/docs/LangRef.html b/llvm/docs/LangRef.html index 4fb712ee3bb..9b801cffc3a 100644 --- a/llvm/docs/LangRef.html +++ b/llvm/docs/LangRef.html @@ -287,12 +287,13 @@  <!-- *********************************************************************** -->  <div class="doc_text"> -<p>This document is a reference manual for the LLVM assembly language.  -LLVM is a Static Single Assignment (SSA) based representation that provides -type safety, low-level operations, flexibility, and the capability of -representing 'all' high-level languages cleanly.  It is the common code -representation used throughout all phases of the LLVM compilation -strategy.</p> + +<p>This document is a reference manual for the LLVM assembly language. LLVM is +   a Static Single Assignment (SSA) based representation that provides type +   safety, low-level operations, flexibility, and the capability of representing +   'all' high-level languages cleanly.  It is the common code representation +   used throughout all phases of the LLVM compilation strategy.</p> +  </div>  <!-- *********************************************************************** --> @@ -301,26 +302,24 @@ strategy.</p>  <div class="doc_text"> -<p>The LLVM code representation is designed to be used in three -different forms: as an in-memory compiler IR, as an on-disk bitcode -representation (suitable for fast loading by a Just-In-Time compiler), -and as a human readable assembly language representation.  This allows -LLVM to provide a powerful intermediate representation for efficient -compiler transformations and analysis, while providing a natural means -to debug and visualize the transformations.  The three different forms -of LLVM are all equivalent.  This document describes the human readable -representation and notation.</p> +<p>The LLVM code representation is designed to be used in three different forms: +   as an in-memory compiler IR, as an on-disk bitcode representation (suitable +   for fast loading by a Just-In-Time compiler), and as a human readable +   assembly language representation.  This allows LLVM to provide a powerful +   intermediate representation for efficient compiler transformations and +   analysis, while providing a natural means to debug and visualize the +   transformations.  The three different forms of LLVM are all equivalent.  This +   document describes the human readable representation and notation.</p> -<p>The LLVM representation aims to be light-weight and low-level -while being expressive, typed, and extensible at the same time.  It -aims to be a "universal IR" of sorts, by being at a low enough level -that high-level ideas may be cleanly mapped to it (similar to how -microprocessors are "universal IR's", allowing many source languages to -be mapped to them).  By providing type information, LLVM can be used as -the target of optimizations: for example, through pointer analysis, it -can be proven that a C automatic variable is never accessed outside of -the current function... allowing it to be promoted to a simple SSA -value instead of a memory location.</p> +<p>The LLVM representation aims to be light-weight and low-level while being +   expressive, typed, and extensible at the same time.  It aims to be a +   "universal IR" of sorts, by being at a low enough level that high-level ideas +   may be cleanly mapped to it (similar to how microprocessors are "universal +   IR's", allowing many source languages to be mapped to them).  By providing +   type information, LLVM can be used as the target of optimizations: for +   example, through pointer analysis, it can be proven that a C automatic +   variable is never accessed outside of the current function... allowing it to +   be promoted to a simple SSA value instead of a memory location.</p>  </div> @@ -329,10 +328,10 @@ value instead of a memory location.</p>  <div class="doc_text"> -<p>It is important to note that this document describes 'well formed' -LLVM assembly language.  There is a difference between what the parser -accepts and what is considered 'well formed'.  For example, the -following instruction is syntactically okay, but not well formed:</p> +<p>It is important to note that this document describes 'well formed' LLVM +   assembly language.  There is a difference between what the parser accepts and +   what is considered 'well formed'.  For example, the following instruction is +   syntactically okay, but not well formed:</p>  <div class="doc_code">  <pre> @@ -340,13 +339,13 @@ following instruction is syntactically okay, but not well formed:</p>  </pre>  </div> -<p>...because the definition of <tt>%x</tt> does not dominate all of -its uses. The LLVM infrastructure provides a verification pass that may -be used to verify that an LLVM module is well formed.  This pass is -automatically run by the parser after parsing input assembly and by -the optimizer before it outputs bitcode.  The violations pointed out -by the verifier pass indicate bugs in transformation passes or input to -the parser.</p> +<p>...because the definition of <tt>%x</tt> does not dominate all of its +   uses. The LLVM infrastructure provides a verification pass that may be used +   to verify that an LLVM module is well formed.  This pass is automatically run +   by the parser after parsing input assembly and by the optimizer before it +   outputs bitcode.  The violations pointed out by the verifier pass indicate +   bugs in transformation passes or input to the parser.</p> +  </div>  <!-- Describe the typesetting conventions here. --> @@ -357,44 +356,47 @@ the parser.</p>  <div class="doc_text"> -  <p>LLVM identifiers come in two basic types: global and local. Global -  identifiers (functions, global variables) begin with the @ character. Local -  identifiers (register names, types) begin with the % character. Additionally, -  there are three different formats for identifiers, for different purposes:</p> +<p>LLVM identifiers come in two basic types: global and local. Global +   identifiers (functions, global variables) begin with the <tt>'@'</tt> +   character. Local identifiers (register names, types) begin with +   the <tt>'%'</tt> character. Additionally, there are three different formats +   for identifiers, for different purposes:</p>  <ol>    <li>Named values are represented as a string of characters with their prefix. -  For example, %foo, @DivisionByZero, %a.really.long.identifier.  The actual -  regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'. -  Identifiers which require other characters in their names can be surrounded -  with quotes. Special characters may be escaped using "\xx" where xx is the  -  ASCII code for the character in hexadecimal.  In this way, any character can  -  be used in a name value, even quotes themselves. +      For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>, +      <tt>%a.really.long.identifier</tt>. The actual regular expression used is +      '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.  Identifiers which require +      other characters in their names can be surrounded with quotes. Special +      characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the +      ASCII code for the character in hexadecimal.  In this way, any character +      can be used in a name value, even quotes themselves.</li>    <li>Unnamed values are represented as an unsigned numeric value with their -  prefix.  For example, %12, @2, %44.</li> +      prefix.  For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>    <li>Constants, which are described in a <a href="#constants">section about -  constants</a>, below.</li> +      constants</a>, below.</li>  </ol>  <p>LLVM requires that values start with a prefix for two reasons: Compilers -don't need to worry about name clashes with reserved words, and the set of -reserved words may be expanded in the future without penalty.  Additionally, -unnamed identifiers allow a compiler to quickly come up with a temporary -variable without having to avoid symbol table conflicts.</p> +   don't need to worry about name clashes with reserved words, and the set of +   reserved words may be expanded in the future without penalty.  Additionally, +   unnamed identifiers allow a compiler to quickly come up with a temporary +   variable without having to avoid symbol table conflicts.</p>  <p>Reserved words in LLVM are very similar to reserved words in other -languages. There are keywords for different opcodes  -('<tt><a href="#i_add">add</a></tt>',  - '<tt><a href="#i_bitcast">bitcast</a></tt>',  - '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a -href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...), -and others.  These reserved words cannot conflict with variable names, because -none of them start with a prefix character ('%' or '@').</p> +   languages. There are keywords for different opcodes +   ('<tt><a href="#i_add">add</a></tt>', +   '<tt><a href="#i_bitcast">bitcast</a></tt>', +   '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names +   ('<tt><a href="#t_void">void</a></tt>', +   '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others.  These +   reserved words cannot conflict with variable names, because none of them +   start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>  <p>Here is an example of LLVM code to multiply the integer variable -'<tt>%X</tt>' by 8:</p> +   '<tt>%X</tt>' by 8:</p>  <p>The easy way:</p> @@ -422,25 +424,23 @@ none of them start with a prefix character ('%' or '@').</p>  </pre>  </div> -<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several -important lexical features of LLVM:</p> +<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important +   lexical features of LLVM:</p>  <ol> -    <li>Comments are delimited with a '<tt>;</tt>' and go until the end of -  line.</li> +      line.</li>    <li>Unnamed temporaries are created when the result of a computation is not -  assigned to a named value.</li> +      assigned to a named value.</li>    <li>Unnamed temporaries are numbered sequentially</li> -  </ol>  <p>...and it also shows a convention that we follow in this document.  When -demonstrating instructions, we will follow an instruction with a comment that -defines the type and name of value produced.  Comments are shown in italic -text.</p> +   demonstrating instructions, we will follow an instruction with a comment that +   defines the type and name of value produced.  Comments are shown in italic +   text.</p>  </div> @@ -454,12 +454,12 @@ text.</p>  <div class="doc_text"> -<p>LLVM programs are composed of "Module"s, each of which is a -translation unit of the input programs.  Each module consists of -functions, global variables, and symbol table entries.  Modules may be -combined together with the LLVM linker, which merges function (and -global variable) definitions, resolves forward declarations, and merges -symbol table entries. Here is an example of the "hello world" module:</p> +<p>LLVM programs are composed of "Module"s, each of which is a translation unit +   of the input programs.  Each module consists of functions, global variables, +   and symbol table entries.  Modules may be combined together with the LLVM +   linker, which merges function (and global variable) definitions, resolves +   forward declarations, and merges symbol table entries. Here is an example of +   the "hello world" module:</p>  <div class="doc_code">  <pre><i>; Declare the string constant as a global constant...</i> @@ -467,32 +467,32 @@ symbol table entries. Here is an example of the "hello world" module:</p>   href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00"          <i>; [13 x i8]*</i>  <i>; External declaration of the puts function</i> -<a href="#functionstructure">declare</a> i32 @puts(i8 *)                                            <i>; i32(i8 *)* </i> +<a href="#functionstructure">declare</a> i32 @puts(i8 *)                                           <i>; i32(i8 *)* </i>  <i>; Definition of main function</i> -define i32 @main() {                                                 <i>; i32()* </i> +define i32 @main() {                                              <i>; i32()* </i>          <i>; Convert [13 x i8]* to i8  *...</i>          %cast210 = <a - href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8 *</i> + href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0   <i>; i8 *</i>          <i>; Call puts function to write out the string to stdout...</i>          <a - href="#i_call">call</a> i32 @puts(i8 * %cast210)                              <i>; i32</i> + href="#i_call">call</a> i32 @puts(i8 * %cast210)                             <i>; i32</i>          <a   href="#i_ret">ret</a> i32 0<br>}<br>  </pre>  </div> -<p>This example is made up of a <a href="#globalvars">global variable</a> -named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" -function, and a <a href="#functionstructure">function definition</a> -for "<tt>main</tt>".</p> +<p>This example is made up of a <a href="#globalvars">global variable</a> named +   "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function, and +   a <a href="#functionstructure">function definition</a> for +   "<tt>main</tt>".</p> -<p>In general, a module is made up of a list of global values, -where both functions and global variables are global values.  Global values are -represented by a pointer to a memory location (in this case, a pointer to an -array of char, and a pointer to a function), and have one of the following <a -href="#linkage">linkage types</a>.</p> +<p>In general, a module is made up of a list of global values, where both +   functions and global variables are global values.  Global values are +   represented by a pointer to a memory location (in this case, a pointer to an +   array of char, and a pointer to a function), and have one of the +   following <a href="#linkage">linkage types</a>.</p>  </div> @@ -503,21 +503,18 @@ href="#linkage">linkage types</a>.</p>  <div class="doc_text"> -<p> -All Global Variables and Functions have one of the following types of linkage: -</p> +<p>All Global Variables and Functions have one of the following types of +   linkage:</p>  <dl> -    <dt><tt><b><a name="linkage_private">private</a></b></tt>: </dt> -  <dd>Global values with private linkage are only directly accessible by -  objects in the current module.  In particular, linking code into a module with -  an private global value may cause the private to be renamed as necessary to -  avoid collisions.  Because the symbol is private to the module, all -  references can be updated. This doesn't show up in any symbol table in the -  object file. -  </dd> +  <dd>Global values with private linkage are only directly accessible by objects +      in the current module.  In particular, linking code into a module with an +      private global value may cause the private to be renamed as necessary to +      avoid collisions.  Because the symbol is private to the module, all +      references can be updated. This doesn't show up in any symbol table in the +      object file.</dd>    <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt>: </dt> @@ -526,121 +523,111 @@ All Global Variables and Functions have one of the following types of linkage:    <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt> -  <dd> Similar to private, but the value shows as a local symbol (STB_LOCAL in -  the case of ELF) in the object file. This corresponds to the notion of the -  '<tt>static</tt>' keyword in C. -  </dd> +  <dd>Similar to private, but the value shows as a local symbol +      (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This +      corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd> -  <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt>: -  </dt> +  <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt>: </dt>    <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted -  into the object file corresponding to the LLVM module.  They exist to -  allow inlining and other optimizations to take place given knowledge of the -  definition of the global, which is known to be somewhere outside the module. -  Globals with <tt>available_externally</tt> linkage are allowed to be discarded -  at will, and are otherwise the same as <tt>linkonce_odr</tt>.  This linkage -  type is only allowed on definitions, not declarations.</dd> +      into the object file corresponding to the LLVM module.  They exist to +      allow inlining and other optimizations to take place given knowledge of +      the definition of the global, which is known to be somewhere outside the +      module.  Globals with <tt>available_externally</tt> linkage are allowed to +      be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>. +      This linkage type is only allowed on definitions, not declarations.</dd>    <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>    <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of -  the same name when linkage occurs.  This is typically used to implement  -  inline functions, templates, or other code which must be generated in each  -  translation unit that uses it.  Unreferenced <tt>linkonce</tt> globals are  -  allowed to be discarded. -  </dd> +      the same name when linkage occurs.  This is typically used to implement +      inline functions, templates, or other code which must be generated in each +      translation unit that uses it.  Unreferenced <tt>linkonce</tt> globals are +      allowed to be discarded.</dd>    <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt> -  <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>  -  linkage, except that unreferenced <tt>common</tt> globals may not be -  discarded.  This is used for globals that may be emitted in multiple  -  translation units, but that are not guaranteed to be emitted into every  -  translation unit that uses them.  One example of this is tentative -  definitions in C, such as "<tt>int X;</tt>" at global scope. -  </dd> +  <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt> +     linkage, except that unreferenced <tt>common</tt> globals may not be +     discarded.  This is used for globals that may be emitted in multiple +     translation units, but that are not guaranteed to be emitted into every +     translation unit that uses them.  One example of this is tentative +     definitions in C, such as "<tt>int X;</tt>" at global scope.</dd>    <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>    <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except -  that some targets may choose to emit different assembly sequences for them  -  for target-dependent reasons.  This is used for globals that are declared  -  "weak" in C source code. -  </dd> +      that some targets may choose to emit different assembly sequences for them +      for target-dependent reasons.  This is used for globals that are declared +      "weak" in C source code.</dd>    <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>    <dd>"<tt>appending</tt>" linkage may only be applied to global variables of -  pointer to array type.  When two global variables with appending linkage are -  linked together, the two global arrays are appended together.  This is the -  LLVM, typesafe, equivalent of having the system linker append together -  "sections" with identical names when .o files are linked. -  </dd> +      pointer to array type.  When two global variables with appending linkage +      are linked together, the two global arrays are appended together.  This is +      the LLVM, typesafe, equivalent of having the system linker append together +      "sections" with identical names when .o files are linked.</dd>    <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt> -  <dd>The semantics of this linkage follow the ELF object file model: the -    symbol is weak until linked, if not linked, the symbol becomes null instead -    of being an undefined reference. -  </dd> +  <dd>The semantics of this linkage follow the ELF object file model: the symbol +      is weak until linked, if not linked, the symbol becomes null instead of +      being an undefined reference.</dd>    <dt><tt><b><a name="linkage_linkonce">linkonce_odr</a></b></tt>: </dt>    <dt><tt><b><a name="linkage_weak">weak_odr</a></b></tt>: </dt> -  <dd>Some languages allow differing globals to be merged, such as two -    functions with different semantics.  Other languages, such as <tt>C++</tt>, -    ensure that only equivalent globals are ever merged (the "one definition -    rule" - "ODR").  Such languages can use the <tt>linkonce_odr</tt> -    and <tt>weak_odr</tt> linkage types to indicate that the global will only -    be merged with equivalent globals.  These linkage types are otherwise the -    same as their non-<tt>odr</tt> versions. -  </dd> + +  <dd>Some languages allow differing globals to be merged, such as two functions +      with different semantics.  Other languages, such as <tt>C++</tt>, ensure +      that only equivalent globals are ever merged (the "one definition rule" - +      "ODR").  Such languages can use the <tt>linkonce_odr</tt> +      and <tt>weak_odr</tt> linkage types to indicate that the global will only +      be merged with equivalent globals.  These linkage types are otherwise the +      same as their non-<tt>odr</tt> versions.</dd>    <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>    <dd>If none of the above identifiers are used, the global is externally -  visible, meaning that it participates in linkage and can be used to resolve -  external symbol references. -  </dd> +      visible, meaning that it participates in linkage and can be used to +      resolve external symbol references.</dd>  </dl> -  <p> -  The next two types of linkage are targeted for Microsoft Windows platform -  only. They are designed to support importing (exporting) symbols from (to) -  DLLs (Dynamic Link Libraries). -  </p> +<p>The next two types of linkage are targeted for Microsoft Windows platform +   only. They are designed to support importing (exporting) symbols from (to) +   DLLs (Dynamic Link Libraries).</p> -  <dl> +<dl>    <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>    <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function -    or variable via a global pointer to a pointer that is set up by the DLL -    exporting the symbol. On Microsoft Windows targets, the pointer name is -    formed by combining <code>__imp_</code> and the function or variable name. -  </dd> +      or variable via a global pointer to a pointer that is set up by the DLL +      exporting the symbol. On Microsoft Windows targets, the pointer name is +      formed by combining <code>__imp_</code> and the function or variable +      name.</dd>    <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>    <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global -    pointer to a pointer in a DLL, so that it can be referenced with the -    <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer -    name is formed by combining <code>__imp_</code> and the function or variable -    name. -  </dd> - +      pointer to a pointer in a DLL, so that it can be referenced with the +      <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer +      name is formed by combining <code>__imp_</code> and the function or +      variable name.</dd>  </dl> -<p>For example, since the "<tt>.LC0</tt>" -variable is defined to be internal, if another module defined a "<tt>.LC0</tt>" -variable and was linked with this one, one of the two would be renamed, -preventing a collision.  Since "<tt>main</tt>" and "<tt>puts</tt>" are -external (i.e., lacking any linkage declarations), they are accessible -outside of the current module.</p> -<p>It is illegal for a function <i>declaration</i> -to have any linkage type other than "externally visible", <tt>dllimport</tt> -or <tt>extern_weak</tt>.</p> +<p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if +   another module defined a "<tt>.LC0</tt>" variable and was linked with this +   one, one of the two would be renamed, preventing a collision.  Since +   "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage +   declarations), they are accessible outside of the current module.</p> + +<p>It is illegal for a function <i>declaration</i> to have any linkage type +   other than "externally visible", <tt>dllimport</tt> +   or <tt>extern_weak</tt>.</p> +  <p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt> -or <tt>weak_odr</tt> linkages.</p> +   or <tt>weak_odr</tt> linkages.</p> +  </div>  <!-- ======================================================================= --> @@ -651,55 +638,52 @@ or <tt>weak_odr</tt> linkages.</p>  <div class="doc_text">  <p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a> -and <a href="#i_invoke">invokes</a> can all have an optional calling convention -specified for the call.  The calling convention of any pair of dynamic -caller/callee must match, or the behavior of the program is undefined.  The -following calling conventions are supported by LLVM, and more may be added in -the future:</p> +   and <a href="#i_invoke">invokes</a> can all have an optional calling +   convention specified for the call.  The calling convention of any pair of +   dynamic caller/callee must match, or the behavior of the program is +   undefined.  The following calling conventions are supported by LLVM, and more +   may be added in the future:</p>  <dl>    <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>    <dd>This calling convention (the default if no other calling convention is -  specified) matches the target C calling conventions.  This calling convention -  supports varargs function calls and tolerates some mismatch in the declared -  prototype and implemented declaration of the function (as does normal C).  -  </dd> +      specified) matches the target C calling conventions.  This calling +      convention supports varargs function calls and tolerates some mismatch in +      the declared prototype and implemented declaration of the function (as +      does normal C).</dd>    <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>    <dd>This calling convention attempts to make calls as fast as possible -  (e.g. by passing things in registers).  This calling convention allows the -  target to use whatever tricks it wants to produce fast code for the target, -  without having to conform to an externally specified ABI (Application Binary -  Interface).  Implementations of this convention should allow arbitrary -  <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be -  supported.  This calling convention does not support varargs and requires the -  prototype of all callees to exactly match the prototype of the function -  definition. -  </dd> +      (e.g. by passing things in registers).  This calling convention allows the +      target to use whatever tricks it wants to produce fast code for the +      target, without having to conform to an externally specified ABI +      (Application Binary Interface).  Implementations of this convention should +      allow arbitrary <a href="CodeGenerator.html#tailcallopt">tail call +      optimization</a> to be supported.  This calling convention does not +      support varargs and requires the prototype of all callees to exactly match +      the prototype of the function definition.</dd>    <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>    <dd>This calling convention attempts to make code in the caller as efficient -  as possible under the assumption that the call is not commonly executed.  As -  such, these calls often preserve all registers so that the call does not break -  any live ranges in the caller side.  This calling convention does not support -  varargs and requires the prototype of all callees to exactly match the -  prototype of the function definition. -  </dd> +      as possible under the assumption that the call is not commonly executed. +      As such, these calls often preserve all registers so that the call does +      not break any live ranges in the caller side.  This calling convention +      does not support varargs and requires the prototype of all callees to +      exactly match the prototype of the function definition.</dd>    <dt><b>"<tt>cc <<em>n</em>></tt>" - Numbered convention</b>:</dt>    <dd>Any calling convention may be specified by number, allowing -  target-specific calling conventions to be used.  Target specific calling -  conventions start at 64. -  </dd> +      target-specific calling conventions to be used.  Target specific calling +      conventions start at 64.</dd>  </dl>  <p>More calling conventions can be added/defined on an as-needed basis, to -support pascal conventions or any other well-known target-independent -convention.</p> +   support Pascal conventions or any other well-known target-independent +   convention.</p>  </div> @@ -710,37 +694,32 @@ convention.</p>  <div class="doc_text"> -<p> -All Global Variables and Functions have one of the following visibility styles: -</p> +<p>All Global Variables and Functions have one of the following visibility +   styles:</p>  <dl>    <dt><b>"<tt>default</tt>" - Default style</b>:</dt>    <dd>On targets that use the ELF object file format, default visibility means -    that the declaration is visible to other -    modules and, in shared libraries, means that the declared entity may be -    overridden. On Darwin, default visibility means that the declaration is -    visible to other modules. Default visibility corresponds to "external -    linkage" in the language. -  </dd> +      that the declaration is visible to other modules and, in shared libraries, +      means that the declared entity may be overridden. On Darwin, default +      visibility means that the declaration is visible to other modules. Default +      visibility corresponds to "external linkage" in the language.</dd>    <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>    <dd>Two declarations of an object with hidden visibility refer to the same -    object if they are in the same shared object. Usually, hidden visibility -    indicates that the symbol will not be placed into the dynamic symbol table, -    so no other module (executable or shared library) can reference it -    directly. -  </dd> +      object if they are in the same shared object. Usually, hidden visibility +      indicates that the symbol will not be placed into the dynamic symbol +      table, so no other module (executable or shared library) can reference it +      directly.</dd>    <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>    <dd>On ELF, protected visibility indicates that the symbol will be placed in -  the dynamic symbol table, but that references within the defining module will -  bind to the local symbol. That is, the symbol cannot be overridden by another -  module. -  </dd> +      the dynamic symbol table, but that references within the defining module +      will bind to the local symbol. That is, the symbol cannot be overridden by +      another module.</dd>  </dl>  </div> @@ -753,9 +732,8 @@ All Global Variables and Functions have one of the following visibility styles:  <div class="doc_text">  <p>LLVM IR allows you to specify name aliases for certain types.  This can make -it easier to read the IR and make the IR more condensed (particularly when -recursive types are involved).  An example of a name specification is: -</p> +   it easier to read the IR and make the IR more condensed (particularly when +   recursive types are involved).  An example of a name specification is:</p>  <div class="doc_code">  <pre> @@ -763,19 +741,19 @@ recursive types are involved).  An example of a name specification is:  </pre>  </div> -<p>You may give a name to any <a href="#typesystem">type</a> except "<a  -href="t_void">void</a>".  Type name aliases may be used anywhere a type is -expected with the syntax "%mytype".</p> +<p>You may give a name to any <a href="#typesystem">type</a> except +   "<a href="t_void">void</a>".  Type name aliases may be used anywhere a type +   is expected with the syntax "%mytype".</p>  <p>Note that type names are aliases for the structural type that they indicate, -and that you can therefore specify multiple names for the same type.  This often -leads to confusing behavior when dumping out a .ll file.  Since LLVM IR uses -structural typing, the name is not part of the type.  When printing out LLVM IR, -the printer will pick <em>one name</em> to render all types of a particular -shape.  This means that if you have code where two different source types end up -having the same LLVM type, that the dumper will sometimes print the "wrong" or -unexpected type.  This is an important design point and isn't going to -change.</p> +   and that you can therefore specify multiple names for the same type.  This +   often leads to confusing behavior when dumping out a .ll file.  Since LLVM IR +   uses structural typing, the name is not part of the type.  When printing out +   LLVM IR, the printer will pick <em>one name</em> to render all types of a +   particular shape.  This means that if you have code where two different +   source types end up having the same LLVM type, that the dumper will sometimes +   print the "wrong" or unexpected type.  This is an important design point and +   isn't going to change.</p>  </div> @@ -787,48 +765,47 @@ change.</p>  <div class="doc_text">  <p>Global variables define regions of memory allocated at compilation time -instead of run-time.  Global variables may optionally be initialized, may have -an explicit section to be placed in, and may have an optional explicit alignment -specified.  A variable may be defined as "thread_local", which means that it -will not be shared by threads (each thread will have a separated copy of the -variable).  A variable may be defined as a global "constant," which indicates -that the contents of the variable will <b>never</b> be modified (enabling better -optimization, allowing the global data to be placed in the read-only section of -an executable, etc).  Note that variables that need runtime initialization -cannot be marked "constant" as there is a store to the variable.</p> - -<p> -LLVM explicitly allows <em>declarations</em> of global variables to be marked -constant, even if the final definition of the global is not.  This capability -can be used to enable slightly better optimization of the program, but requires -the language definition to guarantee that optimizations based on the -'constantness' are valid for the translation units that do not include the -definition. -</p> - -<p>As SSA values, global variables define pointer values that are in -scope (i.e. they dominate) all basic blocks in the program.  Global -variables always define a pointer to their "content" type because they -describe a region of memory, and all memory objects in LLVM are -accessed through pointers.</p> - -<p>A global variable may be declared to reside in a target-specific numbered  -address space. For targets that support them, address spaces may affect how -optimizations are performed and/or what target instructions are used to access  -the variable. The default address space is zero. The address space qualifier  -must precede any other attributes.</p> +   instead of run-time.  Global variables may optionally be initialized, may +   have an explicit section to be placed in, and may have an optional explicit +   alignment specified.  A variable may be defined as "thread_local", which +   means that it will not be shared by threads (each thread will have a +   separated copy of the variable).  A variable may be defined as a global +   "constant," which indicates that the contents of the variable +   will <b>never</b> be modified (enabling better optimization, allowing the +   global data to be placed in the read-only section of an executable, etc). +   Note that variables that need runtime initialization cannot be marked +   "constant" as there is a store to the variable.</p> + +<p>LLVM explicitly allows <em>declarations</em> of global variables to be marked +   constant, even if the final definition of the global is not.  This capability +   can be used to enable slightly better optimization of the program, but +   requires the language definition to guarantee that optimizations based on the +   'constantness' are valid for the translation units that do not include the +   definition.</p> + +<p>As SSA values, global variables define pointer values that are in scope +   (i.e. they dominate) all basic blocks in the program.  Global variables +   always define a pointer to their "content" type because they describe a +   region of memory, and all memory objects in LLVM are accessed through +   pointers.</p> + +<p>A global variable may be declared to reside in a target-specific numbered +   address space. For targets that support them, address spaces may affect how +   optimizations are performed and/or what target instructions are used to +   access the variable. The default address space is zero. The address space +   qualifier must precede any other attributes.</p>  <p>LLVM allows an explicit section to be specified for globals.  If the target -supports it, it will emit globals to the section specified.</p> +   supports it, it will emit globals to the section specified.</p>  <p>An explicit alignment may be specified for a global.  If not present, or if -the alignment is set to zero, the alignment of the global is set by the target -to whatever it feels convenient.  If an explicit alignment is specified, the  -global is forced to have at least that much alignment.  All alignments must be -a power of 2.</p> +   the alignment is set to zero, the alignment of the global is set by the +   target to whatever it feels convenient.  If an explicit alignment is +   specified, the global is forced to have at least that much alignment.  All +   alignments must be a power of 2.</p> -<p>For example, the following defines a global in a numbered address space with  -an initializer, section, and alignment:</p> +<p>For example, the following defines a global in a numbered address space with +   an initializer, section, and alignment:</p>  <div class="doc_code">  <pre> @@ -846,71 +823,71 @@ an initializer, section, and alignment:</p>  <div class="doc_text"> -<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,  -an optional <a href="#linkage">linkage type</a>, an optional  -<a href="#visibility">visibility style</a>, an optional  -<a href="#callingconv">calling convention</a>, a return type, an optional -<a href="#paramattrs">parameter attribute</a> for the return type, a function  -name, a (possibly empty) argument list (each with optional  -<a href="#paramattrs">parameter attributes</a>), optional  -<a href="#fnattrs">function attributes</a>, an optional section,  -an optional alignment, an optional <a href="#gc">garbage collector name</a>,  -an opening curly brace, a list of basic blocks, and a closing curly brace. +<p>LLVM function definitions consist of the "<tt>define</tt>" keyord, an +   optional <a href="#linkage">linkage type</a>, an optional +   <a href="#visibility">visibility style</a>, an optional +   <a href="#callingconv">calling convention</a>, a return type, an optional +   <a href="#paramattrs">parameter attribute</a> for the return type, a function +   name, a (possibly empty) argument list (each with optional +   <a href="#paramattrs">parameter attributes</a>), optional +   <a href="#fnattrs">function attributes</a>, an optional section, an optional +   alignment, an optional <a href="#gc">garbage collector name</a>, an opening +   curly brace, a list of basic blocks, and a closing curly brace.</p> -LLVM function declarations consist of the "<tt>declare</tt>" keyword, an -optional <a href="#linkage">linkage type</a>, an optional -<a href="#visibility">visibility style</a>, an optional  -<a href="#callingconv">calling convention</a>, a return type, an optional -<a href="#paramattrs">parameter attribute</a> for the return type, a function  -name, a possibly empty list of arguments, an optional alignment, and an optional -<a href="#gc">garbage collector name</a>.</p> +<p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an +   optional <a href="#linkage">linkage type</a>, an optional +   <a href="#visibility">visibility style</a>, an optional  +   <a href="#callingconv">calling convention</a>, a return type, an optional +   <a href="#paramattrs">parameter attribute</a> for the return type, a function +   name, a possibly empty list of arguments, an optional alignment, and an +   optional <a href="#gc">garbage collector name</a>.</p>  <p>A function definition contains a list of basic blocks, forming the CFG -(Control Flow Graph) for -the function.  Each basic block may optionally start with a label (giving the -basic block a symbol table entry), contains a list of instructions, and ends -with a <a href="#terminators">terminator</a> instruction (such as a branch or -function return).</p> +   (Control Flow Graph) for the function.  Each basic block may optionally start +   with a label (giving the basic block a symbol table entry), contains a list +   of instructions, and ends with a <a href="#terminators">terminator</a> +   instruction (such as a branch or function return).</p>  <p>The first basic block in a function is special in two ways: it is immediately -executed on entrance to the function, and it is not allowed to have predecessor -basic blocks (i.e. there can not be any branches to the entry block of a -function).  Because the block can have no predecessors, it also cannot have any -<a href="#i_phi">PHI nodes</a>.</p> +   executed on entrance to the function, and it is not allowed to have +   predecessor basic blocks (i.e. there can not be any branches to the entry +   block of a function).  Because the block can have no predecessors, it also +   cannot have any <a href="#i_phi">PHI nodes</a>.</p>  <p>LLVM allows an explicit section to be specified for functions.  If the target -supports it, it will emit functions to the section specified.</p> +   supports it, it will emit functions to the section specified.</p>  <p>An explicit alignment may be specified for a function.  If not present, or if -the alignment is set to zero, the alignment of the function is set by the target -to whatever it feels convenient.  If an explicit alignment is specified, the -function is forced to have at least that much alignment.  All alignments must be -a power of 2.</p> +   the alignment is set to zero, the alignment of the function is set by the +   target to whatever it feels convenient.  If an explicit alignment is +   specified, the function is forced to have at least that much alignment.  All +   alignments must be a power of 2.</p>    <h5>Syntax:</h5>  <div class="doc_code"> -<tt> +<pre>  define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>] -      [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] -      <ResultType> @<FunctionName> ([argument list]) -      [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N] -      [<a href="#gc">gc</a>] { ... } -</tt> +       [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] +       <ResultType> @<FunctionName> ([argument list]) +       [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N] +       [<a href="#gc">gc</a>] { ... } +</pre>  </div>  </div> -  <!-- ======================================================================= -->  <div class="doc_subsection">    <a name="aliasstructure">Aliases</a>  </div> +  <div class="doc_text"> -  <p>Aliases act as "second name" for the aliasee value (which can be either -  function, global variable, another alias or bitcast of global value). Aliases -  may have an optional <a href="#linkage">linkage type</a>, and an -  optional <a href="#visibility">visibility style</a>.</p> + +<p>Aliases act as "second name" for the aliasee value (which can be either +   function, global variable, another alias or bitcast of global value). Aliases +   may have an optional <a href="#linkage">linkage type</a>, and an +   optional <a href="#visibility">visibility style</a>.</p>    <h5>Syntax:</h5> @@ -922,21 +899,21 @@ define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]  </div> - -  <!-- ======================================================================= -->  <div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div> +  <div class="doc_text"> -  <p>The return type and each parameter of a function type may have a set of -  <i>parameter attributes</i> associated with them. Parameter attributes are -  used to communicate additional information about the result or parameters of -  a function. Parameter attributes are considered to be part of the function, -  not of the function type, so functions with different parameter attributes -  can have the same function type.</p> -  <p>Parameter attributes are simple keywords that follow the type specified. If -  multiple parameter attributes are needed, they are space separated. For  -  example:</p> +<p>The return type and each parameter of a function type may have a set of +   <i>parameter attributes</i> associated with them. Parameter attributes are +   used to communicate additional information about the result or parameters of +   a function. Parameter attributes are considered to be part of the function, +   not of the function type, so functions with different parameter attributes +   can have the same function type.</p> + +<p>Parameter attributes are simple keywords that follow the type specified. If +   multiple parameter attributes are needed, they are space separated. For +   example:</p>  <div class="doc_code">  <pre> @@ -946,71 +923,80 @@ declare signext i8 @returns_signed_char()  </pre>  </div> -  <p>Note that any attributes for the function result (<tt>nounwind</tt>, -  <tt>readonly</tt>) come immediately after the argument list.</p> - -  <p>Currently, only the following parameter attributes are defined:</p> -  <dl> -    <dt><tt>zeroext</tt></dt> -    <dd>This indicates to the code generator that the parameter or return value -    should be zero-extended to a 32-bit value by the caller (for a parameter) -    or the callee (for a return value).</dd> - -    <dt><tt>signext</tt></dt> -    <dd>This indicates to the code generator that the parameter or return value -    should be sign-extended to a 32-bit value by the caller (for a parameter) -    or the callee (for a return value).</dd> - -    <dt><tt>inreg</tt></dt> -    <dd>This indicates that this parameter or return value should be treated -    in a special target-dependent fashion during while emitting code for a -    function call or return (usually, by putting it in a register as opposed  -    to memory, though some targets use it to distinguish between two different -    kinds of registers).  Use of this attribute is target-specific.</dd> - -    <dt><tt><a name="byval">byval</a></tt></dt> -    <dd>This indicates that the pointer parameter should really be passed by -    value to the function.  The attribute implies that a hidden copy of the -    pointee is made between the caller and the callee, so the callee is unable -    to modify the value in the callee.  This attribute is only valid on LLVM -    pointer arguments.  It is generally used to pass structs and arrays by -    value, but is also valid on pointers to scalars.  The copy is considered to -    belong to the caller not the callee (for example, -    <tt><a href="#readonly">readonly</a></tt> functions should not write to -    <tt>byval</tt> parameters). This is not a valid attribute for return -    values.  The byval attribute also supports specifying an alignment with the -    align attribute.  This has a target-specific effect on the code generator -    that usually indicates a desired alignment for the synthesized stack  -    slot.</dd> - -    <dt><tt>sret</tt></dt> -    <dd>This indicates that the pointer parameter specifies the address of a -    structure that is the return value of the function in the source program. -    This pointer must be guaranteed by the caller to be valid: loads and stores -    to the structure may be assumed by the callee to not to trap.  This may only -    be applied to the first parameter. This is not a valid attribute for -    return values. </dd> - -    <dt><tt>noalias</tt></dt> -    <dd>This indicates that the pointer does not alias any global or any other -    parameter.  The caller is responsible for ensuring that this is the -    case. On a function return value, <tt>noalias</tt> additionally indicates -    that the pointer does not alias any other pointers visible to the -    caller. For further details, please see the discussion of the NoAlias -    response in -    <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias -    analysis</a>.</dd> - -    <dt><tt>nocapture</tt></dt> -    <dd>This indicates that the callee does not make any copies of the pointer -    that outlive the callee itself. This is not a valid attribute for return -    values.</dd> - -    <dt><tt>nest</tt></dt> -    <dd>This indicates that the pointer parameter can be excised using the -    <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid -    attribute for return values.</dd> -  </dl> +<p>Note that any attributes for the function result (<tt>nounwind</tt>, +   <tt>readonly</tt>) come immediately after the argument list.</p> + +<p>Currently, only the following parameter attributes are defined:</p> + +<dl> +  <dt><tt>zeroext</tt></dt> + +  <dd>This indicates to the code generator that the parameter or return value +      should be zero-extended to a 32-bit value by the caller (for a parameter) +      or the callee (for a return value).</dd> + +  <dt><tt>signext</tt></dt> + +  <dd>This indicates to the code generator that the parameter or return value +      should be sign-extended to a 32-bit value by the caller (for a parameter) +      or the callee (for a return value).</dd> + +  <dt><tt>inreg</tt></dt> + +  <dd>This indicates that this parameter or return value should be treated in a +      special target-dependent fashion during while emitting code for a function +      call or return (usually, by putting it in a register as opposed to memory, +      though some targets use it to distinguish between two different kinds of +      registers).  Use of this attribute is target-specific.</dd> + +  <dt><tt><a name="byval">byval</a></tt></dt> + +  <dd>This indicates that the pointer parameter should really be passed by value +      to the function.  The attribute implies that a hidden copy of the pointee +      is made between the caller and the callee, so the callee is unable to +      modify the value in the callee.  This attribute is only valid on LLVM +      pointer arguments.  It is generally used to pass structs and arrays by +      value, but is also valid on pointers to scalars.  The copy is considered +      to belong to the caller not the callee (for example, +      <tt><a href="#readonly">readonly</a></tt> functions should not write to +      <tt>byval</tt> parameters). This is not a valid attribute for return +      values.  The byval attribute also supports specifying an alignment with +      the align attribute.  This has a target-specific effect on the code +      generator that usually indicates a desired alignment for the synthesized +      stack slot.</dd> + +  <dt><tt>sret</tt></dt> + +  <dd>This indicates that the pointer parameter specifies the address of a +      structure that is the return value of the function in the source program. +      This pointer must be guaranteed by the caller to be valid: loads and +      stores to the structure may be assumed by the callee to not to trap.  This +      may only be applied to the first parameter. This is not a valid attribute +      for return values. </dd> + +  <dt><tt>noalias</tt></dt> + +  <dd>This indicates that the pointer does not alias any global or any other +      parameter.  The caller is responsible for ensuring that this is the +      case. On a function return value, <tt>noalias</tt> additionally indicates +      that the pointer does not alias any other pointers visible to the +      caller. For further details, please see the discussion of the NoAlias +      response in +      <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias +      analysis</a>.</dd> + +  <dt><tt>nocapture</tt></dt> + +  <dd>This indicates that the callee does not make any copies of the pointer +      that outlive the callee itself. This is not a valid attribute for return +      values.</dd> + +  <dt><tt>nest</tt></dt> + +  <dd>This indicates that the pointer parameter can be excised using the +      <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid +      attribute for return values.</dd> +</dl>  </div> @@ -1020,15 +1006,20 @@ declare signext i8 @returns_signed_char()  </div>  <div class="doc_text"> +  <p>Each function may specify a garbage collector name, which is simply a -string.</p> +   string:</p> -<div class="doc_code"><pre ->define void @f() gc "name" { ...</pre></div> +<div class="doc_code"> +<pre> +define void @f() gc "name" { ... +</pre> +</div>  <p>The compiler declares the supported values of <i>name</i>. Specifying a -collector which will cause the compiler to alter its output in order to support -the named garbage collection algorithm.</p> +   collector which will cause the compiler to alter its output in order to +   support the named garbage collection algorithm.</p> +  </div>  <!-- ======================================================================= --> @@ -1038,14 +1029,13 @@ the named garbage collection algorithm.</p>  <div class="doc_text"> -<p>Function attributes are set to communicate additional information about  -  a function. Function attributes are considered to be part of the function, -  not of the function type, so functions with different parameter attributes -  can have the same function type.</p> +<p>Function attributes are set to communicate additional information about a +   function. Function attributes are considered to be part of the function, not +   of the function type, so functions with different parameter attributes can +   have the same function type.</p> -  <p>Function attributes are simple keywords that follow the type specified. If -  multiple attributes are needed, they are space separated. For  -  example:</p> +<p>Function attributes are simple keywords that follow the type specified. If +   multiple attributes are needed, they are space separated. For example:</p>  <div class="doc_code">  <pre> @@ -1057,84 +1047,96 @@ define void @f() optsize  </div>  <dl> -<dt><tt>alwaysinline</tt></dt> -<dd>This attribute indicates that the inliner should attempt to inline this -function into callers whenever possible, ignoring any active inlining size -threshold for this caller.</dd> - -<dt><tt>noinline</tt></dt> -<dd>This attribute indicates that the inliner should never inline this function -in any situation. This attribute may not be used together with the -<tt>alwaysinline</tt> attribute.</dd> - -<dt><tt>optsize</tt></dt> -<dd>This attribute suggests that optimization passes and code generator passes -make choices that keep the code size of this function low, and otherwise do -optimizations specifically to reduce code size.</dd> - -<dt><tt>noreturn</tt></dt> -<dd>This function attribute indicates that the function never returns normally. -This produces undefined behavior at runtime if the function ever does -dynamically return.</dd>  - -<dt><tt>nounwind</tt></dt> -<dd>This function attribute indicates that the function never returns with an -unwind or exceptional control flow.  If the function does unwind, its runtime -behavior is undefined.</dd> - -<dt><tt>readnone</tt></dt> -<dd>This attribute indicates that the function computes its result (or decides to -unwind an exception) based strictly on its arguments, without dereferencing any -pointer arguments or otherwise accessing any mutable state (e.g. memory, control -registers, etc) visible to caller functions.  It does not write through any -pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments) and -never changes any state visible to callers.  This means that it cannot unwind -exceptions by calling the <tt>C++</tt> exception throwing methods, but could -use the <tt>unwind</tt> instruction.</dd> - -<dt><tt><a name="readonly">readonly</a></tt></dt> -<dd>This attribute indicates that the function does not write through any -pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments) -or otherwise modify any state (e.g. memory, control registers, etc) visible to -caller functions.  It may dereference pointer arguments and read state that may -be set in the caller.  A readonly function always returns the same value (or -unwinds an exception identically) when called with the same set of arguments -and global state.  It cannot unwind an exception by calling the <tt>C++</tt> -exception throwing methods, but may use the <tt>unwind</tt> instruction.</dd> - -<dt><tt><a name="ssp">ssp</a></tt></dt> -<dd>This attribute indicates that the function should emit a stack smashing -protector. It is in the form of a "canary"—a random value placed on the -stack before the local variables that's checked upon return from the function to -see if it has been overwritten. A heuristic is used to determine if a function -needs stack protectors or not. - -<br><br>If a function that has an <tt>ssp</tt> attribute is inlined into a function -that doesn't have an <tt>ssp</tt> attribute, then the resulting function will -have an <tt>ssp</tt> attribute.</dd> - -<dt><tt>sspreq</tt></dt> -<dd>This attribute indicates that the function should <em>always</em> emit a -stack smashing protector. This overrides the <tt><a href="#ssp">ssp</a></tt> -function attribute. - -If a function that has an <tt>sspreq</tt> attribute is inlined into a -function that doesn't have an <tt>sspreq</tt> attribute or which has -an <tt>ssp</tt> attribute, then the resulting function will have -an <tt>sspreq</tt> attribute.</dd> - -<dt><tt>noredzone</tt></dt> -<dd>This attribute indicates that the code generator should not use a -red zone, even if the target-specific ABI normally permits it. -</dd> - -<dt><tt>noimplicitfloat</tt></dt> -<dd>This attributes disables implicit floating point instructions.</dd> - -<dt><tt>naked</tt></dt> -<dd>This attribute disables prologue / epilogue emission for the function. -This can have very system-specific consequences.</dd> +  <dt><tt>alwaysinline</tt></dt> + +  <dd>This attribute indicates that the inliner should attempt to inline this +      function into callers whenever possible, ignoring any active inlining size +      threshold for this caller.</dd> + +  <dt><tt>noinline</tt></dt> + +  <dd>This attribute indicates that the inliner should never inline this +      function in any situation. This attribute may not be used together with +      the <tt>alwaysinline</tt> attribute.</dd> + +  <dt><tt>optsize</tt></dt> + +  <dd>This attribute suggests that optimization passes and code generator passes +      make choices that keep the code size of this function low, and otherwise +      do optimizations specifically to reduce code size.</dd> + +  <dt><tt>noreturn</tt></dt> + +  <dd>This function attribute indicates that the function never returns +      normally.  This produces undefined behavior at runtime if the function +      ever does dynamically return.</dd> + +  <dt><tt>nounwind</tt></dt> + +  <dd>This function attribute indicates that the function never returns with an +      unwind or exceptional control flow.  If the function does unwind, its +      runtime behavior is undefined.</dd> + +  <dt><tt>readnone</tt></dt> + +  <dd>This attribute indicates that the function computes its result (or decides +      to unwind an exception) based strictly on its arguments, without +      dereferencing any pointer arguments or otherwise accessing any mutable +      state (e.g. memory, control registers, etc) visible to caller functions. +      It does not write through any pointer arguments +      (including <tt><a href="#byval">byval</a></tt> arguments) and never +      changes any state visible to callers.  This means that it cannot unwind +      exceptions by calling the <tt>C++</tt> exception throwing methods, but +      could use the <tt>unwind</tt> instruction.</dd> + +  <dt><tt><a name="readonly">readonly</a></tt></dt> + +  <dd>This attribute indicates that the function does not write through any +      pointer arguments (including <tt><a href="#byval">byval</a></tt> +      arguments) or otherwise modify any state (e.g. memory, control registers, +      etc) visible to caller functions.  It may dereference pointer arguments +      and read state that may be set in the caller.  A readonly function always +      returns the same value (or unwinds an exception identically) when called +      with the same set of arguments and global state.  It cannot unwind an +      exception by calling the <tt>C++</tt> exception throwing methods, but may +      use the <tt>unwind</tt> instruction.</dd> + +  <dt><tt><a name="ssp">ssp</a></tt></dt> + +  <dd>This attribute indicates that the function should emit a stack smashing +      protector. It is in the form of a "canary"—a random value placed on +      the stack before the local variables that's checked upon return from the +      function to see if it has been overwritten. A heuristic is used to +      determine if a function needs stack protectors or not.<br> +<br> +      If a function that has an <tt>ssp</tt> attribute is inlined into a +      function that doesn't have an <tt>ssp</tt> attribute, then the resulting +      function will have an <tt>ssp</tt> attribute.</dd> + +  <dt><tt>sspreq</tt></dt> +  <dd>This attribute indicates that the function should <em>always</em> emit a +      stack smashing protector. This overrides +      the <tt><a href="#ssp">ssp</a></tt> function attribute. + +     If a function that has an <tt>sspreq</tt> attribute is inlined into a +     function that doesn't have an <tt>sspreq</tt> attribute or which has +     an <tt>ssp</tt> attribute, then the resulting function will have +     an <tt>sspreq</tt> attribute.</dd> + +  <dt><tt>noredzone</tt></dt> + +  <dd>This attribute indicates that the code generator should not use a red +      zone, even if the target-specific ABI normally permits it.</dd> + +  <dt><tt>noimplicitfloat</tt></dt> + +  <dd>This attributes disables implicit floating point instructions.</dd> + +  <dt><tt>naked</tt></dt> + +  <dd>This attribute disables prologue / epilogue emission for the function. +      This can have very system-specific consequences.</dd>  </dl>  </div> @@ -1145,12 +1147,11 @@ This can have very system-specific consequences.</dd>  </div>  <div class="doc_text"> -<p> -Modules may contain "module-level inline asm" blocks, which corresponds to the -GCC "file scope inline asm" blocks.  These blocks are internally concatenated by -LLVM and treated as a single unit, but may be separated in the .ll file if -desired.  The syntax is very simple: -</p> + +<p>Modules may contain "module-level inline asm" blocks, which corresponds to +   the GCC "file scope inline asm" blocks.  These blocks are internally +   concatenated by LLVM and treated as a single unit, but may be separated in +   the <tt>.ll</tt> file if desired.  The syntax is very simple:</p>  <div class="doc_code">  <pre> @@ -1161,13 +1162,11 @@ module asm "more can go here"  <p>The strings can contain any character by escaping non-printable characters.     The escape sequence used is simply "\xx" where "xx" is the two digit hex code -   for the number. -</p> +   for the number.</p> + +<p>The inline asm code is simply printed to the machine code .s file when +   assembly code is generated.</p> -<p> -  The inline asm code is simply printed to the machine code .s file when -  assembly code is generated. -</p>  </div>  <!-- ======================================================================= --> @@ -1176,46 +1175,73 @@ module asm "more can go here"  </div>  <div class="doc_text"> +  <p>A module may specify a target specific data layout string that specifies how -data is to be laid out in memory. The syntax for the data layout is simply:</p> -<pre>    target datalayout = "<i>layout specification</i>"</pre> -<p>The <i>layout specification</i> consists of a list of specifications  -separated by the minus sign character ('-').  Each specification starts with a  -letter and may include other information after the letter to define some  -aspect of the data layout.  The specifications accepted are as follows: </p> +   data is to be laid out in memory. The syntax for the data layout is +   simply:</p> + +<div class="doc_code"> +<pre> +target datalayout = "<i>layout specification</i>" +</pre> +</div> + +<p>The <i>layout specification</i> consists of a list of specifications +   separated by the minus sign character ('-').  Each specification starts with +   a letter and may include other information after the letter to define some +   aspect of the data layout.  The specifications accepted are as follows:</p> +  <dl>    <dt><tt>E</tt></dt> +    <dd>Specifies that the target lays out data in big-endian form. That is, the -  bits with the most significance have the lowest address location.</dd> +      bits with the most significance have the lowest address location.</dd> +    <dt><tt>e</tt></dt> +    <dd>Specifies that the target lays out data in little-endian form. That is, -  the bits with the least significance have the lowest address location.</dd> +      the bits with the least significance have the lowest address +      location.</dd> +    <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt> +    <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and  -  <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i> -  alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted -  too.</dd> +      <i>preferred</i> alignments. All sizes are in bits. Specifying +      the <i>pref</i> alignment is optional. If omitted, the +      preceding <tt>:</tt> should be omitted too.</dd> +    <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt> +    <dd>This specifies the alignment for an integer type of a given bit -  <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd> +      <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd> +    <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt> +    <dd>This specifies the alignment for a vector type of a given bit  -  <i>size</i>.</dd> +      <i>size</i>.</dd> +    <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt> +    <dd>This specifies the alignment for a floating point type of a given bit  -  <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64 -  (double).</dd> +      <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64 +      (double).</dd> +    <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt> +    <dd>This specifies the alignment for an aggregate type of a given bit -  <i>size</i>.</dd> +      <i>size</i>.</dd> +    <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt> +    <dd>This specifies the alignment for a stack object of a given bit -  <i>size</i>.</dd> +      <i>size</i>.</dd>  </dl> +  <p>When constructing the data layout for a given target, LLVM starts with a -default set of specifications which are then (possibly) overriden by the -specifications in the <tt>datalayout</tt> keyword. The default specifications -are given in this list:</p> +   default set of specifications which are then (possibly) overriden by the +   specifications in the <tt>datalayout</tt> keyword. The default specifications +   are given in this list:</p> +  <ul>    <li><tt>E</tt> - big endian</li>    <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li> @@ -1232,22 +1258,28 @@ are given in this list:</p>    <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>    <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>  </ul> -<p>When LLVM is determining the alignment for a given type, it uses the  -following rules:</p> + +<p>When LLVM is determining the alignment for a given type, it uses the +   following rules:</p> +  <ol>    <li>If the type sought is an exact match for one of the specifications, that -  specification is used.</li> +      specification is used.</li> +    <li>If no match is found, and the type sought is an integer type, then the -  smallest integer type that is larger than the bitwidth of the sought type is -  used. If none of the specifications are larger than the bitwidth then the the -  largest integer type is used. For example, given the default specifications -  above, the i7 type will use the alignment of i8 (next largest) while both -  i65 and i256 will use the alignment of i64 (largest specified).</li> +      smallest integer type that is larger than the bitwidth of the sought type +      is used. If none of the specifications are larger than the bitwidth then +      the the largest integer type is used. For example, given the default +      specifications above, the i7 type will use the alignment of i8 (next +      largest) while both i65 and i256 will use the alignment of i64 (largest +      specified).</li> +    <li>If no match is found, and the type sought is a vector type, then the -  largest vector type that is smaller than the sought vector type will be used -  as a fall back.  This happens because <128 x double> can be implemented -  in terms of 64 <2 x double>, for example.</li> +      largest vector type that is smaller than the sought vector type will be +      used as a fall back.  This happens because <128 x double> can be +      implemented in terms of 64 <2 x double>, for example.</li>  </ol> +  </div>  <!-- *********************************************************************** --> @@ -1257,22 +1289,22 @@ following rules:</p>  <div class="doc_text">  <p>The LLVM type system is one of the most important features of the -intermediate representation.  Being typed enables a number of -optimizations to be performed on the intermediate representation directly, -without having to do -extra analyses on the side before the transformation.  A strong type -system makes it easier to read the generated code and enables novel -analyses and transformations that are not feasible to perform on normal -three address code representations.</p> +   intermediate representation.  Being typed enables a number of optimizations +   to be performed on the intermediate representation directly, without having +   to do extra analyses on the side before the transformation.  A strong type +   system makes it easier to read the generated code and enables novel analyses +   and transformations that are not feasible to perform on normal three address +   code representations.</p>  </div>  <!-- ======================================================================= -->  <div class="doc_subsection"> <a name="t_classifications">Type  Classifications</a> </div> +  <div class="doc_text"> -<p>The types fall into a few useful -classifications:</p> + +<p>The types fall into a few useful classifications:</p>  <table border="1" cellspacing="0" cellpadding="4">    <tbody> @@ -1319,18 +1351,19 @@ classifications:</p>    </tbody>  </table> -<p>The <a href="#t_firstclass">first class</a> types are perhaps the -most important.  Values of these types are the only ones which can be -produced by instructions, passed as arguments, or used as operands to -instructions.</p> +<p>The <a href="#t_firstclass">first class</a> types are perhaps the most +   important.  Values of these types are the only ones which can be produced by +   instructions, passed as arguments, or used as operands to instructions.</p> +  </div>  <!-- ======================================================================= -->  <div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>  <div class="doc_text"> +  <p>The primitive types are the fundamental building blocks of the LLVM -system.</p> +   system.</p>  </div> @@ -1338,16 +1371,18 @@ system.</p>  <div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>  <div class="doc_text"> -      <table> -        <tbody> -          <tr><th>Type</th><th>Description</th></tr> -          <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr> -          <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr> -          <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr> -          <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr> -          <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr> -        </tbody> -      </table> + +<table> +  <tbody> +    <tr><th>Type</th><th>Description</th></tr> +    <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr> +    <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr> +    <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr> +    <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr> +    <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr> +  </tbody> +</table> +  </div>  <!-- _______________________________________________________________________ --> @@ -1384,8 +1419,8 @@ system.</p>  <div class="doc_text">  <h5>Overview:</h5>  <p>The metadata type represents embedded metadata. The only derived type that -may contain metadata is <tt>metadata*</tt> or a function type that returns or -takes metadata typed parameters, but not pointer to metadata types.</p> +   may contain metadata is <tt>metadata*</tt> or a function type that returns or +   takes metadata typed parameters, but not pointer to metadata types.</p>  <h5>Syntax:</h5> @@ -1400,10 +1435,10 @@ takes metadata typed parameters, but not pointer to metadata types.</p>  <div class="doc_text"> -<p>The real power in LLVM comes from the derived types in the system.  -This is what allows a programmer to represent arrays, functions, -pointers, and other useful types.  Note that these derived types may be -recursive: For example, it is possible to have a two dimensional array.</p> +<p>The real power in LLVM comes from the derived types in the system.  This is +   what allows a programmer to represent arrays, functions, pointers, and other +   useful types.  Note that these derived types may be recursive: For example, +   it is possible to have a two dimensional array.</p>  </div> @@ -1414,8 +1449,8 @@ recursive: For example, it is possible to have a two dimensional array.</p>  <h5>Overview:</h5>  <p>The integer type is a very simple derived type that simply specifies an -arbitrary bit width for the integer type desired. Any bit width from 1 bit to -2^23-1 (about 8 million) can be specified.</p> +   arbitrary bit width for the integer type desired. Any bit width from 1 bit to +   2^23-1 (about 8 million) can be specified.</p>  <h5>Syntax:</h5> @@ -1424,7 +1459,7 @@ arbitrary bit width for the integer type desired. Any bit width from 1 bit to  </pre>  <p>The number of bits the integer will occupy is specified by the <tt>N</tt> -value.</p> +   value.</p>  <h5>Examples:</h5>  <table class="layout"> @@ -1442,11 +1477,10 @@ value.</p>    </tr>  </table> -<p>Note that the code generator does not yet support large integer types -to be used as function return types. The specific limit on how large a -return type the code generator can currently handle is target-dependent; -currently it's often 64 bits for 32-bit targets and 128 bits for 64-bit -targets.</p> +<p>Note that the code generator does not yet support large integer types to be +   used as function return types. The specific limit on how large a return type +   the code generator can currently handle is target-dependent; currently it's +   often 64 bits for 32-bit targets and 128 bits for 64-bit targets.</p>  </div> @@ -1456,10 +1490,9 @@ targets.</p>  <div class="doc_text">  <h5>Overview:</h5> -  <p>The array type is a very simple derived type that arranges elements -sequentially in memory.  The array type requires a size (number of -elements) and an underlying data type.</p> +   sequentially in memory.  The array type requires a size (number of elements) +   and an underlying data type.</p>  <h5>Syntax:</h5> @@ -1467,8 +1500,8 @@ elements) and an underlying data type.</p>    [<# elements> x <elementtype>]  </pre> -<p>The number of elements is a constant integer value; elementtype may -be any type with a size.</p> +<p>The number of elements is a constant integer value; <tt>elementtype</tt> may +   be any type with a size.</p>  <h5>Examples:</h5>  <table class="layout"> @@ -1501,31 +1534,31 @@ be any type with a size.</p>    </tr>  </table> -<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero  -length array.  Normally, accesses past the end of an array are undefined in -LLVM (e.g. it is illegal to access the 5th element of a 3 element array). -As a special case, however, zero length arrays are recognized to be variable -length.  This allows implementation of 'pascal style arrays' with the  LLVM -type "{ i32, [0 x float]}", for example.</p> +<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero +   length array.  Normally, accesses past the end of an array are undefined in +   LLVM (e.g. it is illegal to access the 5th element of a 3 element array).  As +   a special case, however, zero length arrays are recognized to be variable +   length.  This allows implementation of 'pascal style arrays' with the LLVM +   type "<tt>{ i32, [0 x float]}</tt>", for example.</p> -<p>Note that the code generator does not yet support large aggregate types -to be used as function return types. The specific limit on how large an -aggregate return type the code generator can currently handle is -target-dependent, and also dependent on the aggregate element types.</p> +<p>Note that the code generator does not yet support large aggregate types to be +   used as function return types. The specific limit on how large an aggregate +   return type the code generator can currently handle is target-dependent, and +   also dependent on the aggregate element types.</p>  </div>  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div> +  <div class="doc_text">  <h5>Overview:</h5> - -<p>The function type can be thought of as a function signature.  It -consists of a return type and a list of formal parameter types. The -return type of a function type is a scalar type, a void type, or a struct type.  -If the return type is a struct type then all struct elements must be of first  -class types, and the struct must have at least one element.</p> +<p>The function type can be thought of as a function signature.  It consists of +   a return type and a list of formal parameter types. The return type of a +   function type is a scalar type, a void type, or a struct type.  If the return +   type is a struct type then all struct elements must be of first class types, +   and the struct must have at least one element.</p>  <h5>Syntax:</h5> @@ -1534,12 +1567,12 @@ class types, and the struct must have at least one element.</p>  </pre>  <p>...where '<tt><parameter list></tt>' is a comma-separated list of type -specifiers.  Optionally, the parameter list may include a type <tt>...</tt>, -which indicates that the function takes a variable number of arguments. -Variable argument functions can access their arguments with the <a - href="#int_varargs">variable argument handling intrinsic</a> functions. -'<tt><returntype list></tt>' is a comma-separated list of -<a href="#t_firstclass">first class</a> type specifiers.</p> +   specifiers.  Optionally, the parameter list may include a type <tt>...</tt>, +   which indicates that the function takes a variable number of arguments. +   Variable argument functions can access their arguments with +   the <a href="#int_varargs">variable argument handling intrinsic</a> +   functions.  '<tt><returntype list></tt>' is a comma-separated list of +   <a href="#t_firstclass">first class</a> type specifiers.</p>  <h5>Examples:</h5>  <table class="layout"> @@ -1571,20 +1604,26 @@ Variable argument functions can access their arguments with the <a  </table>  </div> +  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div> +  <div class="doc_text"> +  <h5>Overview:</h5> -<p>The structure type is used to represent a collection of data members -together in memory.  The packing of the field types is defined to match -the ABI of the underlying processor.  The elements of a structure may -be any type that has a size.</p> -<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> -and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a -field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' -instruction.</p> +<p>The structure type is used to represent a collection of data members together +   in memory.  The packing of the field types is defined to match the ABI of the +   underlying processor.  The elements of a structure may be any type that has a +   size.</p> + +<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> and +   '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with +   the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p> +  <h5>Syntax:</h5> +  <pre>  { <type list> }<br></pre> +  <h5>Examples:</h5>  <table class="layout">    <tr class="layout"> @@ -1599,28 +1638,33 @@ instruction.</p>    </tr>  </table> -<p>Note that the code generator does not yet support large aggregate types -to be used as function return types. The specific limit on how large an -aggregate return type the code generator can currently handle is -target-dependent, and also dependent on the aggregate element types.</p> +<p>Note that the code generator does not yet support large aggregate types to be +   used as function return types. The specific limit on how large an aggregate +   return type the code generator can currently handle is target-dependent, and +   also dependent on the aggregate element types.</p>  </div>  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>  </div> +  <div class="doc_text"> +  <h5>Overview:</h5>  <p>The packed structure type is used to represent a collection of data members -together in memory.  There is no padding between fields.  Further, the alignment -of a packed structure is 1 byte.  The elements of a packed structure may -be any type that has a size.</p> -<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> -and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a -field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' -instruction.</p> +   together in memory.  There is no padding between fields.  Further, the +   alignment of a packed structure is 1 byte.  The elements of a packed +   structure may be any type that has a size.</p> + +<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> and +   '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with +   the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p> +  <h5>Syntax:</h5> +  <pre>  < { <type list> } > <br></pre> +  <h5>Examples:</h5>  <table class="layout">    <tr class="layout"> @@ -1635,23 +1679,27 @@ instruction.</p>        an <tt>i32</tt>.</td>    </tr>  </table> +  </div>  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div> +  <div class="doc_text"> +  <h5>Overview:</h5> -<p>As in many languages, the pointer type represents a pointer or -reference to another object, which must live in memory. Pointer types may have  -an optional address space attribute defining the target-specific numbered  -address space where the pointed-to object resides. The default address space is  -zero.</p> +<p>As in many languages, the pointer type represents a pointer or reference to +   another object, which must live in memory. Pointer types may have an optional +   address space attribute defining the target-specific numbered address space +   where the pointed-to object resides. The default address space is zero.</p> -<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does  -it permit pointers to labels (<tt>label*</tt>).  Use <tt>i8*</tt> instead.</p> +<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it +   permit pointers to labels (<tt>label*</tt>).  Use <tt>i8*</tt> instead.</p>  <h5>Syntax:</h5> +  <pre>  <type> *<br></pre> +  <h5>Examples:</h5>  <table class="layout">    <tr class="layout"> @@ -1671,21 +1719,21 @@ it permit pointers to labels (<tt>label*</tt>).  Use <tt>i8*</tt> instead.</p>       that resides in address space #5.</td>    </tr>  </table> +  </div>  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div> +  <div class="doc_text">  <h5>Overview:</h5> - -<p>A vector type is a simple derived type that represents a vector -of elements.  Vector types are used when multiple primitive data  -are operated in parallel using a single instruction (SIMD).  -A vector type requires a size (number of -elements) and an underlying primitive data type.  Vectors must have a power -of two length (1, 2, 4, 8, 16 ...).  Vector types are -considered <a href="#t_firstclass">first class</a>.</p> +<p>A vector type is a simple derived type that represents a vector of elements. +   Vector types are used when multiple primitive data are operated in parallel +   using a single instruction (SIMD).  A vector type requires a size (number of +   elements) and an underlying primitive data type.  Vectors must have a power +   of two length (1, 2, 4, 8, 16 ...).  Vector types are considered +   <a href="#t_firstclass">first class</a>.</p>  <h5>Syntax:</h5> @@ -1693,8 +1741,8 @@ considered <a href="#t_firstclass">first class</a>.</p>    < <# elements> x <elementtype> >  </pre> -<p>The number of elements is a constant integer value; elementtype may -be any integer or floating point type.</p> +<p>The number of elements is a constant integer value; elementtype may be any +   integer or floating point type.</p>  <h5>Examples:</h5> @@ -1713,10 +1761,10 @@ be any integer or floating point type.</p>    </tr>  </table> -<p>Note that the code generator does not yet support large vector types -to be used as function return types. The specific limit on how large a -vector return type codegen can currently handle is target-dependent; -currently it's often a few times longer than a hardware vector register.</p> +<p>Note that the code generator does not yet support large vector types to be +   used as function return types. The specific limit on how large a vector +   return type codegen can currently handle is target-dependent; currently it's +   often a few times longer than a hardware vector register.</p>  </div> @@ -1725,11 +1773,10 @@ currently it's often a few times longer than a hardware vector register.</p>  <div class="doc_text">  <h5>Overview:</h5> -  <p>Opaque types are used to represent unknown types in the system.  This -corresponds (for example) to the C notion of a forward declared structure type. -In LLVM, opaque types can eventually be resolved to any type (not just a -structure type).</p> +   corresponds (for example) to the C notion of a forward declared structure +   type.  In LLVM, opaque types can eventually be resolved to any type (not just +   a structure type).</p>  <h5>Syntax:</h5> @@ -1745,6 +1792,7 @@ structure type).</p>      <td class="left">An opaque type.</td>    </tr>  </table> +  </div>  <!-- ======================================================================= --> @@ -1753,12 +1801,13 @@ structure type).</p>  </div>  <div class="doc_text"> +  <h5>Overview:</h5> -<p> -An "up reference" allows you to refer to a lexically enclosing type without -requiring it to have a name. For instance, a structure declaration may contain a -pointer to any of the types it is lexically a member of.  Example of up -references (with their equivalent as named type declarations) include:</p> +<p>An "up reference" allows you to refer to a lexically enclosing type without +   requiring it to have a name. For instance, a structure declaration may +   contain a pointer to any of the types it is lexically a member of.  Example +   of up references (with their equivalent as named type declarations) +   include:</p>  <pre>     { \2 * }                %x = type { %x* } @@ -1766,21 +1815,19 @@ references (with their equivalent as named type declarations) include:</p>     \1*                     %z = type %z*  </pre> -<p> -An up reference is needed by the asmprinter for printing out cyclic types when -there is no declared name for a type in the cycle.  Because the asmprinter does -not want to print out an infinite type string, it needs a syntax to handle -recursive types that have no names (all names are optional in llvm IR). -</p> +<p>An up reference is needed by the asmprinter for printing out cyclic types +   when there is no declared name for a type in the cycle.  Because the +   asmprinter does not want to print out an infinite type string, it needs a +   syntax to handle recursive types that have no names (all names are optional +   in llvm IR).</p>  <h5>Syntax:</h5> +  <pre>     \<level>  </pre> -<p> -The level is the count of the lexical type that is being referred to. -</p> +<p>The level is the count of the lexical type that is being referred to.</p>  <h5>Examples:</h5> @@ -1795,8 +1842,8 @@ The level is the count of the lexical type that is being referred to.                       structure.</td>    </tr>  </table> -</div> +</div>  <!-- *********************************************************************** -->  <div class="doc_section"> <a name="constants">Constants</a> </div> @@ -1805,7 +1852,7 @@ The level is the count of the lexical type that is being referred to.  <div class="doc_text">  <p>LLVM has several different basic types of constants.  This section describes -them all and their syntax.</p> +   them all and their syntax.</p>  </div> @@ -1818,57 +1865,53 @@ them all and their syntax.</p>    <dt><b>Boolean constants</b></dt>    <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid -  constants of the <tt><a href="#t_primitive">i1</a></tt> type. -  </dd> +      constants of the <tt><a href="#t_primitive">i1</a></tt> type.</dd>    <dt><b>Integer constants</b></dt> -  <dd>Standard integers (such as '4') are constants of the <a -  href="#t_integer">integer</a> type.  Negative numbers may be used with  -  integer types. -  </dd> +  <dd>Standard integers (such as '4') are constants of +      the <a href="#t_integer">integer</a> type.  Negative numbers may be used +      with integer types.</dd>    <dt><b>Floating point constants</b></dt>    <dd>Floating point constants use standard decimal notation (e.g. 123.421), -  exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal -  notation (see below).  The assembler requires the exact decimal value of -  a floating-point constant.  For example, the assembler accepts 1.25 but -  rejects 1.3 because 1.3 is a repeating decimal in binary.  Floating point -  constants must have a <a href="#t_floating">floating point</a> type. </dd> +      exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal +      notation (see below).  The assembler requires the exact decimal value of a +      floating-point constant.  For example, the assembler accepts 1.25 but +      rejects 1.3 because 1.3 is a repeating decimal in binary.  Floating point +      constants must have a <a href="#t_floating">floating point</a> type. </dd>    <dt><b>Null pointer constants</b></dt>    <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant -  and must be of <a href="#t_pointer">pointer type</a>.</dd> - +      and must be of <a href="#t_pointer">pointer type</a>.</dd>  </dl> -<p>The one non-intuitive notation for constants is the hexadecimal form -of floating point constants.  For example, the form '<tt>double -0x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double -4.5e+15</tt>'.  The only time hexadecimal floating point constants are required -(and the only time that they are generated by the disassembler) is when a  -floating point constant must be emitted but it cannot be represented as a  -decimal floating point number in a reasonable number of digits.  For example, -NaN's, infinities, and other  -special values are represented in their IEEE hexadecimal format so that  -assembly and disassembly do not cause any bits to change in the constants.</p> +<p>The one non-intuitive notation for constants is the hexadecimal form of +   floating point constants.  For example, the form '<tt>double +   0x432ff973cafa8000</tt>' is equivalent to (but harder to read than) +   '<tt>double 4.5e+15</tt>'.  The only time hexadecimal floating point +   constants are required (and the only time that they are generated by the +   disassembler) is when a floating point constant must be emitted but it cannot +   be represented as a decimal floating point number in a reasonable number of +   digits.  For example, NaN's, infinities, and other special values are +   represented in their IEEE hexadecimal format so that assembly and disassembly +   do not cause any bits to change in the constants.</p> +  <p>When using the hexadecimal form, constants of types float and double are -represented using the 16-digit form shown above (which matches the IEEE754 -representation for double); float values must, however, be exactly representable -as IEE754 single precision. -Hexadecimal format is always used for long -double, and there are three forms of long double.  The 80-bit -format used by x86 is represented as <tt>0xK</tt> -followed by 20 hexadecimal digits. -The 128-bit format used by PowerPC (two adjacent doubles) is represented -by <tt>0xM</tt> followed by 32 hexadecimal digits.  The IEEE 128-bit -format is represented -by <tt>0xL</tt> followed by 32 hexadecimal digits; no currently supported -target uses this format.  Long doubles will only work if they match -the long double format on your target.  All hexadecimal formats are big-endian -(sign bit at the left).</p> +   represented using the 16-digit form shown above (which matches the IEEE754 +   representation for double); float values must, however, be exactly +   representable as IEE754 single precision.  Hexadecimal format is always used +   for long double, and there are three forms of long double.  The 80-bit format +   used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits. +   The 128-bit format used by PowerPC (two adjacent doubles) is represented +   by <tt>0xM</tt> followed by 32 hexadecimal digits.  The IEEE 128-bit format +   is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no +   currently supported target uses this format.  Long doubles will only work if +   they match the long double format on your target.  All hexadecimal formats +   are big-endian (sign bit at the left).</p> +  </div>  <!-- ======================================================================= --> @@ -1878,56 +1921,54 @@ the long double format on your target.  All hexadecimal formats are big-endian  </div>  <div class="doc_text"> +  <p>Complex constants are a (potentially recursive) combination of simple -constants and smaller complex constants.</p> +   constants and smaller complex constants.</p>  <dl>    <dt><b>Structure constants</b></dt>    <dd>Structure constants are represented with notation similar to structure -  type definitions (a comma separated list of elements, surrounded by braces -  (<tt>{}</tt>)).  For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>", -  where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".  Structure constants -  must have <a href="#t_struct">structure type</a>, and the number and -  types of elements must match those specified by the type. -  </dd> +      type definitions (a comma separated list of elements, surrounded by braces +      (<tt>{}</tt>)).  For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>", +      where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". +      Structure constants must have <a href="#t_struct">structure type</a>, and +      the number and types of elements must match those specified by the +      type.</dd>    <dt><b>Array constants</b></dt>    <dd>Array constants are represented with notation similar to array type -  definitions (a comma separated list of elements, surrounded by square brackets -  (<tt>[]</tt>)).  For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>".  Array -  constants must have <a href="#t_array">array type</a>, and the number and -  types of elements must match those specified by the type. -  </dd> +     definitions (a comma separated list of elements, surrounded by square +     brackets (<tt>[]</tt>)).  For example: "<tt>[ i32 42, i32 11, i32 74 +     ]</tt>".  Array constants must have <a href="#t_array">array type</a>, and +     the number and types of elements must match those specified by the +     type.</dd>    <dt><b>Vector constants</b></dt>    <dd>Vector constants are represented with notation similar to vector type -  definitions (a comma separated list of elements, surrounded by -  less-than/greater-than's (<tt><></tt>)).  For example: "<tt>< i32 42, -  i32 11, i32 74, i32 100 ></tt>".  Vector constants must have <a -  href="#t_vector">vector type</a>, and the number and types of elements must -  match those specified by the type. -  </dd> +      definitions (a comma separated list of elements, surrounded by +      less-than/greater-than's (<tt><></tt>)).  For example: "<tt>< i32 +      42, i32 11, i32 74, i32 100 ></tt>".  Vector constants must +      have <a href="#t_vector">vector type</a>, and the number and types of +      elements must match those specified by the type.</dd>    <dt><b>Zero initialization</b></dt>    <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a -  value to zero of <em>any</em> type, including scalar and aggregate types. -  This is often used to avoid having to print large zero initializers (e.g. for -  large arrays) and is always exactly equivalent to using explicit zero -  initializers. -  </dd> +      value to zero of <em>any</em> type, including scalar and aggregate types. +      This is often used to avoid having to print large zero initializers +      (e.g. for large arrays) and is always exactly equivalent to using explicit +      zero initializers.</dd>    <dt><b>Metadata node</b></dt>    <dd>A metadata node is a structure-like constant with -  <a href="#t_metadata">metadata type</a>.  For example: -  "<tt>metadata !{ i32 0, metadata !"test" }</tt>".  Unlike other constants -  that are meant to be interpreted as part of the instruction stream, metadata -  is a place to attach additional information such as debug info. -  </dd> +      <a href="#t_metadata">metadata type</a>.  For example: "<tt>metadata !{ +      i32 0, metadata !"test" }</tt>".  Unlike other constants that are meant to +      be interpreted as part of the instruction stream, metadata is a place to +      attach additional information such as debug info.</dd>  </dl>  </div> @@ -1939,12 +1980,12 @@ constants and smaller complex constants.</p>  <div class="doc_text"> -<p>The addresses of <a href="#globalvars">global variables</a> and <a -href="#functionstructure">functions</a> are always implicitly valid (link-time) -constants.  These constants are explicitly referenced when the <a -href="#identifiers">identifier for the global</a> is used and always have <a -href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM -file:</p> +<p>The addresses of <a href="#globalvars">global variables</a> +   and <a href="#functionstructure">functions</a> are always implicitly valid +   (link-time) constants.  These constants are explicitly referenced when +   the <a href="#identifiers">identifier for the global</a> is used and always +   have <a href="#t_pointer">pointer</a> type. For example, the following is a +   legal LLVM file:</p>  <div class="doc_code">  <pre> @@ -1959,13 +2000,14 @@ file:</p>  <!-- ======================================================================= -->  <div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>  <div class="doc_text"> -  <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has  -  no specific value.  Undefined values may be of any type and be used anywhere  -  a constant is permitted.</p> -  <p>Undefined values indicate to the compiler that the program is well defined -  no matter what value is used, giving the compiler more freedom to optimize. -  </p> +<p>The string '<tt>undef</tt>' is recognized as a type-less constant that has no +   specific value.  Undefined values may be of any type and be used anywhere a +   constant is permitted.</p> + +<p>Undefined values indicate to the compiler that the program is well defined no +   matter what value is used, giving the compiler more freedom to optimize.</p> +  </div>  <!-- ======================================================================= --> @@ -1975,73 +2017,89 @@ file:</p>  <div class="doc_text">  <p>Constant expressions are used to allow expressions involving other constants -to be used as constants.  Constant expressions may be of any <a -href="#t_firstclass">first class</a> type and may involve any LLVM operation -that does not have side effects (e.g. load and call are not supported).  The -following is the syntax for constant expressions:</p> +   to be used as constants.  Constant expressions may be of +   any <a href="#t_firstclass">first class</a> type and may involve any LLVM +   operation that does not have side effects (e.g. load and call are not +   supported).  The following is the syntax for constant expressions:</p>  <dl>    <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt> -  <dd>Truncate a constant to another type. The bit size of CST must be larger  -  than the bit size of TYPE. Both types must be integers.</dd> + +  <dd>Truncate a constant to another type. The bit size of CST must be larger +      than the bit size of TYPE. Both types must be integers.</dd>    <dt><b><tt>zext ( CST to TYPE )</tt></b></dt> -  <dd>Zero extend a constant to another type. The bit size of CST must be  -  smaller or equal to the bit size of TYPE.  Both types must be integers.</dd> + +  <dd>Zero extend a constant to another type. The bit size of CST must be +      smaller or equal to the bit size of TYPE.  Both types must be +      integers.</dd>    <dt><b><tt>sext ( CST to TYPE )</tt></b></dt> -  <dd>Sign extend a constant to another type. The bit size of CST must be  -  smaller or equal to the bit size of TYPE.  Both types must be integers.</dd> + +  <dd>Sign extend a constant to another type. The bit size of CST must be +      smaller or equal to the bit size of TYPE.  Both types must be +      integers.</dd>    <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt> -  <dd>Truncate a floating point constant to another floating point type. The  -  size of CST must be larger than the size of TYPE. Both types must be  -  floating point.</dd> + +  <dd>Truncate a floating point constant to another floating point type. The +      size of CST must be larger than the size of TYPE. Both types must be +      floating point.</dd>    <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt> -  <dd>Floating point extend a constant to another type. The size of CST must be  -  smaller or equal to the size of TYPE. Both types must be floating point.</dd> + +  <dd>Floating point extend a constant to another type. The size of CST must be +      smaller or equal to the size of TYPE. Both types must be floating +      point.</dd>    <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt> +    <dd>Convert a floating point constant to the corresponding unsigned integer -  constant. TYPE must be a scalar or vector integer type. CST must be of scalar -  or vector floating point type. Both CST and TYPE must be scalars, or vectors -  of the same number of elements. If the  value won't fit in the integer type, -  the results are undefined.</dd> +      constant. TYPE must be a scalar or vector integer type. CST must be of +      scalar or vector floating point type. Both CST and TYPE must be scalars, +      or vectors of the same number of elements. If the value won't fit in the +      integer type, the results are undefined.</dd>    <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt> +    <dd>Convert a floating point constant to the corresponding signed integer -  constant.  TYPE must be a scalar or vector integer type. CST must be of scalar -  or vector floating point type. Both CST and TYPE must be scalars, or vectors -  of the same number of elements. If the  value won't fit in the integer type, -  the results are undefined.</dd> +      constant.  TYPE must be a scalar or vector integer type. CST must be of +      scalar or vector floating point type. Both CST and TYPE must be scalars, +      or vectors of the same number of elements. If the value won't fit in the +      integer type, the results are undefined.</dd>    <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt> +    <dd>Convert an unsigned integer constant to the corresponding floating point -  constant. TYPE must be a scalar or vector floating point type. CST must be of -  scalar or vector integer type. Both CST and TYPE must be scalars, or vectors -  of the same number of elements. If the value won't fit in the floating point  -  type, the results are undefined.</dd> +      constant. TYPE must be a scalar or vector floating point type. CST must be +      of scalar or vector integer type. Both CST and TYPE must be scalars, or +      vectors of the same number of elements. If the value won't fit in the +      floating point type, the results are undefined.</dd>    <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt> +    <dd>Convert a signed integer constant to the corresponding floating point -  constant. TYPE must be a scalar or vector floating point type. CST must be of -  scalar or vector integer type. Both CST and TYPE must be scalars, or vectors -  of the same number of elements. If the value won't fit in the floating point  -  type, the results are undefined.</dd> +      constant. TYPE must be a scalar or vector floating point type. CST must be +      of scalar or vector integer type. Both CST and TYPE must be scalars, or +      vectors of the same number of elements. If the value won't fit in the +      floating point type, the results are undefined.</dd>    <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt> +    <dd>Convert a pointer typed constant to the corresponding integer constant -  TYPE must be an integer type. CST must be of pointer type. The CST value is -  zero extended, truncated, or unchanged to make it fit in TYPE.</dd> +      <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer +      type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to +      make it fit in <tt>TYPE</tt>.</dd>    <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt> -  <dd>Convert a integer constant to a pointer constant.  TYPE must be a -  pointer type.  CST must be of integer type. The CST value is zero extended,  -  truncated, or unchanged to make it fit in a pointer size. This one is  -  <i>really</i> dangerous!</dd> + +  <dd>Convert a integer constant to a pointer constant.  TYPE must be a pointer +      type.  CST must be of integer type. The CST value is zero extended, +      truncated, or unchanged to make it fit in a pointer size. This one is +      <i>really</i> dangerous!</dd>    <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt> +    <dd>Convert a constant, CST, to another TYPE. The constraints of the operands        are the same as those for the <a href="#i_bitcast">bitcast        instruction</a>.</dd> @@ -2049,45 +2107,46 @@ following is the syntax for constant expressions:</p>    <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>    <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on -  constants.  As with the <a href="#i_getelementptr">getelementptr</a> -  instruction, the index list may have zero or more indexes, which are required -  to make sense for the type of "CSTPTR".</dd> +      constants.  As with the <a href="#i_getelementptr">getelementptr</a> +      instruction, the index list may have zero or more indexes, which are +      required to make sense for the type of "CSTPTR".</dd>    <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt> -  <dd>Perform the <a href="#i_select">select operation</a> on -  constants.</dd> +  <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>    <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt> +    <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>    <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt> +    <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>    <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt> -  <dd>Perform the <a href="#i_extractelement">extractelement -  operation</a> on constants.</dd> +  <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on +      constants.</dd>    <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt> -  <dd>Perform the <a href="#i_insertelement">insertelement -    operation</a> on constants.</dd> - +  <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on +    constants.</dd>    <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt> -  <dd>Perform the <a href="#i_shufflevector">shufflevector -    operation</a> on constants.</dd> +  <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on +      constants.</dd>    <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt> -  <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may  -  be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise -  binary</a> operations.  The constraints on operands are the same as those for -  the corresponding instruction (e.g. no bitwise operations on floating point -  values are allowed).</dd> +  <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may +      be any of the <a href="#binaryops">binary</a> +      or <a href="#bitwiseops">bitwise binary</a> operations.  The constraints +      on operands are the same as those for the corresponding instruction +      (e.g. no bitwise operations on floating point values are allowed).</dd>  </dl> +  </div>  <!-- ======================================================================= --> @@ -2096,31 +2155,30 @@ following is the syntax for constant expressions:</p>  <div class="doc_text"> -<p>Embedded metadata provides a way to attach arbitrary data to the -instruction stream without affecting the behaviour of the program.  There are -two metadata primitives, strings and nodes. All metadata has the -<tt>metadata</tt> type and is identified in syntax by a preceding exclamation -point ('<tt>!</tt>'). -</p> +<p>Embedded metadata provides a way to attach arbitrary data to the instruction +   stream without affecting the behaviour of the program.  There are two +   metadata primitives, strings and nodes. All metadata has the +   <tt>metadata</tt> type and is identified in syntax by a preceding exclamation +   point ('<tt>!</tt>').</p>  <p>A metadata string is a string surrounded by double quotes.  It can contain -any character by escaping non-printable characters with "\xx" where "xx" is -the two digit hex code.  For example: "<tt>!"test\00"</tt>". -</p> +   any character by escaping non-printable characters with "\xx" where "xx" is +   the two digit hex code.  For example: "<tt>!"test\00"</tt>".</p>  <p>Metadata nodes are represented with notation similar to structure constants -(a comma separated list of elements, surrounded by braces and preceeded by an -exclamation point).  For example: "<tt>!{ metadata !"test\00", i32 10}</tt>". -</p> +   (a comma separated list of elements, surrounded by braces and preceeded by an +   exclamation point).  For example: "<tt>!{ metadata !"test\00", i32 +   10}</tt>".</p> -<p>A metadata node will attempt to track changes to the values it holds. In -the event that a value is deleted, it will be replaced with a typeless -"<tt>null</tt>", such as "<tt>metadata !{null, i32 10}</tt>".</p>  +<p>A metadata node will attempt to track changes to the values it holds. In the +   event that a value is deleted, it will be replaced with a typeless +   "<tt>null</tt>", such as "<tt>metadata !{null, i32 10}</tt>".</p>  <p>Optimizations may rely on metadata to provide additional information about -the program that isn't available in the instructions, or that isn't easily -computable. Similarly, the code generator may expect a certain metadata format -to be used to express debugging information.</p> +   the program that isn't available in the instructions, or that isn't easily +   computable. Similarly, the code generator may expect a certain metadata +   format to be used to express debugging information.</p> +  </div>  <!-- *********************************************************************** --> @@ -2134,14 +2192,12 @@ to be used to express debugging information.</p>  <div class="doc_text"> -<p> -LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm"> -Module-Level Inline Assembly</a>) through the use of a special value.  This -value represents the inline assembler as a string (containing the instructions -to emit), a list of operand constraints (stored as a string), and a flag that  -indicates whether or not the inline asm expression has side effects.  An example -inline assembler expression is: -</p> +<p>LLVM supports inline assembler expressions (as opposed +   to <a href="#moduleasm"> Module-Level Inline Assembly</a>) through the use of +   a special value.  This value represents the inline assembler as a string +   (containing the instructions to emit), a list of operand constraints (stored +   as a string), and a flag that indicates whether or not the inline asm +   expression has side effects.  An example inline assembler expression is:</p>  <div class="doc_code">  <pre> @@ -2149,10 +2205,9 @@ i32 (i32) asm "bswap $0", "=r,r"  </pre>  </div> -<p> -Inline assembler expressions may <b>only</b> be used as the callee operand of -a <a href="#i_call"><tt>call</tt> instruction</a>.  Thus, typically we have: -</p> +<p>Inline assembler expressions may <b>only</b> be used as the callee operand of +   a <a href="#i_call"><tt>call</tt> instruction</a>.  Thus, typically we +   have:</p>  <div class="doc_code">  <pre> @@ -2160,11 +2215,9 @@ a <a href="#i_call"><tt>call</tt> instruction</a>.  Thus, typically we have:  </pre>  </div> -<p> -Inline asms with side effects not visible in the constraint list must be marked -as having side effects.  This is done through the use of the -'<tt>sideeffect</tt>' keyword, like so: -</p> +<p>Inline asms with side effects not visible in the constraint list must be +   marked as having side effects.  This is done through the use of the +   '<tt>sideeffect</tt>' keyword, like so:</p>  <div class="doc_code">  <pre> @@ -2173,10 +2226,9 @@ call void asm sideeffect "eieio", ""()  </div>  <p>TODO: The format of the asm and constraints string still need to be -documented here.  Constraints on what can be done (e.g. duplication, moving, etc -need to be documented).  This is probably best done by reference to another  -document that covers inline asm from a holistic perspective. -</p> +   documented here.  Constraints on what can be done (e.g. duplication, moving, +   etc need to be documented).  This is probably best done by reference to +   another document that covers inline asm from a holistic perspective.</p>  </div> @@ -2186,12 +2238,12 @@ document that covers inline asm from a holistic perspective.  <div class="doc_text"> -<p>The LLVM instruction set consists of several different -classifications of instructions: <a href="#terminators">terminator -instructions</a>, <a href="#binaryops">binary instructions</a>, -<a href="#bitwiseops">bitwise binary instructions</a>, <a - href="#memoryops">memory instructions</a>, and <a href="#otherops">other -instructions</a>.</p> +<p>The LLVM instruction set consists of several different classifications of +   instructions: <a href="#terminators">terminator +   instructions</a>, <a href="#binaryops">binary instructions</a>, +   <a href="#bitwiseops">bitwise binary instructions</a>, +   <a href="#memoryops">memory instructions</a>, and +   <a href="#otherops">other instructions</a>.</p>  </div> @@ -2201,25 +2253,29 @@ Instructions</a> </div>  <div class="doc_text"> -<p>As mentioned <a href="#functionstructure">previously</a>, every -basic block in a program ends with a "Terminator" instruction, which -indicates which block should be executed after the current block is -finished. These terminator instructions typically yield a '<tt>void</tt>' -value: they produce control flow, not values (the one exception being -the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p> -<p>There are six different terminator instructions: the '<a - href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>' -instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction, -the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a - href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a - href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p> +<p>As mentioned <a href="#functionstructure">previously</a>, every basic block +   in a program ends with a "Terminator" instruction, which indicates which +   block should be executed after the current block is finished. These +   terminator instructions typically yield a '<tt>void</tt>' value: they produce +   control flow, not values (the one exception being the +   '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p> + +<p>There are six different terminator instructions: the +   '<a href="#i_ret"><tt>ret</tt></a>' instruction, the +   '<a href="#i_br"><tt>br</tt></a>' instruction, the +   '<a href="#i_switch"><tt>switch</tt></a>' instruction, the +   '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the +   '<a href="#i_unwind"><tt>unwind</tt></a>' instruction, and the +   '<a href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>  </div>  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'  Instruction</a> </div> +  <div class="doc_text"> +  <h5>Syntax:</h5>  <pre>    ret <type> <value>       <i>; Return a value from a non-void function</i> @@ -2228,34 +2284,35 @@ Instruction</a> </div>  <h5>Overview:</h5> -<p>The '<tt>ret</tt>' instruction is used to return control flow (and -optionally a value) from a function back to the caller.</p> -<p>There are two forms of the '<tt>ret</tt>' instruction: one that -returns a value and then causes control flow, and one that just causes -control flow to occur.</p> +<p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally +   a value) from a function back to the caller.</p> + +<p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a +   value and then causes control flow, and one that just causes control flow to +   occur.</p>  <h5>Arguments:</h5> -<p>The '<tt>ret</tt>' instruction optionally accepts a single argument, -the return value. The type of the return value must be a -'<a href="#t_firstclass">first class</a>' type.</p> +<p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the +   return value. The type of the return value must be a +   '<a href="#t_firstclass">first class</a>' type.</p> -<p>A function is not <a href="#wellformed">well formed</a> if -it it has a non-void return type and contains a '<tt>ret</tt>' -instruction with no return value or a return value with a type that -does not match its type, or if it has a void return type and contains -a '<tt>ret</tt>' instruction with a return value.</p> +<p>A function is not <a href="#wellformed">well formed</a> if it it has a +   non-void return type and contains a '<tt>ret</tt>' instruction with no return +   value or a return value with a type that does not match its type, or if it +   has a void return type and contains a '<tt>ret</tt>' instruction with a +   return value.</p>  <h5>Semantics:</h5> -<p>When the '<tt>ret</tt>' instruction is executed, control flow -returns back to the calling function's context.  If the caller is a "<a - href="#i_call"><tt>call</tt></a>" instruction, execution continues at -the instruction after the call.  If the caller was an "<a - href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues -at the beginning of the "normal" destination block.  If the instruction -returns a value, that value shall set the call or invoke instruction's -return value.</p> +<p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to +   the calling function's context.  If the caller is a +   "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the +   instruction after the call.  If the caller was an +   "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at +   the beginning of the "normal" destination block.  If the instruction returns +   a value, that value shall set the call or invoke instruction's return +   value.</p>  <h5>Example:</h5> @@ -2276,73 +2333,75 @@ return value.</p>  </div>  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div> +  <div class="doc_text"> +  <h5>Syntax:</h5> -<pre>  br i1 <cond>, label <iftrue>, label <iffalse><br>  br label <dest>          <i>; Unconditional branch</i> +<pre> +  br i1 <cond>, label <iftrue>, label <iffalse><br>  br label <dest>          <i>; Unconditional branch</i>  </pre> +  <h5>Overview:</h5> -<p>The '<tt>br</tt>' instruction is used to cause control flow to -transfer to a different basic block in the current function.  There are -two forms of this instruction, corresponding to a conditional branch -and an unconditional branch.</p> +<p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a +   different basic block in the current function.  There are two forms of this +   instruction, corresponding to a conditional branch and an unconditional +   branch.</p> +  <h5>Arguments:</h5> -<p>The conditional branch form of the '<tt>br</tt>' instruction takes a -single '<tt>i1</tt>' value and two '<tt>label</tt>' values.  The -unconditional form of the '<tt>br</tt>' instruction takes a single  -'<tt>label</tt>' value as a target.</p> +<p>The conditional branch form of the '<tt>br</tt>' instruction takes a single +   '<tt>i1</tt>' value and two '<tt>label</tt>' values.  The unconditional form +   of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a +   target.</p> +  <h5>Semantics:</h5>  <p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>' -argument is evaluated.  If the value is <tt>true</tt>, control flows -to the '<tt>iftrue</tt>' <tt>label</tt> argument.  If "cond" is <tt>false</tt>, -control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p> +   argument is evaluated.  If the value is <tt>true</tt>, control flows to the +   '<tt>iftrue</tt>' <tt>label</tt> argument.  If "cond" is <tt>false</tt>, +   control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p> +  <h5>Example:</h5>  <pre>Test:<br>  %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b<br>  br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br>  <a   href="#i_ret">ret</a> i32 1<br>IfUnequal:<br>  <a href="#i_ret">ret</a> i32 0<br></pre>  </div> +  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection">     <a name="i_switch">'<tt>switch</tt>' Instruction</a>  </div>  <div class="doc_text"> -<h5>Syntax:</h5> +<h5>Syntax:</h5>  <pre>    switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]  </pre>  <h5>Overview:</h5> -  <p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of -several different places.  It is a generalization of the '<tt>br</tt>' -instruction, allowing a branch to occur to one of many possible -destinations.</p> - +   several different places.  It is a generalization of the '<tt>br</tt>' +   instruction, allowing a branch to occur to one of many possible +   destinations.</p>  <h5>Arguments:</h5> -  <p>The '<tt>switch</tt>' instruction uses three parameters: an integer -comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and -an array of pairs of comparison value constants and '<tt>label</tt>'s.  The -table is not allowed to contain duplicate constant entries.</p> +   comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, +   and an array of pairs of comparison value constants and '<tt>label</tt>'s. +   The table is not allowed to contain duplicate constant entries.</p>  <h5>Semantics:</h5> -  <p>The <tt>switch</tt> instruction specifies a table of values and -destinations. When the '<tt>switch</tt>' instruction is executed, this -table is searched for the given value.  If the value is found, control flow is -transfered to the corresponding destination; otherwise, control flow is -transfered to the default destination.</p> +   destinations. When the '<tt>switch</tt>' instruction is executed, this table +   is searched for the given value.  If the value is found, control flow is +   transfered to the corresponding destination; otherwise, control flow is +   transfered to the default destination.</p>  <h5>Implementation:</h5> -  <p>Depending on properties of the target machine and the particular -<tt>switch</tt> instruction, this instruction may be code generated in different -ways.  For example, it could be generated as a series of chained conditional -branches or with a lookup table.</p> +   <tt>switch</tt> instruction, this instruction may be code generated in +   different ways.  For example, it could be generated as a series of chained +   conditional branches or with a lookup table.</p>  <h5>Example:</h5> -  <pre>   <i>; Emulate a conditional br instruction</i>   %Val = <a href="#i_zext">zext</a> i1 %value to i32 @@ -2356,6 +2415,7 @@ branches or with a lookup table.</p>                                       i32 1, label %onone                                       i32 2, label %ontwo ]  </pre> +  </div>  <!-- _______________________________________________________________________ --> @@ -2366,79 +2426,72 @@ branches or with a lookup table.</p>  <div class="doc_text">  <h5>Syntax:</h5> -  <pre>    <result> = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] <ptr to function ty> <function ptr val>(<function args>) [<a href="#fnattrs">fn attrs</a>]                  to label <normal label> unwind label <exception label>  </pre>  <h5>Overview:</h5> -  <p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified -function, with the possibility of control flow transfer to either the -'<tt>normal</tt>' label or the -'<tt>exception</tt>' label.  If the callee function returns with the -"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the -"normal" label.  If the callee (or any indirect callees) returns with the "<a -href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and -continued at the dynamically nearest "exception" label.</p> +   function, with the possibility of control flow transfer to either the +   '<tt>normal</tt>' label or the '<tt>exception</tt>' label.  If the callee +   function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction, +   control flow will return to the "normal" label.  If the callee (or any +   indirect callees) returns with the "<a href="#i_unwind"><tt>unwind</tt></a>" +   instruction, control is interrupted and continued at the dynamically nearest +   "exception" label.</p>  <h5>Arguments:</h5> -  <p>This instruction requires several arguments:</p>  <ol> -  <li> -    The optional "cconv" marker indicates which <a href="#callingconv">calling -    convention</a> the call should use.  If none is specified, the call defaults -    to using C calling conventions. -  </li> +  <li>The optional "cconv" marker indicates which <a href="#callingconv">calling +      convention</a> the call should use.  If none is specified, the call +      defaults to using C calling conventions.</li>    <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for -   return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',  -   and '<tt>inreg</tt>' attributes are valid here.</li> +      return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and +      '<tt>inreg</tt>' attributes are valid here.</li>    <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to -  function value being invoked.  In most cases, this is a direct function -  invocation, but indirect <tt>invoke</tt>s are just as possible, branching off -  an arbitrary pointer to function value. -  </li> +      function value being invoked.  In most cases, this is a direct function +      invocation, but indirect <tt>invoke</tt>s are just as possible, branching +      off an arbitrary pointer to function value.</li>    <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a -  function to be invoked. </li> +      function to be invoked. </li>    <li>'<tt>function args</tt>': argument list whose types match the function -  signature argument types.  If the function signature indicates the function -  accepts a variable number of arguments, the extra arguments can be -  specified. </li> +      signature argument types.  If the function signature indicates the +      function accepts a variable number of arguments, the extra arguments can +      be specified.</li>    <li>'<tt>normal label</tt>': the label reached when the called function -  executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li> +      executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>    <li>'<tt>exception label</tt>': the label reached when a callee returns with -  the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li> +      the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>    <li>The optional <a href="#fnattrs">function attributes</a> list. Only -  '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and -  '<tt>readnone</tt>' attributes are valid here.</li> +      '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and +      '<tt>readnone</tt>' attributes are valid here.</li>  </ol>  <h5>Semantics:</h5> - -<p>This instruction is designed to operate as a standard '<tt><a -href="#i_call">call</a></tt>' instruction in most regards.  The primary -difference is that it establishes an association with a label, which is used by -the runtime library to unwind the stack.</p> +<p>This instruction is designed to operate as a standard +   '<tt><a href="#i_call">call</a></tt>' instruction in most regards.  The +   primary difference is that it establishes an association with a label, which +   is used by the runtime library to unwind the stack.</p>  <p>This instruction is used in languages with destructors to ensure that proper -cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown -exception.  Additionally, this is important for implementation of -'<tt>catch</tt>' clauses in high-level languages that support them.</p> +   cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown +   exception.  Additionally, this is important for implementation of +   '<tt>catch</tt>' clauses in high-level languages that support them.</p> -<p>For the purposes of the SSA form, the definition of the value -returned by the '<tt>invoke</tt>' instruction is deemed to occur on -the edge from the current block to the "normal" label. If the callee -unwinds then no return value is available.</p> +<p>For the purposes of the SSA form, the definition of the value returned by the +   '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current +   block to the "normal" label. If the callee unwinds then no return value is +   available.</p>  <h5>Example:</h5>  <pre> @@ -2447,8 +2500,8 @@ unwinds then no return value is available.</p>    %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue                unwind label %TestCleanup              <i>; {i32}:retval set</i>  </pre> -</div> +</div>  <!-- _______________________________________________________________________ --> @@ -2463,20 +2516,19 @@ Instruction</a> </div>  </pre>  <h5>Overview:</h5> -  <p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow -at the first callee in the dynamic call stack which used an <a -href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.  This is -primarily used to implement exception handling.</p> +   at the first callee in the dynamic call stack which used +   an <a href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. +   This is primarily used to implement exception handling.</p>  <h5>Semantics:</h5> -  <p>The '<tt>unwind</tt>' instruction causes execution of the current function to -immediately halt.  The dynamic call stack is then searched for the first <a -href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.  Once found, -execution continues at the "exceptional" destination block specified by the -<tt>invoke</tt> instruction.  If there is no <tt>invoke</tt> instruction in the -dynamic call chain, undefined behavior results.</p> +   immediately halt.  The dynamic call stack is then searched for the +   first <a href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. +   Once found, execution continues at the "exceptional" destination block +   specified by the <tt>invoke</tt> instruction.  If there is no <tt>invoke</tt> +   instruction in the dynamic call chain, undefined behavior results.</p> +  </div>  <!-- _______________________________________________________________________ --> @@ -2492,29 +2544,31 @@ Instruction</a> </div>  </pre>  <h5>Overview:</h5> -  <p>The '<tt>unreachable</tt>' instruction has no defined semantics.  This -instruction is used to inform the optimizer that a particular portion of the -code is not reachable.  This can be used to indicate that the code after a -no-return function cannot be reached, and other facts.</p> +   instruction is used to inform the optimizer that a particular portion of the +   code is not reachable.  This can be used to indicate that the code after a +   no-return function cannot be reached, and other facts.</p>  <h5>Semantics:</h5> -  <p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p> -</div> - +</div>  <!-- ======================================================================= -->  <div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div> +  <div class="doc_text"> -<p>Binary operators are used to do most of the computation in a -program.  They require two operands of the same type, execute an operation on them, and -produce a single value.  The operands might represent  -multiple data, as is the case with the <a href="#t_vector">vector</a> data type.  -The result value has the same type as its operands.</p> + +<p>Binary operators are used to do most of the computation in a program.  They +   require two operands of the same type, execute an operation on them, and +   produce a single value.  The operands might represent multiple data, as is +   the case with the <a href="#t_vector">vector</a> data type.  The result value +   has the same type as its operands.</p> +  <p>There are several different binary operators:</p> +  </div> +  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection">    <a name="i_add">'<tt>add</tt>' Instruction</a> @@ -2523,39 +2577,35 @@ The result value has the same type as its operands.</p>  <div class="doc_text">  <h5>Syntax:</h5> -  <pre>    <result> = add <ty> <op1>, <op2>   <i>; yields {ty}:result</i>  </pre>  <h5>Overview:</h5> -  <p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>  <h5>Arguments:</h5> -<p>The two arguments to the '<tt>add</tt>' instruction must be <a - href="#t_integer">integer</a> or - <a href="#t_vector">vector</a> of integer values. Both arguments must - have identical types.</p> +<p>The two arguments to the '<tt>add</tt>' instruction must +   be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of +   integer values. Both arguments must have identical types.</p>  <h5>Semantics:</h5> -  <p>The value produced is the integer sum of the two operands.</p> -<p>If the sum has unsigned overflow, the result returned is the -mathematical result modulo 2<sup>n</sup>, where n is the bit width of -the result.</p> +<p>If the sum has unsigned overflow, the result returned is the mathematical +   result modulo 2<sup>n</sup>, where n is the bit width of the result.</p> -<p>Because LLVM integers use a two's complement representation, this -instruction is appropriate for both signed and unsigned integers.</p> +<p>Because LLVM integers use a two's complement representation, this instruction +   is appropriate for both signed and unsigned integers.</p>  <h5>Example:</h5> -  <pre>    <result> = add i32 4, %var          <i>; yields {i32}:result = 4 + %var</i>  </pre> +  </div> +  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection">    <a name="i_fadd">'<tt>fadd</tt>' Instruction</a> @@ -2564,31 +2614,28 @@ instruction is appropriate for both signed and unsigned integers.</p>  <div class="doc_text">  <h5>Syntax:</h5> -  <pre>    <result> = fadd <ty> <op1>, <op2>   <i>; yields {ty}:result</i>  </pre>  <h5>Overview:</h5> -  <p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>  <h5>Arguments:</h5> -  <p>The two arguments to the '<tt>fadd</tt>' instruction must be -<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of -floating point values. Both arguments must have identical types.</p> +   <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of +   floating point values. Both arguments must have identical types.</p>  <h5>Semantics:</h5> -  <p>The value produced is the floating point sum of the two operands.</p>  <h5>Example:</h5> -  <pre>    <result> = fadd float 4.0, %var          <i>; yields {float}:result = 4.0 + %var</i>  </pre> +  </div> +  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection">     <a name="i_sub">'<tt>sub</tt>' Instruction</a> @@ -2597,42 +2644,39 @@ floating point values. Both arguments must have identical types.</p>  <div class="doc_text">  <h5>Syntax:</h5> -  <pre>    <result> = sub <ty> <op1>, <op2>   <i>; yields {ty}:result</i>  </pre>  <h5>Overview:</h5> -  <p>The '<tt>sub</tt>' instruction returns the difference of its two -operands.</p> +   operands.</p>  <p>Note that the '<tt>sub</tt>' instruction is used to represent the -'<tt>neg</tt>' instruction present in most other intermediate  -representations.</p> +   '<tt>neg</tt>' instruction present in most other intermediate +   representations.</p>  <h5>Arguments:</h5> - -<p>The two arguments to the '<tt>sub</tt>' instruction must be <a - href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of - integer values.  Both arguments must have identical types.</p> +<p>The two arguments to the '<tt>sub</tt>' instruction must +   be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of +   integer values.  Both arguments must have identical types.</p>  <h5>Semantics:</h5> -  <p>The value produced is the integer difference of the two operands.</p>  <p>If the difference has unsigned overflow, the result returned is the -mathematical result modulo 2<sup>n</sup>, where n is the bit width of -the result.</p> +   mathematical result modulo 2<sup>n</sup>, where n is the bit width of the +   result.</p> -<p>Because LLVM integers use a two's complement representation, this -instruction is appropriate for both signed and unsigned integers.</p> +<p>Because LLVM integers use a two's complement representation, this instruction +   is appropriate for both signed and unsigned integers.</p>  <h5>Example:</h5>  <pre>    <result> = sub i32 4, %var          <i>; yields {i32}:result = 4 - %var</i>    <result> = sub i32 0, %val          <i>; yields {i32}:result = -%var</i>  </pre> +  </div>  <!-- _______________________________________________________________________ --> @@ -2643,28 +2687,24 @@ instruction is appropriate for both signed and unsigned integers.</p>  <div class="doc_text">  <h5>Syntax:</h5> -  <pre>    <result> = fsub <ty> <op1>, <op2>   <i>; yields {ty}:result</i>  </pre>  <h5>Overview:</h5> -  <p>The '<tt>fsub</tt>' instruction returns the difference of its two -operands.</p> +   operands.</p>  <p>Note that the '<tt>fsub</tt>' instruction is used to represent the -'<tt>fneg</tt>' instruction present in most other intermediate -representations.</p> +   '<tt>fneg</tt>' instruction present in most other intermediate +   representations.</p>  <h5>Arguments:</h5> -  <p>The two arguments to the '<tt>fsub</tt>' instruction must be <a - <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> - of floating point values.  Both arguments must have identical types.</p> +   <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of +   floating point values.  Both arguments must have identical types.</p>  <h5>Semantics:</h5> -  <p>The value produced is the floating point difference of the two operands.</p>  <h5>Example:</h5> @@ -2672,6 +2712,7 @@ representations.</p>    <result> = fsub float 4.0, %var           <i>; yields {float}:result = 4.0 - %var</i>    <result> = fsub float -0.0, %val          <i>; yields {float}:result = -%var</i>  </pre> +  </div>  <!-- _______________________________________________________________________ --> @@ -2682,34 +2723,37 @@ representations.</p>  <div class="doc_text">  <h5>Syntax:</h5> -<pre>  <result> = mul <ty> <op1>, <op2>   <i>; yields {ty}:result</i> +<pre> +  <result> = mul <ty> <op1>, <op2>   <i>; yields {ty}:result</i>  </pre> +  <h5>Overview:</h5> -<p>The  '<tt>mul</tt>' instruction returns the product of its two -operands.</p> +<p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>  <h5>Arguments:</h5> - -<p>The two arguments to the '<tt>mul</tt>' instruction must be <a -href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer -values.  Both arguments must have identical types.</p> +<p>The two arguments to the '<tt>mul</tt>' instruction must +   be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of +   integer values.  Both arguments must have identical types.</p>  <h5>Semantics:</h5> -  <p>The value produced is the integer product of the two operands.</p> -<p>If the result of the multiplication has unsigned overflow, -the result returned is the mathematical result modulo  -2<sup>n</sup>, where n is the bit width of the result.</p> -<p>Because LLVM integers use a two's complement representation, and the -result is the same width as the operands, this instruction returns the -correct result for both signed and unsigned integers.  If a full product -(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands -should be sign-extended or zero-extended as appropriate to the -width of the full product.</p> +<p>If the result of the multiplication has unsigned overflow, the result +   returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit +   width of the result.</p> + +<p>Because LLVM integers use a two's complement representation, and the result +   is the same width as the operands, this instruction returns the correct +   result for both signed and unsigned integers.  If a full product +   (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should +   be sign-extended or zero-extended as appropriate to the width of the full +   product.</p> +  <h5>Example:</h5> -<pre>  <result> = mul i32 4, %var          <i>; yields {i32}:result = 4 * %var</i> +<pre> +  <result> = mul i32 4, %var          <i>; yields {i32}:result = 4 * %var</i>  </pre> +  </div>  <!-- _______________________________________________________________________ --> @@ -2720,140 +2764,165 @@ width of the full product.</p>  <div class="doc_text">  <h5>Syntax:</h5> -<pre>  <result> = fmul <ty> <op1>, <op2>   <i>; yields {ty}:result</i> +<pre> +  <result> = fmul <ty> <op1>, <op2>   <i>; yields {ty}:result</i>  </pre> +  <h5>Overview:</h5> -<p>The  '<tt>fmul</tt>' instruction returns the product of its two -operands.</p> +<p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>  <h5>Arguments:</h5> -  <p>The two arguments to the '<tt>fmul</tt>' instruction must be -<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> -of floating point values.  Both arguments must have identical types.</p> +   <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of +   floating point values.  Both arguments must have identical types.</p>  <h5>Semantics:</h5> -  <p>The value produced is the floating point product of the two operands.</p>  <h5>Example:</h5> -<pre>  <result> = fmul float 4.0, %var          <i>; yields {float}:result = 4.0 * %var</i> +<pre> +  <result> = fmul float 4.0, %var          <i>; yields {float}:result = 4.0 * %var</i>  </pre> +  </div>  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction  </a></div> +  <div class="doc_text"> +  <h5>Syntax:</h5> -<pre>  <result> = udiv <ty> <op1>, <op2>   <i>; yields {ty}:result</i> +<pre> +  <result> = udiv <ty> <op1>, <op2>   <i>; yields {ty}:result</i>  </pre> +  <h5>Overview:</h5> -<p>The '<tt>udiv</tt>' instruction returns the quotient of its two -operands.</p> +<p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>  <h5>Arguments:</h5> -  <p>The two arguments to the '<tt>udiv</tt>' instruction must be  -<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer -values.  Both arguments must have identical types.</p> +   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer +   values.  Both arguments must have identical types.</p>  <h5>Semantics:</h5> -  <p>The value produced is the unsigned integer quotient of the two operands.</p> +  <p>Note that unsigned integer division and signed integer division are distinct -operations; for signed integer division, use '<tt>sdiv</tt>'.</p> +   operations; for signed integer division, use '<tt>sdiv</tt>'.</p> +  <p>Division by zero leads to undefined behavior.</p> +  <h5>Example:</h5> -<pre>  <result> = udiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i> +<pre> +  <result> = udiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i>  </pre> +  </div> +  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction  </a> </div> +  <div class="doc_text"> +  <h5>Syntax:</h5>  <pre>    <result> = sdiv <ty> <op1>, <op2>   <i>; yields {ty}:result</i>  </pre>  <h5>Overview:</h5> - -<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two -operands.</p> +<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>  <h5>Arguments:</h5> -  <p>The two arguments to the '<tt>sdiv</tt>' instruction must be  -<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer -values.  Both arguments must have identical types.</p> +   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer +   values.  Both arguments must have identical types.</p>  <h5>Semantics:</h5> -<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p> +<p>The value produced is the signed integer quotient of the two operands rounded +   towards zero.</p> +  <p>Note that signed integer division and unsigned integer division are distinct -operations; for unsigned integer division, use '<tt>udiv</tt>'.</p> +   operations; for unsigned integer division, use '<tt>udiv</tt>'.</p> +  <p>Division by zero leads to undefined behavior. Overflow also leads to -undefined behavior; this is a rare case, but can occur, for example, -by doing a 32-bit division of -2147483648 by -1.</p> +   undefined behavior; this is a rare case, but can occur, for example, by doing +   a 32-bit division of -2147483648 by -1.</p> +  <h5>Example:</h5> -<pre>  <result> = sdiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i> +<pre> +  <result> = sdiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i>  </pre> +  </div> +  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'  Instruction</a> </div> +  <div class="doc_text"> +  <h5>Syntax:</h5>  <pre>    <result> = fdiv <ty> <op1>, <op2>   <i>; yields {ty}:result</i>  </pre> -<h5>Overview:</h5> -<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two -operands.</p> +<h5>Overview:</h5> +<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>  <h5>Arguments:</h5> -  <p>The two arguments to the '<tt>fdiv</tt>' instruction must be -<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> -of floating point values.  Both arguments must have identical types.</p> +   <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of +   floating point values.  Both arguments must have identical types.</p>  <h5>Semantics:</h5> -  <p>The value produced is the floating point quotient of the two operands.</p>  <h5>Example:</h5> -  <pre>    <result> = fdiv float 4.0, %var          <i>; yields {float}:result = 4.0 / %var</i>  </pre> +  </div>  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>  </div> +  <div class="doc_text"> +  <h5>Syntax:</h5> -<pre>  <result> = urem <ty> <op1>, <op2>   <i>; yields {ty}:result</i> +<pre> +  <result> = urem <ty> <op1>, <op2>   <i>; yields {ty}:result</i>  </pre> +  <h5>Overview:</h5> -<p>The '<tt>urem</tt>' instruction returns the remainder from the -unsigned division of its two arguments.</p> +<p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned +   division of its two arguments.</p> +  <h5>Arguments:</h5>  <p>The two arguments to the '<tt>urem</tt>' instruction must be  -<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer -values.  Both arguments must have identical types.</p> +   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer +   values.  Both arguments must have identical types.</p> +  <h5>Semantics:</h5>  <p>This instruction returns the unsigned integer <i>remainder</i> of a division. -This instruction always performs an unsigned division to get the remainder.</p> +   This instruction always performs an unsigned division to get the +   remainder.</p> +  <p>Note that unsigned integer remainder and signed integer remainder are -distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p> +   distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p> +  <p>Taking the remainder of a division by zero leads to undefined behavior.</p> +  <h5>Example:</h5> -<pre>  <result> = urem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i> +<pre> +  <result> = urem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i>  </pre>  </div> +  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection">    <a name="i_srem">'<tt>srem</tt>' Instruction</a> @@ -2862,47 +2931,48 @@ distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>  <div class="doc_text">  <h5>Syntax:</h5> -  <pre>    <result> = srem <ty> <op1>, <op2>   <i>; yields {ty}:result</i>  </pre>  <h5>Overview:</h5> - -<p>The '<tt>srem</tt>' instruction returns the remainder from the -signed division of its two operands. This instruction can also take -<a href="#t_vector">vector</a> versions of the values in which case -the elements must be integers.</p> +<p>The '<tt>srem</tt>' instruction returns the remainder from the signed +   division of its two operands. This instruction can also take +   <a href="#t_vector">vector</a> versions of the values in which case the +   elements must be integers.</p>  <h5>Arguments:</h5> -  <p>The two arguments to the '<tt>srem</tt>' instruction must be  -<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer -values.  Both arguments must have identical types.</p> +   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer +   values.  Both arguments must have identical types.</p>  <h5>Semantics:</h5> -  <p>This instruction returns the <i>remainder</i> of a division (where the result -has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>  -operator (where the result has the same sign as the divisor, <tt>op2</tt>) of  -a value.  For more information about the difference, see <a - href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The -Math Forum</a>. For a table of how this is implemented in various languages, -please see <a href="http://en.wikipedia.org/wiki/Modulo_operation"> -Wikipedia: modulo operation</a>.</p> +   has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i> +   operator (where the result has the same sign as the divisor, <tt>op2</tt>) of +   a value.  For more information about the difference, +   see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The +   Math Forum</a>. For a table of how this is implemented in various languages, +   please see <a href="http://en.wikipedia.org/wiki/Modulo_operation"> +   Wikipedia: modulo operation</a>.</p> +  <p>Note that signed integer remainder and unsigned integer remainder are -distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p> +   distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p> +  <p>Taking the remainder of a division by zero leads to undefined behavior. -Overflow also leads to undefined behavior; this is a rare case, but can occur, -for example, by taking the remainder of a 32-bit division of -2147483648 by -1. -(The remainder doesn't actually overflow, but this rule lets srem be  -implemented using instructions that return both the result of the division -and the remainder.)</p> +   Overflow also leads to undefined behavior; this is a rare case, but can +   occur, for example, by taking the remainder of a 32-bit division of +   -2147483648 by -1.  (The remainder doesn't actually overflow, but this rule +   lets srem be implemented using instructions that return both the result of +   the division and the remainder.)</p> +  <h5>Example:</h5> -<pre>  <result> = srem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i> +<pre> +  <result> = srem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i>  </pre>  </div> +  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection">    <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div> @@ -2910,99 +2980,110 @@ and the remainder.)</p>  <div class="doc_text">  <h5>Syntax:</h5> -<pre>  <result> = frem <ty> <op1>, <op2>   <i>; yields {ty}:result</i> +<pre> +  <result> = frem <ty> <op1>, <op2>   <i>; yields {ty}:result</i>  </pre> +  <h5>Overview:</h5> -<p>The '<tt>frem</tt>' instruction returns the remainder from the -division of its two operands.</p> +<p>The '<tt>frem</tt>' instruction returns the remainder from the division of +   its two operands.</p> +  <h5>Arguments:</h5>  <p>The two arguments to the '<tt>frem</tt>' instruction must be -<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> -of floating point values.  Both arguments must have identical types.</p> +   <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of +   floating point values.  Both arguments must have identical types.</p>  <h5>Semantics:</h5> - -<p>This instruction returns the <i>remainder</i> of a division. -The remainder has the same sign as the dividend.</p> +<p>This instruction returns the <i>remainder</i> of a division.  The remainder +   has the same sign as the dividend.</p>  <h5>Example:</h5> -  <pre>    <result> = frem float 4.0, %var          <i>; yields {float}:result = 4.0 % %var</i>  </pre> +  </div>  <!-- ======================================================================= -->  <div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary  Operations</a> </div> +  <div class="doc_text"> -<p>Bitwise binary operators are used to do various forms of -bit-twiddling in a program.  They are generally very efficient -instructions and can commonly be strength reduced from other -instructions.  They require two operands of the same type, execute an operation on them, -and produce a single value.  The resulting value is the same type as its operands.</p> + +<p>Bitwise binary operators are used to do various forms of bit-twiddling in a +   program.  They are generally very efficient instructions and can commonly be +   strength reduced from other instructions.  They require two operands of the +   same type, execute an operation on them, and produce a single value.  The +   resulting value is the same type as its operands.</p> +  </div>  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'  Instruction</a> </div> +  <div class="doc_text"> +  <h5>Syntax:</h5> -<pre>  <result> = shl <ty> <op1>, <op2>   <i>; yields {ty}:result</i> +<pre> +  <result> = shl <ty> <op1>, <op2>   <i>; yields {ty}:result</i>  </pre>  <h5>Overview:</h5> - -<p>The '<tt>shl</tt>' instruction returns the first operand shifted to -the left a specified number of bits.</p> +<p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left +   a specified number of bits.</p>  <h5>Arguments:</h5> - -<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a - href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer  -type.  '<tt>op2</tt>' is treated as an unsigned value.</p> +<p>Both arguments to the '<tt>shl</tt>' instruction must be the +    same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of +    integer type.  '<tt>op2</tt>' is treated as an unsigned value.</p>  <h5>Semantics:</h5> +<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod +   2<sup>n</sup>, where <tt>n</tt> is the width of the result.  If <tt>op2</tt> +   is (statically or dynamically) negative or equal to or larger than the number +   of bits in <tt>op1</tt>, the result is undefined.  If the arguments are +   vectors, each vector element of <tt>op1</tt> is shifted by the corresponding +   shift amount in <tt>op2</tt>.</p> -<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>, -where n is the width of the result.  If <tt>op2</tt> is (statically or dynamically) negative or -equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined. -If the arguments are vectors, each vector element of <tt>op1</tt> is shifted by the -corresponding shift amount in <tt>op2</tt>.</p> - -<h5>Example:</h5><pre> +<h5>Example:</h5> +<pre>    <result> = shl i32 4, %var   <i>; yields {i32}: 4 << %var</i>    <result> = shl i32 4, 2      <i>; yields {i32}: 16</i>    <result> = shl i32 1, 10     <i>; yields {i32}: 1024</i>    <result> = shl i32 1, 32     <i>; undefined</i>    <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2>   <i>; yields: result=<2 x i32> < i32 2, i32 4></i>  </pre> +  </div> +  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'  Instruction</a> </div> +  <div class="doc_text"> +  <h5>Syntax:</h5> -<pre>  <result> = lshr <ty> <op1>, <op2>   <i>; yields {ty}:result</i> +<pre> +  <result> = lshr <ty> <op1>, <op2>   <i>; yields {ty}:result</i>  </pre>  <h5>Overview:</h5> -<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first  -operand shifted to the right a specified number of bits with zero fill.</p> +<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first +   operand shifted to the right a specified number of bits with zero fill.</p>  <h5>Arguments:</h5>  <p>Both arguments to the '<tt>lshr</tt>' instruction must be the same  -<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer  -type.  '<tt>op2</tt>' is treated as an unsigned value.</p> +   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer +   type. '<tt>op2</tt>' is treated as an unsigned value.</p>  <h5>Semantics:</h5> -  <p>This instruction always performs a logical shift right operation. The most -significant bits of the result will be filled with zero bits after the  -shift.  If <tt>op2</tt> is (statically or dynamically) equal to or larger than -the number of bits in <tt>op1</tt>, the result is undefined. If the arguments are -vectors, each vector element of <tt>op1</tt> is shifted by the corresponding shift -amount in <tt>op2</tt>.</p> +   significant bits of the result will be filled with zero bits after the shift. +   If <tt>op2</tt> is (statically or dynamically) equal to or larger than the +   number of bits in <tt>op1</tt>, the result is undefined. If the arguments are +   vectors, each vector element of <tt>op1</tt> is shifted by the corresponding +   shift amount in <tt>op2</tt>.</p>  <h5>Example:</h5>  <pre> @@ -3013,6 +3094,7 @@ amount in <tt>op2</tt>.</p>    <result> = lshr i32 1, 32  <i>; undefined</i>    <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2>   <i>; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1></i>  </pre> +  </div>  <!-- _______________________________________________________________________ --> @@ -3021,25 +3103,27 @@ Instruction</a> </div>  <div class="doc_text">  <h5>Syntax:</h5> -<pre>  <result> = ashr <ty> <op1>, <op2>   <i>; yields {ty}:result</i> +<pre> +  <result> = ashr <ty> <op1>, <op2>   <i>; yields {ty}:result</i>  </pre>  <h5>Overview:</h5> -<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first  -operand shifted to the right a specified number of bits with sign extension.</p> +<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first +   operand shifted to the right a specified number of bits with sign +   extension.</p>  <h5>Arguments:</h5>  <p>Both arguments to the '<tt>ashr</tt>' instruction must be the same  -<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer  -type.  '<tt>op2</tt>' is treated as an unsigned value.</p> +   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer +   type.  '<tt>op2</tt>' is treated as an unsigned value.</p>  <h5>Semantics:</h5> -<p>This instruction always performs an arithmetic shift right operation,  -The most significant bits of the result will be filled with the sign bit  -of <tt>op1</tt>.  If <tt>op2</tt> is (statically or dynamically) equal to or -larger than the number of bits in <tt>op1</tt>, the result is undefined. If the -arguments are vectors, each vector element of <tt>op1</tt> is shifted by the -corresponding shift amount in <tt>op2</tt>.</p> +<p>This instruction always performs an arithmetic shift right operation, The +   most significant bits of the result will be filled with the sign bit +   of <tt>op1</tt>.  If <tt>op2</tt> is (statically or dynamically) equal to or +   larger than the number of bits in <tt>op1</tt>, the result is undefined. If +   the arguments are vectors, each vector element of <tt>op1</tt> is shifted by +   the corresponding shift amount in <tt>op2</tt>.</p>  <h5>Example:</h5>  <pre> @@ -3050,6 +3134,7 @@ corresponding shift amount in <tt>op2</tt>.</p>    <result> = ashr i32 1, 32  <i>; undefined</i>    <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3>   <i>; yields: result=<2 x i32> < i32 -1, i32 0></i>  </pre> +  </div>  <!-- _______________________________________________________________________ --> @@ -3059,26 +3144,22 @@ Instruction</a> </div>  <div class="doc_text">  <h5>Syntax:</h5> -  <pre>    <result> = and <ty> <op1>, <op2>   <i>; yields {ty}:result</i>  </pre>  <h5>Overview:</h5> - -<p>The '<tt>and</tt>' instruction returns the bitwise logical and of -its two operands.</p> +<p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two +   operands.</p>  <h5>Arguments:</h5> -  <p>The two arguments to the '<tt>and</tt>' instruction must be  -<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer -values.  Both arguments must have identical types.</p> +   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer +   values.  Both arguments must have identical types.</p>  <h5>Semantics:</h5>  <p>The truth table used for the '<tt>and</tt>' instruction is:</p> -<p> </p> -<div> +  <table border="1" cellspacing="0" cellpadding="4">    <tbody>      <tr> @@ -3108,7 +3189,7 @@ values.  Both arguments must have identical types.</p>      </tr>    </tbody>  </table> -</div> +  <h5>Example:</h5>  <pre>    <result> = and i32 4, %var         <i>; yields {i32}:result = 4 & %var</i> @@ -3118,22 +3199,26 @@ values.  Both arguments must have identical types.</p>  </div>  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div> +  <div class="doc_text"> +  <h5>Syntax:</h5> -<pre>  <result> = or <ty> <op1>, <op2>   <i>; yields {ty}:result</i> +<pre> +  <result> = or <ty> <op1>, <op2>   <i>; yields {ty}:result</i>  </pre> +  <h5>Overview:</h5> -<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive -or of its two operands.</p> -<h5>Arguments:</h5> +<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its +   two operands.</p> +<h5>Arguments:</h5>  <p>The two arguments to the '<tt>or</tt>' instruction must be  -<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer -values.  Both arguments must have identical types.</p> +   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer +   values.  Both arguments must have identical types.</p> +  <h5>Semantics:</h5>  <p>The truth table used for the '<tt>or</tt>' instruction is:</p> -<p> </p> -<div> +  <table border="1" cellspacing="0" cellpadding="4">    <tbody>      <tr> @@ -3163,34 +3248,40 @@ values.  Both arguments must have identical types.</p>      </tr>    </tbody>  </table> -</div> +  <h5>Example:</h5> -<pre>  <result> = or i32 4, %var         <i>; yields {i32}:result = 4 | %var</i> +<pre> +  <result> = or i32 4, %var         <i>; yields {i32}:result = 4 | %var</i>    <result> = or i32 15, 40          <i>; yields {i32}:result = 47</i>    <result> = or i32 4, 8            <i>; yields {i32}:result = 12</i>  </pre> +  </div> +  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'  Instruction</a> </div> +  <div class="doc_text"> +  <h5>Syntax:</h5> -<pre>  <result> = xor <ty> <op1>, <op2>   <i>; yields {ty}:result</i> +<pre> +  <result> = xor <ty> <op1>, <op2>   <i>; yields {ty}:result</i>  </pre> +  <h5>Overview:</h5> -<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive -or of its two operands.  The <tt>xor</tt> is used to implement the -"one's complement" operation, which is the "~" operator in C.</p> +<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of +   its two operands.  The <tt>xor</tt> is used to implement the "one's +   complement" operation, which is the "~" operator in C.</p> +  <h5>Arguments:</h5>  <p>The two arguments to the '<tt>xor</tt>' instruction must be  -<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer -values.  Both arguments must have identical types.</p> +   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer +   values.  Both arguments must have identical types.</p>  <h5>Semantics:</h5> -  <p>The truth table used for the '<tt>xor</tt>' instruction is:</p> -<p> </p> -<div> +  <table border="1" cellspacing="0" cellpadding="4">    <tbody>      <tr> @@ -3220,14 +3311,15 @@ values.  Both arguments must have identical types.</p>      </tr>    </tbody>  </table> -</div> -<p> </p> +  <h5>Example:</h5> -<pre>  <result> = xor i32 4, %var         <i>; yields {i32}:result = 4 ^ %var</i> +<pre> +  <result> = xor i32 4, %var         <i>; yields {i32}:result = 4 ^ %var</i>    <result> = xor i32 15, 40          <i>; yields {i32}:result = 39</i>    <result> = xor i32 4, 8            <i>; yields {i32}:result = 12</i>    <result> = xor i32 %V, -1          <i>; yields {i32}:result = ~%V</i>  </pre> +  </div>  <!-- ======================================================================= --> @@ -3238,11 +3330,11 @@ values.  Both arguments must have identical types.</p>  <div class="doc_text">  <p>LLVM supports several instructions to represent vector operations in a -target-independent manner.  These instructions cover the element-access and -vector-specific operations needed to process vectors effectively.  While LLVM -does directly support these vector operations, many sophisticated algorithms -will want to use target-specific intrinsics to take full advantage of a specific -target.</p> +   target-independent manner.  These instructions cover the element-access and +   vector-specific operations needed to process vectors effectively.  While LLVM +   does directly support these vector operations, many sophisticated algorithms +   will want to use target-specific intrinsics to take full advantage of a +   specific target.</p>  </div> @@ -3254,43 +3346,33 @@ target.</p>  <div class="doc_text">  <h5>Syntax:</h5> -  <pre>    <result> = extractelement <n x <ty>> <val>, i32 <idx>    <i>; yields <ty></i>  </pre>  <h5>Overview:</h5> - -<p> -The '<tt>extractelement</tt>' instruction extracts a single scalar -element from a vector at a specified index. -</p> +<p>The '<tt>extractelement</tt>' instruction extracts a single scalar element +   from a vector at a specified index.</p>  <h5>Arguments:</h5> - -<p> -The first operand of an '<tt>extractelement</tt>' instruction is a -value of <a href="#t_vector">vector</a> type.  The second operand is -an index indicating the position from which to extract the element. -The index may be a variable.</p> +<p>The first operand of an '<tt>extractelement</tt>' instruction is a value +   of <a href="#t_vector">vector</a> type.  The second operand is an index +   indicating the position from which to extract the element.  The index may be +   a variable.</p>  <h5>Semantics:</h5> - -<p> -The result is a scalar of the same type as the element type of -<tt>val</tt>.  Its value is the value at position <tt>idx</tt> of -<tt>val</tt>.  If <tt>idx</tt> exceeds the length of <tt>val</tt>, the -results are undefined. -</p> +<p>The result is a scalar of the same type as the element type of +   <tt>val</tt>.  Its value is the value at position <tt>idx</tt> of +   <tt>val</tt>.  If <tt>idx</tt> exceeds the length of <tt>val</tt>, the +   results are undefined.</p>  <h5>Example:</h5> -  <pre>    %result = extractelement <4 x i32> %vec, i32 0    <i>; yields i32</i>  </pre> -</div> +</div>  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection"> @@ -3300,42 +3382,32 @@ results are undefined.  <div class="doc_text">  <h5>Syntax:</h5> -  <pre>    <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx>    <i>; yields <n x <ty>></i>  </pre>  <h5>Overview:</h5> - -<p> -The '<tt>insertelement</tt>' instruction inserts a scalar -element into a vector at a specified index. -</p> - +<p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a +   vector at a specified index.</p>  <h5>Arguments:</h5> - -<p> -The first operand of an '<tt>insertelement</tt>' instruction is a -value of <a href="#t_vector">vector</a> type.  The second operand is a -scalar value whose type must equal the element type of the first -operand.  The third operand is an index indicating the position at -which to insert the value.  The index may be a variable.</p> +<p>The first operand of an '<tt>insertelement</tt>' instruction is a value +   of <a href="#t_vector">vector</a> type.  The second operand is a scalar value +   whose type must equal the element type of the first operand.  The third +   operand is an index indicating the position at which to insert the value. +   The index may be a variable.</p>  <h5>Semantics:</h5> - -<p> -The result is a vector of the same type as <tt>val</tt>.  Its -element values are those of <tt>val</tt> except at position -<tt>idx</tt>, where it gets the value <tt>elt</tt>.  If <tt>idx</tt> -exceeds the length of <tt>val</tt>, the results are undefined. -</p> +<p>The result is a vector of the same type as <tt>val</tt>.  Its element values +   are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the +   value <tt>elt</tt>.  If <tt>idx</tt> exceeds the length of <tt>val</tt>, the +   results are undefined.</p>  <h5>Example:</h5> -  <pre>    %result = insertelement <4 x i32> %vec, i32 1, i32 0    <i>; yields <4 x i32></i>  </pre> +  </div>  <!-- _______________________________________________________________________ --> @@ -3346,46 +3418,33 @@ exceeds the length of <tt>val</tt>, the results are undefined.  <div class="doc_text">  <h5>Syntax:</h5> -  <pre>    <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask>    <i>; yields <m x <ty>></i>  </pre>  <h5>Overview:</h5> - -<p> -The '<tt>shufflevector</tt>' instruction constructs a permutation of elements -from two input vectors, returning a vector with the same element type as -the input and length that is the same as the shuffle mask. -</p> +<p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements +   from two input vectors, returning a vector with the same element type as the +   input and length that is the same as the shuffle mask.</p>  <h5>Arguments:</h5> +<p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors +   with types that match each other. The third argument is a shuffle mask whose +   element type is always 'i32'.  The result of the instruction is a vector +   whose length is the same as the shuffle mask and whose element type is the +   same as the element type of the first two operands.</p> -<p> -The first two operands of a '<tt>shufflevector</tt>' instruction are vectors  -with types that match each other. The third argument is a shuffle mask whose -element type is always 'i32'.  The result of the instruction is a vector whose -length is the same as the shuffle mask and whose element type is the same as -the element type of the first two operands. -</p> - -<p> -The shuffle mask operand is required to be a constant vector with either -constant integer or undef values. -</p> +<p>The shuffle mask operand is required to be a constant vector with either +   constant integer or undef values.</p>  <h5>Semantics:</h5> - -<p> -The elements of the two input vectors are numbered from left to right across -both of the vectors.  The shuffle mask operand specifies, for each element of -the result vector, which element of the two input vectors the result element -gets.  The element selector may be undef (meaning "don't care") and the second -operand may be undef if performing a shuffle from only one vector. -</p> +<p>The elements of the two input vectors are numbered from left to right across +   both of the vectors.  The shuffle mask operand specifies, for each element of +   the result vector, which element of the two input vectors the result element +   gets.  The element selector may be undef (meaning "don't care") and the +   second operand may be undef if performing a shuffle from only one vector.</p>  <h5>Example:</h5> -  <pre>    %result = shufflevector <4 x i32> %v1, <4 x i32> %v2,                             <4 x i32> <i32 0, i32 4, i32 1, i32 5>  <i>; yields <4 x i32></i> @@ -3396,8 +3455,8 @@ operand may be undef if performing a shuffle from only one vector.    %result = shufflevector <4 x i32> %v1, <4 x i32> %v2,                             <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 >  <i>; yields <8 x i32></i>  </pre> -</div> +</div>  <!-- ======================================================================= -->  <div class="doc_subsection">  @@ -3406,8 +3465,7 @@ operand may be undef if performing a shuffle from only one vector.  <div class="doc_text"> -<p>LLVM supports several instructions for working with aggregate values. -</p> +<p>LLVM supports several instructions for working with aggregate values.</p>  </div> @@ -3419,43 +3477,31 @@ operand may be undef if performing a shuffle from only one vector.  <div class="doc_text">  <h5>Syntax:</h5> -  <pre>    <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*  </pre>  <h5>Overview:</h5> - -<p> -The '<tt>extractvalue</tt>' instruction extracts the value of a struct field -or array element from an aggregate value. -</p> - +<p>The '<tt>extractvalue</tt>' instruction extracts the value of a struct field +   or array element from an aggregate value.</p>  <h5>Arguments:</h5> - -<p> -The first operand of an '<tt>extractvalue</tt>' instruction is a -value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> -type.  The operands are constant indices to specify which value to extract -in a similar manner as indices in a -'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction. -</p> +<p>The first operand of an '<tt>extractvalue</tt>' instruction is a value +   of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.  The +   operands are constant indices to specify which value to extract in a similar +   manner as indices in a +   '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>  <h5>Semantics:</h5> - -<p> -The result is the value at the position in the aggregate specified by -the index operands. -</p> +<p>The result is the value at the position in the aggregate specified by the +   index operands.</p>  <h5>Example:</h5> -  <pre>    %result = extractvalue {i32, float} %agg, 0    <i>; yields i32</i>  </pre> -</div> +</div>  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection"> @@ -3465,46 +3511,35 @@ the index operands.  <div class="doc_text">  <h5>Syntax:</h5> -  <pre>    <result> = insertvalue <aggregate type> <val>, <ty> <val>, <idx>    <i>; yields <n x <ty>></i>  </pre>  <h5>Overview:</h5> - -<p> -The '<tt>insertvalue</tt>' instruction inserts a value -into a struct field or array element in an aggregate. -</p> +<p>The '<tt>insertvalue</tt>' instruction inserts a value into a struct field or +   array element in an aggregate.</p>  <h5>Arguments:</h5> - -<p> -The first operand of an '<tt>insertvalue</tt>' instruction is a -value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type. -The second operand is a first-class value to insert. -The following operands are constant indices -indicating the position at which to insert the value in a similar manner as -indices in a -'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction. -The value to insert must have the same type as the value identified -by the indices. -</p> +<p>The first operand of an '<tt>insertvalue</tt>' instruction is a value +   of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.  The +   second operand is a first-class value to insert.  The following operands are +   constant indices indicating the position at which to insert the value in a +   similar manner as indices in a +   '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.  The +   value to insert must have the same type as the value identified by the +   indices.</p>  <h5>Semantics:</h5> - -<p> -The result is an aggregate of the same type as <tt>val</tt>.  Its -value is that of <tt>val</tt> except that the value at the position -specified by the indices is that of <tt>elt</tt>. -</p> +<p>The result is an aggregate of the same type as <tt>val</tt>.  Its value is +   that of <tt>val</tt> except that the value at the position specified by the +   indices is that of <tt>elt</tt>.</p>  <h5>Example:</h5> -  <pre>    %result = insertvalue {i32, float} %agg, i32 1, 0    <i>; yields {i32, float}</i>  </pre> +  </div> @@ -3515,10 +3550,10 @@ specified by the indices is that of <tt>elt</tt>.  <div class="doc_text"> -<p>A key design point of an SSA-based representation is how it -represents memory.  In LLVM, no memory locations are in SSA form, which -makes things very simple.  This section describes how to read, write, -allocate, and free memory in LLVM.</p> +<p>A key design point of an SSA-based representation is how it represents +   memory.  In LLVM, no memory locations are in SSA form, which makes things +   very simple.  This section describes how to read, write, allocate, and free +   memory in LLVM.</p>  </div> @@ -3530,39 +3565,33 @@ allocate, and free memory in LLVM.</p>  <div class="doc_text">  <h5>Syntax:</h5> -  <pre>    <result> = malloc <type>[, i32 <NumElements>][, align <alignment>]     <i>; yields {type*}:result</i>  </pre>  <h5>Overview:</h5> - -<p>The '<tt>malloc</tt>' instruction allocates memory from the system -heap and returns a pointer to it. The object is always allocated in the generic  -address space (address space zero).</p> +<p>The '<tt>malloc</tt>' instruction allocates memory from the system heap and +   returns a pointer to it. The object is always allocated in the generic +   address space (address space zero).</p>  <h5>Arguments:</h5> -  <p>The '<tt>malloc</tt>' instruction allocates -<tt>sizeof(<type>)*NumElements</tt> -bytes of memory from the operating system and returns a pointer of the -appropriate type to the program.  If "NumElements" is specified, it is the -number of elements allocated, otherwise "NumElements" is defaulted to be one. -If a constant alignment is specified, the value result of the allocation is -guaranteed to be aligned to at least that boundary.  If not specified, or if -zero, the target can choose to align the allocation on any convenient boundary -compatible with the type.</p> +   <tt>sizeof(<type>)*NumElements</tt> bytes of memory from the operating +   system and returns a pointer of the appropriate type to the program.  If +   "NumElements" is specified, it is the number of elements allocated, otherwise +   "NumElements" is defaulted to be one.  If a constant alignment is specified, +   the value result of the allocation is guaranteed to be aligned to at least +   that boundary.  If not specified, or if zero, the target can choose to align +   the allocation on any convenient boundary compatible with the type.</p>  <p>'<tt>type</tt>' must be a sized type.</p>  <h5>Semantics:</h5> - -<p>Memory is allocated using the system "<tt>malloc</tt>" function, and -a pointer is returned.  The result of a zero byte allocation is undefined.  The -result is null if there is insufficient memory available.</p> +<p>Memory is allocated using the system "<tt>malloc</tt>" function, and a +   pointer is returned.  The result of a zero byte allocation is undefined.  The +   result is null if there is insufficient memory available.</p>  <h5>Example:</h5> -  <pre>    %array  = malloc [4 x i8]                     <i>; yields {[%4 x i8]*}:array</i> @@ -3573,8 +3602,7 @@ result is null if there is insufficient memory available.</p>    %array4 = malloc i32, align 1024              <i>; yields {i32*}:array4</i>  </pre> -<p>Note that the code generator does not yet respect the -   alignment value.</p> +<p>Note that the code generator does not yet respect the alignment value.</p>  </div> @@ -3586,34 +3614,29 @@ result is null if there is insufficient memory available.</p>  <div class="doc_text">  <h5>Syntax:</h5> -  <pre>    free <type> <value>                           <i>; yields {void}</i>  </pre>  <h5>Overview:</h5> - -<p>The '<tt>free</tt>' instruction returns memory back to the unused -memory heap to be reallocated in the future.</p> +<p>The '<tt>free</tt>' instruction returns memory back to the unused memory heap +   to be reallocated in the future.</p>  <h5>Arguments:</h5> - -<p>'<tt>value</tt>' shall be a pointer value that points to a value -that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>' -instruction.</p> +<p>'<tt>value</tt>' shall be a pointer value that points to a value that was +   allocated with the '<tt><a href="#i_malloc">malloc</a></tt>' instruction.</p>  <h5>Semantics:</h5> - -<p>Access to the memory pointed to by the pointer is no longer defined -after this instruction executes.  If the pointer is null, the operation -is a noop.</p> +<p>Access to the memory pointed to by the pointer is no longer defined after +   this instruction executes.  If the pointer is null, the operation is a +   noop.</p>  <h5>Example:</h5> -  <pre>    %array  = <a href="#i_malloc">malloc</a> [4 x i8]                     <i>; yields {[4 x i8]*}:array</i>              free   [4 x i8]* %array  </pre> +  </div>  <!-- _______________________________________________________________________ --> @@ -3624,137 +3647,150 @@ is a noop.</p>  <div class="doc_text">  <h5>Syntax:</h5> -  <pre>    <result> = alloca <type>[, i32 <NumElements>][, align <alignment>]     <i>; yields {type*}:result</i>  </pre>  <h5>Overview:</h5> -  <p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the -currently executing function, to be automatically released when this function -returns to its caller. The object is always allocated in the generic address  -space (address space zero).</p> +   currently executing function, to be automatically released when this function +   returns to its caller. The object is always allocated in the generic address +   space (address space zero).</p>  <h5>Arguments:</h5> - -<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(<type>)*NumElements</tt> -bytes of memory on the runtime stack, returning a pointer of the -appropriate type to the program.  If "NumElements" is specified, it is the -number of elements allocated, otherwise "NumElements" is defaulted to be one. -If a constant alignment is specified, the value result of the allocation is -guaranteed to be aligned to at least that boundary.  If not specified, or if -zero, the target can choose to align the allocation on any convenient boundary -compatible with the type.</p> +<p>The '<tt>alloca</tt>' instruction +   allocates <tt>sizeof(<type>)*NumElements</tt> bytes of memory on the +   runtime stack, returning a pointer of the appropriate type to the program. +   If "NumElements" is specified, it is the number of elements allocated, +   otherwise "NumElements" is defaulted to be one.  If a constant alignment is +   specified, the value result of the allocation is guaranteed to be aligned to +   at least that boundary.  If not specified, or if zero, the target can choose +   to align the allocation on any convenient boundary compatible with the +   type.</p>  <p>'<tt>type</tt>' may be any sized type.</p>  <h5>Semantics:</h5> -  <p>Memory is allocated; a pointer is returned.  The operation is undefined if -there is insufficient stack space for the allocation.  '<tt>alloca</tt>'d -memory is automatically released when the function returns.  The '<tt>alloca</tt>' -instruction is commonly used to represent automatic variables that must -have an address available.  When the function returns (either with the <tt><a - href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt> -instructions), the memory is reclaimed.  Allocating zero bytes -is legal, but the result is undefined.</p> +   there is insufficient stack space for the allocation.  '<tt>alloca</tt>'d +   memory is automatically released when the function returns.  The +   '<tt>alloca</tt>' instruction is commonly used to represent automatic +   variables that must have an address available.  When the function returns +   (either with the <tt><a href="#i_ret">ret</a></tt> +   or <tt><a href="#i_unwind">unwind</a></tt> instructions), the memory is +   reclaimed.  Allocating zero bytes is legal, but the result is undefined.</p>  <h5>Example:</h5> -  <pre>    %ptr = alloca i32                             <i>; yields {i32*}:ptr</i>    %ptr = alloca i32, i32 4                      <i>; yields {i32*}:ptr</i>    %ptr = alloca i32, i32 4, align 1024          <i>; yields {i32*}:ptr</i>    %ptr = alloca i32, align 1024                 <i>; yields {i32*}:ptr</i>  </pre> +  </div>  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'  Instruction</a> </div> +  <div class="doc_text"> +  <h5>Syntax:</h5> -<pre>  <result> = load <ty>* <pointer>[, align <alignment>]<br>  <result> = volatile load <ty>* <pointer>[, align <alignment>]<br></pre> +<pre> +  <result> = load <ty>* <pointer>[, align <alignment>] +  <result> = volatile load <ty>* <pointer>[, align <alignment>] +</pre> +  <h5>Overview:</h5>  <p>The '<tt>load</tt>' instruction is used to read from memory.</p> +  <h5>Arguments:</h5> -<p>The argument to the '<tt>load</tt>' instruction specifies the memory -address from which to load.  The pointer must point to a <a - href="#t_firstclass">first class</a> type.  If the <tt>load</tt> is -marked as <tt>volatile</tt>, then the optimizer is not allowed to modify -the number or order of execution of this <tt>load</tt> with other -volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt> -instructions. </p> -<p> -The optional constant "align" argument specifies the alignment of the operation -(that is, the alignment of the memory address). A value of 0 or an -omitted "align" argument means that the operation has the preferential -alignment for the target. It is the responsibility of the code emitter -to ensure that the alignment information is correct. Overestimating -the alignment results in an undefined behavior. Underestimating the -alignment may produce less efficient code. An alignment of 1 is always -safe. -</p> +<p>The argument to the '<tt>load</tt>' instruction specifies the memory address +   from which to load.  The pointer must point to +   a <a href="#t_firstclass">first class</a> type.  If the <tt>load</tt> is +   marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the +   number or order of execution of this <tt>load</tt> with other +   volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt> +   instructions. </p> + +<p>The optional constant "align" argument specifies the alignment of the +   operation (that is, the alignment of the memory address). A value of 0 or an +   omitted "align" argument means that the operation has the preferential +   alignment for the target. It is the responsibility of the code emitter to +   ensure that the alignment information is correct. Overestimating the +   alignment results in an undefined behavior. Underestimating the alignment may +   produce less efficient code. An alignment of 1 is always safe.</p> +  <h5>Semantics:</h5> -<p>The location of memory pointed to is loaded.  If the value being loaded -is of scalar type then the number of bytes read does not exceed the minimum -number of bytes needed to hold all bits of the type.  For example, loading an -<tt>i24</tt> reads at most three bytes.  When loading a value of a type like -<tt>i20</tt> with a size that is not an integral number of bytes, the result -is undefined if the value was not originally written using a store of the -same type.</p> +<p>The location of memory pointed to is loaded.  If the value being loaded is of +   scalar type then the number of bytes read does not exceed the minimum number +   of bytes needed to hold all bits of the type.  For example, loading an +   <tt>i24</tt> reads at most three bytes.  When loading a value of a type like +   <tt>i20</tt> with a size that is not an integral number of bytes, the result +   is undefined if the value was not originally written using a store of the +   same type.</p> +  <h5>Examples:</h5> -<pre>  %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i> -  <a - href="#i_store">store</a> i32 3, i32* %ptr                          <i>; yields {void}</i> +<pre> +  %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i> +  <a href="#i_store">store</a> i32 3, i32* %ptr                          <i>; yields {void}</i>    %val = load i32* %ptr                           <i>; yields {i32}:val = i32 3</i>  </pre> +  </div> +  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'  Instruction</a> </div> +  <div class="doc_text"> +  <h5>Syntax:</h5> -<pre>  store <ty> <value>, <ty>* <pointer>[, align <alignment>]                   <i>; yields {void}</i> +<pre> +  store <ty> <value>, <ty>* <pointer>[, align <alignment>]                   <i>; yields {void}</i>    volatile store <ty> <value>, <ty>* <pointer>[, align <alignment>]          <i>; yields {void}</i>  </pre> +  <h5>Overview:</h5>  <p>The '<tt>store</tt>' instruction is used to write to memory.</p> +  <h5>Arguments:</h5> -<p>There are two arguments to the '<tt>store</tt>' instruction: a value -to store and an address at which to store it.  The type of the '<tt><pointer></tt>' -operand must be a pointer to the <a href="#t_firstclass">first class</a> type -of the '<tt><value></tt>' -operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the -optimizer is not allowed to modify the number or order of execution of -this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a - href="#i_store">store</a></tt> instructions.</p> -<p> -The optional constant "align" argument specifies the alignment of the operation -(that is, the alignment of the memory address). A value of 0 or an -omitted "align" argument means that the operation has the preferential -alignment for the target. It is the responsibility of the code emitter -to ensure that the alignment information is correct. Overestimating -the alignment results in an undefined behavior. Underestimating the -alignment may produce less efficient code. An alignment of 1 is always -safe. -</p> +<p>There are two arguments to the '<tt>store</tt>' instruction: a value to store +   and an address at which to store it.  The type of the +   '<tt><pointer></tt>' operand must be a pointer to +   the <a href="#t_firstclass">first class</a> type of the +   '<tt><value></tt>' operand. If the <tt>store</tt> is marked +   as <tt>volatile</tt>, then the optimizer is not allowed to modify the number +   or order of execution of this <tt>store</tt> with other +   volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt> +   instructions.</p> + +<p>The optional constant "align" argument specifies the alignment of the +   operation (that is, the alignment of the memory address). A value of 0 or an +   omitted "align" argument means that the operation has the preferential +   alignment for the target. It is the responsibility of the code emitter to +   ensure that the alignment information is correct. Overestimating the +   alignment results in an undefined behavior. Underestimating the alignment may +   produce less efficient code. An alignment of 1 is always safe.</p> +  <h5>Semantics:</h5> -<p>The contents of memory are updated to contain '<tt><value></tt>' -at the location specified by the '<tt><pointer></tt>' operand. -If '<tt><value></tt>' is of scalar type then the number of bytes -written does not exceed the minimum number of bytes needed to hold all -bits of the type.  For example, storing an <tt>i24</tt> writes at most -three bytes.  When writing a value of a type like <tt>i20</tt> with a -size that is not an integral number of bytes, it is unspecified what -happens to the extra bits that do not belong to the type, but they will -typically be overwritten.</p> +<p>The contents of memory are updated to contain '<tt><value></tt>' at the +   location specified by the '<tt><pointer></tt>' operand.  If +   '<tt><value></tt>' is of scalar type then the number of bytes written +   does not exceed the minimum number of bytes needed to hold all bits of the +   type.  For example, storing an <tt>i24</tt> writes at most three bytes.  When +   writing a value of a type like <tt>i20</tt> with a size that is not an +   integral number of bytes, it is unspecified what happens to the extra bits +   that do not belong to the type, but they will typically be overwritten.</p> +  <h5>Example:</h5> -<pre>  %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i> +<pre> +  %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i>    store i32 3, i32* %ptr                          <i>; yields {void}</i>    %val = <a href="#i_load">load</a> i32* %ptr                           <i>; yields {i32}:val = i32 3</i>  </pre> +  </div>  <!-- _______________________________________________________________________ --> @@ -3763,38 +3799,37 @@ typically be overwritten.</p>  </div>  <div class="doc_text"> +  <h5>Syntax:</h5>  <pre>    <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*  </pre>  <h5>Overview:</h5> - -<p> -The '<tt>getelementptr</tt>' instruction is used to get the address of a -subelement of an aggregate data structure. It performs address calculation only -and does not access memory.</p> +<p>The '<tt>getelementptr</tt>' instruction is used to get the address of a +   subelement of an aggregate data structure. It performs address calculation +   only and does not access memory.</p>  <h5>Arguments:</h5> -  <p>The first argument is always a pointer, and forms the basis of the -calculation. The remaining arguments are indices, that indicate which of the -elements of the aggregate object are indexed. The interpretation of each index -is dependent on the type being indexed into. The first index always indexes the -pointer value given as the first argument, the second index indexes a value of -the type pointed to (not necessarily the value directly pointed to, since the -first index can be non-zero), etc. The first type indexed into must be a pointer -value, subsequent types can be arrays, vectors and structs. Note that subsequent -types being indexed into can never be pointers, since that would require loading -the pointer before continuing calculation.</p> +   calculation. The remaining arguments are indices, that indicate which of the +   elements of the aggregate object are indexed. The interpretation of each +   index is dependent on the type being indexed into. The first index always +   indexes the pointer value given as the first argument, the second index +   indexes a value of the type pointed to (not necessarily the value directly +   pointed to, since the first index can be non-zero), etc. The first type +   indexed into must be a pointer value, subsequent types can be arrays, vectors +   and structs. Note that subsequent types being indexed into can never be +   pointers, since that would require loading the pointer before continuing +   calculation.</p>  <p>The type of each index argument depends on the type it is indexing into. -When indexing into a (packed) structure, only <tt>i32</tt> integer -<b>constants</b> are allowed.  When indexing into an array, pointer or vector, -integers of any width are allowed (also non-constants).</p> +   When indexing into a (packed) structure, only <tt>i32</tt> integer +   <b>constants</b> are allowed.  When indexing into an array, pointer or +   vector, integers of any width are allowed (also non-constants).</p> -<p>For example, let's consider a C code fragment and how it gets -compiled to LLVM:</p> +<p>For example, let's consider a C code fragment and how it gets compiled to +   LLVM:</p>  <div class="doc_code">  <pre> @@ -3831,20 +3866,19 @@ entry:  </div>  <h5>Semantics:</h5> -  <p>In the example above, the first index is indexing into the '<tt>%ST*</tt>' -type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT -}</tt>' type, a structure.  The second index indexes into the third element of -the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]], -i8  }</tt>' type, another structure.  The third index indexes into the second -element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an -array.  The two dimensions of the array are subscripted into, yielding an -'<tt>i32</tt>' type.  The '<tt>getelementptr</tt>' instruction returns a pointer -to this element, thus computing a value of '<tt>i32*</tt>' type.</p> +   type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT +   }</tt>' type, a structure.  The second index indexes into the third element +   of the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]], +   i8 }</tt>' type, another structure.  The third index indexes into the second +   element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an +   array.  The two dimensions of the array are subscripted into, yielding an +   '<tt>i32</tt>' type.  The '<tt>getelementptr</tt>' instruction returns a +   pointer to this element, thus computing a value of '<tt>i32*</tt>' type.</p> -<p>Note that it is perfectly legal to index partially through a -structure, returning a pointer to an inner element.  Because of this, -the LLVM code for the given testcase is equivalent to:</p> +<p>Note that it is perfectly legal to index partially through a structure, +   returning a pointer to an inner element.  Because of this, the LLVM code for +   the given testcase is equivalent to:</p>  <pre>    define i32* %foo(%ST* %s) { @@ -3857,20 +3891,17 @@ the LLVM code for the given testcase is equivalent to:</p>    }  </pre> -<p>Note that it is undefined to access an array out of bounds: array -and pointer indexes must always be within the defined bounds of the -array type when accessed with an instruction that dereferences the -pointer (e.g. a load or store instruction).  The one exception for -this rule is zero length arrays.  These arrays are defined to be -accessible as variable length arrays, which requires access beyond the -zero'th element.</p> +<p>Note that it is undefined to access an array out of bounds: array and pointer +   indexes must always be within the defined bounds of the array type when +   accessed with an instruction that dereferences the pointer (e.g. a load or +   store instruction).  The one exception for this rule is zero length arrays. +   These arrays are defined to be accessible as variable length arrays, which +   requires access beyond the zero'th element.</p> -<p>The getelementptr instruction is often confusing.  For some more insight -into how it works, see <a href="GetElementPtr.html">the getelementptr  -FAQ</a>.</p> +<p>The getelementptr instruction is often confusing.  For some more insight into +   how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>  <h5>Example:</h5> -  <pre>      <i>; yields [12 x i8]*:aptr</i>      %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1 @@ -3881,15 +3912,19 @@ FAQ</a>.</p>      <i>; yields i32*:iptr</i>      %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0  </pre> +  </div>  <!-- ======================================================================= -->  <div class="doc_subsection"> <a name="convertops">Conversion Operations</a>  </div> +  <div class="doc_text"> +  <p>The instructions in this category are the conversion instructions (casting) -which all take a single operand and a type. They perform various bit conversions -on the operand.</p> +   which all take a single operand and a type. They perform various bit +   conversions on the operand.</p> +  </div>  <!-- _______________________________________________________________________ --> @@ -3904,24 +3939,22 @@ on the operand.</p>  </pre>  <h5>Overview:</h5> -<p> -The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>. -</p> +<p>The '<tt>trunc</tt>' instruction truncates its operand to the +   type <tt>ty2</tt>.</p>  <h5>Arguments:</h5> -<p> -The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must  -be an <a href="#t_integer">integer</a> type, and a type that specifies the size  -and type of the result, which must be an <a href="#t_integer">integer</a>  -type. The bit size of <tt>value</tt> must be larger than the bit size of  -<tt>ty2</tt>. Equal sized types are not allowed.</p> +<p>The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must +   be an <a href="#t_integer">integer</a> type, and a type that specifies the +   size and type of the result, which must be +   an <a href="#t_integer">integer</a> type. The bit size of <tt>value</tt> must +   be larger than the bit size of <tt>ty2</tt>. Equal sized types are not +   allowed.</p>  <h5>Semantics:</h5> -<p> -The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt> -and converts the remaining bits to <tt>ty2</tt>. Since the source size must be -larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>. -It will always truncate bits.</p> +<p>The '<tt>trunc</tt>' instruction truncates the high order bits +   in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the +   source size must be larger than the destination size, <tt>trunc</tt> cannot +   be a <i>no-op cast</i>.  It will always truncate bits.</p>  <h5>Example:</h5>  <pre> @@ -3929,6 +3962,7 @@ It will always truncate bits.</p>    %Y = trunc i32 123 to i1              <i>; yields i1:true</i>    %Y = trunc i32 122 to i1              <i>; yields i1:false</i>  </pre> +  </div>  <!-- _______________________________________________________________________ --> @@ -3944,19 +3978,19 @@ It will always truncate bits.</p>  <h5>Overview:</h5>  <p>The '<tt>zext</tt>' instruction zero extends its operand to type  -<tt>ty2</tt>.</p> +   <tt>ty2</tt>.</p>  <h5>Arguments:</h5>  <p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of  -<a href="#t_integer">integer</a> type, and a type to cast it to, which must -also be of <a href="#t_integer">integer</a> type. The bit size of the -<tt>value</tt> must be smaller than the bit size of the destination type,  -<tt>ty2</tt>.</p> +   <a href="#t_integer">integer</a> type, and a type to cast it to, which must +   also be of <a href="#t_integer">integer</a> type. The bit size of the +   <tt>value</tt> must be smaller than the bit size of the destination type,  +   <tt>ty2</tt>.</p>  <h5>Semantics:</h5>  <p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero -bits until it reaches the size of the destination type, <tt>ty2</tt>.</p> +   bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>  <p>When zero extending from i1, the result will always be either 0 or 1.</p> @@ -3965,6 +3999,7 @@ bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>    %X = zext i32 257 to i64              <i>; yields i64:257</i>    %Y = zext i1 true to i32              <i>; yields i32:1</i>  </pre> +  </div>  <!-- _______________________________________________________________________ --> @@ -3982,18 +4017,16 @@ bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>  <p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>  <h5>Arguments:</h5> -<p> -The '<tt>sext</tt>' instruction takes a value to cast, which must be of  -<a href="#t_integer">integer</a> type, and a type to cast it to, which must -also be of <a href="#t_integer">integer</a> type.  The bit size of the -<tt>value</tt> must be smaller than the bit size of the destination type,  -<tt>ty2</tt>.</p> +<p>The '<tt>sext</tt>' instruction takes a value to cast, which must be of  +   <a href="#t_integer">integer</a> type, and a type to cast it to, which must +   also be of <a href="#t_integer">integer</a> type.  The bit size of the +   <tt>value</tt> must be smaller than the bit size of the destination type,  +   <tt>ty2</tt>.</p>  <h5>Semantics:</h5> -<p> -The '<tt>sext</tt>' instruction performs a sign extension by copying the sign -bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of -the type <tt>ty2</tt>.</p> +<p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign +   bit (highest order bit) of the <tt>value</tt> until it reaches the bit size +   of the type <tt>ty2</tt>.</p>  <p>When sign extending from i1, the extension always results in -1 or 0.</p> @@ -4002,6 +4035,7 @@ the type <tt>ty2</tt>.</p>    %X = sext i8  -1 to i16              <i>; yields i16   :65535</i>    %Y = sext i1 true to i32             <i>; yields i32:-1</i>  </pre> +  </div>  <!-- _______________________________________________________________________ --> @@ -4012,34 +4046,34 @@ the type <tt>ty2</tt>.</p>  <div class="doc_text">  <h5>Syntax:</h5> -  <pre>    <result> = fptrunc <ty> <value> to <ty2>             <i>; yields ty2</i>  </pre>  <h5>Overview:</h5>  <p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type -<tt>ty2</tt>.</p> - +   <tt>ty2</tt>.</p>  <h5>Arguments:</h5>  <p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating -  point</a> value to cast and a <a href="#t_floating">floating point</a> type to -cast it to. The size of <tt>value</tt> must be larger than the size of -<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a  -<i>no-op cast</i>.</p> +   point</a> value to cast and a <a href="#t_floating">floating point</a> type +   to cast it to. The size of <tt>value</tt> must be larger than the size of +   <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a  +   <i>no-op cast</i>.</p>  <h5>Semantics:</h5> -<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger -<a href="#t_floating">floating point</a> type to a smaller  -<a href="#t_floating">floating point</a> type.  If the value cannot fit within  -the destination type, <tt>ty2</tt>, then the results are undefined.</p> +<p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger +   <a href="#t_floating">floating point</a> type to a smaller  +   <a href="#t_floating">floating point</a> type.  If the value cannot fit +   within the destination type, <tt>ty2</tt>, then the results are +   undefined.</p>  <h5>Example:</h5>  <pre>    %X = fptrunc double 123.0 to float         <i>; yields float:123.0</i>    %Y = fptrunc double 1.0E+300 to float      <i>; yields undefined</i>  </pre> +  </div>  <!-- _______________________________________________________________________ --> @@ -4055,26 +4089,27 @@ the destination type, <tt>ty2</tt>, then the results are undefined.</p>  <h5>Overview:</h5>  <p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger -floating point value.</p> +   floating point value.</p>  <h5>Arguments:</h5>  <p>The '<tt>fpext</tt>' instruction takes a  -<a href="#t_floating">floating point</a> <tt>value</tt> to cast,  -and a <a href="#t_floating">floating point</a> type to cast it to. The source -type must be smaller than the destination type.</p> +   <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and +   a <a href="#t_floating">floating point</a> type to cast it to. The source +   type must be smaller than the destination type.</p>  <h5>Semantics:</h5>  <p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller -<a href="#t_floating">floating point</a> type to a larger  -<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be  -used to make a <i>no-op cast</i> because it always changes bits. Use  -<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p> +   <a href="#t_floating">floating point</a> type to a larger +   <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be +   used to make a <i>no-op cast</i> because it always changes bits. Use +   <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>  <h5>Example:</h5>  <pre>    %X = fpext float 3.1415 to double        <i>; yields double:3.1415</i>    %Y = fpext float 1.0 to float            <i>; yields float:1.0 (no-op)</i>  </pre> +  </div>  <!-- _______________________________________________________________________ --> @@ -4090,21 +4125,20 @@ used to make a <i>no-op cast</i> because it always changes bits. Use  <h5>Overview:</h5>  <p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its -unsigned integer equivalent of type <tt>ty2</tt>. -</p> +   unsigned integer equivalent of type <tt>ty2</tt>.</p>  <h5>Arguments:</h5> -<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a  -scalar or vector <a href="#t_floating">floating point</a> value, and a type  -to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>  -type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a -vector integer type with the same number of elements as <tt>ty</tt></p> +<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a +   scalar or vector <a href="#t_floating">floating point</a> value, and a type +   to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> +   type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a +   vector integer type with the same number of elements as <tt>ty</tt></p>  <h5>Semantics:</h5> -<p> The '<tt>fptoui</tt>' instruction converts its  -<a href="#t_floating">floating point</a> operand into the nearest (rounding -towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>, -the results are undefined.</p> +<p>The '<tt>fptoui</tt>' instruction converts its  +   <a href="#t_floating">floating point</a> operand into the nearest (rounding +   towards zero) unsigned integer value. If the value cannot fit +   in <tt>ty2</tt>, the results are undefined.</p>  <h5>Example:</h5>  <pre> @@ -4112,6 +4146,7 @@ the results are undefined.</p>    %Y = fptoui float 1.0E+300 to i1     <i>; yields undefined:1</i>    %X = fptoui float 1.04E+17 to i8     <i>; yields undefined:1</i>  </pre> +  </div>  <!-- _______________________________________________________________________ --> @@ -4127,21 +4162,21 @@ the results are undefined.</p>  <h5>Overview:</h5>  <p>The '<tt>fptosi</tt>' instruction converts  -<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>. -</p> +   <a href="#t_floating">floating point</a> <tt>value</tt> to +   type <tt>ty2</tt>.</p>  <h5>Arguments:</h5> -<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a  -scalar or vector <a href="#t_floating">floating point</a> value, and a type  -to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>  -type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a -vector integer type with the same number of elements as <tt>ty</tt></p> +<p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a +   scalar or vector <a href="#t_floating">floating point</a> value, and a type +   to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> +   type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a +   vector integer type with the same number of elements as <tt>ty</tt></p>  <h5>Semantics:</h5>  <p>The '<tt>fptosi</tt>' instruction converts its  -<a href="#t_floating">floating point</a> operand into the nearest (rounding -towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>, -the results are undefined.</p> +   <a href="#t_floating">floating point</a> operand into the nearest (rounding +   towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>, +   the results are undefined.</p>  <h5>Example:</h5>  <pre> @@ -4149,6 +4184,7 @@ the results are undefined.</p>    %Y = fptosi float 1.0E-247 to i1      <i>; yields undefined:1</i>    %X = fptosi float 1.04E+17 to i8      <i>; yields undefined:1</i>  </pre> +  </div>  <!-- _______________________________________________________________________ --> @@ -4164,25 +4200,27 @@ the results are undefined.</p>  <h5>Overview:</h5>  <p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned -integer and converts that value to the <tt>ty2</tt> type.</p> +   integer and converts that value to the <tt>ty2</tt> type.</p>  <h5>Arguments:</h5>  <p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a -scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it -to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>  -type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector -floating point type with the same number of elements as <tt>ty</tt></p> +   scalar or vector <a href="#t_integer">integer</a> value, and a type to cast +   it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a> +   type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector +   floating point type with the same number of elements as <tt>ty</tt></p>  <h5>Semantics:</h5>  <p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned -integer quantity and converts it to the corresponding floating point value. If -the value cannot fit in the floating point value, the results are undefined.</p> +   integer quantity and converts it to the corresponding floating point +   value. If the value cannot fit in the floating point value, the results are +   undefined.</p>  <h5>Example:</h5>  <pre>    %X = uitofp i32 257 to float         <i>; yields float:257.0</i>    %Y = uitofp i8 -1 to double          <i>; yields double:255.0</i>  </pre> +  </div>  <!-- _______________________________________________________________________ --> @@ -4197,26 +4235,27 @@ the value cannot fit in the floating point value, the results are undefined.</p>  </pre>  <h5>Overview:</h5> -<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed -integer and converts that value to the <tt>ty2</tt> type.</p> +<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer +   and converts that value to the <tt>ty2</tt> type.</p>  <h5>Arguments:</h5>  <p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a -scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it -to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>  -type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector -floating point type with the same number of elements as <tt>ty</tt></p> +   scalar or vector <a href="#t_integer">integer</a> value, and a type to cast +   it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a> +   type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector +   floating point type with the same number of elements as <tt>ty</tt></p>  <h5>Semantics:</h5> -<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed -integer quantity and converts it to the corresponding floating point value. If -the value cannot fit in the floating point value, the results are undefined.</p> +<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer +   quantity and converts it to the corresponding floating point value. If the +   value cannot fit in the floating point value, the results are undefined.</p>  <h5>Example:</h5>  <pre>    %X = sitofp i32 257 to float         <i>; yields float:257.0</i>    %Y = sitofp i8 -1 to double          <i>; yields double:-1.0</i>  </pre> +  </div>  <!-- _______________________________________________________________________ --> @@ -4231,28 +4270,29 @@ the value cannot fit in the floating point value, the results are undefined.</p>  </pre>  <h5>Overview:</h5> -<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to  -the integer type <tt>ty2</tt>.</p> +<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to +   the integer type <tt>ty2</tt>.</p>  <h5>Arguments:</h5> -<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which  -must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to -<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p> +<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which +   must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to +   <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>  <h5>Semantics:</h5>  <p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type -<tt>ty2</tt> by interpreting the pointer value as an integer and either  -truncating or zero extending that value to the size of the integer type. If -<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If -<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they -are the same size, then nothing is done (<i>no-op cast</i>) other than a type -change.</p> +   <tt>ty2</tt> by interpreting the pointer value as an integer and either +   truncating or zero extending that value to the size of the integer type. If +   <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If +   <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they +   are the same size, then nothing is done (<i>no-op cast</i>) other than a type +   change.</p>  <h5>Example:</h5>  <pre>    %X = ptrtoint i32* %X to i8           <i>; yields truncation on 32-bit architecture</i>    %Y = ptrtoint i32* %x to i64          <i>; yields zero extension on 32-bit architecture</i>  </pre> +  </div>  <!-- _______________________________________________________________________ --> @@ -4267,21 +4307,21 @@ change.</p>  </pre>  <h5>Overview:</h5> -<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to  -a pointer type, <tt>ty2</tt>.</p> +<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a +   pointer type, <tt>ty2</tt>.</p>  <h5>Arguments:</h5>  <p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a> -value to cast, and a type to cast it to, which must be a  -<a href="#t_pointer">pointer</a> type.</p> +   value to cast, and a type to cast it to, which must be a +   <a href="#t_pointer">pointer</a> type.</p>  <h5>Semantics:</h5>  <p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type -<tt>ty2</tt> by applying either a zero extension or a truncation depending on -the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the -size of a pointer then a truncation is done. If <tt>value</tt> is smaller than -the size of a pointer then a zero extension is done. If they are the same size, -nothing is done (<i>no-op cast</i>).</p> +   <tt>ty2</tt> by applying either a zero extension or a truncation depending on +   the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the +   size of a pointer then a truncation is done. If <tt>value</tt> is smaller +   than the size of a pointer then a zero extension is done. If they are the +   same size, nothing is done (<i>no-op cast</i>).</p>  <h5>Example:</h5>  <pre> @@ -4289,6 +4329,7 @@ nothing is done (<i>no-op cast</i>).</p>    %X = inttoptr i32 255 to i32*          <i>; yields no-op on 32-bit architecture</i>    %Y = inttoptr i64 0 to i32*            <i>; yields truncation on 32-bit architecture</i>  </pre> +  </div>  <!-- _______________________________________________________________________ --> @@ -4303,29 +4344,27 @@ nothing is done (<i>no-op cast</i>).</p>  </pre>  <h5>Overview:</h5> -  <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type -<tt>ty2</tt> without changing any bits.</p> +   <tt>ty2</tt> without changing any bits.</p>  <h5>Arguments:</h5> - -<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be  -a non-aggregate first class value, and a type to cast it to, which must also be -a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of -<tt>value</tt> -and the destination type, <tt>ty2</tt>, must be identical. If the source -type is a pointer, the destination type must also be a pointer.  This -instruction supports bitwise conversion of vectors to integers and to vectors -of other types (as long as they have the same size).</p> +<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a +   non-aggregate first class value, and a type to cast it to, which must also be +   a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes +   of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be +   identical. If the source type is a pointer, the destination type must also be +   a pointer.  This instruction supports bitwise conversion of vectors to +   integers and to vectors of other types (as long as they have the same +   size).</p>  <h5>Semantics:</h5>  <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type -<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with  -this conversion.  The conversion is done as if the <tt>value</tt> had been  -stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be -converted to other pointer types with this instruction. To convert pointers to  -other types, use the <a href="#i_inttoptr">inttoptr</a> or  -<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p> +   <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with +   this conversion.  The conversion is done as if the <tt>value</tt> had been +   stored to memory and read back as type <tt>ty2</tt>. Pointer types may only +   be converted to other pointer types with this instruction. To convert +   pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or +   <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>  <h5>Example:</h5>  <pre> @@ -4333,31 +4372,40 @@ other types, use the <a href="#i_inttoptr">inttoptr</a> or    %Y = bitcast i32* %x to sint*          <i>; yields sint*:%x</i>    %Z = bitcast <2 x int> %V to i64;      <i>; yields i64: %V</i>     </pre> +  </div>  <!-- ======================================================================= -->  <div class="doc_subsection"> <a name="otherops">Other Operations</a> </div> +  <div class="doc_text"> -<p>The instructions in this category are the "miscellaneous" -instructions, which defy better classification.</p> + +<p>The instructions in this category are the "miscellaneous" instructions, which +   defy better classification.</p> +  </div>  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>  </div> +  <div class="doc_text"> +  <h5>Syntax:</h5> -<pre>  <result> = icmp <cond> <ty> <op1>, <op2>   <i>; yields {i1} or {<N x i1>}:result</i> +<pre> +  <result> = icmp <cond> <ty> <op1>, <op2>   <i>; yields {i1} or {<N x i1>}:result</i>  </pre> +  <h5>Overview:</h5> -<p>The '<tt>icmp</tt>' instruction returns a boolean value or -a vector of boolean values based on comparison -of its two integer, integer vector, or pointer operands.</p> +<p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of +   boolean values based on comparison of its two integer, integer vector, or +   pointer operands.</p> +  <h5>Arguments:</h5>  <p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is -the condition code indicating the kind of comparison to perform. It is not -a value, just a keyword. The possible condition code are: -</p> +   the condition code indicating the kind of comparison to perform. It is not a +   value, just a keyword. The possible condition code are:</p> +  <ol>    <li><tt>eq</tt>: equal</li>    <li><tt>ne</tt>: not equal </li> @@ -4370,48 +4418,63 @@ a value, just a keyword. The possible condition code are:    <li><tt>slt</tt>: signed less than</li>    <li><tt>sle</tt>: signed less or equal</li>  </ol> +  <p>The remaining two arguments must be <a href="#t_integer">integer</a> or -<a href="#t_pointer">pointer</a> -or integer <a href="#t_vector">vector</a> typed. -They must also be identical types.</p> +   <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a> +   typed.  They must also be identical types.</p> +  <h5>Semantics:</h5> -<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to  -the condition code given as <tt>cond</tt>. The comparison performed always -yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows:  -</p> +<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the +   condition code given as <tt>cond</tt>. The comparison performed always yields +   either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> +   result, as follows:</p> +  <ol>    <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,  -  <tt>false</tt> otherwise. No sign interpretation is necessary or performed. -  </li> +      <tt>false</tt> otherwise. No sign interpretation is necessary or +      performed.</li> +    <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,  -  <tt>false</tt> otherwise. No sign interpretation is necessary or performed.</li> +      <tt>false</tt> otherwise. No sign interpretation is necessary or +      performed.</li> +    <li><tt>ugt</tt>: interprets the operands as unsigned values and yields -  <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li> +      <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li> +    <li><tt>uge</tt>: interprets the operands as unsigned values and yields -  <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li> +      <tt>true</tt> if <tt>op1</tt> is greater than or equal +      to <tt>op2</tt>.</li> +    <li><tt>ult</tt>: interprets the operands as unsigned values and yields -  <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li> +      <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li> +    <li><tt>ule</tt>: interprets the operands as unsigned values and yields -  <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li> +      <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li> +    <li><tt>sgt</tt>: interprets the operands as signed values and yields -  <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li> +      <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li> +    <li><tt>sge</tt>: interprets the operands as signed values and yields -  <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li> +      <tt>true</tt> if <tt>op1</tt> is greater than or equal +      to <tt>op2</tt>.</li> +    <li><tt>slt</tt>: interprets the operands as signed values and yields -  <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li> +      <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li> +    <li><tt>sle</tt>: interprets the operands as signed values and yields -  <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li> +      <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>  </ol> +  <p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer -values are compared as if they were integers.</p> -<p>If the operands are integer vectors, then they are compared -element by element. The result is an <tt>i1</tt> vector with -the same number of elements as the values being compared. -Otherwise, the result is an <tt>i1</tt>. -</p> +   values are compared as if they were integers.</p> + +<p>If the operands are integer vectors, then they are compared element by +   element. The result is an <tt>i1</tt> vector with the same number of elements +   as the values being compared.  Otherwise, the result is an <tt>i1</tt>.</p>  <h5>Example:</h5> -<pre>  <result> = icmp eq i32 4, 5          <i>; yields: result=false</i> +<pre> +  <result> = icmp eq i32 4, 5          <i>; yields: result=false</i>    <result> = icmp ne float* %X, %X     <i>; yields: result=false</i>    <result> = icmp ult i16  4, 5        <i>; yields: result=true</i>    <result> = icmp sgt i16  4, 5        <i>; yields: result=false</i> @@ -4427,25 +4490,30 @@ Otherwise, the result is an <tt>i1</tt>.  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>  </div> +  <div class="doc_text"> +  <h5>Syntax:</h5> -<pre>  <result> = fcmp <cond> <ty> <op1>, <op2>     <i>; yields {i1} or {<N x i1>}:result</i> +<pre> +  <result> = fcmp <cond> <ty> <op1>, <op2>     <i>; yields {i1} or {<N x i1>}:result</i>  </pre> +  <h5>Overview:</h5> -<p>The '<tt>fcmp</tt>' instruction returns a boolean value -or vector of boolean values based on comparison -of its operands.</p> -<p> -If the operands are floating point scalars, then the result -type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>). -</p> -<p>If the operands are floating point vectors, then the result type -is a vector of boolean with the same number of elements as the -operands being compared.</p> +<p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean +   values based on comparison of its operands.</p> + +<p>If the operands are floating point scalars, then the result type is a boolean +(<a href="#t_primitive"><tt>i1</tt></a>).</p> + +<p>If the operands are floating point vectors, then the result type is a vector +   of boolean with the same number of elements as the operands being +   compared.</p> +  <h5>Arguments:</h5>  <p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is -the condition code indicating the kind of comparison to perform. It is not -a value, just a keyword. The possible condition code are:</p> +   the condition code indicating the kind of comparison to perform. It is not a +   value, just a keyword. The possible condition code are:</p> +  <ol>    <li><tt>false</tt>: no comparison, always returns false</li>    <li><tt>oeq</tt>: ordered and equal</li> @@ -4464,52 +4532,71 @@ a value, just a keyword. The possible condition code are:</p>    <li><tt>uno</tt>: unordered (either nans)</li>    <li><tt>true</tt>: no comparison, always returns true</li>  </ol> +  <p><i>Ordered</i> means that neither operand is a QNAN while -<i>unordered</i> means that either operand may be a QNAN.</p> -<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be -either a <a href="#t_floating">floating point</a> type -or a <a href="#t_vector">vector</a> of floating point type. -They must have identical types.</p> +   <i>unordered</i> means that either operand may be a QNAN.</p> + +<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either +   a <a href="#t_floating">floating point</a> type or +   a <a href="#t_vector">vector</a> of floating point type.  They must have +   identical types.</p> +  <h5>Semantics:</h5>  <p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt> -according to the condition code given as <tt>cond</tt>. -If the operands are vectors, then the vectors are compared -element by element. -Each comparison performed  -always yields an <a href="#t_primitive">i1</a> result, as follows:</p> +   according to the condition code given as <tt>cond</tt>.  If the operands are +   vectors, then the vectors are compared element by element.  Each comparison +   performed always yields an <a href="#t_primitive">i1</a> result, as +   follows:</p> +  <ol>    <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li> +    <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and  -  <tt>op1</tt> is equal to <tt>op2</tt>.</li> +      <tt>op1</tt> is equal to <tt>op2</tt>.</li> +    <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and -  <tt>op1</tt> is greather than <tt>op2</tt>.</li> +      <tt>op1</tt> is greather than <tt>op2</tt>.</li> +    <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and  -  <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li> +      <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li> +    <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and  -  <tt>op1</tt> is less than <tt>op2</tt>.</li> +      <tt>op1</tt> is less than <tt>op2</tt>.</li> +    <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and  -  <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li> +      <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li> +    <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and  -  <tt>op1</tt> is not equal to <tt>op2</tt>.</li> +      <tt>op1</tt> is not equal to <tt>op2</tt>.</li> +    <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li> +    <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or  -  <tt>op1</tt> is equal to <tt>op2</tt>.</li> +      <tt>op1</tt> is equal to <tt>op2</tt>.</li> +    <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or  -  <tt>op1</tt> is greater than <tt>op2</tt>.</li> +      <tt>op1</tt> is greater than <tt>op2</tt>.</li> +    <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or  -  <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li> +      <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li> +    <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or  -  <tt>op1</tt> is less than <tt>op2</tt>.</li> +      <tt>op1</tt> is less than <tt>op2</tt>.</li> +    <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or  -  <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li> +      <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li> +    <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or  -  <tt>op1</tt> is not equal to <tt>op2</tt>.</li> +      <tt>op1</tt> is not equal to <tt>op2</tt>.</li> +    <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li> +    <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>  </ol>  <h5>Example:</h5> -<pre>  <result> = fcmp oeq float 4.0, 5.0    <i>; yields: result=false</i> +<pre> +  <result> = fcmp oeq float 4.0, 5.0    <i>; yields: result=false</i>    <result> = fcmp one float 4.0, 5.0    <i>; yields: result=true</i>    <result> = fcmp olt float 4.0, 5.0    <i>; yields: result=true</i>    <result> = fcmp ueq double 1.0, 2.0   <i>; yields: result=false</i> @@ -4528,34 +4615,35 @@ always yields an <a href="#t_primitive">i1</a> result, as follows:</p>  <div class="doc_text">  <h5>Syntax:</h5> +<pre> +  <result> = phi <ty> [ <val0>, <label0>], ... +</pre> -<pre>  <result> = phi <ty> [ <val0>, <label0>], ...<br></pre>  <h5>Overview:</h5> -<p>The '<tt>phi</tt>' instruction is used to implement the φ node in -the SSA graph representing the function.</p> -<h5>Arguments:</h5> - -<p>The type of the incoming values is specified with the first type -field. After this, the '<tt>phi</tt>' instruction takes a list of pairs -as arguments, with one pair for each predecessor basic block of the -current block.  Only values of <a href="#t_firstclass">first class</a> -type may be used as the value arguments to the PHI node.  Only labels -may be used as the label arguments.</p> +<p>The '<tt>phi</tt>' instruction is used to implement the φ node in the +   SSA graph representing the function.</p> -<p>There must be no non-phi instructions between the start of a basic -block and the PHI instructions: i.e. PHI instructions must be first in -a basic block.</p> - -<p>For the purposes of the SSA form, the use of each incoming value is -deemed to occur on the edge from the corresponding predecessor block -to the current block (but after any definition of an '<tt>invoke</tt>' -instruction's return value on the same edge).</p> +<h5>Arguments:</h5> +<p>The type of the incoming values is specified with the first type field. After +   this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with +   one pair for each predecessor basic block of the current block.  Only values +   of <a href="#t_firstclass">first class</a> type may be used as the value +   arguments to the PHI node.  Only labels may be used as the label +   arguments.</p> + +<p>There must be no non-phi instructions between the start of a basic block and +   the PHI instructions: i.e. PHI instructions must be first in a basic +   block.</p> + +<p>For the purposes of the SSA form, the use of each incoming value is deemed to +   occur on the edge from the corresponding predecessor block to the current +   block (but after any definition of an '<tt>invoke</tt>' instruction's return +   value on the same edge).</p>  <h5>Semantics:</h5> -  <p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value -specified by the pair corresponding to the predecessor basic block that executed -just prior to the current block.</p> +   specified by the pair corresponding to the predecessor basic block that +   executed just prior to the current block.</p>  <h5>Example:</h5>  <pre> @@ -4564,6 +4652,7 @@ Loop:       ; Infinite loop that counts from 0 on up...    %nextindvar = add i32 %indvar, 1    br label %Loop  </pre> +  </div>  <!-- _______________________________________________________________________ --> @@ -4574,7 +4663,6 @@ Loop:       ; Infinite loop that counts from 0 on up...  <div class="doc_text">  <h5>Syntax:</h5> -  <pre>    <result> = select <i>selty</i> <cond>, <ty> <val1>, <ty> <val2>             <i>; yields ty</i> @@ -4582,38 +4670,25 @@ Loop:       ; Infinite loop that counts from 0 on up...  </pre>  <h5>Overview:</h5> - -<p> -The '<tt>select</tt>' instruction is used to choose one value based on a -condition, without branching. -</p> +<p>The '<tt>select</tt>' instruction is used to choose one value based on a +   condition, without branching.</p>  <h5>Arguments:</h5> - -<p> -The '<tt>select</tt>' instruction requires an 'i1' value or -a vector of 'i1' values indicating the -condition, and two values of the same <a href="#t_firstclass">first class</a> -type.  If the val1/val2 are vectors and -the condition is a scalar, then entire vectors are selected, not -individual elements. -</p> +<p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1' +   values indicating the condition, and two values of the +   same <a href="#t_firstclass">first class</a> type.  If the val1/val2 are +   vectors and the condition is a scalar, then entire vectors are selected, not +   individual elements.</p>  <h5>Semantics:</h5> +<p>If the condition is an i1 and it evaluates to 1, the instruction returns the +   first value argument; otherwise, it returns the second value argument.</p> -<p> -If the condition is an i1 and it evaluates to 1, the instruction returns the first -value argument; otherwise, it returns the second value argument. -</p> -<p> -If the condition is a vector of i1, then the value arguments must -be vectors of the same size, and the selection is done element  -by element. -</p> +<p>If the condition is a vector of i1, then the value arguments must be vectors +   of the same size, and the selection is done element by element.</p>  <h5>Example:</h5> -  <pre>    %X = select i1 true, i8 17, i8 42          <i>; yields i8:17</i>  </pre> @@ -4623,7 +4698,6 @@ by element.  </div> -  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection">    <a name="i_call">'<tt>call</tt>' Instruction</a> @@ -4637,75 +4711,60 @@ by element.  </pre>  <h5>Overview:</h5> -  <p>The '<tt>call</tt>' instruction represents a simple function call.</p>  <h5>Arguments:</h5> -  <p>This instruction requires several arguments:</p>  <ol> -  <li> -    <p>The optional "tail" marker indicates whether the callee function accesses -    any allocas or varargs in the caller.  If the "tail" marker is present, the -    function call is eligible for tail call optimization.  Note that calls may -    be marked "tail" even if they do not occur before a <a -    href="#i_ret"><tt>ret</tt></a> instruction.</p> -  </li> -  <li> -    <p>The optional "cconv" marker indicates which <a href="#callingconv">calling -    convention</a> the call should use.  If none is specified, the call defaults -    to using C calling conventions.</p> -  </li> +  <li>The optional "tail" marker indicates whether the callee function accesses +      any allocas or varargs in the caller.  If the "tail" marker is present, +      the function call is eligible for tail call optimization.  Note that calls +      may be marked "tail" even if they do not occur before +      a <a href="#i_ret"><tt>ret</tt></a> instruction.</li> -  <li> -    <p>The optional <a href="#paramattrs">Parameter Attributes</a> list for -    return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',  -    and '<tt>inreg</tt>' attributes are valid here.</p> -  </li> +  <li>The optional "cconv" marker indicates which <a href="#callingconv">calling +      convention</a> the call should use.  If none is specified, the call +      defaults to using C calling conventions.</li> -  <li> -    <p>'<tt>ty</tt>': the type of the call instruction itself which is also -    the type of the return value.  Functions that return no value are marked -    <tt><a href="#t_void">void</a></tt>.</p> -  </li> -  <li> -    <p>'<tt>fnty</tt>': shall be the signature of the pointer to function -    value being invoked.  The argument types must match the types implied by -    this signature.  This type can be omitted if the function is not varargs -    and if the function type does not return a pointer to a function.</p> -  </li> -  <li> -    <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to -    be invoked. In most cases, this is a direct function invocation, but -    indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer -    to function value.</p> -  </li> -  <li> -    <p>'<tt>function args</tt>': argument list whose types match the -    function signature argument types. All arguments must be of  -    <a href="#t_firstclass">first class</a> type. If the function signature  -    indicates the function accepts a variable number of arguments, the extra  -    arguments can be specified.</p> -  </li> -  <li>  -  <p>The optional <a href="#fnattrs">function attributes</a> list. Only -  '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and -  '<tt>readnone</tt>' attributes are valid here.</p> -  </li> +  <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for +      return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and +      '<tt>inreg</tt>' attributes are valid here.</li> + +  <li>'<tt>ty</tt>': the type of the call instruction itself which is also the +      type of the return value.  Functions that return no value are marked +      <tt><a href="#t_void">void</a></tt>.</li> + +  <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value +      being invoked.  The argument types must match the types implied by this +      signature.  This type can be omitted if the function is not varargs and if +      the function type does not return a pointer to a function.</li> + +  <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to +      be invoked. In most cases, this is a direct function invocation, but +      indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer +      to function value.</li> + +  <li>'<tt>function args</tt>': argument list whose types match the function +      signature argument types. All arguments must be of +      <a href="#t_firstclass">first class</a> type. If the function signature +      indicates the function accepts a variable number of arguments, the extra +      arguments can be specified.</li> + +  <li>The optional <a href="#fnattrs">function attributes</a> list. Only +      '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and +      '<tt>readnone</tt>' attributes are valid here.</li>  </ol>  <h5>Semantics:</h5> - -<p>The '<tt>call</tt>' instruction is used to cause control flow to -transfer to a specified function, with its incoming arguments bound to -the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>' -instruction in the called function, control flow continues with the -instruction after the function call, and the return value of the -function is bound to the result argument.</p> +<p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to +   a specified function, with its incoming arguments bound to the specified +   values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called +   function, control flow continues with the instruction after the function +   call, and the return value of the function is bound to the result +   argument.</p>  <h5>Example:</h5> -  <pre>    %retval = call i32 @test(i32 %argc)    call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42)      <i>; yields i32</i> @@ -4731,47 +4790,41 @@ function is bound to the result argument.</p>  <div class="doc_text">  <h5>Syntax:</h5> -  <pre>    <resultval> = va_arg <va_list*> <arglist>, <argty>  </pre>  <h5>Overview:</h5> -  <p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through -the "variable argument" area of a function call.  It is used to implement the -<tt>va_arg</tt> macro in C.</p> +   the "variable argument" area of a function call.  It is used to implement the +   <tt>va_arg</tt> macro in C.</p>  <h5>Arguments:</h5> - -<p>This instruction takes a <tt>va_list*</tt> value and the type of -the argument. It returns a value of the specified argument type and -increments the <tt>va_list</tt> to point to the next argument.  The -actual type of <tt>va_list</tt> is target specific.</p> +<p>This instruction takes a <tt>va_list*</tt> value and the type of the +   argument. It returns a value of the specified argument type and increments +   the <tt>va_list</tt> to point to the next argument.  The actual type +   of <tt>va_list</tt> is target specific.</p>  <h5>Semantics:</h5> - -<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified -type from the specified <tt>va_list</tt> and causes the -<tt>va_list</tt> to point to the next argument.  For more information, -see the variable argument handling <a href="#int_varargs">Intrinsic -Functions</a>.</p> +<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type +   from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point +   to the next argument.  For more information, see the variable argument +   handling <a href="#int_varargs">Intrinsic Functions</a>.</p>  <p>It is legal for this instruction to be called in a function which does not -take a variable number of arguments, for example, the <tt>vfprintf</tt> -function.</p> +   take a variable number of arguments, for example, the <tt>vfprintf</tt> +   function.</p> -<p><tt>va_arg</tt> is an LLVM instruction instead of an <a -href="#intrinsics">intrinsic function</a> because it takes a type as an -argument.</p> +<p><tt>va_arg</tt> is an LLVM instruction instead of +   an <a href="#intrinsics">intrinsic function</a> because it takes a type as an +   argument.</p>  <h5>Example:</h5> -  <p>See the <a href="#int_varargs">variable argument processing</a> section.</p> -<p>Note that the code generator does not yet fully support va_arg -   on many targets. Also, it does not currently support va_arg with -   aggregate types on any target.</p> +<p>Note that the code generator does not yet fully support va_arg on many +   targets. Also, it does not currently support va_arg with aggregate types on +   any target.</p>  </div> @@ -4782,45 +4835,45 @@ argument.</p>  <div class="doc_text">  <p>LLVM supports the notion of an "intrinsic function".  These functions have -well known names and semantics and are required to follow certain restrictions. -Overall, these intrinsics represent an extension mechanism for the LLVM  -language that does not require changing all of the transformations in LLVM when  -adding to the language (or the bitcode reader/writer, the parser, etc...).</p> +   well known names and semantics and are required to follow certain +   restrictions.  Overall, these intrinsics represent an extension mechanism for +   the LLVM language that does not require changing all of the transformations +   in LLVM when adding to the language (or the bitcode reader/writer, the +   parser, etc...).</p>  <p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This -prefix is reserved in LLVM for intrinsic names; thus, function names may not -begin with this prefix.  Intrinsic functions must always be external functions: -you cannot define the body of intrinsic functions.  Intrinsic functions may -only be used in call or invoke instructions: it is illegal to take the address -of an intrinsic function.  Additionally, because intrinsic functions are part -of the LLVM language, it is required if any are added that they be documented -here.</p> - -<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents  -a family of functions that perform the same operation but on different data  -types. Because LLVM can represent over 8 million different integer types,  -overloading is used commonly to allow an intrinsic function to operate on any  -integer type. One or more of the argument types or the result type can be  -overloaded to accept any integer type. Argument types may also be defined as  -exactly matching a previous argument's type or the result type. This allows an  -intrinsic function which accepts multiple arguments, but needs all of them to  -be of the same type, to only be overloaded with respect to a single argument or  -the result.</p> - -<p>Overloaded intrinsics will have the names of its overloaded argument types  -encoded into its function name, each preceded by a period. Only those types  -which are overloaded result in a name suffix. Arguments whose type is matched  -against another type do not. For example, the <tt>llvm.ctpop</tt> function can  -take an integer of any width and returns an integer of exactly the same integer  -width. This leads to a family of functions such as -<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>. -Only one type, the return type, is overloaded, and only one type suffix is  -required. Because the argument's type is matched against the return type, it  -does not require its own name suffix.</p> +   prefix is reserved in LLVM for intrinsic names; thus, function names may not +   begin with this prefix.  Intrinsic functions must always be external +   functions: you cannot define the body of intrinsic functions.  Intrinsic +   functions may only be used in call or invoke instructions: it is illegal to +   take the address of an intrinsic function.  Additionally, because intrinsic +   functions are part of the LLVM language, it is required if any are added that +   they be documented here.</p> + +<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a +   family of functions that perform the same operation but on different data +   types. Because LLVM can represent over 8 million different integer types, +   overloading is used commonly to allow an intrinsic function to operate on any +   integer type. One or more of the argument types or the result type can be +   overloaded to accept any integer type. Argument types may also be defined as +   exactly matching a previous argument's type or the result type. This allows +   an intrinsic function which accepts multiple arguments, but needs all of them +   to be of the same type, to only be overloaded with respect to a single +   argument or the result.</p> + +<p>Overloaded intrinsics will have the names of its overloaded argument types +   encoded into its function name, each preceded by a period. Only those types +   which are overloaded result in a name suffix. Arguments whose type is matched +   against another type do not. For example, the <tt>llvm.ctpop</tt> function +   can take an integer of any width and returns an integer of exactly the same +   integer width. This leads to a family of functions such as +   <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 +   %val)</tt>.  Only one type, the return type, is overloaded, and only one type +   suffix is required. Because the argument's type is matched against the return +   type, it does not require its own name suffix.</p>  <p>To learn how to add an intrinsic function, please see the  -<a href="ExtendingLLVM.html">Extending LLVM Guide</a>. -</p> +   <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>  </div> @@ -4831,20 +4884,19 @@ does not require its own name suffix.</p>  <div class="doc_text"> -<p>Variable argument support is defined in LLVM with the <a - href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three -intrinsic functions.  These functions are related to the similarly -named macros defined in the <tt><stdarg.h></tt> header file.</p> +<p>Variable argument support is defined in LLVM with +   the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three +   intrinsic functions.  These functions are related to the similarly named +   macros defined in the <tt><stdarg.h></tt> header file.</p> -<p>All of these functions operate on arguments that use a -target-specific value type "<tt>va_list</tt>".  The LLVM assembly -language reference manual does not define what this type is, so all -transformations should be prepared to handle these functions regardless of -the type used.</p> +<p>All of these functions operate on arguments that use a target-specific value +   type "<tt>va_list</tt>".  The LLVM assembly language reference manual does +   not define what this type is, so all transformations should be prepared to +   handle these functions regardless of the type used.</p>  <p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a> -instruction and the variable argument handling intrinsic functions are -used.</p> +   instruction and the variable argument handling intrinsic functions are +   used.</p>  <div class="doc_code">  <pre> @@ -4883,25 +4935,27 @@ declare void @llvm.va_end(i8*)  <div class="doc_text"> +  <h5>Syntax:</h5> -<pre>  declare void %llvm.va_start(i8* <arglist>)<br></pre> +<pre> +  declare void %llvm.va_start(i8* <arglist>) +</pre> +  <h5>Overview:</h5> -<p>The '<tt>llvm.va_start</tt>' intrinsic initializes -<tt>*<arglist></tt> for subsequent use by <tt><a -href="#i_va_arg">va_arg</a></tt>.</p> +<p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*<arglist></tt> +   for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>  <h5>Arguments:</h5> -  <p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>  <h5>Semantics:</h5> -  <p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt> -macro available in C.  In a target-dependent way, it initializes the -<tt>va_list</tt> element to which the argument points, so that the next call to -<tt>va_arg</tt> will produce the first variable argument passed to the function. -Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the -last argument of the function as the compiler can figure that out.</p> +   macro available in C.  In a target-dependent way, it initializes +   the <tt>va_list</tt> element to which the argument points, so that the next +   call to <tt>va_arg</tt> will produce the first variable argument passed to +   the function.  Unlike the C <tt>va_start</tt> macro, this intrinsic does not +   need to know the last argument of the function as the compiler can figure +   that out.</p>  </div> @@ -4911,26 +4965,28 @@ last argument of the function as the compiler can figure that out.</p>  </div>  <div class="doc_text"> +  <h5>Syntax:</h5> -<pre>  declare void @llvm.va_end(i8* <arglist>)<br></pre> -<h5>Overview:</h5> +<pre> +  declare void @llvm.va_end(i8* <arglist>) +</pre> +<h5>Overview:</h5>  <p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*<arglist></tt>, -which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt> -or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p> +   which has been initialized previously +   with <tt><a href="#int_va_start">llvm.va_start</a></tt> +   or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>  <h5>Arguments:</h5> -  <p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>  <h5>Semantics:</h5> -  <p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt> -macro available in C.  In a target-dependent way, it destroys the -<tt>va_list</tt> element to which the argument points.  Calls to <a -href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy"> -<tt>llvm.va_copy</tt></a> must be matched exactly with calls to -<tt>llvm.va_end</tt>.</p> +   macro available in C.  In a target-dependent way, it destroys +   the <tt>va_list</tt> element to which the argument points.  Calls +   to <a href="#int_va_start"><tt>llvm.va_start</tt></a> +   and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly +   with calls to <tt>llvm.va_end</tt>.</p>  </div> @@ -4942,30 +4998,26 @@ href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">  <div class="doc_text">  <h5>Syntax:</h5> -  <pre>    declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)  </pre>  <h5>Overview:</h5> -  <p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position -from the source argument list to the destination argument list.</p> +   from the source argument list to the destination argument list.</p>  <h5>Arguments:</h5> -  <p>The first argument is a pointer to a <tt>va_list</tt> element to initialize. -The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p> - +   The second argument is a pointer to a <tt>va_list</tt> element to copy +   from.</p>  <h5>Semantics:</h5> -  <p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt> -macro available in C.  In a target-dependent way, it copies the source -<tt>va_list</tt> element into the destination <tt>va_list</tt> element.  This -intrinsic is necessary because the <tt><a href="#int_va_start"> -llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for -example, memory allocation.</p> +   macro available in C.  In a target-dependent way, it copies the +   source <tt>va_list</tt> element into the destination <tt>va_list</tt> +   element.  This intrinsic is necessary because +   the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be +   arbitrarily complex and require, for example, memory allocation.</p>  </div> @@ -4976,20 +5028,18 @@ example, memory allocation.</p>  <div class="doc_text"> -<p> -LLVM support for <a href="GarbageCollection.html">Accurate Garbage +<p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage  Collection</a> (GC) requires the implementation and generation of these -intrinsics. -These intrinsics allow identification of <a href="#int_gcroot">GC roots on the -stack</a>, as well as garbage collector implementations that require <a -href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers. -Front-ends for type-safe garbage collected languages should generate these -intrinsics to make use of the LLVM garbage collectors.  For more details, see <a -href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>. -</p> +intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC +roots on the stack</a>, as well as garbage collector implementations that +require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> +barriers.  Front-ends for type-safe garbage collected languages should generate +these intrinsics to make use of the LLVM garbage collectors.  For more details, +see <a href="GarbageCollection.html">Accurate Garbage Collection with +LLVM</a>.</p> -<p>The garbage collection intrinsics only operate on objects in the generic  -	address space (address space zero).</p> +<p>The garbage collection intrinsics only operate on objects in the generic +   address space (address space zero).</p>  </div> @@ -5001,33 +5051,29 @@ href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.  <div class="doc_text">  <h5>Syntax:</h5> -  <pre>    declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)  </pre>  <h5>Overview:</h5> -  <p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to -the code generator, and allows some metadata to be associated with it.</p> +   the code generator, and allows some metadata to be associated with it.</p>  <h5>Arguments:</h5> -  <p>The first argument specifies the address of a stack object that contains the -root pointer.  The second pointer (which must be either a constant or a global -value address) contains the meta-data to be associated with the root.</p> +   root pointer.  The second pointer (which must be either a constant or a +   global value address) contains the meta-data to be associated with the +   root.</p>  <h5>Semantics:</h5> -  <p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc" -location.  At compile-time, the code generator generates information to allow -the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>' -intrinsic may only be used in a function which <a href="#gc">specifies a GC -algorithm</a>.</p> +   location.  At compile-time, the code generator generates information to allow +   the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>' +   intrinsic may only be used in a function which <a href="#gc">specifies a GC +   algorithm</a>.</p>  </div> -  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection">    <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a> @@ -5036,35 +5082,30 @@ algorithm</a>.</p>  <div class="doc_text">  <h5>Syntax:</h5> -  <pre>    declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)  </pre>  <h5>Overview:</h5> -  <p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap -locations, allowing garbage collector implementations that require read -barriers.</p> +   locations, allowing garbage collector implementations that require read +   barriers.</p>  <h5>Arguments:</h5> -  <p>The second argument is the address to read from, which should be an address -allocated from the garbage collector.  The first object is a pointer to the  -start of the referenced object, if needed by the language runtime (otherwise -null).</p> +   allocated from the garbage collector.  The first object is a pointer to the +   start of the referenced object, if needed by the language runtime (otherwise +   null).</p>  <h5>Semantics:</h5> -  <p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load -instruction, but may be replaced with substantially more complex code by the -garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic -may only be used in a function which <a href="#gc">specifies a GC -algorithm</a>.</p> +   instruction, but may be replaced with substantially more complex code by the +   garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic +   may only be used in a function which <a href="#gc">specifies a GC +   algorithm</a>.</p>  </div> -  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection">    <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a> @@ -5073,46 +5114,39 @@ algorithm</a>.</p>  <div class="doc_text">  <h5>Syntax:</h5> -  <pre>    declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)  </pre>  <h5>Overview:</h5> -  <p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap -locations, allowing garbage collector implementations that require write -barriers (such as generational or reference counting collectors).</p> +   locations, allowing garbage collector implementations that require write +   barriers (such as generational or reference counting collectors).</p>  <h5>Arguments:</h5> -  <p>The first argument is the reference to store, the second is the start of the -object to store it to, and the third is the address of the field of Obj to  -store to.  If the runtime does not require a pointer to the object, Obj may be -null.</p> +   object to store it to, and the third is the address of the field of Obj to +   store to.  If the runtime does not require a pointer to the object, Obj may +   be null.</p>  <h5>Semantics:</h5> -  <p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store -instruction, but may be replaced with substantially more complex code by the -garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic -may only be used in a function which <a href="#gc">specifies a GC -algorithm</a>.</p> +   instruction, but may be replaced with substantially more complex code by the +   garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic +   may only be used in a function which <a href="#gc">specifies a GC +   algorithm</a>.</p>  </div> - -  <!-- ======================================================================= -->  <div class="doc_subsection">    <a name="int_codegen">Code Generator Intrinsics</a>  </div>  <div class="doc_text"> -<p> -These intrinsics are provided by LLVM to expose special features that may only -be implemented with code generator support. -</p> + +<p>These intrinsics are provided by LLVM to expose special features that may +   only be implemented with code generator support.</p>  </div> @@ -5129,38 +5163,28 @@ be implemented with code generator support.  </pre>  <h5>Overview:</h5> - -<p> -The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a  -target-specific value indicating the return address of the current function  -or one of its callers. -</p> +<p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a +   target-specific value indicating the return address of the current function +   or one of its callers.</p>  <h5>Arguments:</h5> - -<p> -The argument to this intrinsic indicates which function to return the address -for.  Zero indicates the calling function, one indicates its caller, etc.  The -argument is <b>required</b> to be a constant integer value. -</p> +<p>The argument to this intrinsic indicates which function to return the address +   for.  Zero indicates the calling function, one indicates its caller, etc. +   The argument is <b>required</b> to be a constant integer value.</p>  <h5>Semantics:</h5> +<p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer +   indicating the return address of the specified call frame, or zero if it +   cannot be identified.  The value returned by this intrinsic is likely to be +   incorrect or 0 for arguments other than zero, so it should only be used for +   debugging purposes.</p> -<p> -The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating -the return address of the specified call frame, or zero if it cannot be -identified.  The value returned by this intrinsic is likely to be incorrect or 0 -for arguments other than zero, so it should only be used for debugging purposes. -</p> +<p>Note that calling this intrinsic does not prevent function inlining or other +   aggressive transformations, so the value returned may not be that of the +   obvious source-language caller.</p> -<p> -Note that calling this intrinsic does not prevent function inlining or other -aggressive transformations, so the value returned may not be that of the obvious -source-language caller. -</p>  </div> -  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection">    <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a> @@ -5174,34 +5198,25 @@ source-language caller.  </pre>  <h5>Overview:</h5> - -<p> -The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the  -target-specific frame pointer value for the specified stack frame. -</p> +<p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the +   target-specific frame pointer value for the specified stack frame.</p>  <h5>Arguments:</h5> - -<p> -The argument to this intrinsic indicates which function to return the frame -pointer for.  Zero indicates the calling function, one indicates its caller, -etc.  The argument is <b>required</b> to be a constant integer value. -</p> +<p>The argument to this intrinsic indicates which function to return the frame +   pointer for.  Zero indicates the calling function, one indicates its caller, +   etc.  The argument is <b>required</b> to be a constant integer value.</p>  <h5>Semantics:</h5> +<p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer +   indicating the frame address of the specified call frame, or zero if it +   cannot be identified.  The value returned by this intrinsic is likely to be +   incorrect or 0 for arguments other than zero, so it should only be used for +   debugging purposes.</p> -<p> -The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating -the frame address of the specified call frame, or zero if it cannot be -identified.  The value returned by this intrinsic is likely to be incorrect or 0 -for arguments other than zero, so it should only be used for debugging purposes. -</p> +<p>Note that calling this intrinsic does not prevent function inlining or other +   aggressive transformations, so the value returned may not be that of the +   obvious source-language caller.</p> -<p> -Note that calling this intrinsic does not prevent function inlining or other -aggressive transformations, so the value returned may not be that of the obvious -source-language caller. -</p>  </div>  <!-- _______________________________________________________________________ --> @@ -5217,25 +5232,20 @@ source-language caller.  </pre>  <h5>Overview:</h5> - -<p> -The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of -the function stack, for use with <a href="#int_stackrestore"> -<tt>llvm.stackrestore</tt></a>.  This is useful for implementing language -features like scoped automatic variable sized arrays in C99. -</p> +<p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state +   of the function stack, for use +   with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>.  This is +   useful for implementing language features like scoped automatic variable +   sized arrays in C99.</p>  <h5>Semantics:</h5> - -<p> -This intrinsic returns a opaque pointer value that can be passed to <a -href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>.  When an -<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from  -<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the -state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.  In -practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack -that were allocated after the <tt>llvm.stacksave</tt> was executed. -</p> +<p>This intrinsic returns a opaque pointer value that can be passed +   to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>.  When +   an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved +   from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack +   to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. +   In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the +   stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>  </div> @@ -5252,24 +5262,18 @@ that were allocated after the <tt>llvm.stacksave</tt> was executed.  </pre>  <h5>Overview:</h5> - -<p> -The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of -the function stack to the state it was in when the corresponding <a -href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed.  This is -useful for implementing language features like scoped automatic variable sized -arrays in C99. -</p> +<p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of +   the function stack to the state it was in when the +   corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic +   executed.  This is useful for implementing language features like scoped +   automatic variable sized arrays in C99.</p>  <h5>Semantics:</h5> - -<p> -See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>. -</p> +<p>See the description +   for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>  </div> -  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection">    <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a> @@ -5283,34 +5287,23 @@ See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.  </pre>  <h5>Overview:</h5> - - -<p> -The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert -a prefetch instruction if supported; otherwise, it is a noop.  Prefetches have -no -effect on the behavior of the program but can change its performance -characteristics. -</p> +<p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to +   insert a prefetch instruction if supported; otherwise, it is a noop. +   Prefetches have no effect on the behavior of the program but can change its +   performance characteristics.</p>  <h5>Arguments:</h5> - -<p> -<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier -determining if the fetch should be for a read (0) or write (1), and -<tt>locality</tt> is a temporal locality specifier ranging from (0) - no -locality, to (3) - extremely local keep in cache.  The <tt>rw</tt> and -<tt>locality</tt> arguments must be constant integers. -</p> +<p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the +   specifier determining if the fetch should be for a read (0) or write (1), +   and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no +   locality, to (3) - extremely local keep in cache.  The <tt>rw</tt> +   and <tt>locality</tt> arguments must be constant integers.</p>  <h5>Semantics:</h5> - -<p> -This intrinsic does not modify the behavior of the program.  In particular, -prefetches cannot trap and do not produce a value.  On targets that support this -intrinsic, the prefetch can provide hints to the processor cache for better -performance. -</p> +<p>This intrinsic does not modify the behavior of the program.  In particular, +   prefetches cannot trap and do not produce a value.  On targets that support +   this intrinsic, the prefetch can provide hints to the processor cache for +   better performance.</p>  </div> @@ -5327,32 +5320,21 @@ performance.  </pre>  <h5>Overview:</h5> - - -<p> -The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter -(PC) in a region of -code to simulators and other tools.  The method is target specific, but it is -expected that the marker will use exported symbols to transmit the PC of the -marker. -The marker makes no guarantees that it will remain with any specific instruction -after optimizations.  It is possible that the presence of a marker will inhibit -optimizations.  The intended use is to be inserted after optimizations to allow -correlations of simulation runs. -</p> +<p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program +   Counter (PC) in a region of code to simulators and other tools.  The method +   is target specific, but it is expected that the marker will use exported +   symbols to transmit the PC of the marker.  The marker makes no guarantees +   that it will remain with any specific instruction after optimizations.  It is +   possible that the presence of a marker will inhibit optimizations.  The +   intended use is to be inserted after optimizations to allow correlations of +   simulation runs.</p>  <h5>Arguments:</h5> - -<p> -<tt>id</tt> is a numerical id identifying the marker. -</p> +<p><tt>id</tt> is a numerical id identifying the marker.</p>  <h5>Semantics:</h5> - -<p> -This intrinsic does not modify the behavior of the program.  Backends that do not  -support this intrinisic may ignore it. -</p> +<p>This intrinsic does not modify the behavior of the program.  Backends that do +   not support this intrinisic may ignore it.</p>  </div> @@ -5369,23 +5351,17 @@ support this intrinisic may ignore it.  </pre>  <h5>Overview:</h5> - - -<p> -The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle  -counter register (or similar low latency, high accuracy clocks) on those targets -that support it.  On X86, it should map to RDTSC.  On Alpha, it should map to RPCC. -As the backing counters overflow quickly (on the order of 9 seconds on alpha), this -should only be used for small timings.   -</p> +<p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle +   counter register (or similar low latency, high accuracy clocks) on those +   targets that support it.  On X86, it should map to RDTSC.  On Alpha, it +   should map to RPCC.  As the backing counters overflow quickly (on the order +   of 9 seconds on alpha), this should only be used for small timings.</p>  <h5>Semantics:</h5> - -<p> -When directly supported, reading the cycle counter should not modify any memory.   -Implementations are allowed to either return a application specific value or a -system wide value.  On backends without support, this is lowered to a constant 0. -</p> +<p>When directly supported, reading the cycle counter should not modify any +   memory.  Implementations are allowed to either return a application specific +   value or a system wide value.  On backends without support, this is lowered +   to a constant 0.</p>  </div> @@ -5395,12 +5371,11 @@ system wide value.  On backends without support, this is lowered to a constant 0  </div>  <div class="doc_text"> -<p> -LLVM provides intrinsics for a few important standard C library functions. -These intrinsics allow source-language front-ends to pass information about the -alignment of the pointer arguments to the code generator, providing opportunity -for more efficient code generation. -</p> + +<p>LLVM provides intrinsics for a few important standard C library functions. +   These intrinsics allow source-language front-ends to pass information about +   the alignment of the pointer arguments to the code generator, providing +   opportunity for more efficient code generation.</p>  </div> @@ -5412,11 +5387,12 @@ for more efficient code generation.  <div class="doc_text">  <h5>Syntax:</h5> -<p>This is an overloaded intrinsic. You can use llvm.memcpy on any integer bit -width. Not all targets support all bit widths however.</p> +<p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any +   integer bit width. Not all targets support all bit widths however.</p> +  <pre>    declare void @llvm.memcpy.i8(i8 * <dest>, i8 * <src>, -                                i8 <len>, i32 <align>) +                               i8 <len>, i32 <align>)    declare void @llvm.memcpy.i16(i8 * <dest>, i8 * <src>,                                  i16 <len>, i32 <align>)    declare void @llvm.memcpy.i32(i8 * <dest>, i8 * <src>, @@ -5426,44 +5402,31 @@ width. Not all targets support all bit widths however.</p>  </pre>  <h5>Overview:</h5> +<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the +   source location to the destination location.</p> -<p> -The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source -location to the destination location. -</p> - -<p> -Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>  -intrinsics do not return a value, and takes an extra alignment argument. -</p> +<p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt> +   intrinsics do not return a value, and takes an extra alignment argument.</p>  <h5>Arguments:</h5> +<p>The first argument is a pointer to the destination, the second is a pointer +   to the source.  The third argument is an integer argument specifying the +   number of bytes to copy, and the fourth argument is the alignment of the +   source and destination locations.</p> -<p> -The first argument is a pointer to the destination, the second is a pointer to -the source.  The third argument is an integer argument -specifying the number of bytes to copy, and the fourth argument is the alignment -of the source and destination locations. -</p> - -<p> -If the call to this intrinisic has an alignment value that is not 0 or 1, then -the caller guarantees that both the source and destination pointers are aligned -to that boundary. -</p> +<p>If the call to this intrinisic has an alignment value that is not 0 or 1, +   then the caller guarantees that both the source and destination pointers are +   aligned to that boundary.</p>  <h5>Semantics:</h5> +<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the +   source location to the destination location, which are not allowed to +   overlap.  It copies "len" bytes of memory over.  If the argument is known to +   be aligned to some boundary, this can be specified as the fourth argument, +   otherwise it should be set to 0 or 1.</p> -<p> -The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source -location to the destination location, which are not allowed to overlap.  It -copies "len" bytes of memory over.  If the argument is known to be aligned to -some boundary, this can be specified as the fourth argument, otherwise it should -be set to 0 or 1. -</p>  </div> -  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection">    <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a> @@ -5473,10 +5436,11 @@ be set to 0 or 1.  <h5>Syntax:</h5>  <p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit -width. Not all targets support all bit widths however.</p> +   width. Not all targets support all bit widths however.</p> +  <pre>    declare void @llvm.memmove.i8(i8 * <dest>, i8 * <src>, -                                 i8 <len>, i32 <align>) +                                i8 <len>, i32 <align>)    declare void @llvm.memmove.i16(i8 * <dest>, i8 * <src>,                                   i16 <len>, i32 <align>)    declare void @llvm.memmove.i32(i8 * <dest>, i8 * <src>, @@ -5486,45 +5450,33 @@ width. Not all targets support all bit widths however.</p>  </pre>  <h5>Overview:</h5> +<p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the +   source location to the destination location. It is similar to the +   '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to +   overlap.</p> -<p> -The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source -location to the destination location. It is similar to the -'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap. -</p> - -<p> -Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>  -intrinsics do not return a value, and takes an extra alignment argument. -</p> +<p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt> +   intrinsics do not return a value, and takes an extra alignment argument.</p>  <h5>Arguments:</h5> +<p>The first argument is a pointer to the destination, the second is a pointer +   to the source.  The third argument is an integer argument specifying the +   number of bytes to copy, and the fourth argument is the alignment of the +   source and destination locations.</p> -<p> -The first argument is a pointer to the destination, the second is a pointer to -the source.  The third argument is an integer argument -specifying the number of bytes to copy, and the fourth argument is the alignment -of the source and destination locations. -</p> - -<p> -If the call to this intrinisic has an alignment value that is not 0 or 1, then -the caller guarantees that the source and destination pointers are aligned to -that boundary. -</p> +<p>If the call to this intrinisic has an alignment value that is not 0 or 1, +   then the caller guarantees that the source and destination pointers are +   aligned to that boundary.</p>  <h5>Semantics:</h5> +<p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the +   source location to the destination location, which may overlap.  It copies +   "len" bytes of memory over.  If the argument is known to be aligned to some +   boundary, this can be specified as the fourth argument, otherwise it should +   be set to 0 or 1.</p> -<p> -The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source -location to the destination location, which may overlap.  It -copies "len" bytes of memory over.  If the argument is known to be aligned to -some boundary, this can be specified as the fourth argument, otherwise it should -be set to 0 or 1. -</p>  </div> -  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection">    <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a> @@ -5534,10 +5486,11 @@ be set to 0 or 1.  <h5>Syntax:</h5>  <p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit -width. Not all targets support all bit widths however.</p> +   width. Not all targets support all bit widths however.</p> +  <pre>    declare void @llvm.memset.i8(i8 * <dest>, i8 <val>, -                                i8 <len>, i32 <align>) +                               i8 <len>, i32 <align>)    declare void @llvm.memset.i16(i8 * <dest>, i8 <val>,                                  i16 <len>, i32 <align>)    declare void @llvm.memset.i32(i8 * <dest>, i8 <val>, @@ -5547,43 +5500,30 @@ width. Not all targets support all bit widths however.</p>  </pre>  <h5>Overview:</h5> +<p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a +   particular byte value.</p> -<p> -The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular -byte value. -</p> - -<p> -Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic -does not return a value, and takes an extra alignment argument. -</p> +<p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt> +   intrinsic does not return a value, and takes an extra alignment argument.</p>  <h5>Arguments:</h5> +<p>The first argument is a pointer to the destination to fill, the second is the +   byte value to fill it with, the third argument is an integer argument +   specifying the number of bytes to fill, and the fourth argument is the known +   alignment of destination location.</p> -<p> -The first argument is a pointer to the destination to fill, the second is the -byte value to fill it with, the third argument is an integer -argument specifying the number of bytes to fill, and the fourth argument is the -known alignment of destination location. -</p> - -<p> -If the call to this intrinisic has an alignment value that is not 0 or 1, then -the caller guarantees that the destination pointer is aligned to that boundary. -</p> +<p>If the call to this intrinisic has an alignment value that is not 0 or 1, +   then the caller guarantees that the destination pointer is aligned to that +   boundary.</p>  <h5>Semantics:</h5> +<p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting +   at the destination location.  If the argument is known to be aligned to some +   boundary, this can be specified as the fourth argument, otherwise it should +   be set to 0 or 1.</p> -<p> -The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at -the -destination location.  If the argument is known to be aligned to some boundary, -this can be specified as the fourth argument, otherwise it should be set to 0 or -1. -</p>  </div> -  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection">    <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a> @@ -5592,9 +5532,10 @@ this can be specified as the fourth argument, otherwise it should be set to 0 or  <div class="doc_text">  <h5>Syntax:</h5> -<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any  -floating point or vector of floating point type. Not all targets support all -types however.</p> +<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any +   floating point or vector of floating point type. Not all targets support all +   types however.</p> +  <pre>    declare float     @llvm.sqrt.f32(float %Val)    declare double    @llvm.sqrt.f64(double %Val) @@ -5604,28 +5545,21 @@ types however.</p>  </pre>  <h5>Overview:</h5> - -<p> -The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand, -returning the same value as the libm '<tt>sqrt</tt>' functions would.  Unlike -<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for -negative numbers other than -0.0 (which allows for better optimization, because -there is no need to worry about errno being set).  <tt>llvm.sqrt(-0.0)</tt> is -defined to return -0.0 like IEEE sqrt. -</p> +<p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand, +   returning the same value as the libm '<tt>sqrt</tt>' functions would. +   Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined +   behavior for negative numbers other than -0.0 (which allows for better +   optimization, because there is no need to worry about errno being +   set).  <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>  <h5>Arguments:</h5> - -<p> -The argument and return value are floating point numbers of the same type. -</p> +<p>The argument and return value are floating point numbers of the same +   type.</p>  <h5>Semantics:</h5> +<p>This function returns the sqrt of the specified operand if it is a +   nonnegative floating point number.</p> -<p> -This function returns the sqrt of the specified operand if it is a nonnegative -floating point number. -</p>  </div>  <!-- _______________________________________________________________________ --> @@ -5636,9 +5570,10 @@ floating point number.  <div class="doc_text">  <h5>Syntax:</h5> -<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any  -floating point or vector of floating point type. Not all targets support all -types however.</p> +<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any +   floating point or vector of floating point type. Not all targets support all +   types however.</p> +  <pre>    declare float     @llvm.powi.f32(float  %Val, i32 %power)    declare double    @llvm.powi.f64(double %Val, i32 %power) @@ -5648,26 +5583,19 @@ types however.</p>  </pre>  <h5>Overview:</h5> - -<p> -The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the -specified (positive or negative) power.  The order of evaluation of -multiplications is not defined.  When a vector of floating point type is -used, the second argument remains a scalar integer value. -</p> +<p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the +   specified (positive or negative) power.  The order of evaluation of +   multiplications is not defined.  When a vector of floating point type is +   used, the second argument remains a scalar integer value.</p>  <h5>Arguments:</h5> - -<p> -The second argument is an integer power, and the first is a value to raise to -that power. -</p> +<p>The second argument is an integer power, and the first is a value to raise to +   that power.</p>  <h5>Semantics:</h5> +<p>This function returns the first value raised to the second power with an +   unspecified sequence of rounding operations.</p> -<p> -This function returns the first value raised to the second power with an -unspecified sequence of rounding operations.</p>  </div>  <!-- _______________________________________________________________________ --> @@ -5678,9 +5606,10 @@ unspecified sequence of rounding operations.</p>  <div class="doc_text">  <h5>Syntax:</h5> -<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any  -floating point or vector of floating point type. Not all targets support all -types however.</p> +<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any +   floating point or vector of floating point type. Not all targets support all +   types however.</p> +  <pre>    declare float     @llvm.sin.f32(float  %Val)    declare double    @llvm.sin.f64(double %Val) @@ -5690,23 +5619,17 @@ types however.</p>  </pre>  <h5>Overview:</h5> - -<p> -The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand. -</p> +<p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>  <h5>Arguments:</h5> - -<p> -The argument and return value are floating point numbers of the same type. -</p> +<p>The argument and return value are floating point numbers of the same +   type.</p>  <h5>Semantics:</h5> +<p>This function returns the sine of the specified operand, returning the same +   values as the libm <tt>sin</tt> functions would, and handles error conditions +   in the same way.</p> -<p> -This function returns the sine of the specified operand, returning the -same values as the libm <tt>sin</tt> functions would, and handles error -conditions in the same way.</p>  </div>  <!-- _______________________________________________________________________ --> @@ -5717,9 +5640,10 @@ conditions in the same way.</p>  <div class="doc_text">  <h5>Syntax:</h5> -<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any  -floating point or vector of floating point type. Not all targets support all -types however.</p> +<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any +   floating point or vector of floating point type. Not all targets support all +   types however.</p> +  <pre>    declare float     @llvm.cos.f32(float  %Val)    declare double    @llvm.cos.f64(double %Val) @@ -5729,23 +5653,17 @@ types however.</p>  </pre>  <h5>Overview:</h5> - -<p> -The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand. -</p> +<p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>  <h5>Arguments:</h5> - -<p> -The argument and return value are floating point numbers of the same type. -</p> +<p>The argument and return value are floating point numbers of the same +   type.</p>  <h5>Semantics:</h5> +<p>This function returns the cosine of the specified operand, returning the same +   values as the libm <tt>cos</tt> functions would, and handles error conditions +   in the same way.</p> -<p> -This function returns the cosine of the specified operand, returning the -same values as the libm <tt>cos</tt> functions would, and handles error -conditions in the same way.</p>  </div>  <!-- _______________________________________________________________________ --> @@ -5756,9 +5674,10 @@ conditions in the same way.</p>  <div class="doc_text">  <h5>Syntax:</h5> -<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any  -floating point or vector of floating point type. Not all targets support all -types however.</p> +<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any +   floating point or vector of floating point type. Not all targets support all +   types however.</p> +  <pre>    declare float     @llvm.pow.f32(float  %Val, float %Power)    declare double    @llvm.pow.f64(double %Val, double %Power) @@ -5768,39 +5687,29 @@ types however.</p>  </pre>  <h5>Overview:</h5> - -<p> -The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the -specified (positive or negative) power. -</p> +<p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the +   specified (positive or negative) power.</p>  <h5>Arguments:</h5> - -<p> -The second argument is a floating point power, and the first is a value to -raise to that power. -</p> +<p>The second argument is a floating point power, and the first is a value to +   raise to that power.</p>  <h5>Semantics:</h5> +<p>This function returns the first value raised to the second power, returning +   the same values as the libm <tt>pow</tt> functions would, and handles error +   conditions in the same way.</p> -<p> -This function returns the first value raised to the second power, -returning the -same values as the libm <tt>pow</tt> functions would, and handles error -conditions in the same way.</p>  </div> -  <!-- ======================================================================= -->  <div class="doc_subsection">    <a name="int_manip">Bit Manipulation Intrinsics</a>  </div>  <div class="doc_text"> -<p> -LLVM provides intrinsics for a few important bit manipulation operations. -These allow efficient code generation for some algorithms. -</p> + +<p>LLVM provides intrinsics for a few important bit manipulation operations. +   These allow efficient code generation for some algorithms.</p>  </div> @@ -5813,7 +5722,8 @@ These allow efficient code generation for some algorithms.  <h5>Syntax:</h5>  <p>This is an overloaded intrinsic function. You can use bswap on any integer -type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p> +   type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p> +  <pre>    declare i16 @llvm.bswap.i16(i16 <id>)    declare i32 @llvm.bswap.i32(i32 <id>) @@ -5821,25 +5731,20 @@ type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>  </pre>  <h5>Overview:</h5> - -<p> -The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer  -values with an even number of bytes (positive multiple of 16 bits).  These are  -useful for performing operations on data that is not in the target's native  -byte order. -</p> +<p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer +   values with an even number of bytes (positive multiple of 16 bits).  These +   are useful for performing operations on data that is not in the target's +   native byte order.</p>  <h5>Semantics:</h5> - -<p> -The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high  -and low byte of the input i16 swapped.  Similarly, the <tt>llvm.bswap.i32</tt>  -intrinsic returns an i32 value that has the four bytes of the input i32  -swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned  -i32 will have its bytes in 3, 2, 1, 0 order.  The <tt>llvm.bswap.i48</tt>,  -<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to -additional even-byte lengths (6 bytes, 8 bytes and more, respectively). -</p> +<p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high +   and low byte of the input i16 swapped.  Similarly, +   the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four +   bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1, +   2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order. +   The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics +   extend this concept to additional even-byte lengths (6 bytes, 8 bytes and +   more, respectively).</p>  </div> @@ -5852,7 +5757,8 @@ additional even-byte lengths (6 bytes, 8 bytes and more, respectively).  <h5>Syntax:</h5>  <p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit -width. Not all targets support all bit widths however.</p> +   width. Not all targets support all bit widths however.</p> +  <pre>    declare i8 @llvm.ctpop.i8(i8  <src>)    declare i16 @llvm.ctpop.i16(i16 <src>) @@ -5862,24 +5768,16 @@ width. Not all targets support all bit widths however.</p>  </pre>  <h5>Overview:</h5> - -<p> -The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a  -value. -</p> +<p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set +   in a value.</p>  <h5>Arguments:</h5> - -<p> -The only argument is the value to be counted.  The argument may be of any -integer type.  The return type must match the argument type. -</p> +<p>The only argument is the value to be counted.  The argument may be of any +   integer type.  The return type must match the argument type.</p>  <h5>Semantics:</h5> +<p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.</p> -<p> -The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable. -</p>  </div>  <!-- _______________________________________________________________________ --> @@ -5890,8 +5788,9 @@ The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.  <div class="doc_text">  <h5>Syntax:</h5> -<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any  -integer bit width. Not all targets support all bit widths however.</p> +<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any +   integer bit width. Not all targets support all bit widths however.</p> +  <pre>    declare i8 @llvm.ctlz.i8 (i8  <src>)    declare i16 @llvm.ctlz.i16(i16 <src>) @@ -5901,30 +5800,20 @@ integer bit width. Not all targets support all bit widths however.</p>  </pre>  <h5>Overview:</h5> - -<p> -The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of  -leading zeros in a variable. -</p> +<p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of +   leading zeros in a variable.</p>  <h5>Arguments:</h5> - -<p> -The only argument is the value to be counted.  The argument may be of any -integer type. The return type must match the argument type. -</p> +<p>The only argument is the value to be counted.  The argument may be of any +   integer type. The return type must match the argument type.</p>  <h5>Semantics:</h5> +<p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) +   zeros in a variable.  If the src == 0 then the result is the size in bits of +   the type of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p> -<p> -The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros -in a variable.  If the src == 0 then the result is the size in bits of the type -of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>. -</p>  </div> - -  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection">    <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a> @@ -5933,8 +5822,9 @@ of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.  <div class="doc_text">  <h5>Syntax:</h5> -<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any  -integer bit width. Not all targets support all bit widths however.</p> +<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any +   integer bit width. Not all targets support all bit widths however.</p> +  <pre>    declare i8 @llvm.cttz.i8 (i8  <src>)    declare i16 @llvm.cttz.i16(i16 <src>) @@ -5944,38 +5834,28 @@ integer bit width. Not all targets support all bit widths however.</p>  </pre>  <h5>Overview:</h5> - -<p> -The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of  -trailing zeros. -</p> +<p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of +   trailing zeros.</p>  <h5>Arguments:</h5> - -<p> -The only argument is the value to be counted.  The argument may be of any -integer type.  The return type must match the argument type. -</p> +<p>The only argument is the value to be counted.  The argument may be of any +   integer type.  The return type must match the argument type.</p>  <h5>Semantics:</h5> +<p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) +   zeros in a variable.  If the src == 0 then the result is the size in bits of +   the type of src.  For example, <tt>llvm.cttz(2) = 1</tt>.</p> -<p> -The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros -in a variable.  If the src == 0 then the result is the size in bits of the type -of src.  For example, <tt>llvm.cttz(2) = 1</tt>. -</p>  </div> -  <!-- ======================================================================= -->  <div class="doc_subsection">    <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>  </div>  <div class="doc_text"> -<p> -LLVM provides intrinsics for some arithmetic with overflow operations. -</p> + +<p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>  </div> @@ -5987,9 +5867,8 @@ LLVM provides intrinsics for some arithmetic with overflow operations.  <div class="doc_text">  <h5>Syntax:</h5> -  <p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt> -on any integer bit width.</p> +   on any integer bit width.</p>  <pre>    declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b) @@ -5998,24 +5877,23 @@ on any integer bit width.</p>  </pre>  <h5>Overview:</h5> -  <p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform -a signed addition of the two arguments, and indicate whether an overflow -occurred during the signed summation.</p> +   a signed addition of the two arguments, and indicate whether an overflow +   occurred during the signed summation.</p>  <h5>Arguments:</h5> -  <p>The arguments (%a and %b) and the first element of the result structure may -be of integer types of any bit width, but they must have the same bit width. The -second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt> -and <tt>%b</tt> are the two values that will undergo signed addition.</p> +   be of integer types of any bit width, but they must have the same bit +   width. The second element of the result structure must be of +   type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will +   undergo signed addition.</p>  <h5>Semantics:</h5> -  <p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform -a signed addition of the two variables. They return a structure — the -first element of which is the signed summation, and the second element of which -is a bit specifying if the signed summation resulted in an overflow.</p> +   a signed addition of the two variables. They return a structure — the +   first element of which is the signed summation, and the second element of +   which is a bit specifying if the signed summation resulted in an +   overflow.</p>  <h5>Examples:</h5>  <pre> @@ -6035,9 +5913,8 @@ is a bit specifying if the signed summation resulted in an overflow.</p>  <div class="doc_text">  <h5>Syntax:</h5> -  <p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt> -on any integer bit width.</p> +   on any integer bit width.</p>  <pre>    declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b) @@ -6046,24 +5923,22 @@ on any integer bit width.</p>  </pre>  <h5>Overview:</h5> -  <p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform -an unsigned addition of the two arguments, and indicate whether a carry occurred -during the unsigned summation.</p> +   an unsigned addition of the two arguments, and indicate whether a carry +   occurred during the unsigned summation.</p>  <h5>Arguments:</h5> -  <p>The arguments (%a and %b) and the first element of the result structure may -be of integer types of any bit width, but they must have the same bit width. The -second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt> -and <tt>%b</tt> are the two values that will undergo unsigned addition.</p> +   be of integer types of any bit width, but they must have the same bit +   width. The second element of the result structure must be of +   type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will +   undergo unsigned addition.</p>  <h5>Semantics:</h5> -  <p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform -an unsigned addition of the two arguments. They return a structure — the -first element of which is the sum, and the second element of which is a bit -specifying if the unsigned summation resulted in a carry.</p> +   an unsigned addition of the two arguments. They return a structure — +   the first element of which is the sum, and the second element of which is a +   bit specifying if the unsigned summation resulted in a carry.</p>  <h5>Examples:</h5>  <pre> @@ -6083,9 +5958,8 @@ specifying if the unsigned summation resulted in a carry.</p>  <div class="doc_text">  <h5>Syntax:</h5> -  <p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt> -on any integer bit width.</p> +   on any integer bit width.</p>  <pre>    declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b) @@ -6094,24 +5968,23 @@ on any integer bit width.</p>  </pre>  <h5>Overview:</h5> -  <p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform -a signed subtraction of the two arguments, and indicate whether an overflow -occurred during the signed subtraction.</p> +   a signed subtraction of the two arguments, and indicate whether an overflow +   occurred during the signed subtraction.</p>  <h5>Arguments:</h5> -  <p>The arguments (%a and %b) and the first element of the result structure may -be of integer types of any bit width, but they must have the same bit width. The -second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt> -and <tt>%b</tt> are the two values that will undergo signed subtraction.</p> +   be of integer types of any bit width, but they must have the same bit +   width. The second element of the result structure must be of +   type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will +   undergo signed subtraction.</p>  <h5>Semantics:</h5> -  <p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform -a signed subtraction of the two arguments. They return a structure — the -first element of which is the subtraction, and the second element of which is a bit -specifying if the signed subtraction resulted in an overflow.</p> +   a signed subtraction of the two arguments. They return a structure — +   the first element of which is the subtraction, and the second element of +   which is a bit specifying if the signed subtraction resulted in an +   overflow.</p>  <h5>Examples:</h5>  <pre> @@ -6131,9 +6004,8 @@ specifying if the signed subtraction resulted in an overflow.</p>  <div class="doc_text">  <h5>Syntax:</h5> -  <p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt> -on any integer bit width.</p> +   on any integer bit width.</p>  <pre>    declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b) @@ -6142,24 +6014,23 @@ on any integer bit width.</p>  </pre>  <h5>Overview:</h5> -  <p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform -an unsigned subtraction of the two arguments, and indicate whether an overflow -occurred during the unsigned subtraction.</p> +   an unsigned subtraction of the two arguments, and indicate whether an +   overflow occurred during the unsigned subtraction.</p>  <h5>Arguments:</h5> -  <p>The arguments (%a and %b) and the first element of the result structure may -be of integer types of any bit width, but they must have the same bit width. The -second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt> -and <tt>%b</tt> are the two values that will undergo unsigned subtraction.</p> +   be of integer types of any bit width, but they must have the same bit +   width. The second element of the result structure must be of +   type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will +   undergo unsigned subtraction.</p>  <h5>Semantics:</h5> -  <p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform -an unsigned subtraction of the two arguments. They return a structure — the -first element of which is the subtraction, and the second element of which is a bit -specifying if the unsigned subtraction resulted in an overflow.</p> +   an unsigned subtraction of the two arguments. They return a structure — +   the first element of which is the subtraction, and the second element of +   which is a bit specifying if the unsigned subtraction resulted in an +   overflow.</p>  <h5>Examples:</h5>  <pre> @@ -6179,9 +6050,8 @@ specifying if the unsigned subtraction resulted in an overflow.</p>  <div class="doc_text">  <h5>Syntax:</h5> -  <p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt> -on any integer bit width.</p> +   on any integer bit width.</p>  <pre>    declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b) @@ -6192,23 +6062,22 @@ on any integer bit width.</p>  <h5>Overview:</h5>  <p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform -a signed multiplication of the two arguments, and indicate whether an overflow -occurred during the signed multiplication.</p> +   a signed multiplication of the two arguments, and indicate whether an +   overflow occurred during the signed multiplication.</p>  <h5>Arguments:</h5> -  <p>The arguments (%a and %b) and the first element of the result structure may -be of integer types of any bit width, but they must have the same bit width. The -second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt> -and <tt>%b</tt> are the two values that will undergo signed multiplication.</p> +   be of integer types of any bit width, but they must have the same bit +   width. The second element of the result structure must be of +   type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will +   undergo signed multiplication.</p>  <h5>Semantics:</h5> -  <p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform -a signed multiplication of the two arguments. They return a structure — -the first element of which is the multiplication, and the second element of -which is a bit specifying if the signed multiplication resulted in an -overflow.</p> +   a signed multiplication of the two arguments. They return a structure — +   the first element of which is the multiplication, and the second element of +   which is a bit specifying if the signed multiplication resulted in an +   overflow.</p>  <h5>Examples:</h5>  <pre> @@ -6228,9 +6097,8 @@ overflow.</p>  <div class="doc_text">  <h5>Syntax:</h5> -  <p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt> -on any integer bit width.</p> +   on any integer bit width.</p>  <pre>    declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b) @@ -6239,26 +6107,23 @@ on any integer bit width.</p>  </pre>  <h5>Overview:</h5> -  <p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform -a unsigned multiplication of the two arguments, and indicate whether an overflow -occurred during the unsigned multiplication.</p> +   a unsigned multiplication of the two arguments, and indicate whether an +   overflow occurred during the unsigned multiplication.</p>  <h5>Arguments:</h5> -  <p>The arguments (%a and %b) and the first element of the result structure may -be of integer types of any bit width, but they must have the same bit width. The -second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt> -and <tt>%b</tt> are the two values that will undergo unsigned -multiplication.</p> +   be of integer types of any bit width, but they must have the same bit +   width. The second element of the result structure must be of +   type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will +   undergo unsigned multiplication.</p>  <h5>Semantics:</h5> -  <p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform -an unsigned multiplication of the two arguments. They return a structure — -the first element of which is the multiplication, and the second element of -which is a bit specifying if the unsigned multiplication resulted in an -overflow.</p> +   an unsigned multiplication of the two arguments. They return a structure +   — the first element of which is the multiplication, and the second +   element of which is a bit specifying if the unsigned multiplication resulted +   in an overflow.</p>  <h5>Examples:</h5>  <pre> @@ -6276,14 +6141,13 @@ overflow.</p>  </div>  <div class="doc_text"> -<p> -The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix), -are described in the <a -href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level -Debugging</a> document. -</p> -</div> +<p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> +   prefix), are described in +   the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source +   Level Debugging</a> document.</p> + +</div>  <!-- ======================================================================= -->  <div class="doc_subsection"> @@ -6291,10 +6155,12 @@ Debugging</a> document.  </div>  <div class="doc_text"> -<p> The LLVM exception handling intrinsics (which all start with -<tt>llvm.eh.</tt> prefix), are described in the <a -href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception -Handling</a> document. </p> + +<p>The LLVM exception handling intrinsics (which all start with +   <tt>llvm.eh.</tt> prefix), are described in +   the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception +   Handling</a> document.</p> +  </div>  <!-- ======================================================================= --> @@ -6303,70 +6169,74 @@ Handling</a> document. </p>  </div>  <div class="doc_text"> -<p> -  This intrinsic makes it possible to excise one parameter, marked with -  the <tt>nest</tt> attribute, from a function.  The result is a callable -  function pointer lacking the nest parameter - the caller does not need -  to provide a value for it.  Instead, the value to use is stored in -  advance in a "trampoline", a block of memory usually allocated -  on the stack, which also contains code to splice the nest value into the -  argument list.  This is used to implement the GCC nested function address -  extension. -</p> -<p> -  For example, if the function is -  <tt>i32 f(i8* nest  %c, i32 %x, i32 %y)</tt> then the resulting function -  pointer has signature <tt>i32 (i32, i32)*</tt>.  It can be created as follows:</p> + +<p>This intrinsic makes it possible to excise one parameter, marked with +   the <tt>nest</tt> attribute, from a function.  The result is a callable +   function pointer lacking the nest parameter - the caller does not need to +   provide a value for it.  Instead, the value to use is stored in advance in a +   "trampoline", a block of memory usually allocated on the stack, which also +   contains code to splice the nest value into the argument list.  This is used +   to implement the GCC nested function address extension.</p> + +<p>For example, if the function is +   <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function +   pointer has signature <tt>i32 (i32, i32)*</tt>.  It can be created as +   follows:</p> + +<div class="doc_code">  <pre>    %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86    %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0    %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )    %fp = bitcast i8* %p to i32 (i32, i32)*  </pre> -  <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent -  to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p> +</div> + +<p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent +   to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p> +  </div>  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection">    <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>  </div> +  <div class="doc_text"> +  <h5>Syntax:</h5>  <pre> -declare i8* @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>) +  declare i8* @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)  </pre> +  <h5>Overview:</h5> -<p> -  This fills the memory pointed to by <tt>tramp</tt> with code -  and returns a function pointer suitable for executing it. -</p> +<p>This fills the memory pointed to by <tt>tramp</tt> with code and returns a +   function pointer suitable for executing it.</p> +  <h5>Arguments:</h5> -<p> -  The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all -  pointers.  The <tt>tramp</tt> argument must point to a sufficiently large -  and sufficiently aligned block of memory; this memory is written to by the -  intrinsic.  Note that the size and the alignment are target-specific - LLVM -  currently provides no portable way of determining them, so a front-end that -  generates this intrinsic needs to have some target-specific knowledge. -  The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>. -</p> +<p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all +   pointers.  The <tt>tramp</tt> argument must point to a sufficiently large and +   sufficiently aligned block of memory; this memory is written to by the +   intrinsic.  Note that the size and the alignment are target-specific - LLVM +   currently provides no portable way of determining them, so a front-end that +   generates this intrinsic needs to have some target-specific knowledge. +   The <tt>func</tt> argument must hold a function bitcast to +   an <tt>i8*</tt>.</p> +  <h5>Semantics:</h5> -<p> -  The block of memory pointed to by <tt>tramp</tt> is filled with target -  dependent code, turning it into a function.  A pointer to this function is -  returned, but needs to be bitcast to an -  <a href="#int_trampoline">appropriate function pointer type</a> -  before being called.  The new function's signature is the same as that of -  <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute -  removed.  At most one such <tt>nest</tt> argument is allowed, and it must be -  of pointer type.  Calling the new function is equivalent to calling -  <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the -  missing <tt>nest</tt> argument.  If, after calling -  <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is -  modified, then the effect of any later call to the returned function pointer is -  undefined. -</p> +<p>The block of memory pointed to by <tt>tramp</tt> is filled with target +   dependent code, turning it into a function.  A pointer to this function is +   returned, but needs to be bitcast to an <a href="#int_trampoline">appropriate +   function pointer type</a> before being called.  The new function's signature +   is the same as that of <tt>func</tt> with any arguments marked with +   the <tt>nest</tt> attribute removed.  At most one such <tt>nest</tt> argument +   is allowed, and it must be of pointer type.  Calling the new function is +   equivalent to calling <tt>func</tt> with the same argument list, but +   with <tt>nval</tt> used for the missing <tt>nest</tt> argument.  If, after +   calling <tt>llvm.init.trampoline</tt>, the memory pointed to +   by <tt>tramp</tt> is modified, then the effect of any later call to the +   returned function pointer is undefined.</p> +  </div>  <!-- ======================================================================= --> @@ -6375,27 +6245,25 @@ declare i8* @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <n  </div>  <div class="doc_text"> -<p> -  These intrinsic functions expand the "universal IR" of LLVM to represent  -  hardware constructs for atomic operations and memory synchronization.  This  -  provides an interface to the hardware, not an interface to the programmer. It  -  is aimed at a low enough level to allow any programming models or APIs -  (Application Programming Interfaces) which  -  need atomic behaviors to map cleanly onto it. It is also modeled primarily on  -  hardware behavior. Just as hardware provides a "universal IR" for source  -  languages, it also provides a starting point for developing a "universal"  -  atomic operation and synchronization IR. -</p> -<p> -  These do <em>not</em> form an API such as high-level threading libraries,  -  software transaction memory systems, atomic primitives, and intrinsic  -  functions as found in BSD, GNU libc, atomic_ops, APR, and other system and  -  application libraries.  The hardware interface provided by LLVM should allow  -  a clean implementation of all of these APIs and parallel programming models.  -  No one model or paradigm should be selected above others unless the hardware  -  itself ubiquitously does so. -</p> +<p>These intrinsic functions expand the "universal IR" of LLVM to represent +   hardware constructs for atomic operations and memory synchronization.  This +   provides an interface to the hardware, not an interface to the programmer. It +   is aimed at a low enough level to allow any programming models or APIs +   (Application Programming Interfaces) which need atomic behaviors to map +   cleanly onto it. It is also modeled primarily on hardware behavior. Just as +   hardware provides a "universal IR" for source languages, it also provides a +   starting point for developing a "universal" atomic operation and +   synchronization IR.</p> + +<p>These do <em>not</em> form an API such as high-level threading libraries, +   software transaction memory systems, atomic primitives, and intrinsic +   functions as found in BSD, GNU libc, atomic_ops, APR, and other system and +   application libraries.  The hardware interface provided by LLVM should allow +   a clean implementation of all of these APIs and parallel programming models. +   No one model or paradigm should be selected above others unless the hardware +   itself ubiquitously does so.</p> +  </div>  <!-- _______________________________________________________________________ --> @@ -6405,59 +6273,56 @@ declare i8* @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <n  <div class="doc_text">  <h5>Syntax:</h5>  <pre> -declare void @llvm.memory.barrier( i1 <ll>, i1 <ls>, i1 <sl>, i1 <ss>,  -i1 <device> ) - +  declare void @llvm.memory.barrier( i1 <ll>, i1 <ls>, i1 <sl>, i1 <ss>, i1 <device> )  </pre> +  <h5>Overview:</h5> -<p> -  The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between  -  specific pairs of memory access types. -</p> +<p>The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between +   specific pairs of memory access types.</p> +  <h5>Arguments:</h5> -<p> -  The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.  -  The first four arguments enables a specific barrier as listed below.  The fith -  argument specifies that the barrier applies to io or device or uncached memory. - -</p> -  <ul> -    <li><tt>ll</tt>: load-load barrier</li> -    <li><tt>ls</tt>: load-store barrier</li> -    <li><tt>sl</tt>: store-load barrier</li> -    <li><tt>ss</tt>: store-store barrier</li> -    <li><tt>device</tt>: barrier applies to device and uncached memory also.</li> -  </ul> +<p>The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments. +   The first four arguments enables a specific barrier as listed below.  The +   fith argument specifies that the barrier applies to io or device or uncached +   memory.</p> + +<ul> +  <li><tt>ll</tt>: load-load barrier</li> +  <li><tt>ls</tt>: load-store barrier</li> +  <li><tt>sl</tt>: store-load barrier</li> +  <li><tt>ss</tt>: store-store barrier</li> +  <li><tt>device</tt>: barrier applies to device and uncached memory also.</li> +</ul> +  <h5>Semantics:</h5> -<p> -  This intrinsic causes the system to enforce some ordering constraints upon  -  the loads and stores of the program. This barrier does not indicate  -  <em>when</em> any events will occur, it only enforces an <em>order</em> in  -  which they occur. For any of the specified pairs of load and store operations  -  (f.ex.  load-load, or store-load), all of the first operations preceding the  -  barrier will complete before any of the second operations succeeding the  -  barrier begin. Specifically the semantics for each pairing is as follows: -</p> -  <ul> -    <li><tt>ll</tt>: All loads before the barrier must complete before any load  -    after the barrier begins.</li> - -    <li><tt>ls</tt>: All loads before the barrier must complete before any  -    store after the barrier begins.</li> -    <li><tt>ss</tt>: All stores before the barrier must complete before any  -    store after the barrier begins.</li> -    <li><tt>sl</tt>: All stores before the barrier must complete before any  -    load after the barrier begins.</li> -  </ul> -<p> -  These semantics are applied with a logical "and" behavior when more than  one  -  is enabled in a single memory barrier intrinsic.   -</p> -<p> -  Backends may implement stronger barriers than those requested when they do not -  support as fine grained a barrier as requested.  Some architectures do not -  need all types of barriers and on such architectures, these become noops. -</p> +<p>This intrinsic causes the system to enforce some ordering constraints upon +   the loads and stores of the program. This barrier does not +   indicate <em>when</em> any events will occur, it only enforces +   an <em>order</em> in which they occur. For any of the specified pairs of load +   and store operations (f.ex.  load-load, or store-load), all of the first +   operations preceding the barrier will complete before any of the second +   operations succeeding the barrier begin. Specifically the semantics for each +   pairing is as follows:</p> + +<ul> +  <li><tt>ll</tt>: All loads before the barrier must complete before any load +      after the barrier begins.</li> +  <li><tt>ls</tt>: All loads before the barrier must complete before any  +      store after the barrier begins.</li> +  <li><tt>ss</tt>: All stores before the barrier must complete before any  +      store after the barrier begins.</li> +  <li><tt>sl</tt>: All stores before the barrier must complete before any  +      load after the barrier begins.</li> +</ul> + +<p>These semantics are applied with a logical "and" behavior when more than one +   is enabled in a single memory barrier intrinsic.</p> + +<p>Backends may implement stronger barriers than those requested when they do +   not support as fine grained a barrier as requested.  Some architectures do +   not need all types of barriers and on such architectures, these become +   noops.</p> +  <h5>Example:</h5>  <pre>  %ptr      = malloc i32 @@ -6468,50 +6333,48 @@ i1 <device> )                                  <i>; guarantee the above finishes</i>              store i32 8, %ptr   <i>; before this begins</i>  </pre> +  </div>  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection">    <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>  </div> +  <div class="doc_text"> +  <h5>Syntax:</h5> -<p> -  This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on -  any integer bit width and for different address spaces. Not all targets -  support all bit widths however.</p> +<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on +   any integer bit width and for different address spaces. Not all targets +   support all bit widths however.</p>  <pre> -declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* <ptr>, i8 <cmp>, i8 <val> ) -declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* <ptr>, i16 <cmp>, i16 <val> ) -declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* <ptr>, i32 <cmp>, i32 <val> ) -declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* <ptr>, i64 <cmp>, i64 <val> ) - +  declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* <ptr>, i8 <cmp>, i8 <val> ) +  declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* <ptr>, i16 <cmp>, i16 <val> ) +  declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* <ptr>, i32 <cmp>, i32 <val> ) +  declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* <ptr>, i64 <cmp>, i64 <val> )  </pre> +  <h5>Overview:</h5> -<p> -  This loads a value in memory and compares it to a given value. If they are  -  equal, it stores a new value into the memory. -</p> +<p>This loads a value in memory and compares it to a given value. If they are +   equal, it stores a new value into the memory.</p> +  <h5>Arguments:</h5> -<p> -  The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as  -  well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the  -  same bit width. The <tt>ptr</tt> argument must be a pointer to a value of  -  this integer type. While any bit width integer may be used, targets may only  -  lower representations they support in hardware. - -</p> +<p>The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result +   as well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the +   same bit width. The <tt>ptr</tt> argument must be a pointer to a value of +   this integer type. While any bit width integer may be used, targets may only +   lower representations they support in hardware.</p> +  <h5>Semantics:</h5> -<p> -  This entire intrinsic must be executed atomically. It first loads the value  -  in memory pointed to by <tt>ptr</tt> and compares it with the value  -  <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The  -  loaded value is yielded in all cases. This provides the equivalent of an  -  atomic compare-and-swap operation within the SSA framework. -</p> -<h5>Examples:</h5> +<p>This entire intrinsic must be executed atomically. It first loads the value +   in memory pointed to by <tt>ptr</tt> and compares it with the +   value <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the +   memory. The loaded value is yielded in all cases. This provides the +   equivalent of an atomic compare-and-swap operation within the SSA +   framework.</p> +<h5>Examples:</h5>  <pre>  %ptr      = malloc i32              store i32 4, %ptr @@ -6529,6 +6392,7 @@ declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* <ptr>, i64 <cmp>,  %memval2  = load i32* %ptr                <i>; yields {i32}:memval2 = 8</i>  </pre> +  </div>  <!-- _______________________________________________________________________ --> @@ -6538,38 +6402,33 @@ declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* <ptr>, i64 <cmp>,  <div class="doc_text">  <h5>Syntax:</h5> -<p> -  This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any  -  integer bit width. Not all targets support all bit widths however.</p> -<pre> -declare i8 @llvm.atomic.swap.i8.p0i8( i8* <ptr>, i8 <val> ) -declare i16 @llvm.atomic.swap.i16.p0i16( i16* <ptr>, i16 <val> ) -declare i32 @llvm.atomic.swap.i32.p0i32( i32* <ptr>, i32 <val> ) -declare i64 @llvm.atomic.swap.i64.p0i64( i64* <ptr>, i64 <val> ) +<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any +   integer bit width. Not all targets support all bit widths however.</p> +<pre> +  declare i8 @llvm.atomic.swap.i8.p0i8( i8* <ptr>, i8 <val> ) +  declare i16 @llvm.atomic.swap.i16.p0i16( i16* <ptr>, i16 <val> ) +  declare i32 @llvm.atomic.swap.i32.p0i32( i32* <ptr>, i32 <val> ) +  declare i64 @llvm.atomic.swap.i64.p0i64( i64* <ptr>, i64 <val> )  </pre> +  <h5>Overview:</h5> -<p> -  This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields  -  the value from memory. It then stores the value in <tt>val</tt> in the memory  -  at <tt>ptr</tt>. -</p> +<p>This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields +   the value from memory. It then stores the value in <tt>val</tt> in the memory +   at <tt>ptr</tt>.</p> +  <h5>Arguments:</h5> +<p>The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both +  the <tt>val</tt> argument and the result must be integers of the same bit +  width.  The first argument, <tt>ptr</tt>, must be a pointer to a value of this +  integer type. The targets may only lower integer representations they +  support.</p> -<p> -  The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the  -  <tt>val</tt> argument and the result must be integers of the same bit width.  -  The first argument, <tt>ptr</tt>, must be a pointer to a value of this  -  integer type. The targets may only lower integer representations they  -  support. -</p>  <h5>Semantics:</h5> -<p> -  This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and  -  stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the  -  equivalent of an atomic swap operation within the SSA framework. +<p>This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and +   stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the +   equivalent of an atomic swap operation within the SSA framework.</p> -</p>  <h5>Examples:</h5>  <pre>  %ptr      = malloc i32 @@ -6588,6 +6447,7 @@ declare i64 @llvm.atomic.swap.i64.p0i64( i64* <ptr>, i64 <val> )  %stored2  = icmp eq i32 %result2, 8     <i>; yields {i1}:stored2 = true</i>  %memval2  = load i32* %ptr              <i>; yields {i32}:memval2 = 2</i>  </pre> +  </div>  <!-- _______________________________________________________________________ --> @@ -6595,37 +6455,34 @@ declare i64 @llvm.atomic.swap.i64.p0i64( i64* <ptr>, i64 <val> )    <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>  </div> +  <div class="doc_text"> +  <h5>Syntax:</h5> -<p> -  This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any  -  integer bit width. Not all targets support all bit widths however.</p> -<pre> -declare i8 @llvm.atomic.load.add.i8..p0i8( i8* <ptr>, i8 <delta> ) -declare i16 @llvm.atomic.load.add.i16..p0i16( i16* <ptr>, i16 <delta> ) -declare i32 @llvm.atomic.load.add.i32..p0i32( i32* <ptr>, i32 <delta> ) -declare i64 @llvm.atomic.load.add.i64..p0i64( i64* <ptr>, i64 <delta> ) +<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on +   any integer bit width. Not all targets support all bit widths however.</p> +<pre> +  declare i8 @llvm.atomic.load.add.i8..p0i8( i8* <ptr>, i8 <delta> ) +  declare i16 @llvm.atomic.load.add.i16..p0i16( i16* <ptr>, i16 <delta> ) +  declare i32 @llvm.atomic.load.add.i32..p0i32( i32* <ptr>, i32 <delta> ) +  declare i64 @llvm.atomic.load.add.i64..p0i64( i64* <ptr>, i64 <delta> )  </pre> +  <h5>Overview:</h5> -<p> -  This intrinsic adds <tt>delta</tt> to the value stored in memory at  -  <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>. -</p> +<p>This intrinsic adds <tt>delta</tt> to the value stored in memory +   at <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p> +  <h5>Arguments:</h5> -<p> +<p>The intrinsic takes two arguments, the first a pointer to an integer value +   and the second an integer value. The result is also an integer value. These +   integer types can have any bit width, but they must all have the same bit +   width. The targets may only lower integer representations they support.</p> -  The intrinsic takes two arguments, the first a pointer to an integer value  -  and the second an integer value. The result is also an integer value. These  -  integer types can have any bit width, but they must all have the same bit  -  width. The targets may only lower integer representations they support. -</p>  <h5>Semantics:</h5> -<p> -  This intrinsic does a series of operations atomically. It first loads the  -  value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result  -  to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>. -</p> +<p>This intrinsic does a series of operations atomically. It first loads the +   value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result +   to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.</p>  <h5>Examples:</h5>  <pre> @@ -6639,6 +6496,7 @@ declare i64 @llvm.atomic.load.add.i64..p0i64( i64* <ptr>, i64 <delta>                                  <i>; yields {i32}:result3 = 10</i>  %memval1  = load i32* %ptr      <i>; yields {i32}:memval1 = 15</i>  </pre> +  </div>  <!-- _______________________________________________________________________ --> @@ -6646,38 +6504,36 @@ declare i64 @llvm.atomic.load.add.i64..p0i64( i64* <ptr>, i64 <delta>    <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>  </div> +  <div class="doc_text"> +  <h5>Syntax:</h5> -<p> -  This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on -  any integer bit width and for different address spaces. Not all targets -  support all bit widths however.</p> -<pre> -declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* <ptr>, i8 <delta> ) -declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* <ptr>, i16 <delta> ) -declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* <ptr>, i32 <delta> ) -declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* <ptr>, i64 <delta> ) +<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on +   any integer bit width and for different address spaces. Not all targets +   support all bit widths however.</p> +<pre> +  declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* <ptr>, i8 <delta> ) +  declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* <ptr>, i16 <delta> ) +  declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* <ptr>, i32 <delta> ) +  declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* <ptr>, i64 <delta> )  </pre> +  <h5>Overview:</h5> -<p> -  This intrinsic subtracts <tt>delta</tt> to the value stored in memory at  -  <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>. -</p> +<p>This intrinsic subtracts <tt>delta</tt> to the value stored in memory at  +   <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p> +  <h5>Arguments:</h5> -<p> +<p>The intrinsic takes two arguments, the first a pointer to an integer value +   and the second an integer value. The result is also an integer value. These +   integer types can have any bit width, but they must all have the same bit +   width. The targets may only lower integer representations they support.</p> -  The intrinsic takes two arguments, the first a pointer to an integer value  -  and the second an integer value. The result is also an integer value. These  -  integer types can have any bit width, but they must all have the same bit  -  width. The targets may only lower integer representations they support. -</p>  <h5>Semantics:</h5> -<p> -  This intrinsic does a series of operations atomically. It first loads the  -  value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the -  result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>. -</p> +<p>This intrinsic does a series of operations atomically. It first loads the +   value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the +   result to <tt>ptr</tt>. It yields the original value stored +   at <tt>ptr</tt>.</p>  <h5>Examples:</h5>  <pre> @@ -6691,6 +6547,7 @@ declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* <ptr>, i64 <delta>                                  <i>; yields {i32}:result3 = 2</i>  %memval1  = load i32* %ptr      <i>; yields {i32}:memval1 = -3</i>  </pre> +  </div>  <!-- _______________________________________________________________________ --> @@ -6699,67 +6556,61 @@ declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* <ptr>, i64 <delta>    <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>    <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>    <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br> -  </div> +  <div class="doc_text"> +  <h5>Syntax:</h5> -<p> -  These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>, -  <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and -  <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different -  address spaces. Not all targets support all bit widths however.</p> -<pre> -declare i8 @llvm.atomic.load.and.i8.p0i8( i8* <ptr>, i8 <delta> ) -declare i16 @llvm.atomic.load.and.i16.p0i16( i16* <ptr>, i16 <delta> ) -declare i32 @llvm.atomic.load.and.i32.p0i32( i32* <ptr>, i32 <delta> ) -declare i64 @llvm.atomic.load.and.i64.p0i64( i64* <ptr>, i64 <delta> ) +<p>These are overloaded intrinsics. You can +  use <tt>llvm.atomic.load_and</tt>, <tt>llvm.atomic.load_nand</tt>, +  <tt>llvm.atomic.load_or</tt>, and <tt>llvm.atomic.load_xor</tt> on any integer +  bit width and for different address spaces. Not all targets support all bit +  widths however.</p> +<pre> +  declare i8 @llvm.atomic.load.and.i8.p0i8( i8* <ptr>, i8 <delta> ) +  declare i16 @llvm.atomic.load.and.i16.p0i16( i16* <ptr>, i16 <delta> ) +  declare i32 @llvm.atomic.load.and.i32.p0i32( i32* <ptr>, i32 <delta> ) +  declare i64 @llvm.atomic.load.and.i64.p0i64( i64* <ptr>, i64 <delta> )  </pre>  <pre> -declare i8 @llvm.atomic.load.or.i8.p0i8( i8* <ptr>, i8 <delta> ) -declare i16 @llvm.atomic.load.or.i16.p0i16( i16* <ptr>, i16 <delta> ) -declare i32 @llvm.atomic.load.or.i32.p0i32( i32* <ptr>, i32 <delta> ) -declare i64 @llvm.atomic.load.or.i64.p0i64( i64* <ptr>, i64 <delta> ) - +  declare i8 @llvm.atomic.load.or.i8.p0i8( i8* <ptr>, i8 <delta> ) +  declare i16 @llvm.atomic.load.or.i16.p0i16( i16* <ptr>, i16 <delta> ) +  declare i32 @llvm.atomic.load.or.i32.p0i32( i32* <ptr>, i32 <delta> ) +  declare i64 @llvm.atomic.load.or.i64.p0i64( i64* <ptr>, i64 <delta> )  </pre>  <pre> -declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* <ptr>, i8 <delta> ) -declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* <ptr>, i16 <delta> ) -declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* <ptr>, i32 <delta> ) -declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* <ptr>, i64 <delta> ) - +  declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* <ptr>, i8 <delta> ) +  declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* <ptr>, i16 <delta> ) +  declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* <ptr>, i32 <delta> ) +  declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* <ptr>, i64 <delta> )  </pre>  <pre> -declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* <ptr>, i8 <delta> ) -declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* <ptr>, i16 <delta> ) -declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* <ptr>, i32 <delta> ) -declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* <ptr>, i64 <delta> ) - +  declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* <ptr>, i8 <delta> ) +  declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* <ptr>, i16 <delta> ) +  declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* <ptr>, i32 <delta> ) +  declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* <ptr>, i64 <delta> )  </pre> +  <h5>Overview:</h5> -<p> -  These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to -  the value stored in memory at <tt>ptr</tt>. It yields the original value -  at <tt>ptr</tt>. -</p> +<p>These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to +   the value stored in memory at <tt>ptr</tt>. It yields the original value +   at <tt>ptr</tt>.</p> +  <h5>Arguments:</h5> -<p> +<p>These intrinsics take two arguments, the first a pointer to an integer value +   and the second an integer value. The result is also an integer value. These +   integer types can have any bit width, but they must all have the same bit +   width. The targets may only lower integer representations they support.</p> -  These intrinsics take two arguments, the first a pointer to an integer value  -  and the second an integer value. The result is also an integer value. These  -  integer types can have any bit width, but they must all have the same bit  -  width. The targets may only lower integer representations they support. -</p>  <h5>Semantics:</h5> -<p> -  These intrinsics does a series of operations atomically. They first load the  -  value stored at <tt>ptr</tt>. They then do the bitwise operation -  <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original -  value stored at <tt>ptr</tt>. -</p> +<p>These intrinsics does a series of operations atomically. They first load the +   value stored at <tt>ptr</tt>. They then do the bitwise +   operation <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the +   original value stored at <tt>ptr</tt>.</p>  <h5>Examples:</h5>  <pre> @@ -6775,8 +6626,8 @@ declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* <ptr>, i64 <delta>                                  <i>; yields {i32}:result3 = FF</i>  %memval1  = load i32* %ptr      <i>; yields {i32}:memval1 = F0</i>  </pre> -</div> +</div>  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection"> @@ -6784,68 +6635,60 @@ declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* <ptr>, i64 <delta>    <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>    <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>    <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br> -  </div> +  <div class="doc_text"> +  <h5>Syntax:</h5> -<p> -  These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>, -  <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and -  <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different -  address spaces. Not all targets -  support all bit widths however.</p> -<pre> -declare i8 @llvm.atomic.load.max.i8.p0i8( i8* <ptr>, i8 <delta> ) -declare i16 @llvm.atomic.load.max.i16.p0i16( i16* <ptr>, i16 <delta> ) -declare i32 @llvm.atomic.load.max.i32.p0i32( i32* <ptr>, i32 <delta> ) -declare i64 @llvm.atomic.load.max.i64.p0i64( i64* <ptr>, i64 <delta> ) +<p>These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>, +   <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and +   <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different +   address spaces. Not all targets support all bit widths however.</p> +<pre> +  declare i8 @llvm.atomic.load.max.i8.p0i8( i8* <ptr>, i8 <delta> ) +  declare i16 @llvm.atomic.load.max.i16.p0i16( i16* <ptr>, i16 <delta> ) +  declare i32 @llvm.atomic.load.max.i32.p0i32( i32* <ptr>, i32 <delta> ) +  declare i64 @llvm.atomic.load.max.i64.p0i64( i64* <ptr>, i64 <delta> )  </pre>  <pre> -declare i8 @llvm.atomic.load.min.i8.p0i8( i8* <ptr>, i8 <delta> ) -declare i16 @llvm.atomic.load.min.i16.p0i16( i16* <ptr>, i16 <delta> ) -declare i32 @llvm.atomic.load.min.i32..p0i32( i32* <ptr>, i32 <delta> ) -declare i64 @llvm.atomic.load.min.i64..p0i64( i64* <ptr>, i64 <delta> ) - +  declare i8 @llvm.atomic.load.min.i8.p0i8( i8* <ptr>, i8 <delta> ) +  declare i16 @llvm.atomic.load.min.i16.p0i16( i16* <ptr>, i16 <delta> ) +  declare i32 @llvm.atomic.load.min.i32..p0i32( i32* <ptr>, i32 <delta> ) +  declare i64 @llvm.atomic.load.min.i64..p0i64( i64* <ptr>, i64 <delta> )  </pre>  <pre> -declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* <ptr>, i8 <delta> ) -declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* <ptr>, i16 <delta> ) -declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* <ptr>, i32 <delta> ) -declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* <ptr>, i64 <delta> ) - +  declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* <ptr>, i8 <delta> ) +  declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* <ptr>, i16 <delta> ) +  declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* <ptr>, i32 <delta> ) +  declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* <ptr>, i64 <delta> )  </pre>  <pre> -declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* <ptr>, i8 <delta> ) -declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* <ptr>, i16 <delta> ) -declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* <ptr>, i32 <delta> ) -declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* <ptr>, i64 <delta> ) - +  declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* <ptr>, i8 <delta> ) +  declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* <ptr>, i16 <delta> ) +  declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* <ptr>, i32 <delta> ) +  declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* <ptr>, i64 <delta> )  </pre> +  <h5>Overview:</h5> -<p> -  These intrinsics takes the signed or unsigned minimum or maximum of  -  <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the -  original value at <tt>ptr</tt>. -</p> +<p>These intrinsics takes the signed or unsigned minimum or maximum of  +   <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the +   original value at <tt>ptr</tt>.</p> +  <h5>Arguments:</h5> -<p> +<p>These intrinsics take two arguments, the first a pointer to an integer value +   and the second an integer value. The result is also an integer value. These +   integer types can have any bit width, but they must all have the same bit +   width. The targets may only lower integer representations they support.</p> -  These intrinsics take two arguments, the first a pointer to an integer value  -  and the second an integer value. The result is also an integer value. These  -  integer types can have any bit width, but they must all have the same bit  -  width. The targets may only lower integer representations they support. -</p>  <h5>Semantics:</h5> -<p> -  These intrinsics does a series of operations atomically. They first load the  -  value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max -  <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield -  the original value stored at <tt>ptr</tt>. -</p> +<p>These intrinsics does a series of operations atomically. They first load the +   value stored at <tt>ptr</tt>. They then do the signed or unsigned min or +   max <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They +   yield the original value stored at <tt>ptr</tt>.</p>  <h5>Examples:</h5>  <pre> @@ -6861,6 +6704,7 @@ declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* <ptr>, i64 <delta&g                                  <i>; yields {i32}:result3 = 8</i>  %memval1  = load i32* %ptr      <i>; yields {i32}:memval1 = 30</i>  </pre> +  </div>  <!-- ======================================================================= --> @@ -6869,8 +6713,10 @@ declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* <ptr>, i64 <delta&g  </div>  <div class="doc_text"> -<p> This class of intrinsics is designed to be generic and has -no specific purpose. </p> + +<p>This class of intrinsics is designed to be generic and has no specific +   purpose.</p> +  </div>  <!-- _______________________________________________________________________ --> @@ -6886,27 +6732,19 @@ no specific purpose. </p>  </pre>  <h5>Overview:</h5> - -<p> -The '<tt>llvm.var.annotation</tt>' intrinsic -</p> +<p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>  <h5>Arguments:</h5> - -<p> -The first argument is a pointer to a value, the second is a pointer to a  -global string, the third is a pointer to a global string which is the source  -file name, and the last argument is the line number. -</p> +<p>The first argument is a pointer to a value, the second is a pointer to a +   global string, the third is a pointer to a global string which is the source +   file name, and the last argument is the line number.</p>  <h5>Semantics:</h5> +<p>This intrinsic allows annotation of local variables with arbitrary strings. +   This can be useful for special purpose optimizations that want to look for +   these annotations.  These have no other defined use, they are ignored by code +   generation and optimization.</p> -<p> -This intrinsic allows annotation of local variables with arbitrary strings. -This can be useful for special purpose optimizations that want to look for these -annotations.  These have no other defined use, they are ignored by code -generation and optimization. -</p>  </div>  <!-- _______________________________________________________________________ --> @@ -6917,9 +6755,9 @@ generation and optimization.  <div class="doc_text">  <h5>Syntax:</h5> -<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on  -any integer bit width.  -</p> +<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on +   any integer bit width.</p> +  <pre>    declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32  <int> )    declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32  <int> ) @@ -6929,28 +6767,20 @@ any integer bit width.  </pre>  <h5>Overview:</h5> - -<p> -The '<tt>llvm.annotation</tt>' intrinsic. -</p> +<p>The '<tt>llvm.annotation</tt>' intrinsic.</p>  <h5>Arguments:</h5> - -<p> -The first argument is an integer value (result of some expression),  -the second is a pointer to a global string, the third is a pointer to a global  -string which is the source file name, and the last argument is the line number. -It returns the value of the first argument. -</p> +<p>The first argument is an integer value (result of some expression), the +   second is a pointer to a global string, the third is a pointer to a global +   string which is the source file name, and the last argument is the line +   number.  It returns the value of the first argument.</p>  <h5>Semantics:</h5> +<p>This intrinsic allows annotations to be put on arbitrary expressions with +   arbitrary strings.  This can be useful for special purpose optimizations that +   want to look for these annotations.  These have no other defined use, they +   are ignored by code generation and optimization.</p> -<p> -This intrinsic allows annotations to be put on arbitrary expressions -with arbitrary strings.  This can be useful for special purpose optimizations  -that want to look for these annotations.  These have no other defined use, they  -are ignored by code generation and optimization. -</p>  </div>  <!-- _______________________________________________________________________ --> @@ -6966,58 +6796,50 @@ are ignored by code generation and optimization.  </pre>  <h5>Overview:</h5> - -<p> -The '<tt>llvm.trap</tt>' intrinsic -</p> +<p>The '<tt>llvm.trap</tt>' intrinsic.</p>  <h5>Arguments:</h5> - -<p> -None -</p> +<p>None.</p>  <h5>Semantics:</h5> +<p>This intrinsics is lowered to the target dependent trap instruction. If the +   target does not have a trap instruction, this intrinsic will be lowered to +   the call of the <tt>abort()</tt> function.</p> -<p> -This intrinsics is lowered to the target dependent trap instruction. If the -target does not have a trap instruction, this intrinsic will be lowered to the -call of the abort() function. -</p>  </div>  <!-- _______________________________________________________________________ -->  <div class="doc_subsubsection">    <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>  </div> +  <div class="doc_text"> +  <h5>Syntax:</h5>  <pre> -declare void @llvm.stackprotector( i8* <guard>, i8** <slot> ) - +  declare void @llvm.stackprotector( i8* <guard>, i8** <slot> )  </pre> +  <h5>Overview:</h5> -<p> -  The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and stores -  it onto the stack at <tt>slot</tt>. The stack slot is adjusted to ensure that -  it is placed on the stack before local variables. -</p> +<p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and +   stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to +   ensure that it is placed on the stack before local variables.</p> +  <h5>Arguments:</h5> -<p> -  The <tt>llvm.stackprotector</tt> intrinsic requires two pointer arguments. The -  first argument is the value loaded from the stack guard -  <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt> that -  has enough space to hold the value of the guard. -</p> +<p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer +   arguments. The first argument is the value loaded from the stack +   guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt> +   that has enough space to hold the value of the guard.</p> +  <h5>Semantics:</h5> -<p> -  This intrinsic causes the prologue/epilogue inserter to force the position of -  the <tt>AllocaInst</tt> stack slot to be before local variables on the -  stack. This is to ensure that if a local variable on the stack is overwritten, -  it will destroy the value of the guard. When the function exits, the guard on -  the stack is checked against the original guard. If they're different, then -  the program aborts by calling the <tt>__stack_chk_fail()</tt> function. -</p> +<p>This intrinsic causes the prologue/epilogue inserter to force the position of +   the <tt>AllocaInst</tt> stack slot to be before local variables on the +   stack. This is to ensure that if a local variable on the stack is +   overwritten, it will destroy the value of the guard. When the function exits, +   the guard on the stack is checked against the original guard. If they're +   different, then the program aborts by calling the <tt>__stack_chk_fail()</tt> +   function.</p> +  </div>  <!-- *********************************************************************** --> | 

