summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--llvm/include/llvm/ADT/FunctionExtras.h274
-rw-r--r--llvm/include/llvm/Support/Compiler.h45
-rw-r--r--llvm/include/llvm/Support/PointerLikeTypeTraits.h34
-rw-r--r--llvm/unittests/ADT/CMakeLists.txt1
-rw-r--r--llvm/unittests/ADT/FunctionExtrasTest.cpp228
5 files changed, 582 insertions, 0 deletions
diff --git a/llvm/include/llvm/ADT/FunctionExtras.h b/llvm/include/llvm/ADT/FunctionExtras.h
new file mode 100644
index 00000000000..00ced71cb27
--- /dev/null
+++ b/llvm/include/llvm/ADT/FunctionExtras.h
@@ -0,0 +1,274 @@
+//===- FunctionExtras.h - Function type erasure utilities -------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file provides a collection of function (or more generally, callable)
+/// type erasure utilities supplementing those provided by the standard library
+/// in `<function>`.
+///
+/// It provides `unique_function`, which works like `std::function` but supports
+/// move-only callable objects.
+///
+/// Future plans:
+/// - Add a `function` that provides const, volatile, and ref-qualified support,
+/// which doesn't work with `std::function`.
+/// - Provide support for specifying multiple signatures to type erase callable
+/// objects with an overload set, such as those produced by generic lambdas.
+/// - Expand to include a copyable utility that directly replaces std::function
+/// but brings the above improvements.
+///
+/// Note that LLVM's utilities are greatly simplified by not supporting
+/// allocators.
+///
+/// If the standard library ever begins to provide comparable facilities we can
+/// consider switching to those.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_FUNCTION_EXTRAS_H
+#define LLVM_ADT_FUNCTION_EXTRAS_H
+
+#include "llvm/ADT/PointerIntPair.h"
+#include "llvm/ADT/PointerUnion.h"
+#include <memory>
+#include <type_traits>
+
+namespace llvm {
+
+template <typename FunctionT> class unique_function;
+
+template <typename ReturnT, typename... ParamTs>
+class unique_function<ReturnT(ParamTs...)> {
+ static constexpr int InlineStorageSize = sizeof(void *) * 3;
+
+ // Provide a type function to map parameters that won't observe extra copies
+ // or moves and which are small enough to likely pass in register to values
+ // and all other types to l-value reference types. We use this to compute the
+ // types used in our erased call utility to minimize copies and moves unless
+ // doing so would force things unnecessarily into memory.
+ //
+ // The heuristic used is related to common ABI register passing conventions.
+ // It doesn't have to be exact though, and in one way it is more strict
+ // because we want to still be able to observe either moves *or* copies.
+ template <typename T>
+ using AdjustedParamT = typename std::conditional<
+ !std::is_reference<T>::value &&
+ std::is_trivially_copy_constructible<T>::value &&
+ std::is_trivially_move_constructible<T>::value &&
+ sizeof(T) <= (2 * sizeof(void *)),
+ T, T &>::type;
+
+ // The type of the erased function pointer we use as a callback to dispatch to
+ // the stored callable when it is trivial to move and destroy.
+ using CallPtrT = ReturnT (*)(void *CallableAddr,
+ AdjustedParamT<ParamTs>... Params);
+ using MovePtrT = void (*)(void *LHSCallableAddr, void *RHSCallableAddr);
+ using DestroyPtrT = void (*)(void *CallableAddr);
+
+ /// A struct we use to aggregate three callbacks when we need full set of
+ /// operations.
+ struct NonTrivialCallbacks {
+ CallPtrT CallPtr;
+ MovePtrT MovePtr;
+ DestroyPtrT DestroyPtr;
+ };
+
+ // Now we can create a pointer union between either a direct, trivial call
+ // pointer and a pointer to a static struct of the call, move, and destroy
+ // pointers. We do this to keep the footprint in this object a single pointer
+ // while supporting all the necessary type-erased operation.
+ using CallbackPointerUnionT = PointerUnion<CallPtrT, NonTrivialCallbacks *>;
+
+ // The main storage buffer. This will either have a pointer to out-of-line
+ // storage or an inline buffer storing the callable.
+ union StorageUnionT {
+ // For out-of-line storage we keep a pointer to the underlying storage and
+ // the size. This is enough to deallocate the memory.
+ struct OutOfLineStorageT {
+ void *StoragePtr;
+ size_t Size;
+ size_t Alignment;
+ } OutOfLineStorage;
+ static_assert(
+ sizeof(OutOfLineStorageT) <= InlineStorageSize,
+ "Should always use all of the out-of-line storage for inline storage!");
+
+ // For in-line storage, we just provide an aligned character buffer. We
+ // provide three pointers worth of storage here.
+ typename std::aligned_storage<InlineStorageSize, alignof(void *)>::type
+ InlineStorage;
+ } StorageUnion;
+
+ // A compressed pointer to either our dispatching callback or our table of
+ // dispatching callbacks and the flag for whether the callable itself is
+ // stored inline or not.
+ PointerIntPair<CallbackPointerUnionT, 1, bool> CallbackAndInlineFlag;
+
+ bool isInlineStorage() const { return CallbackAndInlineFlag.getInt(); }
+
+ bool isTrivialCallback() const {
+ return CallbackAndInlineFlag.getPointer().template is<CallPtrT>();
+ }
+
+ CallPtrT getTrivialCallback() const {
+ return CallbackAndInlineFlag.getPointer().template get<CallPtrT>();
+ }
+
+ NonTrivialCallbacks *getNonTrivialCallbacks() const {
+ return CallbackAndInlineFlag.getPointer()
+ .template get<NonTrivialCallbacks *>();
+ }
+
+ void *getInlineStorage() { return &StorageUnion.InlineStorage; }
+
+ void *getOutOfLineStorage() {
+ return StorageUnion.OutOfLineStorage.StoragePtr;
+ }
+ size_t getOutOfLineStorageSize() const {
+ return StorageUnion.OutOfLineStorage.Size;
+ }
+ size_t getOutOfLineStorageAlignment() const {
+ return StorageUnion.OutOfLineStorage.Alignment;
+ }
+
+ void setOutOfLineStorage(void *Ptr, size_t Size, size_t Alignment) {
+ StorageUnion.OutOfLineStorage = {Ptr, Size, Alignment};
+ }
+
+ template <typename CallableT>
+ static ReturnT CallImpl(void *CallableAddr,
+ AdjustedParamT<ParamTs>... Params) {
+ return (*reinterpret_cast<CallableT *>(CallableAddr))(
+ std::forward<ParamTs>(Params)...);
+ }
+
+ template <typename CallableT>
+ static void MoveImpl(void *LHSCallableAddr, void *RHSCallableAddr) noexcept {
+ new (LHSCallableAddr)
+ CallableT(std::move(*reinterpret_cast<CallableT *>(RHSCallableAddr)));
+ }
+
+ template <typename CallableT>
+ static void DestroyImpl(void *CallableAddr) noexcept {
+ reinterpret_cast<CallableT *>(CallableAddr)->~CallableT();
+ }
+
+public:
+ unique_function() = default;
+ unique_function(std::nullptr_t /*null_callable*/) {}
+
+ ~unique_function() {
+ if (!CallbackAndInlineFlag.getPointer())
+ return;
+
+ // Cache this value so we don't re-check it after type-erased operations.
+ bool IsInlineStorage = isInlineStorage();
+
+ if (!isTrivialCallback())
+ getNonTrivialCallbacks()->DestroyPtr(
+ IsInlineStorage ? getInlineStorage() : getOutOfLineStorage());
+
+ if (!IsInlineStorage)
+ deallocate_buffer(getOutOfLineStorage(), getOutOfLineStorageSize(),
+ getOutOfLineStorageAlignment());
+ }
+
+ unique_function(unique_function &&RHS) noexcept {
+ // Copy the callback and inline flag.
+ CallbackAndInlineFlag = RHS.CallbackAndInlineFlag;
+
+ // If the RHS is empty, just copying the above is sufficient.
+ if (!RHS)
+ return;
+
+ if (!isInlineStorage()) {
+ // The out-of-line case is easiest to move.
+ StorageUnion.OutOfLineStorage = RHS.StorageUnion.OutOfLineStorage;
+ } else if (isTrivialCallback()) {
+ // Move is trivial, just memcpy the bytes across.
+ memcpy(getInlineStorage(), RHS.getInlineStorage(), InlineStorageSize);
+ } else {
+ // Non-trivial move, so dispatch to a type-erased implementation.
+ getNonTrivialCallbacks()->MovePtr(getInlineStorage(),
+ RHS.getInlineStorage());
+ }
+
+ // Clear the old callback and inline flag to get back to as-if-null.
+ RHS.CallbackAndInlineFlag = {};
+
+#ifndef NDEBUG
+ // In debug builds, we also scribble across the rest of the storage.
+ memset(RHS.getInlineStorage(), 0xAD, InlineStorageSize);
+#endif
+ }
+
+ unique_function &operator=(unique_function &&RHS) noexcept {
+ if (this == &RHS)
+ return *this;
+
+ // Because we don't try to provide any exception safety guarantees we can
+ // implement move assignment very simply by first destroying the current
+ // object and then move-constructing over top of it.
+ this->~unique_function();
+ new (this) unique_function(std::move(RHS));
+ return *this;
+ }
+
+ template <typename CallableT> unique_function(CallableT Callable) {
+ bool IsInlineStorage = true;
+ void *CallableAddr = getInlineStorage();
+ if (sizeof(CallableT) > InlineStorageSize ||
+ alignof(CallableT) > alignof(decltype(StorageUnion.InlineStorage))) {
+ IsInlineStorage = false;
+ // Allocate out-of-line storage. FIXME: Use an explicit alignment
+ // parameter in C++17 mode.
+ auto Size = sizeof(CallableT);
+ auto Alignment = alignof(CallableT);
+ CallableAddr = allocate_buffer(Size, Alignment);
+ setOutOfLineStorage(CallableAddr, Size, Alignment);
+ }
+
+ // Now move into the storage.
+ new (CallableAddr) CallableT(std::move(Callable));
+
+ // See if we can create a trivial callback.
+ // FIXME: we should use constexpr if here and below to avoid instantiating
+ // the non-trivial static objects when unnecessary. While the linker should
+ // remove them, it is still wasteful.
+ if (std::is_trivially_move_constructible<CallableT>::value &&
+ std::is_trivially_destructible<CallableT>::value) {
+ CallbackAndInlineFlag = {&CallImpl<CallableT>, IsInlineStorage};
+ return;
+ }
+
+ // Otherwise, we need to point at an object with a vtable that contains all
+ // the different type erased behaviors needed. Create a static instance of
+ // the derived type here and then use a pointer to that.
+ static NonTrivialCallbacks Callbacks = {
+ &CallImpl<CallableT>, &MoveImpl<CallableT>, &DestroyImpl<CallableT>};
+
+ CallbackAndInlineFlag = {&Callbacks, IsInlineStorage};
+ }
+
+ ReturnT operator()(ParamTs... Params) {
+ void *CallableAddr =
+ isInlineStorage() ? getInlineStorage() : getOutOfLineStorage();
+
+ return (isTrivialCallback()
+ ? getTrivialCallback()
+ : getNonTrivialCallbacks()->CallPtr)(CallableAddr, Params...);
+ }
+
+ explicit operator bool() const {
+ return (bool)CallbackAndInlineFlag.getPointer();
+ }
+};
+
+} // end namespace llvm
+
+#endif // LLVM_ADT_FUNCTION_H
diff --git a/llvm/include/llvm/Support/Compiler.h b/llvm/include/llvm/Support/Compiler.h
index 2627044c182..4de815fe61d 100644
--- a/llvm/include/llvm/Support/Compiler.h
+++ b/llvm/include/llvm/Support/Compiler.h
@@ -17,6 +17,9 @@
#include "llvm/Config/llvm-config.h"
+#include <new>
+#include <stddef.h>
+
#if defined(_MSC_VER)
#include <sal.h>
#endif
@@ -503,4 +506,46 @@ void AnnotateIgnoreWritesEnd(const char *file, int line);
#define LLVM_ENABLE_EXCEPTIONS 1
#endif
+namespace llvm {
+
+/// Allocate a buffer of memory with the given size and alignment.
+///
+/// When the compiler supports aligned operator new, this will use it to to
+/// handle even over-aligned allocations.
+///
+/// However, this doesn't make any attempt to leverage the fancier techniques
+/// like posix_memalign due to portability. It is mostly intended to allow
+/// compatibility with platforms that, after aligned allocation was added, use
+/// reduced default alignment.
+inline void *allocate_buffer(size_t Size, size_t Alignment) {
+ return ::operator new(Size
+#if __cpp_aligned_new
+ ,
+ std::align_val_t(Alignment)
+#endif
+ );
+}
+
+/// Deallocate a buffer of memory with the given size and alignment.
+///
+/// If supported, this will used the sized delete operator. Also if supported,
+/// this will pass the alignment to the delete operator.
+///
+/// The pointer must have been allocated with the corresponding new operator,
+/// most likely using the above helper.
+inline void deallocate_buffer(void *Ptr, size_t Size, size_t Alignment) {
+ ::operator delete(Ptr
+#if __cpp_sized_deallocation
+ ,
+ Size
+#endif
+#if __cpp_aligned_new
+ ,
+ std::align_val_t(Alignment)
+#endif
+ );
+}
+
+} // End namespace llvm
+
#endif
diff --git a/llvm/include/llvm/Support/PointerLikeTypeTraits.h b/llvm/include/llvm/Support/PointerLikeTypeTraits.h
index 794230d606a..1710b57131d 100644
--- a/llvm/include/llvm/Support/PointerLikeTypeTraits.h
+++ b/llvm/include/llvm/Support/PointerLikeTypeTraits.h
@@ -16,6 +16,7 @@
#define LLVM_SUPPORT_POINTERLIKETYPETRAITS_H
#include "llvm/Support/DataTypes.h"
+#include <assert.h>
#include <type_traits>
namespace llvm {
@@ -111,6 +112,39 @@ template <> struct PointerLikeTypeTraits<uintptr_t> {
enum { NumLowBitsAvailable = 0 };
};
+/// Provide suitable custom traits struct for function pointers.
+///
+/// Function pointers can't be directly given these traits as functions can't
+/// have their alignment computed with `alignof` and we need different casting.
+///
+/// To rely on higher alignment for a specialized use, you can provide a
+/// customized form of this template explicitly with higher alignment, and
+/// potentially use alignment attributes on functions to satisfy that.
+template <int Alignment, typename FunctionPointerT>
+struct FunctionPointerLikeTypeTraits {
+ enum { NumLowBitsAvailable = detail::ConstantLog2<Alignment>::value };
+ static inline void *getAsVoidPointer(FunctionPointerT P) {
+ assert((reinterpret_cast<uintptr_t>(P) &
+ ~((uintptr_t)-1 << NumLowBitsAvailable)) == 0 &&
+ "Alignment not satisfied for an actual function pointer!");
+ return reinterpret_cast<void *>(P);
+ }
+ static inline FunctionPointerT getFromVoidPointer(void *P) {
+ return reinterpret_cast<FunctionPointerT>(P);
+ }
+};
+
+/// Provide a default specialization for function pointers that assumes 4-byte
+/// alignment.
+///
+/// We assume here that functions used with this are always at least 4-byte
+/// aligned. This means that, for example, thumb functions won't work or systems
+/// with weird unaligned function pointers won't work. But all practical systems
+/// we support satisfy this requirement.
+template <typename ReturnT, typename... ParamTs>
+struct PointerLikeTypeTraits<ReturnT (*)(ParamTs...)>
+ : FunctionPointerLikeTypeTraits<4, ReturnT (*)(ParamTs...)> {};
+
} // end namespace llvm
#endif
diff --git a/llvm/unittests/ADT/CMakeLists.txt b/llvm/unittests/ADT/CMakeLists.txt
index 905d9b63399..05c9df9deb4 100644
--- a/llvm/unittests/ADT/CMakeLists.txt
+++ b/llvm/unittests/ADT/CMakeLists.txt
@@ -18,6 +18,7 @@ add_llvm_unittest(ADTTests
DepthFirstIteratorTest.cpp
EquivalenceClassesTest.cpp
FoldingSet.cpp
+ FunctionExtrasTest.cpp
FunctionRefTest.cpp
HashingTest.cpp
IListBaseTest.cpp
diff --git a/llvm/unittests/ADT/FunctionExtrasTest.cpp b/llvm/unittests/ADT/FunctionExtrasTest.cpp
new file mode 100644
index 00000000000..d85962e0f77
--- /dev/null
+++ b/llvm/unittests/ADT/FunctionExtrasTest.cpp
@@ -0,0 +1,228 @@
+//===- FunctionExtrasTest.cpp - Unit tests for function type erasure ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/FunctionExtras.h"
+#include "gtest/gtest.h"
+
+#include <memory>
+
+using namespace llvm;
+
+namespace {
+
+TEST(UniqueFunctionTest, Basic) {
+ unique_function<int(int, int)> Sum = [](int A, int B) { return A + B; };
+ EXPECT_EQ(Sum(1, 2), 3);
+
+ unique_function<int(int, int)> Sum2 = std::move(Sum);
+ EXPECT_EQ(Sum2(1, 2), 3);
+
+ unique_function<int(int, int)> Sum3 = [](int A, int B) { return A + B; };
+ Sum2 = std::move(Sum3);
+ EXPECT_EQ(Sum2(1, 2), 3);
+
+ Sum2 = unique_function<int(int, int)>([](int A, int B) { return A + B; });
+ EXPECT_EQ(Sum2(1, 2), 3);
+
+ // Explicit self-move test.
+ *&Sum2 = std::move(Sum2);
+ EXPECT_EQ(Sum2(1, 2), 3);
+
+ Sum2 = unique_function<int(int, int)>();
+ EXPECT_FALSE(Sum2);
+
+ // Make sure we can forward through l-value reference parameters.
+ unique_function<void(int &)> Inc = [](int &X) { ++X; };
+ int X = 42;
+ Inc(X);
+ EXPECT_EQ(X, 43);
+
+ // Make sure we can forward through r-value reference parameters with
+ // move-only types.
+ unique_function<int(std::unique_ptr<int> &&)> ReadAndDeallocByRef =
+ [](std::unique_ptr<int> &&Ptr) {
+ int V = *Ptr;
+ Ptr.reset();
+ return V;
+ };
+ std::unique_ptr<int> Ptr{new int(13)};
+ EXPECT_EQ(ReadAndDeallocByRef(std::move(Ptr)), 13);
+ EXPECT_FALSE((bool)Ptr);
+
+ // Make sure we can pass a move-only temporary as opposed to a local variable.
+ EXPECT_EQ(ReadAndDeallocByRef(std::unique_ptr<int>(new int(42))), 42);
+
+ // Make sure we can pass a move-only type by-value.
+ unique_function<int(std::unique_ptr<int>)> ReadAndDeallocByVal =
+ [](std::unique_ptr<int> Ptr) {
+ int V = *Ptr;
+ Ptr.reset();
+ return V;
+ };
+ Ptr.reset(new int(13));
+ EXPECT_EQ(ReadAndDeallocByVal(std::move(Ptr)), 13);
+ EXPECT_FALSE((bool)Ptr);
+
+ EXPECT_EQ(ReadAndDeallocByVal(std::unique_ptr<int>(new int(42))), 42);
+}
+
+TEST(UniqueFunctionTest, Captures) {
+ long A = 1, B = 2, C = 3, D = 4, E = 5;
+
+ unique_function<long()> Tmp;
+
+ unique_function<long()> C1 = [A]() { return A; };
+ EXPECT_EQ(C1(), 1);
+ Tmp = std::move(C1);
+ EXPECT_EQ(Tmp(), 1);
+
+ unique_function<long()> C2 = [A, B]() { return A + B; };
+ EXPECT_EQ(C2(), 3);
+ Tmp = std::move(C2);
+ EXPECT_EQ(Tmp(), 3);
+
+ unique_function<long()> C3 = [A, B, C]() { return A + B + C; };
+ EXPECT_EQ(C3(), 6);
+ Tmp = std::move(C3);
+ EXPECT_EQ(Tmp(), 6);
+
+ unique_function<long()> C4 = [A, B, C, D]() { return A + B + C + D; };
+ EXPECT_EQ(C4(), 10);
+ Tmp = std::move(C4);
+ EXPECT_EQ(Tmp(), 10);
+
+ unique_function<long()> C5 = [A, B, C, D, E]() { return A + B + C + D + E; };
+ EXPECT_EQ(C5(), 15);
+ Tmp = std::move(C5);
+ EXPECT_EQ(Tmp(), 15);
+}
+
+TEST(UniqueFunctionTest, MoveOnly) {
+ struct SmallCallable {
+ std::unique_ptr<int> A{new int(1)};
+
+ int operator()(int B) { return *A + B; }
+ };
+ unique_function<int(int)> Small = SmallCallable();
+ EXPECT_EQ(Small(2), 3);
+ unique_function<int(int)> Small2 = std::move(Small);
+ EXPECT_EQ(Small2(2), 3);
+
+ struct LargeCallable {
+ std::unique_ptr<int> A{new int(1)};
+ std::unique_ptr<int> B{new int(2)};
+ std::unique_ptr<int> C{new int(3)};
+ std::unique_ptr<int> D{new int(4)};
+ std::unique_ptr<int> E{new int(5)};
+
+ int operator()() { return *A + *B + *C + *D + *E; }
+ };
+ unique_function<int()> Large = LargeCallable();
+ EXPECT_EQ(Large(), 15);
+ unique_function<int()> Large2 = std::move(Large);
+ EXPECT_EQ(Large2(), 15);
+}
+
+TEST(UniqueFunctionTest, CountForwardingCopies) {
+ struct CopyCounter {
+ int &CopyCount;
+
+ CopyCounter(int &CopyCount) : CopyCount(CopyCount) {}
+ CopyCounter(const CopyCounter &Arg) : CopyCount(Arg.CopyCount) {
+ ++CopyCount;
+ }
+ };
+
+ unique_function<void(CopyCounter)> ByValF = [](CopyCounter) {};
+ int CopyCount = 0;
+ ByValF(CopyCounter(CopyCount));
+ EXPECT_EQ(1, CopyCount);
+
+ CopyCount = 0;
+ {
+ CopyCounter Counter{CopyCount};
+ ByValF(Counter);
+ }
+ EXPECT_EQ(2, CopyCount);
+
+ // Check that we don't generate a copy at all when we can bind a reference all
+ // the way down, even if that reference could *in theory* allow copies.
+ unique_function<void(const CopyCounter &)> ByRefF = [](const CopyCounter &) {
+ };
+ CopyCount = 0;
+ ByRefF(CopyCounter(CopyCount));
+ EXPECT_EQ(0, CopyCount);
+
+ CopyCount = 0;
+ {
+ CopyCounter Counter{CopyCount};
+ ByRefF(Counter);
+ }
+ EXPECT_EQ(0, CopyCount);
+
+ // If we use a reference, we can make a stronger guarantee that *no* copy
+ // occurs.
+ struct Uncopyable {
+ Uncopyable() = default;
+ Uncopyable(const Uncopyable &) = delete;
+ };
+ unique_function<void(const Uncopyable &)> UncopyableF =
+ [](const Uncopyable &) {};
+ UncopyableF(Uncopyable());
+ Uncopyable X;
+ UncopyableF(X);
+}
+
+TEST(UniqueFunctionTest, CountForwardingMoves) {
+ struct MoveCounter {
+ int &MoveCount;
+
+ MoveCounter(int &MoveCount) : MoveCount(MoveCount) {}
+ MoveCounter(MoveCounter &&Arg) : MoveCount(Arg.MoveCount) { ++MoveCount; }
+ };
+
+ unique_function<void(MoveCounter)> ByValF = [](MoveCounter) {};
+ int MoveCount = 0;
+ ByValF(MoveCounter(MoveCount));
+ EXPECT_EQ(1, MoveCount);
+
+ MoveCount = 0;
+ {
+ MoveCounter Counter{MoveCount};
+ ByValF(std::move(Counter));
+ }
+ EXPECT_EQ(2, MoveCount);
+
+ // Check that when we use an r-value reference we get no spurious copies.
+ unique_function<void(MoveCounter &&)> ByRefF = [](MoveCounter &&) {};
+ MoveCount = 0;
+ ByRefF(MoveCounter(MoveCount));
+ EXPECT_EQ(0, MoveCount);
+
+ MoveCount = 0;
+ {
+ MoveCounter Counter{MoveCount};
+ ByRefF(std::move(Counter));
+ }
+ EXPECT_EQ(0, MoveCount);
+
+ // If we use an r-value reference we can in fact make a stronger guarantee
+ // with an unmovable type.
+ struct Unmovable {
+ Unmovable() = default;
+ Unmovable(Unmovable &&) = delete;
+ };
+ unique_function<void(const Unmovable &)> UnmovableF = [](const Unmovable &) {
+ };
+ UnmovableF(Unmovable());
+ Unmovable X;
+ UnmovableF(X);
+}
+
+} // anonymous namespace
OpenPOWER on IntegriCloud