summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--llvm/include/llvm/Analysis/MemoryDependenceAnalysis.h26
-rw-r--r--llvm/lib/Analysis/MemoryDependenceAnalysis.cpp337
-rw-r--r--llvm/lib/Transforms/Scalar/GVN.cpp39
-rw-r--r--llvm/test/Transforms/GVN/rle.ll51
4 files changed, 108 insertions, 345 deletions
diff --git a/llvm/include/llvm/Analysis/MemoryDependenceAnalysis.h b/llvm/include/llvm/Analysis/MemoryDependenceAnalysis.h
index b55be29d2eb..b46563b475e 100644
--- a/llvm/include/llvm/Analysis/MemoryDependenceAnalysis.h
+++ b/llvm/include/llvm/Analysis/MemoryDependenceAnalysis.h
@@ -31,6 +31,7 @@ namespace llvm {
class MemoryDependenceAnalysis;
class PredIteratorCache;
class DominatorTree;
+ class PHITransAddr;
/// MemDepResult - A memory dependence query can return one of three different
/// answers, described below.
@@ -245,29 +246,6 @@ namespace llvm {
BasicBlock *BB,
SmallVectorImpl<NonLocalDepEntry> &Result);
- /// GetPHITranslatedValue - Find an available version of the specified value
- /// PHI translated across the specified edge. If MemDep isn't able to
- /// satisfy this request, it returns null.
- Value *GetPHITranslatedValue(Value *V,
- BasicBlock *CurBB, BasicBlock *PredBB,
- const TargetData *TD) const;
-
- /// GetAvailablePHITranslatedValue - Return the value computed by
- /// PHITranslatePointer if it dominates PredBB, otherwise return null.
- Value *GetAvailablePHITranslatedValue(Value *V,
- BasicBlock *CurBB, BasicBlock *PredBB,
- const TargetData *TD,
- const DominatorTree &DT) const;
-
- /// InsertPHITranslatedPointer - Insert a computation of the PHI translated
- /// version of 'V' for the edge PredBB->CurBB into the end of the PredBB
- /// block. All newly created instructions are added to the NewInsts list.
- Value *InsertPHITranslatedPointer(Value *V,
- BasicBlock *CurBB, BasicBlock *PredBB,
- const TargetData *TD,
- const DominatorTree &DT,
- SmallVectorImpl<Instruction*> &NewInsts) const;
-
/// removeInstruction - Remove an instruction from the dependence analysis,
/// updating the dependence of instructions that previously depended on it.
void removeInstruction(Instruction *InstToRemove);
@@ -288,7 +266,7 @@ namespace llvm {
MemDepResult getCallSiteDependencyFrom(CallSite C, bool isReadOnlyCall,
BasicBlock::iterator ScanIt,
BasicBlock *BB);
- bool getNonLocalPointerDepFromBB(Value *Pointer, uint64_t Size,
+ bool getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, uint64_t Size,
bool isLoad, BasicBlock *BB,
SmallVectorImpl<NonLocalDepEntry> &Result,
DenseMap<BasicBlock*, Value*> &Visited,
diff --git a/llvm/lib/Analysis/MemoryDependenceAnalysis.cpp b/llvm/lib/Analysis/MemoryDependenceAnalysis.cpp
index ccd8d8c8aee..44487f2ff98 100644
--- a/llvm/lib/Analysis/MemoryDependenceAnalysis.cpp
+++ b/llvm/lib/Analysis/MemoryDependenceAnalysis.cpp
@@ -23,6 +23,7 @@
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Analysis/PHITransAddr.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/PredIteratorCache.h"
@@ -587,12 +588,14 @@ getNonLocalPointerDependency(Value *Pointer, bool isLoad, BasicBlock *FromBB,
const Type *EltTy = cast<PointerType>(Pointer->getType())->getElementType();
uint64_t PointeeSize = AA->getTypeStoreSize(EltTy);
+ PHITransAddr Address(Pointer, TD);
+
// This is the set of blocks we've inspected, and the pointer we consider in
// each block. Because of critical edges, we currently bail out if querying
// a block with multiple different pointers. This can happen during PHI
// translation.
DenseMap<BasicBlock*, Value*> Visited;
- if (!getNonLocalPointerDepFromBB(Pointer, PointeeSize, isLoad, FromBB,
+ if (!getNonLocalPointerDepFromBB(Address, PointeeSize, isLoad, FromBB,
Result, Visited, true))
return;
Result.clear();
@@ -707,275 +710,6 @@ SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
}
}
-/// isPHITranslatable - Return true if the specified computation is derived from
-/// a PHI node in the current block and if it is simple enough for us to handle.
-static bool isPHITranslatable(Instruction *Inst) {
- if (isa<PHINode>(Inst))
- return true;
-
- // We can handle bitcast of a PHI, but the PHI needs to be in the same block
- // as the bitcast.
- if (BitCastInst *BC = dyn_cast<BitCastInst>(Inst)) {
- Instruction *OpI = dyn_cast<Instruction>(BC->getOperand(0));
- if (OpI == 0 || OpI->getParent() != Inst->getParent())
- return true;
- return isPHITranslatable(OpI);
- }
-
- // We can translate a GEP if all of its operands defined in this block are phi
- // translatable.
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
- for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
- Instruction *OpI = dyn_cast<Instruction>(GEP->getOperand(i));
- if (OpI == 0 || OpI->getParent() != Inst->getParent())
- continue;
-
- if (!isPHITranslatable(OpI))
- return false;
- }
- return true;
- }
-
- if (Inst->getOpcode() == Instruction::Add &&
- isa<ConstantInt>(Inst->getOperand(1))) {
- Instruction *OpI = dyn_cast<Instruction>(Inst->getOperand(0));
- if (OpI == 0 || OpI->getParent() != Inst->getParent())
- return true;
- return isPHITranslatable(OpI);
- }
-
- // cerr << "MEMDEP: Could not PHI translate: " << *Pointer;
- // if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst))
- // cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0);
-
- return false;
-}
-
-/// GetPHITranslatedValue - Given a computation that satisfied the
-/// isPHITranslatable predicate, see if we can translate the computation into
-/// the specified predecessor block. If so, return that value.
-Value *MemoryDependenceAnalysis::
-GetPHITranslatedValue(Value *InVal, BasicBlock *CurBB, BasicBlock *Pred,
- const TargetData *TD) const {
- // If the input value is not an instruction, or if it is not defined in CurBB,
- // then we don't need to phi translate it.
- Instruction *Inst = dyn_cast<Instruction>(InVal);
- if (Inst == 0 || Inst->getParent() != CurBB)
- return InVal;
-
- if (PHINode *PN = dyn_cast<PHINode>(Inst))
- return PN->getIncomingValueForBlock(Pred);
-
- // Handle bitcast of PHI.
- if (BitCastInst *BC = dyn_cast<BitCastInst>(Inst)) {
- // PHI translate the input operand.
- Value *PHIIn = GetPHITranslatedValue(BC->getOperand(0), CurBB, Pred, TD);
- if (PHIIn == 0) return 0;
-
- // Constants are trivial to phi translate.
- if (Constant *C = dyn_cast<Constant>(PHIIn))
- return ConstantExpr::getBitCast(C, BC->getType());
-
- // Otherwise we have to see if a bitcasted version of the incoming pointer
- // is available. If so, we can use it, otherwise we have to fail.
- for (Value::use_iterator UI = PHIIn->use_begin(), E = PHIIn->use_end();
- UI != E; ++UI) {
- if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI))
- if (BCI->getType() == BC->getType())
- return BCI;
- }
- return 0;
- }
-
- // Handle getelementptr with at least one PHI translatable operand.
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
- SmallVector<Value*, 8> GEPOps;
- BasicBlock *CurBB = GEP->getParent();
- for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
- Value *GEPOp = GEP->getOperand(i);
- // No PHI translation is needed of operands whose values are live in to
- // the predecessor block.
- if (!isa<Instruction>(GEPOp) ||
- cast<Instruction>(GEPOp)->getParent() != CurBB) {
- GEPOps.push_back(GEPOp);
- continue;
- }
-
- // If the operand is a phi node, do phi translation.
- Value *InOp = GetPHITranslatedValue(GEPOp, CurBB, Pred, TD);
- if (InOp == 0) return 0;
-
- GEPOps.push_back(InOp);
- }
-
- // Simplify the GEP to handle 'gep x, 0' -> x etc.
- if (Value *V = SimplifyGEPInst(&GEPOps[0], GEPOps.size(), TD))
- return V;
-
- // Scan to see if we have this GEP available.
- Value *APHIOp = GEPOps[0];
- for (Value::use_iterator UI = APHIOp->use_begin(), E = APHIOp->use_end();
- UI != E; ++UI) {
- if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI))
- if (GEPI->getType() == GEP->getType() &&
- GEPI->getNumOperands() == GEPOps.size() &&
- GEPI->getParent()->getParent() == CurBB->getParent()) {
- bool Mismatch = false;
- for (unsigned i = 0, e = GEPOps.size(); i != e; ++i)
- if (GEPI->getOperand(i) != GEPOps[i]) {
- Mismatch = true;
- break;
- }
- if (!Mismatch)
- return GEPI;
- }
- }
- return 0;
- }
-
- // Handle add with a constant RHS.
- if (Inst->getOpcode() == Instruction::Add &&
- isa<ConstantInt>(Inst->getOperand(1))) {
- // PHI translate the LHS.
- Value *LHS;
- Constant *RHS = cast<ConstantInt>(Inst->getOperand(1));
- Instruction *OpI = dyn_cast<Instruction>(Inst->getOperand(0));
- bool isNSW = cast<BinaryOperator>(Inst)->hasNoSignedWrap();
- bool isNUW = cast<BinaryOperator>(Inst)->hasNoUnsignedWrap();
-
- if (OpI == 0 || OpI->getParent() != Inst->getParent())
- LHS = Inst->getOperand(0);
- else {
- LHS = GetPHITranslatedValue(Inst->getOperand(0), CurBB, Pred, TD);
- if (LHS == 0)
- return 0;
- }
-
- // If the PHI translated LHS is an add of a constant, fold the immediates.
- if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(LHS))
- if (BOp->getOpcode() == Instruction::Add)
- if (ConstantInt *CI = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
- LHS = BOp->getOperand(0);
- RHS = ConstantExpr::getAdd(RHS, CI);
- isNSW = isNUW = false;
- }
-
- // See if the add simplifies away.
- if (Value *Res = SimplifyAddInst(LHS, RHS, isNSW, isNUW, TD))
- return Res;
-
- // Otherwise, see if we have this add available somewhere.
- for (Value::use_iterator UI = LHS->use_begin(), E = LHS->use_end();
- UI != E; ++UI) {
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(*UI))
- if (BO->getOperand(0) == LHS && BO->getOperand(1) == RHS &&
- BO->getParent()->getParent() == CurBB->getParent())
- return BO;
- }
-
- return 0;
- }
-
- return 0;
-}
-
-/// GetAvailablePHITranslatePointer - Return the value computed by
-/// PHITranslatePointer if it dominates PredBB, otherwise return null.
-Value *MemoryDependenceAnalysis::
-GetAvailablePHITranslatedValue(Value *V,
- BasicBlock *CurBB, BasicBlock *PredBB,
- const TargetData *TD,
- const DominatorTree &DT) const {
- // See if PHI translation succeeds.
- V = GetPHITranslatedValue(V, CurBB, PredBB, TD);
- if (V == 0) return 0;
-
- // Make sure the value is live in the predecessor.
- if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
- if (!DT.dominates(Inst->getParent(), PredBB))
- return 0;
- return V;
-}
-
-
-/// InsertPHITranslatedPointer - Insert a computation of the PHI translated
-/// version of 'V' for the edge PredBB->CurBB into the end of the PredBB
-/// block. All newly created instructions are added to the NewInsts list.
-///
-Value *MemoryDependenceAnalysis::
-InsertPHITranslatedPointer(Value *InVal, BasicBlock *CurBB,
- BasicBlock *PredBB, const TargetData *TD,
- const DominatorTree &DT,
- SmallVectorImpl<Instruction*> &NewInsts) const {
- // See if we have a version of this value already available and dominating
- // PredBB. If so, there is no need to insert a new copy.
- if (Value *Res = GetAvailablePHITranslatedValue(InVal, CurBB, PredBB, TD, DT))
- return Res;
-
- // If we don't have an available version of this value, it must be an
- // instruction.
- Instruction *Inst = cast<Instruction>(InVal);
-
- // Handle bitcast of PHI translatable value.
- if (BitCastInst *BC = dyn_cast<BitCastInst>(Inst)) {
- Value *OpVal = InsertPHITranslatedPointer(BC->getOperand(0),
- CurBB, PredBB, TD, DT, NewInsts);
- if (OpVal == 0) return 0;
-
- // Otherwise insert a bitcast at the end of PredBB.
- BitCastInst *New = new BitCastInst(OpVal, InVal->getType(),
- InVal->getName()+".phi.trans.insert",
- PredBB->getTerminator());
- NewInsts.push_back(New);
- return New;
- }
-
- // Handle getelementptr with at least one PHI operand.
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
- SmallVector<Value*, 8> GEPOps;
- BasicBlock *CurBB = GEP->getParent();
- for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
- Value *OpVal = InsertPHITranslatedPointer(GEP->getOperand(i),
- CurBB, PredBB, TD, DT, NewInsts);
- if (OpVal == 0) return 0;
- GEPOps.push_back(OpVal);
- }
-
- GetElementPtrInst *Result =
- GetElementPtrInst::Create(GEPOps[0], GEPOps.begin()+1, GEPOps.end(),
- InVal->getName()+".phi.trans.insert",
- PredBB->getTerminator());
- Result->setIsInBounds(GEP->isInBounds());
- NewInsts.push_back(Result);
- return Result;
- }
-
-#if 0
- // FIXME: This code works, but it is unclear that we actually want to insert
- // a big chain of computation in order to make a value available in a block.
- // This needs to be evaluated carefully to consider its cost trade offs.
-
- // Handle add with a constant RHS.
- if (Inst->getOpcode() == Instruction::Add &&
- isa<ConstantInt>(Inst->getOperand(1))) {
- // PHI translate the LHS.
- Value *OpVal = InsertPHITranslatedPointer(Inst->getOperand(0),
- CurBB, PredBB, TD, DT, NewInsts);
- if (OpVal == 0) return 0;
-
- BinaryOperator *Res = BinaryOperator::CreateAdd(OpVal, Inst->getOperand(1),
- InVal->getName()+".phi.trans.insert",
- PredBB->getTerminator());
- Res->setHasNoSignedWrap(cast<BinaryOperator>(Inst)->hasNoSignedWrap());
- Res->setHasNoUnsignedWrap(cast<BinaryOperator>(Inst)->hasNoUnsignedWrap());
- NewInsts.push_back(Res);
- return Res;
- }
-#endif
-
- return 0;
-}
-
/// getNonLocalPointerDepFromBB - Perform a dependency query based on
/// pointer/pointeesize starting at the end of StartBB. Add any clobber/def
/// results to the results vector and keep track of which blocks are visited in
@@ -989,14 +723,14 @@ InsertPHITranslatedPointer(Value *InVal, BasicBlock *CurBB,
/// not compute dependence information for some reason. This should be treated
/// as a clobber dependence on the first instruction in the predecessor block.
bool MemoryDependenceAnalysis::
-getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
+getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, uint64_t PointeeSize,
bool isLoad, BasicBlock *StartBB,
SmallVectorImpl<NonLocalDepEntry> &Result,
DenseMap<BasicBlock*, Value*> &Visited,
bool SkipFirstBlock) {
// Look up the cached info for Pointer.
- ValueIsLoadPair CacheKey(Pointer, isLoad);
+ ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
std::pair<BBSkipFirstBlockPair, NonLocalDepInfo> *CacheInfo =
&NonLocalPointerDeps[CacheKey];
@@ -1014,7 +748,8 @@ getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
I != E; ++I) {
DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->first);
- if (VI == Visited.end() || VI->second == Pointer) continue;
+ if (VI == Visited.end() || VI->second == Pointer.getAddr())
+ continue;
// We have a pointer mismatch in a block. Just return clobber, saying
// that something was clobbered in this result. We could also do a
@@ -1025,7 +760,7 @@ getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
I != E; ++I) {
- Visited.insert(std::make_pair(I->first, Pointer));
+ Visited.insert(std::make_pair(I->first, Pointer.getAddr()));
if (!I->second.isNonLocal())
Result.push_back(*I);
}
@@ -1065,8 +800,9 @@ getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
// Get the dependency info for Pointer in BB. If we have cached
// information, we will use it, otherwise we compute it.
DEBUG(AssertSorted(*Cache, NumSortedEntries));
- MemDepResult Dep = GetNonLocalInfoForBlock(Pointer, PointeeSize, isLoad,
- BB, Cache, NumSortedEntries);
+ MemDepResult Dep = GetNonLocalInfoForBlock(Pointer.getAddr(), PointeeSize,
+ isLoad, BB, Cache,
+ NumSortedEntries);
// If we got a Def or Clobber, add this to the list of results.
if (!Dep.isNonLocal()) {
@@ -1077,18 +813,14 @@ getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
// If 'Pointer' is an instruction defined in this block, then we need to do
// phi translation to change it into a value live in the predecessor block.
- // If phi translation fails, then we can't continue dependence analysis.
- Instruction *PtrInst = dyn_cast<Instruction>(Pointer);
- bool NeedsPHITranslation = PtrInst && PtrInst->getParent() == BB;
-
- // If no PHI translation is needed, just add all the predecessors of this
- // block to scan them as well.
- if (!NeedsPHITranslation) {
+ // If not, we just add the predecessors to the worklist and scan them with
+ // the same Pointer.
+ if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
SkipFirstBlock = false;
for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
// Verify that we haven't looked at this block yet.
std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
- InsertRes = Visited.insert(std::make_pair(*PI, Pointer));
+ InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr()));
if (InsertRes.second) {
// First time we've looked at *PI.
Worklist.push_back(*PI);
@@ -1098,16 +830,17 @@ getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
// If we have seen this block before, but it was with a different
// pointer then we have a phi translation failure and we have to treat
// this as a clobber.
- if (InsertRes.first->second != Pointer)
+ if (InsertRes.first->second != Pointer.getAddr())
goto PredTranslationFailure;
}
continue;
}
- // If we do need to do phi translation, then there are a bunch of different
- // cases, because we have to find a Value* live in the predecessor block. We
- // know that PtrInst is defined in this block at least.
-
+ // We do need to do phi translation, if we know ahead of time we can't phi
+ // translate this value, don't even try.
+ if (!Pointer.IsPotentiallyPHITranslatable())
+ goto PredTranslationFailure;
+
// We may have added values to the cache list before this PHI translation.
// If so, we haven't done anything to ensure that the cache remains sorted.
// Sort it now (if needed) so that recursive invocations of
@@ -1117,19 +850,17 @@ getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
NumSortedEntries = Cache->size();
}
-
- // If this is a computation derived from a PHI node, use the suitably
- // translated incoming values for each pred as the phi translated version.
- if (!isPHITranslatable(PtrInst))
- goto PredTranslationFailure;
-
Cache = 0;
-
+
for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
BasicBlock *Pred = *PI;
- // Get the PHI translated pointer in this predecessor. This can fail and
- // return null if not translatable.
- Value *PredPtr = GetPHITranslatedValue(PtrInst, BB, Pred, TD);
+
+ // Get the PHI translated pointer in this predecessor. This can fail if
+ // not translatable, in which case the getAddr() returns null.
+ PHITransAddr PredPointer(Pointer);
+ PredPointer.PHITranslateValue(BB, Pred);
+
+ Value *PredPtrVal = PredPointer.getAddr();
// Check to see if we have already visited this pred block with another
// pointer. If so, we can't do this lookup. This failure can occur
@@ -1137,12 +868,12 @@ getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
// the successor translates to a pointer value different than the
// pointer the block was first analyzed with.
std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
- InsertRes = Visited.insert(std::make_pair(Pred, PredPtr));
+ InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal));
if (!InsertRes.second) {
// If the predecessor was visited with PredPtr, then we already did
// the analysis and can ignore it.
- if (InsertRes.first->second == PredPtr)
+ if (InsertRes.first->second == PredPtrVal)
continue;
// Otherwise, the block was previously analyzed with a different
@@ -1155,7 +886,7 @@ getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
// predecessor, then we have to assume that the pointer is clobbered in
// that predecessor. We can still do PRE of the load, which would insert
// a computation of the pointer in this predecessor.
- if (PredPtr == 0) {
+ if (PredPtrVal == 0) {
// Add the entry to the Result list.
NonLocalDepEntry Entry(Pred,
MemDepResult::getClobber(Pred->getTerminator()));
@@ -1201,7 +932,7 @@ getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
// If we have a problem phi translating, fall through to the code below
// to handle the failure condition.
- if (getNonLocalPointerDepFromBB(PredPtr, PointeeSize, isLoad, Pred,
+ if (getNonLocalPointerDepFromBB(PredPointer, PointeeSize, isLoad, Pred,
Result, Visited))
goto PredTranslationFailure;
}
diff --git a/llvm/lib/Transforms/Scalar/GVN.cpp b/llvm/lib/Transforms/Scalar/GVN.cpp
index b703a76ba90..a283a4beece 100644
--- a/llvm/lib/Transforms/Scalar/GVN.cpp
+++ b/llvm/lib/Transforms/Scalar/GVN.cpp
@@ -36,6 +36,7 @@
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
+#include "llvm/Analysis/PHITransAddr.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
@@ -1597,39 +1598,43 @@ bool GVN::processNonLocalLoad(LoadInst *LI,
// Do PHI translation to get its value in the predecessor if necessary. The
// returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
//
- // FIXME: This may insert a computation, but we don't tell scalar GVN
- // optimization stuff about it. How do we do this?
SmallVector<Instruction*, 8> NewInsts;
- Value *LoadPtr = 0;
// If all preds have a single successor, then we know it is safe to insert the
// load on the pred (?!?), so we can insert code to materialize the pointer if
// it is not available.
+ PHITransAddr Address(LI->getOperand(0), TD);
+ Value *LoadPtr = 0;
if (allSingleSucc) {
- LoadPtr = MD->InsertPHITranslatedPointer(LI->getOperand(0), LoadBB,
- UnavailablePred, TD, *DT,NewInsts);
+ LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
+ *DT, NewInsts);
} else {
- LoadPtr = MD->GetAvailablePHITranslatedValue(LI->getOperand(0), LoadBB,
- UnavailablePred, TD, *DT);
+ Address.PHITranslateValue(LoadBB, UnavailablePred);
+ LoadPtr = Address.getAddr();
+
+ // Make sure the value is live in the predecessor.
+ if (Instruction *Inst = dyn_cast_or_null<Instruction>(LoadPtr))
+ if (!DT->dominates(Inst->getParent(), UnavailablePred))
+ LoadPtr = 0;
}
- // Assign value numbers to these new instructions.
- for (SmallVector<Instruction*, 8>::iterator NI = NewInsts.begin(),
- NE = NewInsts.end(); NI != NE; ++NI) {
- // FIXME: We really _ought_ to insert these value numbers into their
- // parent's availability map. However, in doing so, we risk getting into
- // ordering issues. If a block hasn't been processed yet, we would be
- // marking a value as AVAIL-IN, which isn't what we intend.
- VN.lookup_or_add(*NI);
- }
-
// If we couldn't find or insert a computation of this phi translated value,
// we fail PRE.
if (LoadPtr == 0) {
+ assert(NewInsts.empty() && "Shouldn't insert insts on failure");
DEBUG(errs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
<< *LI->getOperand(0) << "\n");
return false;
}
+
+ // Assign value numbers to these new instructions.
+ for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
+ // FIXME: We really _ought_ to insert these value numbers into their
+ // parent's availability map. However, in doing so, we risk getting into
+ // ordering issues. If a block hasn't been processed yet, we would be
+ // marking a value as AVAIL-IN, which isn't what we intend.
+ VN.lookup_or_add(NewInsts[i]);
+ }
// Make sure it is valid to move this load here. We have to watch out for:
// @1 = getelementptr (i8* p, ...
diff --git a/llvm/test/Transforms/GVN/rle.ll b/llvm/test/Transforms/GVN/rle.ll
index e667eece85d..0a2b9536040 100644
--- a/llvm/test/Transforms/GVN/rle.ll
+++ b/llvm/test/Transforms/GVN/rle.ll
@@ -388,6 +388,7 @@ declare i1 @cond() readonly
declare i1 @cond2() readonly
define i32 @phi_trans2() {
+; CHECK: @phi_trans2
entry:
%P = alloca i32, i32 400
br label %F1
@@ -411,9 +412,57 @@ F:
br label %F1
TX:
- ret i32 %x ;; SHOULD NOT BE COMPILED TO 'ret i32 42'.
+ ; This load should not be compiled to 'ret i32 42'. An overly clever
+ ; implementation of GVN would see that we're returning 17 if the loop
+ ; executes once or 42 if it executes more than that, but we'd have to do
+ ; loop restructuring to expose this, and GVN shouldn't do this sort of CFG
+ ; transformation.
+
+; CHECK: TX:
+; CHECK: ret i32 %x
+ ret i32 %x
TY:
ret i32 0
}
+define i32 @phi_trans3(i32* %p) {
+; CHECK: @phi_trans3
+block1:
+ br i1 true, label %block2, label %block3
+
+block2:
+ store i32 87, i32* %p
+ br label %block4
+
+block3:
+ %p2 = getelementptr i32* %p, i32 43
+ store i32 97, i32* %p2
+ br label %block4
+
+block4:
+ %A = phi i32 [-1, %block2], [42, %block3]
+ br i1 true, label %block5, label %exit
+
+; CHECK: block4:
+; CHECK-NEXT: %D = phi i32 [ 87, %block2 ], [ 97, %block3 ]
+; CHECK-NOT: load
+
+block5:
+ %B = add i32 %A, 1
+ br i1 true, label %block6, label %exit
+
+block6:
+ %C = getelementptr i32* %p, i32 %B
+ br i1 true, label %block7, label %exit
+
+block7:
+ %D = load i32* %C
+ ret i32 %D
+
+; CHECK: block7:
+; CHECK-NEXT: ret i32 %D
+
+exit:
+ ret i32 -1
+}
OpenPOWER on IntegriCloud