diff options
| -rw-r--r-- | llvm/lib/Transforms/Vectorize/LoopVectorize.cpp | 64 | ||||
| -rw-r--r-- | llvm/test/Transforms/LoopVectorize/AArch64/extractvalue-no-scalarization-required.ll | 109 | 
2 files changed, 151 insertions, 22 deletions
diff --git a/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp b/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp index c1bb43bc5bd..22cf9c7db94 100644 --- a/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp +++ b/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp @@ -1179,7 +1179,7 @@ public:    /// VF. Return the cost of the instruction, including scalarization overhead    /// if it's needed. The flag NeedToScalarize shows if the call needs to be    /// scalarized - -  // i.e. either vector version isn't available, or is too expensive. +  /// i.e. either vector version isn't available, or is too expensive.    unsigned getVectorCallCost(CallInst *CI, unsigned VF, bool &NeedToScalarize);  private: @@ -1332,6 +1332,30 @@ private:    DecisionList WideningDecisions; +  /// Returns true if \p V is expected to be vectorized and it needs to be +  /// extracted. +  bool needsExtract(Value *V, unsigned VF) const { +    Instruction *I = dyn_cast<Instruction>(V); +    if (VF == 1 || !I || !TheLoop->contains(I) || TheLoop->isLoopInvariant(I)) +      return false; + +    // Assume we can vectorize V (and hence we need extraction) if the +    // scalars are not computed yet. This can happen, because it is called +    // via getScalarizationOverhead from setCostBasedWideningDecision, before +    // the scalars are collected. That should be a safe assumption in most +    // cases, because we check if the operands have vectorizable types +    // beforehand in LoopVectorizationLegality. +    return Scalars.find(VF) == Scalars.end() || +           !isScalarAfterVectorization(I, VF); +  }; + +  /// Returns a range containing only operands needing to be extracted. +  SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, +                                                   unsigned VF) { +    return SmallVector<Value *, 4>(make_filter_range( +        Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); +  } +  public:    /// The loop that we evaluate.    Loop *TheLoop; @@ -3125,8 +3149,11 @@ unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,    if (auto *FPMO = dyn_cast<FPMathOperator>(CI))      FMF = FPMO->getFastMathFlags(); -  SmallVector<Value *, 4> Operands(CI->arg_operands()); -  return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); +  // Skip operands that do not require extraction/scalarization and do not incur +  // any overhead. +  return TTI.getIntrinsicInstrCost( +      ID, CI->getType(), filterExtractingOperands(CI->arg_operands(), VF), FMF, +      VF);  }  static Type *smallestIntegerVectorType(Type *T1, Type *T2) { @@ -5346,15 +5373,6 @@ int LoopVectorizationCostModel::computePredInstDiscount(      return true;    }; -  // Returns true if an operand that cannot be scalarized must be extracted -  // from a vector. We will account for this scalarization overhead below. Note -  // that the non-void predicated instructions are placed in their own blocks, -  // and their return values are inserted into vectors. Thus, an extract would -  // still be required. -  auto needsExtract = [&](Instruction *I) -> bool { -    return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); -  }; -    // Compute the expected cost discount from scalarizing the entire expression    // feeding the predicated instruction. We currently only consider expressions    // that are single-use instruction chains. @@ -5394,7 +5412,7 @@ int LoopVectorizationCostModel::computePredInstDiscount(                 "Instruction has non-scalar type");          if (canBeScalarized(J))            Worklist.push_back(J); -        else if (needsExtract(J)) +        else if (needsExtract(J, VF))            ScalarCost += TTI.getScalarizationOverhead(                                ToVectorTy(J->getType(),VF), false, true);        } @@ -5684,16 +5702,18 @@ unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,    if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())      return Cost; -  if (CallInst *CI = dyn_cast<CallInst>(I)) { -    SmallVector<const Value *, 4> Operands(CI->arg_operands()); -    Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); -  } else if (!isa<StoreInst>(I) || -             !TTI.supportsEfficientVectorElementLoadStore()) { -    SmallVector<const Value *, 4> Operands(I->operand_values()); -    Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); -  } +  // Some targets support efficient element stores. +  if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) +    return Cost; -  return Cost; +  // Collect operands to consider. +  CallInst *CI = dyn_cast<CallInst>(I); +  Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); + +  // Skip operands that do not require extraction/scalarization and do not incur +  // any overhead. +  return Cost + TTI.getOperandsScalarizationOverhead( +                    filterExtractingOperands(Ops, VF), VF);  }  void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { diff --git a/llvm/test/Transforms/LoopVectorize/AArch64/extractvalue-no-scalarization-required.ll b/llvm/test/Transforms/LoopVectorize/AArch64/extractvalue-no-scalarization-required.ll new file mode 100644 index 00000000000..c3ad5b078ae --- /dev/null +++ b/llvm/test/Transforms/LoopVectorize/AArch64/extractvalue-no-scalarization-required.ll @@ -0,0 +1,109 @@ +; REQUIRES: asserts + +; RUN: opt -loop-vectorize -mtriple=arm64-apple-ios %s -S -debug -disable-output 2>&1 | FileCheck --check-prefix=CM %s +; RUN: opt -loop-vectorize -force-vector-width=2 -force-vector-interleave=1 %s -S | FileCheck --check-prefix=FORCED %s + +; Test case from PR41294. + +; Check scalar cost for extractvalue. The constant and loop invariant operands are free, +; leaving cost 3 for scalarizing the result + 2 for executing the op with VF 2. + +; CM: LV: Scalar loop costs: 7. +; CM: LV: Found an estimated cost of 5 for VF 2 For instruction:   %a = extractvalue { i64, i64 } %sv, 0 +; CM-NEXT: LV: Found an estimated cost of 5 for VF 2 For instruction:   %b = extractvalue { i64, i64 } %sv, 1 + +; Check that the extractvalue operands are actually free in vector code. + +; FORCED-LABEL: vector.body:                                      ; preds = %vector.body, %vector.ph +; FORCED-NEXT:    %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ] +; FORCED-NEXT:    %broadcast.splatinsert = insertelement <2 x i32> undef, i32 %index, i32 0 +; FORCED-NEXT:    %broadcast.splat = shufflevector <2 x i32> %broadcast.splatinsert, <2 x i32> undef, <2 x i32> zeroinitializer +; FORCED-NEXT:    %induction = add <2 x i32> %broadcast.splat, <i32 0, i32 1> +; FORCED-NEXT:    %0 = add i32 %index, 0 +; FORCED-NEXT:    %1 = extractvalue { i64, i64 } %sv, 0 +; FORCED-NEXT:    %2 = extractvalue { i64, i64 } %sv, 0 +; FORCED-NEXT:    %3 = insertelement <2 x i64> undef, i64 %1, i32 0 +; FORCED-NEXT:    %4 = insertelement <2 x i64> %3, i64 %2, i32 1 +; FORCED-NEXT:    %5 = extractvalue { i64, i64 } %sv, 1 +; FORCED-NEXT:    %6 = extractvalue { i64, i64 } %sv, 1 +; FORCED-NEXT:    %7 = insertelement <2 x i64> undef, i64 %5, i32 0 +; FORCED-NEXT:    %8 = insertelement <2 x i64> %7, i64 %6, i32 1 +; FORCED-NEXT:    %9 = getelementptr i64, i64* %dst, i32 %0 +; FORCED-NEXT:    %10 = add <2 x i64> %4, %8 +; FORCED-NEXT:    %11 = getelementptr i64, i64* %9, i32 0 +; FORCED-NEXT:    %12 = bitcast i64* %11 to <2 x i64>* +; FORCED-NEXT:    store <2 x i64> %10, <2 x i64>* %12, align 4 +; FORCED-NEXT:    %index.next = add i32 %index, 2 +; FORCED-NEXT:    %13 = icmp eq i32 %index.next, 0 +; FORCED-NEXT:    br i1 %13, label %middle.block, label %vector.body, !llvm.loop !0 + +define void @test1(i64* %dst, {i64, i64} %sv) { +entry: +  br label %loop.body + +loop.body: +  %iv = phi i32 [ 0, %entry ], [ %iv.next, %loop.body ] +  %a = extractvalue { i64, i64 } %sv, 0 +  %b = extractvalue { i64, i64 } %sv, 1 +  %addr = getelementptr i64, i64* %dst, i32 %iv +  %add = add i64 %a, %b +  store i64 %add, i64* %addr +  %iv.next = add nsw i32 %iv, 1 +  %cond = icmp ne i32 %iv.next, 0 +  br i1 %cond, label %loop.body, label %exit + +exit: +  ret void +} + + +; Similar to the test case above, but checks getVectorCallCost as well. +declare float @pow(float, float) readnone nounwind + +; CM: LV: Scalar loop costs: 16. +; CM: LV: Found an estimated cost of 5 for VF 2 For instruction:   %a = extractvalue { float, float } %sv, 0 +; CM-NEXT: LV: Found an estimated cost of 5 for VF 2 For instruction:   %b = extractvalue { float, float } %sv, 1 + +; FORCED-LABEL: define void @test_getVectorCallCost + +; FORCED-LABEL: vector.body:                                      ; preds = %vector.body, %vector.ph +; FORCED-NEXT:    %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ] +; FORCED-NEXT:    %broadcast.splatinsert = insertelement <2 x i32> undef, i32 %index, i32 0 +; FORCED-NEXT:    %broadcast.splat = shufflevector <2 x i32> %broadcast.splatinsert, <2 x i32> undef, <2 x i32> zeroinitializer +; FORCED-NEXT:    %induction = add <2 x i32> %broadcast.splat, <i32 0, i32 1> +; FORCED-NEXT:    %0 = add i32 %index, 0 +; FORCED-NEXT:    %1 = extractvalue { float, float } %sv, 0 +; FORCED-NEXT:    %2 = extractvalue { float, float } %sv, 0 +; FORCED-NEXT:    %3 = insertelement <2 x float> undef, float %1, i32 0 +; FORCED-NEXT:    %4 = insertelement <2 x float> %3, float %2, i32 1 +; FORCED-NEXT:    %5 = extractvalue { float, float } %sv, 1 +; FORCED-NEXT:    %6 = extractvalue { float, float } %sv, 1 +; FORCED-NEXT:    %7 = insertelement <2 x float> undef, float %5, i32 0 +; FORCED-NEXT:    %8 = insertelement <2 x float> %7, float %6, i32 1 +; FORCED-NEXT:    %9 = getelementptr float, float* %dst, i32 %0 +; FORCED-NEXT:    %10 = call <2 x float> @llvm.pow.v2f32(<2 x float> %4, <2 x float> %8) +; FORCED-NEXT:    %11 = getelementptr float, float* %9, i32 0 +; FORCED-NEXT:    %12 = bitcast float* %11 to <2 x float>* +; FORCED-NEXT:    store <2 x float> %10, <2 x float>* %12, align 4 +; FORCED-NEXT:    %index.next = add i32 %index, 2 +; FORCED-NEXT:    %13 = icmp eq i32 %index.next, 0 +; FORCED-NEXT:    br i1 %13, label %middle.block, label %vector.body, !llvm.loop !4 + +define void @test_getVectorCallCost(float* %dst, {float, float} %sv) { +entry: +  br label %loop.body + +loop.body: +  %iv = phi i32 [ 0, %entry ], [ %iv.next, %loop.body ] +  %a = extractvalue { float, float } %sv, 0 +  %b = extractvalue { float, float } %sv, 1 +  %addr = getelementptr float, float* %dst, i32 %iv +  %p = call float @pow(float %a, float %b) +  store float %p, float* %addr +  %iv.next = add nsw i32 %iv, 1 +  %cond = icmp ne i32 %iv.next, 0 +  br i1 %cond, label %loop.body, label %exit + +exit: +  ret void +}  | 

