summaryrefslogtreecommitdiffstats
path: root/llvm/test/Transforms
diff options
context:
space:
mode:
authorSanjay Patel <spatel@rotateright.com>2014-10-16 18:48:17 +0000
committerSanjay Patel <spatel@rotateright.com>2014-10-16 18:48:17 +0000
commitc699a6117b0f33739cdbe63fff46f95c79b5133b (patch)
treee29dbf975378a9a26369ce78ae503317baaf6026 /llvm/test/Transforms
parentd70f3c20b8c0ff71638ac2ee774b4e5a021be521 (diff)
downloadbcm5719-llvm-c699a6117b0f33739cdbe63fff46f95c79b5133b.tar.gz
bcm5719-llvm-c699a6117b0f33739cdbe63fff46f95c79b5133b.zip
fold: sqrt(x * x * y) -> fabs(x) * sqrt(y)
If a square root call has an FP multiplication argument that can be reassociated, then we can hoist a repeated factor out of the square root call and into a fabs(). In the simplest case, this: y = sqrt(x * x); becomes this: y = fabs(x); This patch relies on an earlier optimization in instcombine or reassociate to put the multiplication tree into a canonical form, so we don't have to search over every permutation of the multiplication tree. Because there are no IR-level FastMathFlags for intrinsics (PR21290), we have to use function-level attributes to do this optimization. This needs to be fixed for both the intrinsics and in the backend. Differential Revision: http://reviews.llvm.org/D5787 llvm-svn: 219944
Diffstat (limited to 'llvm/test/Transforms')
-rw-r--r--llvm/test/Transforms/InstCombine/fast-math.ll170
1 files changed, 170 insertions, 0 deletions
diff --git a/llvm/test/Transforms/InstCombine/fast-math.ll b/llvm/test/Transforms/InstCombine/fast-math.ll
index 2ee4b0f2c38..b0ec8952bb3 100644
--- a/llvm/test/Transforms/InstCombine/fast-math.ll
+++ b/llvm/test/Transforms/InstCombine/fast-math.ll
@@ -530,3 +530,173 @@ define float @fact_div6(float %x) {
; CHECK: fact_div6
; CHECK: %t3 = fsub fast float %t1, %t2
}
+
+; =========================================================================
+;
+; Test-cases for square root
+;
+; =========================================================================
+
+; A squared factor fed into a square root intrinsic should be hoisted out
+; as a fabs() value.
+; We have to rely on a function-level attribute to enable this optimization
+; because intrinsics don't currently have access to IR-level fast-math
+; flags. If that changes, we can relax the requirement on all of these
+; tests to just specify 'fast' on the sqrt.
+
+attributes #0 = { "unsafe-fp-math" = "true" }
+
+declare double @llvm.sqrt.f64(double)
+
+define double @sqrt_intrinsic_arg_squared(double %x) #0 {
+ %mul = fmul fast double %x, %x
+ %sqrt = call double @llvm.sqrt.f64(double %mul)
+ ret double %sqrt
+
+; CHECK-LABEL: sqrt_intrinsic_arg_squared(
+; CHECK-NEXT: %fabs = call double @llvm.fabs.f64(double %x)
+; CHECK-NEXT: ret double %fabs
+}
+
+; Check all 6 combinations of a 3-way multiplication tree where
+; one factor is repeated.
+
+define double @sqrt_intrinsic_three_args1(double %x, double %y) #0 {
+ %mul = fmul fast double %y, %x
+ %mul2 = fmul fast double %mul, %x
+ %sqrt = call double @llvm.sqrt.f64(double %mul2)
+ ret double %sqrt
+
+; CHECK-LABEL: sqrt_intrinsic_three_args1(
+; CHECK-NEXT: %fabs = call double @llvm.fabs.f64(double %x)
+; CHECK-NEXT: %sqrt1 = call double @llvm.sqrt.f64(double %y)
+; CHECK-NEXT: %1 = fmul fast double %fabs, %sqrt1
+; CHECK-NEXT: ret double %1
+}
+
+define double @sqrt_intrinsic_three_args2(double %x, double %y) #0 {
+ %mul = fmul fast double %x, %y
+ %mul2 = fmul fast double %mul, %x
+ %sqrt = call double @llvm.sqrt.f64(double %mul2)
+ ret double %sqrt
+
+; CHECK-LABEL: sqrt_intrinsic_three_args2(
+; CHECK-NEXT: %fabs = call double @llvm.fabs.f64(double %x)
+; CHECK-NEXT: %sqrt1 = call double @llvm.sqrt.f64(double %y)
+; CHECK-NEXT: %1 = fmul fast double %fabs, %sqrt1
+; CHECK-NEXT: ret double %1
+}
+
+define double @sqrt_intrinsic_three_args3(double %x, double %y) #0 {
+ %mul = fmul fast double %x, %x
+ %mul2 = fmul fast double %mul, %y
+ %sqrt = call double @llvm.sqrt.f64(double %mul2)
+ ret double %sqrt
+
+; CHECK-LABEL: sqrt_intrinsic_three_args3(
+; CHECK-NEXT: %fabs = call double @llvm.fabs.f64(double %x)
+; CHECK-NEXT: %sqrt1 = call double @llvm.sqrt.f64(double %y)
+; CHECK-NEXT: %1 = fmul fast double %fabs, %sqrt1
+; CHECK-NEXT: ret double %1
+}
+
+define double @sqrt_intrinsic_three_args4(double %x, double %y) #0 {
+ %mul = fmul fast double %y, %x
+ %mul2 = fmul fast double %x, %mul
+ %sqrt = call double @llvm.sqrt.f64(double %mul2)
+ ret double %sqrt
+
+; CHECK-LABEL: sqrt_intrinsic_three_args4(
+; CHECK-NEXT: %fabs = call double @llvm.fabs.f64(double %x)
+; CHECK-NEXT: %sqrt1 = call double @llvm.sqrt.f64(double %y)
+; CHECK-NEXT: %1 = fmul fast double %fabs, %sqrt1
+; CHECK-NEXT: ret double %1
+}
+
+define double @sqrt_intrinsic_three_args5(double %x, double %y) #0 {
+ %mul = fmul fast double %x, %y
+ %mul2 = fmul fast double %x, %mul
+ %sqrt = call double @llvm.sqrt.f64(double %mul2)
+ ret double %sqrt
+
+; CHECK-LABEL: sqrt_intrinsic_three_args5(
+; CHECK-NEXT: %fabs = call double @llvm.fabs.f64(double %x)
+; CHECK-NEXT: %sqrt1 = call double @llvm.sqrt.f64(double %y)
+; CHECK-NEXT: %1 = fmul fast double %fabs, %sqrt1
+; CHECK-NEXT: ret double %1
+}
+
+define double @sqrt_intrinsic_three_args6(double %x, double %y) #0 {
+ %mul = fmul fast double %x, %x
+ %mul2 = fmul fast double %y, %mul
+ %sqrt = call double @llvm.sqrt.f64(double %mul2)
+ ret double %sqrt
+
+; CHECK-LABEL: sqrt_intrinsic_three_args6(
+; CHECK-NEXT: %fabs = call double @llvm.fabs.f64(double %x)
+; CHECK-NEXT: %sqrt1 = call double @llvm.sqrt.f64(double %y)
+; CHECK-NEXT: %1 = fmul fast double %fabs, %sqrt1
+; CHECK-NEXT: ret double %1
+}
+
+define double @sqrt_intrinsic_arg_4th(double %x) #0 {
+ %mul = fmul fast double %x, %x
+ %mul2 = fmul fast double %mul, %mul
+ %sqrt = call double @llvm.sqrt.f64(double %mul2)
+ ret double %sqrt
+
+; CHECK-LABEL: sqrt_intrinsic_arg_4th(
+; CHECK-NEXT: %mul = fmul fast double %x, %x
+; CHECK-NEXT: ret double %mul
+}
+
+define double @sqrt_intrinsic_arg_5th(double %x) #0 {
+ %mul = fmul fast double %x, %x
+ %mul2 = fmul fast double %mul, %x
+ %mul3 = fmul fast double %mul2, %mul
+ %sqrt = call double @llvm.sqrt.f64(double %mul3)
+ ret double %sqrt
+
+; CHECK-LABEL: sqrt_intrinsic_arg_5th(
+; CHECK-NEXT: %mul = fmul fast double %x, %x
+; CHECK-NEXT: %sqrt1 = call double @llvm.sqrt.f64(double %x)
+; CHECK-NEXT: %1 = fmul fast double %mul, %sqrt1
+; CHECK-NEXT: ret double %1
+}
+
+; Check that square root calls have the same behavior.
+
+declare float @sqrtf(float)
+declare double @sqrt(double)
+declare fp128 @sqrtl(fp128)
+
+define float @sqrt_call_squared_f32(float %x) #0 {
+ %mul = fmul fast float %x, %x
+ %sqrt = call float @sqrtf(float %mul)
+ ret float %sqrt
+
+; CHECK-LABEL: sqrt_call_squared_f32(
+; CHECK-NEXT: %fabs = call float @llvm.fabs.f32(float %x)
+; CHECK-NEXT: ret float %fabs
+}
+
+define double @sqrt_call_squared_f64(double %x) #0 {
+ %mul = fmul fast double %x, %x
+ %sqrt = call double @sqrt(double %mul)
+ ret double %sqrt
+
+; CHECK-LABEL: sqrt_call_squared_f64(
+; CHECK-NEXT: %fabs = call double @llvm.fabs.f64(double %x)
+; CHECK-NEXT: ret double %fabs
+}
+
+define fp128 @sqrt_call_squared_f128(fp128 %x) #0 {
+ %mul = fmul fast fp128 %x, %x
+ %sqrt = call fp128 @sqrtl(fp128 %mul)
+ ret fp128 %sqrt
+
+; CHECK-LABEL: sqrt_call_squared_f128(
+; CHECK-NEXT: %fabs = call fp128 @llvm.fabs.f128(fp128 %x)
+; CHECK-NEXT: ret fp128 %fabs
+}
+
OpenPOWER on IntegriCloud