diff options
| author | Misha Brukman <brukman+llvm@gmail.com> | 2004-10-10 23:33:20 +0000 |
|---|---|---|
| committer | Misha Brukman <brukman+llvm@gmail.com> | 2004-10-10 23:33:20 +0000 |
| commit | 4a4af7e20cfb59b2fc0bc7181c9b3f85303fa3e9 (patch) | |
| tree | c357a88df2a6fb91713b7378a703a508a91fbfaf /llvm/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp | |
| parent | e42eb31f7db0ba60947472427b3ad0ba4c13f020 (diff) | |
| download | bcm5719-llvm-4a4af7e20cfb59b2fc0bc7181c9b3f85303fa3e9.tar.gz bcm5719-llvm-4a4af7e20cfb59b2fc0bc7181c9b3f85303fa3e9.zip | |
ModuloScheduling moved to lib/Target/SparcV9 as it is SparcV9-specific
llvm-svn: 16902
Diffstat (limited to 'llvm/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp')
| -rw-r--r-- | llvm/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp | 1967 |
1 files changed, 1967 insertions, 0 deletions
diff --git a/llvm/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp b/llvm/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp new file mode 100644 index 00000000000..ffb3404ff8e --- /dev/null +++ b/llvm/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp @@ -0,0 +1,1967 @@ +//===-- ModuloScheduling.cpp - ModuloScheduling ----------------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This ModuloScheduling pass is based on the Swing Modulo Scheduling +// algorithm. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "ModuloSched" + +#include "ModuloScheduling.h" +#include "llvm/Instructions.h" +#include "llvm/Function.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/Support/CFG.h" +#include "llvm/Target/TargetSchedInfo.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/GraphWriter.h" +#include "llvm/ADT/StringExtras.h" +#include <cmath> +#include <algorithm> +#include <fstream> +#include <sstream> +#include <utility> +#include <vector> +#include "../../Target/SparcV9/MachineCodeForInstruction.h" +#include "../../Target/SparcV9/SparcV9TmpInstr.h" +#include "../../Target/SparcV9/SparcV9Internals.h" +#include "../../Target/SparcV9/SparcV9RegisterInfo.h" +using namespace llvm; + +/// Create ModuloSchedulingPass +/// +FunctionPass *llvm::createModuloSchedulingPass(TargetMachine & targ) { + DEBUG(std::cerr << "Created ModuloSchedulingPass\n"); + return new ModuloSchedulingPass(targ); +} + + +//Graph Traits for printing out the dependence graph +template<typename GraphType> +static void WriteGraphToFile(std::ostream &O, const std::string &GraphName, + const GraphType >) { + std::string Filename = GraphName + ".dot"; + O << "Writing '" << Filename << "'..."; + std::ofstream F(Filename.c_str()); + + if (F.good()) + WriteGraph(F, GT); + else + O << " error opening file for writing!"; + O << "\n"; +}; + +//Graph Traits for printing out the dependence graph +namespace llvm { + + template<> + struct DOTGraphTraits<MSchedGraph*> : public DefaultDOTGraphTraits { + static std::string getGraphName(MSchedGraph *F) { + return "Dependence Graph"; + } + + static std::string getNodeLabel(MSchedGraphNode *Node, MSchedGraph *Graph) { + if (Node->getInst()) { + std::stringstream ss; + ss << *(Node->getInst()); + return ss.str(); //((MachineInstr*)Node->getInst()); + } + else + return "No Inst"; + } + static std::string getEdgeSourceLabel(MSchedGraphNode *Node, + MSchedGraphNode::succ_iterator I) { + //Label each edge with the type of dependence + std::string edgelabel = ""; + switch (I.getEdge().getDepOrderType()) { + + case MSchedGraphEdge::TrueDep: + edgelabel = "True"; + break; + + case MSchedGraphEdge::AntiDep: + edgelabel = "Anti"; + break; + + case MSchedGraphEdge::OutputDep: + edgelabel = "Output"; + break; + + default: + edgelabel = "Unknown"; + break; + } + + //FIXME + int iteDiff = I.getEdge().getIteDiff(); + std::string intStr = "(IteDiff: "; + intStr += itostr(iteDiff); + + intStr += ")"; + edgelabel += intStr; + + return edgelabel; + } + }; +} + +/// ModuloScheduling::runOnFunction - main transformation entry point +/// The Swing Modulo Schedule algorithm has three basic steps: +/// 1) Computation and Analysis of the dependence graph +/// 2) Ordering of the nodes +/// 3) Scheduling +/// +bool ModuloSchedulingPass::runOnFunction(Function &F) { + + bool Changed = false; + + DEBUG(std::cerr << "Creating ModuloSchedGraph for each valid BasicBlock in " + F.getName() + "\n"); + + //Get MachineFunction + MachineFunction &MF = MachineFunction::get(&F); + + //Worklist + std::vector<MachineBasicBlock*> Worklist; + + //Iterate over BasicBlocks and put them into our worklist if they are valid + for (MachineFunction::iterator BI = MF.begin(); BI != MF.end(); ++BI) + if(MachineBBisValid(BI)) + Worklist.push_back(&*BI); + + DEBUG(if(Worklist.size() == 0) std::cerr << "No single basic block loops in function to ModuloSchedule\n"); + + //Iterate over the worklist and perform scheduling + for(std::vector<MachineBasicBlock*>::iterator BI = Worklist.begin(), + BE = Worklist.end(); BI != BE; ++BI) { + + MSchedGraph *MSG = new MSchedGraph(*BI, target); + + //Write Graph out to file + DEBUG(WriteGraphToFile(std::cerr, F.getName(), MSG)); + + //Print out BB for debugging + DEBUG(std::cerr << "ModuloScheduling BB: \n"; (*BI)->print(std::cerr)); + + //Calculate Resource II + int ResMII = calculateResMII(*BI); + + //Calculate Recurrence II + int RecMII = calculateRecMII(MSG, ResMII); + + //Our starting initiation interval is the maximum of RecMII and ResMII + II = std::max(RecMII, ResMII); + + //Print out II, RecMII, and ResMII + DEBUG(std::cerr << "II starts out as " << II << " ( RecMII=" << RecMII << "and ResMII=" << ResMII << "\n"); + + //Calculate Node Properties + calculateNodeAttributes(MSG, ResMII); + + //Dump node properties if in debug mode + DEBUG(for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), + E = nodeToAttributesMap.end(); I !=E; ++I) { + std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: " + << I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth + << " Height: " << I->second.height << "\n"; + }); + + //Put nodes in order to schedule them + computePartialOrder(); + + //Dump out partial order + DEBUG(for(std::vector<std::vector<MSchedGraphNode*> >::iterator I = partialOrder.begin(), + E = partialOrder.end(); I !=E; ++I) { + std::cerr << "Start set in PO\n"; + for(std::vector<MSchedGraphNode*>::iterator J = I->begin(), JE = I->end(); J != JE; ++J) + std::cerr << "PO:" << **J << "\n"; + }); + + //Place nodes in final order + orderNodes(); + + //Dump out order of nodes + DEBUG(for(std::vector<MSchedGraphNode*>::iterator I = FinalNodeOrder.begin(), E = FinalNodeOrder.end(); I != E; ++I) { + std::cerr << "FO:" << **I << "\n"; + }); + + //Finally schedule nodes + computeSchedule(); + + //Print out final schedule + DEBUG(schedule.print(std::cerr)); + + + //Final scheduling step is to reconstruct the loop + reconstructLoop(*BI); + + //Print out new loop + + + //Clear out our maps for the next basic block that is processed + nodeToAttributesMap.clear(); + partialOrder.clear(); + recurrenceList.clear(); + FinalNodeOrder.clear(); + schedule.clear(); + + //Clean up. Nuke old MachineBB and llvmBB + //BasicBlock *llvmBB = (BasicBlock*) (*BI)->getBasicBlock(); + //Function *parent = (Function*) llvmBB->getParent(); + //Should't std::find work?? + //parent->getBasicBlockList().erase(std::find(parent->getBasicBlockList().begin(), parent->getBasicBlockList().end(), *llvmBB)); + //parent->getBasicBlockList().erase(llvmBB); + + //delete(llvmBB); + //delete(*BI); + } + + + return Changed; +} + + +/// This function checks if a Machine Basic Block is valid for modulo +/// scheduling. This means that it has no control flow (if/else or +/// calls) in the block. Currently ModuloScheduling only works on +/// single basic block loops. +bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) { + + bool isLoop = false; + + //Check first if its a valid loop + for(succ_const_iterator I = succ_begin(BI->getBasicBlock()), + E = succ_end(BI->getBasicBlock()); I != E; ++I) { + if (*I == BI->getBasicBlock()) // has single block loop + isLoop = true; + } + + if(!isLoop) + return false; + + //Get Target machine instruction info + const TargetInstrInfo *TMI = target.getInstrInfo(); + + //Check each instruction and look for calls + for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) { + //Get opcode to check instruction type + MachineOpCode OC = I->getOpcode(); + if(TMI->isCall(OC)) + return false; + + } + return true; +} + +//ResMII is calculated by determining the usage count for each resource +//and using the maximum. +//FIXME: In future there should be a way to get alternative resources +//for each instruction +int ModuloSchedulingPass::calculateResMII(const MachineBasicBlock *BI) { + + const TargetInstrInfo *mii = target.getInstrInfo(); + const TargetSchedInfo *msi = target.getSchedInfo(); + + int ResMII = 0; + + //Map to keep track of usage count of each resource + std::map<unsigned, unsigned> resourceUsageCount; + + for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) { + + //Get resource usage for this instruction + InstrRUsage rUsage = msi->getInstrRUsage(I->getOpcode()); + std::vector<std::vector<resourceId_t> > resources = rUsage.resourcesByCycle; + + //Loop over resources in each cycle and increments their usage count + for(unsigned i=0; i < resources.size(); ++i) + for(unsigned j=0; j < resources[i].size(); ++j) { + if( resourceUsageCount.find(resources[i][j]) == resourceUsageCount.end()) { + resourceUsageCount[resources[i][j]] = 1; + } + else { + resourceUsageCount[resources[i][j]] = resourceUsageCount[resources[i][j]] + 1; + } + } + } + + //Find maximum usage count + + //Get max number of instructions that can be issued at once. (FIXME) + int issueSlots = msi->maxNumIssueTotal; + + for(std::map<unsigned,unsigned>::iterator RB = resourceUsageCount.begin(), RE = resourceUsageCount.end(); RB != RE; ++RB) { + + //Get the total number of the resources in our cpu + int resourceNum = CPUResource::getCPUResource(RB->first)->maxNumUsers; + + //Get total usage count for this resources + unsigned usageCount = RB->second; + + //Divide the usage count by either the max number we can issue or the number of + //resources (whichever is its upper bound) + double finalUsageCount; + if( resourceNum <= issueSlots) + finalUsageCount = ceil(1.0 * usageCount / resourceNum); + else + finalUsageCount = ceil(1.0 * usageCount / issueSlots); + + + //Only keep track of the max + ResMII = std::max( (int) finalUsageCount, ResMII); + + } + + return ResMII; + +} + +/// calculateRecMII - Calculates the value of the highest recurrence +/// By value we mean the total latency +int ModuloSchedulingPass::calculateRecMII(MSchedGraph *graph, int MII) { + std::vector<MSchedGraphNode*> vNodes; + //Loop over all nodes in the graph + for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) { + findAllReccurrences(I->second, vNodes, MII); + vNodes.clear(); + } + + int RecMII = 0; + + for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::iterator I = recurrenceList.begin(), E=recurrenceList.end(); I !=E; ++I) { + DEBUG(for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) { + std::cerr << **N << "\n"; + }); + RecMII = std::max(RecMII, I->first); + } + + return MII; +} + +/// calculateNodeAttributes - The following properties are calculated for +/// each node in the dependence graph: ASAP, ALAP, Depth, Height, and +/// MOB. +void ModuloSchedulingPass::calculateNodeAttributes(MSchedGraph *graph, int MII) { + + //Loop over the nodes and add them to the map + for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) { + //Assert if its already in the map + assert(nodeToAttributesMap.find(I->second) == nodeToAttributesMap.end() && "Node attributes are already in the map"); + + //Put into the map with default attribute values + nodeToAttributesMap[I->second] = MSNodeAttributes(); + } + + //Create set to deal with reccurrences + std::set<MSchedGraphNode*> visitedNodes; + + //Now Loop over map and calculate the node attributes + for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { + calculateASAP(I->first, MII, (MSchedGraphNode*) 0); + visitedNodes.clear(); + } + + int maxASAP = findMaxASAP(); + //Calculate ALAP which depends on ASAP being totally calculated + for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { + calculateALAP(I->first, MII, maxASAP, (MSchedGraphNode*) 0); + visitedNodes.clear(); + } + + //Calculate MOB which depends on ASAP being totally calculated, also do depth and height + for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { + (I->second).MOB = std::max(0,(I->second).ALAP - (I->second).ASAP); + + DEBUG(std::cerr << "MOB: " << (I->second).MOB << " (" << *(I->first) << ")\n"); + calculateDepth(I->first, (MSchedGraphNode*) 0); + calculateHeight(I->first, (MSchedGraphNode*) 0); + } + + +} + +/// ignoreEdge - Checks to see if this edge of a recurrence should be ignored or not +bool ModuloSchedulingPass::ignoreEdge(MSchedGraphNode *srcNode, MSchedGraphNode *destNode) { + if(destNode == 0 || srcNode ==0) + return false; + + bool findEdge = edgesToIgnore.count(std::make_pair(srcNode, destNode->getInEdgeNum(srcNode))); + + return findEdge; +} + + +/// calculateASAP - Calculates the +int ModuloSchedulingPass::calculateASAP(MSchedGraphNode *node, int MII, MSchedGraphNode *destNode) { + + DEBUG(std::cerr << "Calculating ASAP for " << *node << "\n"); + + //Get current node attributes + MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second; + + if(attributes.ASAP != -1) + return attributes.ASAP; + + int maxPredValue = 0; + + //Iterate over all of the predecessors and find max + for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) { + + //Only process if we are not ignoring the edge + if(!ignoreEdge(*P, node)) { + int predASAP = -1; + predASAP = calculateASAP(*P, MII, node); + + assert(predASAP != -1 && "ASAP has not been calculated"); + int iteDiff = node->getInEdge(*P).getIteDiff(); + + int currentPredValue = predASAP + (*P)->getLatency() - (iteDiff * MII); + DEBUG(std::cerr << "pred ASAP: " << predASAP << ", iteDiff: " << iteDiff << ", PredLatency: " << (*P)->getLatency() << ", Current ASAP pred: " << currentPredValue << "\n"); + maxPredValue = std::max(maxPredValue, currentPredValue); + } + } + + attributes.ASAP = maxPredValue; + + DEBUG(std::cerr << "ASAP: " << attributes.ASAP << " (" << *node << ")\n"); + + return maxPredValue; +} + + +int ModuloSchedulingPass::calculateALAP(MSchedGraphNode *node, int MII, + int maxASAP, MSchedGraphNode *srcNode) { + + DEBUG(std::cerr << "Calculating ALAP for " << *node << "\n"); + + MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second; + + if(attributes.ALAP != -1) + return attributes.ALAP; + + if(node->hasSuccessors()) { + + //Trying to deal with the issue where the node has successors, but + //we are ignoring all of the edges to them. So this is my hack for + //now.. there is probably a more elegant way of doing this (FIXME) + bool processedOneEdge = false; + + //FIXME, set to something high to start + int minSuccValue = 9999999; + + //Iterate over all of the predecessors and fine max + for(MSchedGraphNode::succ_iterator P = node->succ_begin(), + E = node->succ_end(); P != E; ++P) { + + //Only process if we are not ignoring the edge + if(!ignoreEdge(node, *P)) { + processedOneEdge = true; + int succALAP = -1; + succALAP = calculateALAP(*P, MII, maxASAP, node); + + assert(succALAP != -1 && "Successors ALAP should have been caclulated"); + + int iteDiff = P.getEdge().getIteDiff(); + + int currentSuccValue = succALAP - node->getLatency() + iteDiff * MII; + + DEBUG(std::cerr << "succ ALAP: " << succALAP << ", iteDiff: " << iteDiff << ", SuccLatency: " << (*P)->getLatency() << ", Current ALAP succ: " << currentSuccValue << "\n"); + + minSuccValue = std::min(minSuccValue, currentSuccValue); + } + } + + if(processedOneEdge) + attributes.ALAP = minSuccValue; + + else + attributes.ALAP = maxASAP; + } + else + attributes.ALAP = maxASAP; + + DEBUG(std::cerr << "ALAP: " << attributes.ALAP << " (" << *node << ")\n"); + + if(attributes.ALAP < 0) + attributes.ALAP = 0; + + return attributes.ALAP; +} + +int ModuloSchedulingPass::findMaxASAP() { + int maxASAP = 0; + + for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), + E = nodeToAttributesMap.end(); I != E; ++I) + maxASAP = std::max(maxASAP, I->second.ASAP); + return maxASAP; +} + + +int ModuloSchedulingPass::calculateHeight(MSchedGraphNode *node,MSchedGraphNode *srcNode) { + + MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second; + + if(attributes.height != -1) + return attributes.height; + + int maxHeight = 0; + + //Iterate over all of the predecessors and find max + for(MSchedGraphNode::succ_iterator P = node->succ_begin(), + E = node->succ_end(); P != E; ++P) { + + + if(!ignoreEdge(node, *P)) { + int succHeight = calculateHeight(*P, node); + + assert(succHeight != -1 && "Successors Height should have been caclulated"); + + int currentHeight = succHeight + node->getLatency(); + maxHeight = std::max(maxHeight, currentHeight); + } + } + attributes.height = maxHeight; + DEBUG(std::cerr << "Height: " << attributes.height << " (" << *node << ")\n"); + return maxHeight; +} + + +int ModuloSchedulingPass::calculateDepth(MSchedGraphNode *node, + MSchedGraphNode *destNode) { + + MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second; + + if(attributes.depth != -1) + return attributes.depth; + + int maxDepth = 0; + + //Iterate over all of the predecessors and fine max + for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) { + + if(!ignoreEdge(*P, node)) { + int predDepth = -1; + predDepth = calculateDepth(*P, node); + + assert(predDepth != -1 && "Predecessors ASAP should have been caclulated"); + + int currentDepth = predDepth + (*P)->getLatency(); + maxDepth = std::max(maxDepth, currentDepth); + } + } + attributes.depth = maxDepth; + + DEBUG(std::cerr << "Depth: " << attributes.depth << " (" << *node << "*)\n"); + return maxDepth; +} + + + +void ModuloSchedulingPass::addReccurrence(std::vector<MSchedGraphNode*> &recurrence, int II, MSchedGraphNode *srcBENode, MSchedGraphNode *destBENode) { + //Check to make sure that this recurrence is unique + bool same = false; + + + //Loop over all recurrences already in our list + for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::iterator R = recurrenceList.begin(), RE = recurrenceList.end(); R != RE; ++R) { + + bool all_same = true; + //First compare size + if(R->second.size() == recurrence.size()) { + + for(std::vector<MSchedGraphNode*>::const_iterator node = R->second.begin(), end = R->second.end(); node != end; ++node) { + if(std::find(recurrence.begin(), recurrence.end(), *node) == recurrence.end()) { + all_same = all_same && false; + break; + } + else + all_same = all_same && true; + } + if(all_same) { + same = true; + break; + } + } + } + + if(!same) { + srcBENode = recurrence.back(); + destBENode = recurrence.front(); + + //FIXME + if(destBENode->getInEdge(srcBENode).getIteDiff() == 0) { + //DEBUG(std::cerr << "NOT A BACKEDGE\n"); + //find actual backedge HACK HACK + for(unsigned i=0; i< recurrence.size()-1; ++i) { + if(recurrence[i+1]->getInEdge(recurrence[i]).getIteDiff() == 1) { + srcBENode = recurrence[i]; + destBENode = recurrence[i+1]; + break; + } + + } + + } + DEBUG(std::cerr << "Back Edge to Remove: " << *srcBENode << " to " << *destBENode << "\n"); + edgesToIgnore.insert(std::make_pair(srcBENode, destBENode->getInEdgeNum(srcBENode))); + recurrenceList.insert(std::make_pair(II, recurrence)); + } + +} + +void ModuloSchedulingPass::findAllReccurrences(MSchedGraphNode *node, + std::vector<MSchedGraphNode*> &visitedNodes, + int II) { + + if(std::find(visitedNodes.begin(), visitedNodes.end(), node) != visitedNodes.end()) { + std::vector<MSchedGraphNode*> recurrence; + bool first = true; + int delay = 0; + int distance = 0; + int RecMII = II; //Starting value + MSchedGraphNode *last = node; + MSchedGraphNode *srcBackEdge = 0; + MSchedGraphNode *destBackEdge = 0; + + + + for(std::vector<MSchedGraphNode*>::iterator I = visitedNodes.begin(), E = visitedNodes.end(); + I !=E; ++I) { + + if(*I == node) + first = false; + if(first) + continue; + + delay = delay + (*I)->getLatency(); + + if(*I != node) { + int diff = (*I)->getInEdge(last).getIteDiff(); + distance += diff; + if(diff > 0) { + srcBackEdge = last; + destBackEdge = *I; + } + } + + recurrence.push_back(*I); + last = *I; + } + + + + //Get final distance calc + distance += node->getInEdge(last).getIteDiff(); + + + //Adjust II until we get close to the inequality delay - II*distance <= 0 + + int value = delay-(RecMII * distance); + int lastII = II; + while(value <= 0) { + + lastII = RecMII; + RecMII--; + value = delay-(RecMII * distance); + } + + + DEBUG(std::cerr << "Final II for this recurrence: " << lastII << "\n"); + addReccurrence(recurrence, lastII, srcBackEdge, destBackEdge); + assert(distance != 0 && "Recurrence distance should not be zero"); + return; + } + + for(MSchedGraphNode::succ_iterator I = node->succ_begin(), E = node->succ_end(); I != E; ++I) { + visitedNodes.push_back(node); + findAllReccurrences(*I, visitedNodes, II); + visitedNodes.pop_back(); + } +} + + + + + +void ModuloSchedulingPass::computePartialOrder() { + + + //Loop over all recurrences and add to our partial order + //be sure to remove nodes that are already in the partial order in + //a different recurrence and don't add empty recurrences. + for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::reverse_iterator I = recurrenceList.rbegin(), E=recurrenceList.rend(); I !=E; ++I) { + + //Add nodes that connect this recurrence to the previous recurrence + + //If this is the first recurrence in the partial order, add all predecessors + for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) { + + } + + + std::vector<MSchedGraphNode*> new_recurrence; + //Loop through recurrence and remove any nodes already in the partial order + for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) { + bool found = false; + for(std::vector<std::vector<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) { + if(std::find(PO->begin(), PO->end(), *N) != PO->end()) + found = true; + } + if(!found) { + new_recurrence.push_back(*N); + + if(partialOrder.size() == 0) + //For each predecessors, add it to this recurrence ONLY if it is not already in it + for(MSchedGraphNode::pred_iterator P = (*N)->pred_begin(), + PE = (*N)->pred_end(); P != PE; ++P) { + + //Check if we are supposed to ignore this edge or not + if(!ignoreEdge(*P, *N)) + //Check if already in this recurrence + if(std::find(I->second.begin(), I->second.end(), *P) == I->second.end()) { + //Also need to check if in partial order + bool predFound = false; + for(std::vector<std::vector<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), PEND = partialOrder.end(); PO != PEND; ++PO) { + if(std::find(PO->begin(), PO->end(), *P) != PO->end()) + predFound = true; + } + + if(!predFound) + if(std::find(new_recurrence.begin(), new_recurrence.end(), *P) == new_recurrence.end()) + new_recurrence.push_back(*P); + + } + } + } + } + + + if(new_recurrence.size() > 0) + partialOrder.push_back(new_recurrence); + } + + //Add any nodes that are not already in the partial order + std::vector<MSchedGraphNode*> lastNodes; + for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { + bool found = false; + //Check if its already in our partial order, if not add it to the final vector + for(std::vector<std::vector<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) { + if(std::find(PO->begin(), PO->end(), I->first) != PO->end()) + found = true; + } + if(!found) + lastNodes.push_back(I->first); + } + + if(lastNodes.size() > 0) + partialOrder.push_back(lastNodes); + +} + + +void ModuloSchedulingPass::predIntersect(std::vector<MSchedGraphNode*> &CurrentSet, std::vector<MSchedGraphNode*> &IntersectResult) { + + //Sort CurrentSet so we can use lowerbound + std::sort(CurrentSet.begin(), CurrentSet.end()); + + for(unsigned j=0; j < FinalNodeOrder.size(); ++j) { + for(MSchedGraphNode::pred_iterator P = FinalNodeOrder[j]->pred_begin(), + E = FinalNodeOrder[j]->pred_end(); P != E; ++P) { + + //Check if we are supposed to ignore this edge or not + if(ignoreEdge(*P,FinalNodeOrder[j])) + continue; + + if(std::find(CurrentSet.begin(), + CurrentSet.end(), *P) != CurrentSet.end()) + if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end()) + IntersectResult.push_back(*P); + } + } +} + +void ModuloSchedulingPass::succIntersect(std::vector<MSchedGraphNode*> &CurrentSet, std::vector<MSchedGraphNode*> &IntersectResult) { + + //Sort CurrentSet so we can use lowerbound + std::sort(CurrentSet.begin(), CurrentSet.end()); + + for(unsigned j=0; j < FinalNodeOrder.size(); ++j) { + for(MSchedGraphNode::succ_iterator P = FinalNodeOrder[j]->succ_begin(), + E = FinalNodeOrder[j]->succ_end(); P != E; ++P) { + + //Check if we are supposed to ignore this edge or not + if(ignoreEdge(FinalNodeOrder[j],*P)) + continue; + + if(std::find(CurrentSet.begin(), + CurrentSet.end(), *P) != CurrentSet.end()) + if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end()) + IntersectResult.push_back(*P); + } + } +} + +void dumpIntersection(std::vector<MSchedGraphNode*> &IntersectCurrent) { + std::cerr << "Intersection ("; + for(std::vector<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(), E = IntersectCurrent.end(); I != E; ++I) + std::cerr << **I << ", "; + std::cerr << ")\n"; +} + + + +void ModuloSchedulingPass::orderNodes() { + + int BOTTOM_UP = 0; + int TOP_DOWN = 1; + + //Set default order + int order = BOTTOM_UP; + + + //Loop over all the sets and place them in the final node order + for(std::vector<std::vector<MSchedGraphNode*> >::iterator CurrentSet = partialOrder.begin(), E= partialOrder.end(); CurrentSet != E; ++CurrentSet) { + + DEBUG(std::cerr << "Processing set in S\n"); + DEBUG(dumpIntersection(*CurrentSet)); + + //Result of intersection + std::vector<MSchedGraphNode*> IntersectCurrent; + + predIntersect(*CurrentSet, IntersectCurrent); + + //If the intersection of predecessor and current set is not empty + //sort nodes bottom up + if(IntersectCurrent.size() != 0) { + DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is NOT empty\n"); + order = BOTTOM_UP; + } + //If empty, use successors + else { + DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is empty\n"); + + succIntersect(*CurrentSet, IntersectCurrent); + + //sort top-down + if(IntersectCurrent.size() != 0) { + DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is NOT empty\n"); + order = TOP_DOWN; + } + else { + DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is empty\n"); + //Find node with max ASAP in current Set + MSchedGraphNode *node; + int maxASAP = 0; + DEBUG(std::cerr << "Using current set of size " << CurrentSet->size() << "to find max ASAP\n"); + for(unsigned j=0; j < CurrentSet->size(); ++j) { + //Get node attributes + MSNodeAttributes nodeAttr= nodeToAttributesMap.find((*CurrentSet)[j])->second; + //assert(nodeAttr != nodeToAttributesMap.end() && "Node not in attributes map!"); + DEBUG(std::cerr << "CurrentSet index " << j << "has ASAP: " << nodeAttr.ASAP << "\n"); + if(maxASAP < nodeAttr.ASAP) { + maxASAP = nodeAttr.ASAP; + node = (*CurrentSet)[j]; + } + } + assert(node != 0 && "In node ordering node should not be null"); + IntersectCurrent.push_back(node); + order = BOTTOM_UP; + } + } + + //Repeat until all nodes are put into the final order from current set + while(IntersectCurrent.size() > 0) { + + if(order == TOP_DOWN) { + DEBUG(std::cerr << "Order is TOP DOWN\n"); + + while(IntersectCurrent.size() > 0) { + DEBUG(std::cerr << "Intersection is not empty, so find heighest height\n"); + + int MOB = 0; + int height = 0; + MSchedGraphNode *highestHeightNode = IntersectCurrent[0]; + + //Find node in intersection with highest heigh and lowest MOB + for(std::vector<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(), + E = IntersectCurrent.end(); I != E; ++I) { + + //Get current nodes properties + MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*I)->second; + + if(height < nodeAttr.height) { + highestHeightNode = *I; + height = nodeAttr.height; + MOB = nodeAttr.MOB; + } + else if(height == nodeAttr.height) { + if(MOB > nodeAttr.height) { + highestHeightNode = *I; + height = nodeAttr.height; + MOB = nodeAttr.MOB; + } + } + } + + //Append our node with greatest height to the NodeOrder + if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestHeightNode) == FinalNodeOrder.end()) { + DEBUG(std::cerr << "Adding node to Final Order: " << *highestHeightNode << "\n"); + FinalNodeOrder.push_back(highestHeightNode); + } + + //Remove V from IntersectOrder + IntersectCurrent.erase(std::find(IntersectCurrent.begin(), + IntersectCurrent.end(), highestHeightNode)); + + + //Intersect V's successors with CurrentSet + for(MSchedGraphNode::succ_iterator P = highestHeightNode->succ_begin(), + E = highestHeightNode->succ_end(); P != E; ++P) { + //if(lower_bound(CurrentSet->begin(), + // CurrentSet->end(), *P) != CurrentSet->end()) { + if(std::find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) { + if(ignoreEdge(highestHeightNode, *P)) + continue; + //If not already in Intersect, add + if(std::find(IntersectCurrent.begin(), IntersectCurrent.end(), *P) == IntersectCurrent.end()) + IntersectCurrent.push_back(*P); + } + } + } //End while loop over Intersect Size + + //Change direction + order = BOTTOM_UP; + + //Reset Intersect to reflect changes in OrderNodes + IntersectCurrent.clear(); + predIntersect(*CurrentSet, IntersectCurrent); + + } //End If TOP_DOWN + + //Begin if BOTTOM_UP + else { + DEBUG(std::cerr << "Order is BOTTOM UP\n"); + while(IntersectCurrent.size() > 0) { + DEBUG(std::cerr << "Intersection of size " << IntersectCurrent.size() << ", finding highest depth\n"); + + //dump intersection + DEBUG(dumpIntersection(IntersectCurrent)); + //Get node with highest depth, if a tie, use one with lowest + //MOB + int MOB = 0; + int depth = 0; + MSchedGraphNode *highestDepthNode = IntersectCurrent[0]; + + for(std::vector<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(), + E = IntersectCurrent.end(); I != E; ++I) { + //Find node attribute in graph + MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*I)->second; + + if(depth < nodeAttr.depth) { + highestDepthNode = *I; + depth = nodeAttr.depth; + MOB = nodeAttr.MOB; + } + else if(depth == nodeAttr.depth) { + if(MOB > nodeAttr.MOB) { + highestDepthNode = *I; + depth = nodeAttr.depth; + MOB = nodeAttr.MOB; + } + } + } + + + + //Append highest depth node to the NodeOrder + if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestDepthNode) == FinalNodeOrder.end()) { + DEBUG(std::cerr << "Adding node to Final Order: " << *highestDepthNode << "\n"); + FinalNodeOrder.push_back(highestDepthNode); + } + //Remove heightestDepthNode from IntersectOrder + IntersectCurrent.erase(std::find(IntersectCurrent.begin(), + IntersectCurrent.end(),highestDepthNode)); + + + //Intersect heightDepthNode's pred with CurrentSet + for(MSchedGraphNode::pred_iterator P = highestDepthNode->pred_begin(), + E = highestDepthNode->pred_end(); P != E; ++P) { + //if(lower_bound(CurrentSet->begin(), + // CurrentSet->end(), *P) != CurrentSet->end()) { + if(std::find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) { + + if(ignoreEdge(*P, highestDepthNode)) + continue; + + //If not already in Intersect, add + if(std::find(IntersectCurrent.begin(), + IntersectCurrent.end(), *P) == IntersectCurrent.end()) + IntersectCurrent.push_back(*P); + } + } + + } //End while loop over Intersect Size + + //Change order + order = TOP_DOWN; + + //Reset IntersectCurrent to reflect changes in OrderNodes + IntersectCurrent.clear(); + succIntersect(*CurrentSet, IntersectCurrent); + } //End if BOTTOM_DOWN + + DEBUG(std::cerr << "Current Intersection Size: " << IntersectCurrent.size() << "\n"); + } + //End Wrapping while loop + DEBUG(std::cerr << "Ending Size of Current Set: " << CurrentSet->size() << "\n"); + }//End for over all sets of nodes + + //FIXME: As the algorithm stands it will NEVER add an instruction such as ba (with no + //data dependencies) to the final order. We add this manually. It will always be + //in the last set of S since its not part of a recurrence + //Loop over all the sets and place them in the final node order + std::vector<std::vector<MSchedGraphNode*> > ::reverse_iterator LastSet = partialOrder.rbegin(); + for(std::vector<MSchedGraphNode*>::iterator CurrentNode = LastSet->begin(), LastNode = LastSet->end(); + CurrentNode != LastNode; ++CurrentNode) { + if((*CurrentNode)->getInst()->getOpcode() == V9::BA) + FinalNodeOrder.push_back(*CurrentNode); + } + //Return final Order + //return FinalNodeOrder; +} + +void ModuloSchedulingPass::computeSchedule() { + + bool success = false; + + while(!success) { + + //Loop over the final node order and process each node + for(std::vector<MSchedGraphNode*>::iterator I = FinalNodeOrder.begin(), + E = FinalNodeOrder.end(); I != E; ++I) { + + //CalculateEarly and Late start + int EarlyStart = -1; + int LateStart = 99999; //Set to something higher then we would ever expect (FIXME) + bool hasSucc = false; + bool hasPred = false; + + if(!(*I)->isBranch()) { + //Loop over nodes in the schedule and determine if they are predecessors + //or successors of the node we are trying to schedule + for(MSSchedule::schedule_iterator nodesByCycle = schedule.begin(), nodesByCycleEnd = schedule.end(); + nodesByCycle != nodesByCycleEnd; ++nodesByCycle) { + + //For this cycle, get the vector of nodes schedule and loop over it + for(std::vector<MSchedGraphNode*>::iterator schedNode = nodesByCycle->second.begin(), SNE = nodesByCycle->second.end(); schedNode != SNE; ++schedNode) { + + if((*I)->isPredecessor(*schedNode)) { + if(!ignoreEdge(*schedNode, *I)) { + int diff = (*I)->getInEdge(*schedNode).getIteDiff(); + int ES_Temp = nodesByCycle->first + (*schedNode)->getLatency() - diff * II; + DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n"); + DEBUG(std::cerr << "Temp EarlyStart: " << ES_Temp << " Prev EarlyStart: " << EarlyStart << "\n"); + EarlyStart = std::max(EarlyStart, ES_Temp); + hasPred = true; + } + } + if((*I)->isSuccessor(*schedNode)) { + if(!ignoreEdge(*I,*schedNode)) { + int diff = (*schedNode)->getInEdge(*I).getIteDiff(); + int LS_Temp = nodesByCycle->first - (*I)->getLatency() + diff * II; + DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n"); + DEBUG(std::cerr << "Temp LateStart: " << LS_Temp << " Prev LateStart: " << LateStart << "\n"); + LateStart = std::min(LateStart, LS_Temp); + hasSucc = true; + } + } + } + } + } + else { + //WARNING: HACK! FIXME!!!! + if((*I)->getInst()->getOpcode() == V9::BA) { + EarlyStart = II-1; + LateStart = II-1; + } + else { + EarlyStart = II-1; + LateStart = II-1; + assert( (EarlyStart >= 0) && (LateStart >=0) && "EarlyStart and LateStart must be greater then 0"); + } + hasPred = 1; + hasSucc = 1; + } + + + DEBUG(std::cerr << "Has Successors: " << hasSucc << ", Has Pred: " << hasPred << "\n"); + DEBUG(std::cerr << "EarlyStart: " << EarlyStart << ", LateStart: " << LateStart << "\n"); + + //Check if the node has no pred or successors and set Early Start to its ASAP + if(!hasSucc && !hasPred) + EarlyStart = nodeToAttributesMap.find(*I)->second.ASAP; + + //Now, try to schedule this node depending upon its pred and successor in the schedule + //already + if(!hasSucc && hasPred) + success = scheduleNode(*I, EarlyStart, (EarlyStart + II -1)); + else if(!hasPred && hasSucc) + success = scheduleNode(*I, LateStart, (LateStart - II +1)); + else if(hasPred && hasSucc) + success = scheduleNode(*I, EarlyStart, std::min(LateStart, (EarlyStart + II -1))); + else + success = scheduleNode(*I, EarlyStart, EarlyStart + II - 1); + + if(!success) { + ++II; + schedule.clear(); + break; + } + + } + + DEBUG(std::cerr << "Constructing Kernel\n"); + success = schedule.constructKernel(II); + if(!success) { + ++II; + schedule.clear(); + } + } +} + + +bool ModuloSchedulingPass::scheduleNode(MSchedGraphNode *node, + int start, int end) { + bool success = false; + + DEBUG(std::cerr << *node << " (Start Cycle: " << start << ", End Cycle: " << end << ")\n"); + + //Make sure start and end are not negative + if(start < 0) + start = 0; + if(end < 0) + end = 0; + + bool forward = true; + if(start > end) + forward = false; + + bool increaseSC = true; + int cycle = start ; + + + while(increaseSC) { + + increaseSC = false; + + increaseSC = schedule.insert(node, cycle); + + if(!increaseSC) + return true; + + //Increment cycle to try again + if(forward) { + ++cycle; + DEBUG(std::cerr << "Increase cycle: " << cycle << "\n"); + if(cycle > end) + return false; + } + else { + --cycle; + DEBUG(std::cerr << "Decrease cycle: " << cycle << "\n"); + if(cycle < end) + return false; + } + } + + return success; +} + +void ModuloSchedulingPass::writePrologues(std::vector<MachineBasicBlock *> &prologues, MachineBasicBlock *origBB, std::vector<BasicBlock*> &llvm_prologues, std::map<const Value*, std::pair<const MSchedGraphNode*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation) { + + //Keep a map to easily know whats in the kernel + std::map<int, std::set<const MachineInstr*> > inKernel; + int maxStageCount = 0; + + MSchedGraphNode *branch = 0; + MSchedGraphNode *BAbranch = 0; + + for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { + maxStageCount = std::max(maxStageCount, I->second); + + //Ignore the branch, we will handle this separately + if(I->first->isBranch()) { + if (I->first->getInst()->getOpcode() == V9::BA) + BAbranch = I->first; + else + branch = I->first; + continue; + } + + //Put int the map so we know what instructions in each stage are in the kernel + DEBUG(std::cerr << "Inserting instruction " << *(I->first->getInst()) << " into map at stage " << I->second << "\n"); + inKernel[I->second].insert(I->first->getInst()); + } + + //Get target information to look at machine operands + const TargetInstrInfo *mii = target.getInstrInfo(); + + //Now write the prologues + for(int i = 0; i < maxStageCount; ++i) { + BasicBlock *llvmBB = new BasicBlock("PROLOGUE", (Function*) (origBB->getBasicBlock()->getParent())); + MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB); + + DEBUG(std::cerr << "i=" << i << "\n"); + for(int j = 0; j <= i; ++j) { + for(MachineBasicBlock::const_iterator MI = origBB->begin(), ME = origBB->end(); ME != MI; ++MI) { + if(inKernel[j].count(&*MI)) { + MachineInstr *instClone = MI->clone(); + machineBB->push_back(instClone); + + DEBUG(std::cerr << "Cloning: " << *MI << "\n"); + + Instruction *tmp; + + //After cloning, we may need to save the value that this instruction defines + for(unsigned opNum=0; opNum < MI->getNumOperands(); ++opNum) { + //get machine operand + const MachineOperand &mOp = instClone->getOperand(opNum); + if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) { + + //Check if this is a value we should save + if(valuesToSave.count(mOp.getVRegValue())) { + //Save copy in tmpInstruction + tmp = new TmpInstruction(mOp.getVRegValue()); + + DEBUG(std::cerr << "Value: " << *(mOp.getVRegValue()) << " New Value: " << *tmp << " Stage: " << i << "\n"); + + newValues[mOp.getVRegValue()][i]= tmp; + newValLocation[tmp] = machineBB; + + DEBUG(std::cerr << "Machine Instr Operands: " << *(mOp.getVRegValue()) << ", 0, " << *tmp << "\n"); + + //Create machine instruction and put int machineBB + MachineInstr *saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); + + DEBUG(std::cerr << "Created new machine instr: " << *saveValue << "\n"); + } + } + + //We may also need to update the value that we use if its from an earlier prologue + if(j != 0) { + if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) { + if(newValues.count(mOp.getVRegValue())) + if(newValues[mOp.getVRegValue()].count(j-1)) { + DEBUG(std::cerr << "Replaced this value: " << mOp.getVRegValue() << " With:" << (newValues[mOp.getVRegValue()][i-1]) << "\n"); + //Update the operand with the right value + instClone->getOperand(opNum).setValueReg(newValues[mOp.getVRegValue()][i-1]); + } + } + } + } + } + } + } + + + //Stick in branch at the end + machineBB->push_back(branch->getInst()->clone()); + + //Stick in BA branch at the end + machineBB->push_back(BAbranch->getInst()->clone()); + + (((MachineBasicBlock*)origBB)->getParent())->getBasicBlockList().push_back(machineBB); + prologues.push_back(machineBB); + llvm_prologues.push_back(llvmBB); + } +} + +void ModuloSchedulingPass::writeEpilogues(std::vector<MachineBasicBlock *> &epilogues, const MachineBasicBlock *origBB, std::vector<BasicBlock*> &llvm_epilogues, std::map<const Value*, std::pair<const MSchedGraphNode*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues,std::map<Value*, MachineBasicBlock*> &newValLocation, std::map<Value*, std::map<int, Value*> > &kernelPHIs ) { + + std::map<int, std::set<const MachineInstr*> > inKernel; + + for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { + + //Ignore the branch, we will handle this separately + if(I->first->isBranch()) + continue; + + //Put int the map so we know what instructions in each stage are in the kernel + inKernel[I->second].insert(I->first->getInst()); + } + + std::map<Value*, Value*> valPHIs; + + //some debug stuff, will remove later + DEBUG(for(std::map<Value*, std::map<int, Value*> >::iterator V = newValues.begin(), E = newValues.end(); V !=E; ++V) { + std::cerr << "Old Value: " << *(V->first) << "\n"; + for(std::map<int, Value*>::iterator I = V->second.begin(), IE = V->second.end(); I != IE; ++I) + std::cerr << "Stage: " << I->first << " Value: " << *(I->second) << "\n"; + }); + + //some debug stuff, will remove later + DEBUG(for(std::map<Value*, std::map<int, Value*> >::iterator V = kernelPHIs.begin(), E = kernelPHIs.end(); V !=E; ++V) { + std::cerr << "Old Value: " << *(V->first) << "\n"; + for(std::map<int, Value*>::iterator I = V->second.begin(), IE = V->second.end(); I != IE; ++I) + std::cerr << "Stage: " << I->first << " Value: " << *(I->second) << "\n"; + }); + + //Now write the epilogues + for(int i = schedule.getMaxStage()-1; i >= 0; --i) { + BasicBlock *llvmBB = new BasicBlock("EPILOGUE", (Function*) (origBB->getBasicBlock()->getParent())); + MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB); + + DEBUG(std::cerr << " Epilogue #: " << i << "\n"); + + + + + for(MachineBasicBlock::const_iterator MI = origBB->begin(), ME = origBB->end(); ME != MI; ++MI) { + for(int j=schedule.getMaxStage(); j > i; --j) { + if(inKernel[j].count(&*MI)) { + DEBUG(std::cerr << "Cloning instruction " << *MI << "\n"); + MachineInstr *clone = MI->clone(); + + //Update operands that need to use the result from the phi + for(unsigned opNum=0; opNum < clone->getNumOperands(); ++opNum) { + //get machine operand + const MachineOperand &mOp = clone->getOperand(opNum); + + //If this is the last instructions for the max iterations ago, don't update operands + if(j == schedule.getMaxStage() && (i == 0)) + continue; + + if((mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse())) { + + DEBUG(std::cerr << "Writing PHI for " << *(mOp.getVRegValue()) << "\n"); + + //Quickly write appropriate phis for this operand + if(newValues.count(mOp.getVRegValue())) { + if(newValues[mOp.getVRegValue()].count(i)) { + Instruction *tmp = new TmpInstruction(newValues[mOp.getVRegValue()][i]); + MachineInstr *saveValue = BuildMI(machineBB, V9::PHI, 3).addReg(newValues[mOp.getVRegValue()][i]).addReg(kernelPHIs[mOp.getVRegValue()][i]).addRegDef(tmp); + DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n"); + valPHIs[mOp.getVRegValue()] = tmp; + } + } + + if(valPHIs.count(mOp.getVRegValue())) { + //Update the operand in the cloned instruction + clone->getOperand(opNum).setValueReg(valPHIs[mOp.getVRegValue()]); + } + } + } + machineBB->push_back(clone); + } + } + } + + (((MachineBasicBlock*)origBB)->getParent())->getBasicBlockList().push_back(machineBB); + epilogues.push_back(machineBB); + llvm_epilogues.push_back(llvmBB); + + DEBUG(std::cerr << "EPILOGUE #" << i << "\n"); + DEBUG(machineBB->print(std::cerr)); + } +} + +void ModuloSchedulingPass::writeKernel(BasicBlock *llvmBB, MachineBasicBlock *machineBB, std::map<const Value*, std::pair<const MSchedGraphNode*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation, std::map<Value*, std::map<int, Value*> > &kernelPHIs) { + + //Keep track of operands that are read and saved from a previous iteration. The new clone + //instruction will use the result of the phi instead. + std::map<Value*, Value*> finalPHIValue; + std::map<Value*, Value*> kernelValue; + + //Create TmpInstructions for the final phis + for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { + + DEBUG(std::cerr << "Stage: " << I->second << " Inst: " << *(I->first->getInst()) << "\n";); + + //Clone instruction + const MachineInstr *inst = I->first->getInst(); + MachineInstr *instClone = inst->clone(); + + //Insert into machine basic block + machineBB->push_back(instClone); + + + //Loop over Machine Operands + for(unsigned i=0; i < inst->getNumOperands(); ++i) { + //get machine operand + const MachineOperand &mOp = inst->getOperand(i); + + if(I->second != 0) { + if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) { + + //Check to see where this operand is defined if this instruction is from max stage + if(I->second == schedule.getMaxStage()) { + DEBUG(std::cerr << "VREG: " << *(mOp.getVRegValue()) << "\n"); + } + + //If its in the value saved, we need to create a temp instruction and use that instead + if(valuesToSave.count(mOp.getVRegValue())) { + TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue()); + + //Update the operand in the cloned instruction + instClone->getOperand(i).setValueReg(tmp); + + //save this as our final phi + finalPHIValue[mOp.getVRegValue()] = tmp; + newValLocation[tmp] = machineBB; + } + } + } + if(I->second != schedule.getMaxStage()) { + if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) { + if(valuesToSave.count(mOp.getVRegValue())) { + + TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue()); + + //Create new machine instr and put in MBB + MachineInstr *saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); + + //Save for future cleanup + kernelValue[mOp.getVRegValue()] = tmp; + newValLocation[tmp] = machineBB; + kernelPHIs[mOp.getVRegValue()][schedule.getMaxStage()-1] = tmp; + } + } + } + } + + } + + DEBUG(std::cerr << "KERNEL before PHIs\n"); + DEBUG(machineBB->print(std::cerr)); + + + //Loop over each value we need to generate phis for + for(std::map<Value*, std::map<int, Value*> >::iterator V = newValues.begin(), + E = newValues.end(); V != E; ++V) { + + + DEBUG(std::cerr << "Writing phi for" << *(V->first)); + DEBUG(std::cerr << "\nMap of Value* for this phi\n"); + DEBUG(for(std::map<int, Value*>::iterator I = V->second.begin(), + IE = V->second.end(); I != IE; ++I) { + std::cerr << "Stage: " << I->first; + std::cerr << " Value: " << *(I->second) << "\n"; + }); + + //If we only have one current iteration live, its safe to set lastPhi = to kernel value + if(V->second.size() == 1) { + assert(kernelValue[V->first] != 0 && "Kernel value* must exist to create phi"); + MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(),V9::PHI, 3).addReg(V->second.begin()->second).addReg(kernelValue[V->first]).addRegDef(finalPHIValue[V->first]); + DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n"); + kernelPHIs[V->first][schedule.getMaxStage()-1] = kernelValue[V->first]; + } + else { + + //Keep track of last phi created. + Instruction *lastPhi = 0; + + unsigned count = 1; + //Loop over the the map backwards to generate phis + for(std::map<int, Value*>::reverse_iterator I = V->second.rbegin(), IE = V->second.rend(); + I != IE; ++I) { + + if(count < (V->second).size()) { + if(lastPhi == 0) { + lastPhi = new TmpInstruction(I->second); + MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(kernelValue[V->first]).addReg(I->second).addRegDef(lastPhi); + DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n"); + newValLocation[lastPhi] = machineBB; + } + else { + Instruction *tmp = new TmpInstruction(I->second); + MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(lastPhi).addReg(I->second).addRegDef(tmp); + DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n"); + lastPhi = tmp; + kernelPHIs[V->first][I->first] = lastPhi; + newValLocation[lastPhi] = machineBB; + } + } + //Final phi value + else { + //The resulting value must be the Value* we created earlier + assert(lastPhi != 0 && "Last phi is NULL!\n"); + MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(lastPhi).addReg(I->second).addRegDef(finalPHIValue[V->first]); + DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n"); + kernelPHIs[V->first][I->first] = finalPHIValue[V->first]; + } + + ++count; + } + + } + } + + DEBUG(std::cerr << "KERNEL after PHIs\n"); + DEBUG(machineBB->print(std::cerr)); +} + + +void ModuloSchedulingPass::removePHIs(const MachineBasicBlock *origBB, std::vector<MachineBasicBlock *> &prologues, std::vector<MachineBasicBlock *> &epilogues, MachineBasicBlock *kernelBB, std::map<Value*, MachineBasicBlock*> &newValLocation) { + + //Worklist to delete things + std::vector<std::pair<MachineBasicBlock*, MachineBasicBlock::iterator> > worklist; + + const TargetInstrInfo *TMI = target.getInstrInfo(); + + //Start with the kernel and for each phi insert a copy for the phi def and for each arg + for(MachineBasicBlock::iterator I = kernelBB->begin(), E = kernelBB->end(); I != E; ++I) { + //Get op code and check if its a phi + if(I->getOpcode() == V9::PHI) { + Instruction *tmp = 0; + for(unsigned i = 0; i < I->getNumOperands(); ++i) { + //Get Operand + const MachineOperand &mOp = I->getOperand(i); + assert(mOp.getType() == MachineOperand::MO_VirtualRegister && "Should be a Value*\n"); + + if(!tmp) { + tmp = new TmpInstruction(mOp.getVRegValue()); + } + + //Now for all our arguments we read, OR to the new TmpInstruction that we created + if(mOp.isUse()) { + DEBUG(std::cerr << "Use: " << mOp << "\n"); + //Place a copy at the end of its BB but before the branches + assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n"); + //Reverse iterate to find the branches, we can safely assume no instructions have been + //put in the nop positions + for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) { + MachineOpCode opc = inst->getOpcode(); + if(TMI->isBranch(opc) || TMI->isNop(opc)) + continue; + else { + BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); + break; + } + + } + + } + else { + //Remove the phi and replace it with an OR + DEBUG(std::cerr << "Def: " << mOp << "\n"); + BuildMI(*kernelBB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue()); + worklist.push_back(std::make_pair(kernelBB, I)); + } + + } + } + + } + + //Remove phis from epilogue + for(std::vector<MachineBasicBlock*>::iterator MB = epilogues.begin(), ME = epilogues.end(); MB != ME; ++MB) { + for(MachineBasicBlock::iterator I = (*MB)->begin(), E = (*MB)->end(); I != E; ++I) { + //Get op code and check if its a phi + if(I->getOpcode() == V9::PHI) { + Instruction *tmp = 0; + for(unsigned i = 0; i < I->getNumOperands(); ++i) { + //Get Operand + const MachineOperand &mOp = I->getOperand(i); + assert(mOp.getType() == MachineOperand::MO_VirtualRegister && "Should be a Value*\n"); + + if(!tmp) { + tmp = new TmpInstruction(mOp.getVRegValue()); + } + + //Now for all our arguments we read, OR to the new TmpInstruction that we created + if(mOp.isUse()) { + DEBUG(std::cerr << "Use: " << mOp << "\n"); + //Place a copy at the end of its BB but before the branches + assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n"); + //Reverse iterate to find the branches, we can safely assume no instructions have been + //put in the nop positions + for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) { + MachineOpCode opc = inst->getOpcode(); + if(TMI->isBranch(opc) || TMI->isNop(opc)) + continue; + else { + BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); + break; + } + + } + + } + else { + //Remove the phi and replace it with an OR + DEBUG(std::cerr << "Def: " << mOp << "\n"); + BuildMI(**MB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue()); + worklist.push_back(std::make_pair(*MB,I)); + } + + } + } + } + } + + //Delete the phis + for(std::vector<std::pair<MachineBasicBlock*, MachineBasicBlock::iterator> >::iterator I = worklist.begin(), E = worklist.end(); I != E; ++I) { + DEBUG(std::cerr << "Deleting PHI " << I->second << "\n"); + I->first->erase(I->second); + + } + +} + + +void ModuloSchedulingPass::reconstructLoop(MachineBasicBlock *BB) { + + DEBUG(std::cerr << "Reconstructing Loop\n"); + + //First find the value *'s that we need to "save" + std::map<const Value*, std::pair<const MSchedGraphNode*, int> > valuesToSave; + + //Keep track of instructions we have already seen and their stage because + //we don't want to "save" values if they are used in the kernel immediately + std::map<const MachineInstr*, int> lastInstrs; + + //Loop over kernel and only look at instructions from a stage > 0 + //Look at its operands and save values *'s that are read + for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { + + if(I->second !=0) { + //For this instruction, get the Value*'s that it reads and put them into the set. + //Assert if there is an operand of another type that we need to save + const MachineInstr *inst = I->first->getInst(); + lastInstrs[inst] = I->second; + + for(unsigned i=0; i < inst->getNumOperands(); ++i) { + //get machine operand + const MachineOperand &mOp = inst->getOperand(i); + + if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) { + //find the value in the map + if (const Value* srcI = mOp.getVRegValue()) { + + //Before we declare this Value* one that we should save + //make sure its def is not of the same stage as this instruction + //because it will be consumed before its used + Instruction *defInst = (Instruction*) srcI; + + //Should we save this value? + bool save = true; + + //Get Machine code for this instruction, and loop backwards over the array + //to find the def + MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defInst); + for (int j = tempMvec.size()-1; j >= 0; j--) { + MachineInstr *temp = tempMvec[j]; + + //Loop over instructions + for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) { + MachineOperand &mDefOp = temp->getOperand(opNum); + + if (mDefOp.getType() == MachineOperand::MO_VirtualRegister && mDefOp.isDef()) { + const Value* defVReg = mDefOp.getVRegValue(); + if(defVReg == srcI) { + //Check if instruction has been seen already and is of same stage + if(lastInstrs.count(temp)) { + if(lastInstrs[temp] == I->second) + save = false; + } + } + } + } + } + if(save) + valuesToSave[srcI] = std::make_pair(I->first, i); + } + } + + if(mOp.getType() != MachineOperand::MO_VirtualRegister && mOp.isUse()) { + assert("Our assumption is wrong. We have another type of register that needs to be saved\n"); + } + } + } + } + + //The new loop will consist of one or more prologues, the kernel, and one or more epilogues. + + //Map to keep track of old to new values + std::map<Value*, std::map<int, Value*> > newValues; + + //Map to keep track of old to new values in kernel + std::map<Value*, std::map<int, Value*> > kernelPHIs; + + //Another map to keep track of what machine basic blocks these new value*s are in since + //they have no llvm instruction equivalent + std::map<Value*, MachineBasicBlock*> newValLocation; + + std::vector<MachineBasicBlock*> prologues; + std::vector<BasicBlock*> llvm_prologues; + + + //Write prologue + writePrologues(prologues, BB, llvm_prologues, valuesToSave, newValues, newValLocation); + + //Print out epilogues and prologue + DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = prologues.begin(), E = prologues.end(); + I != E; ++I) { + std::cerr << "PROLOGUE\n"; + (*I)->print(std::cerr); + }); + + BasicBlock *llvmKernelBB = new BasicBlock("Kernel", (Function*) (BB->getBasicBlock()->getParent())); + MachineBasicBlock *machineKernelBB = new MachineBasicBlock(llvmKernelBB); + (((MachineBasicBlock*)BB)->getParent())->getBasicBlockList().push_back(machineKernelBB); + writeKernel(llvmKernelBB, machineKernelBB, valuesToSave, newValues, newValLocation, kernelPHIs); + + + std::vector<MachineBasicBlock*> epilogues; + std::vector<BasicBlock*> llvm_epilogues; + + //Write epilogues + writeEpilogues(epilogues, BB, llvm_epilogues, valuesToSave, newValues, newValLocation, kernelPHIs); + + + const TargetInstrInfo *TMI = target.getInstrInfo(); + + //Fix up machineBB and llvmBB branches + for(unsigned I = 0; I < prologues.size(); ++I) { + + MachineInstr *branch = 0; + + //Find terminator since getFirstTerminator does not work! + for(MachineBasicBlock::reverse_iterator mInst = prologues[I]->rbegin(), mInstEnd = prologues[I]->rend(); mInst != mInstEnd; ++mInst) { + MachineOpCode OC = mInst->getOpcode(); + if(TMI->isBranch(OC)) { + branch = &*mInst; + DEBUG(std::cerr << *mInst << "\n"); + break; + } + } + + + + //Update branch + for(unsigned opNum = 0; opNum < branch->getNumOperands(); ++opNum) { + MachineOperand &mOp = branch->getOperand(opNum); + if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { + mOp.setValueReg(llvm_epilogues[(llvm_epilogues.size()-1-I)]); + } + } + + //Update llvm basic block with our new branch instr + DEBUG(std::cerr << BB->getBasicBlock()->getTerminator() << "\n"); + const BranchInst *branchVal = dyn_cast<BranchInst>(BB->getBasicBlock()->getTerminator()); + TmpInstruction *tmp = new TmpInstruction(branchVal->getCondition()); + if(I == prologues.size()-1) { + TerminatorInst *newBranch = new BranchInst(llvmKernelBB, + llvm_epilogues[(llvm_epilogues.size()-1-I)], + tmp, + llvm_prologues[I]); + } + else + TerminatorInst *newBranch = new BranchInst(llvm_prologues[I+1], + llvm_epilogues[(llvm_epilogues.size()-1-I)], + tmp, + llvm_prologues[I]); + + assert(branch != 0 && "There must be a terminator for this machine basic block!\n"); + + //Push nop onto end of machine basic block + BuildMI(prologues[I], V9::NOP, 0); + + //Add a unconditional branch to the next prologue + if(I != prologues.size()-1) + BuildMI(prologues[I], V9::BA, 1).addPCDisp(llvm_prologues[I+1]); + else + BuildMI(prologues[I], V9::BA, 1).addPCDisp(llvmKernelBB); + + //Add one more nop! + BuildMI(prologues[I], V9::NOP, 0); + } + + //Fix up kernel machine branches + MachineInstr *branch = 0; + for(MachineBasicBlock::reverse_iterator mInst = machineKernelBB->rbegin(), mInstEnd = machineKernelBB->rend(); mInst != mInstEnd; ++mInst) { + MachineOpCode OC = mInst->getOpcode(); + if(TMI->isBranch(OC)) { + branch = &*mInst; + DEBUG(std::cerr << *mInst << "\n"); + break; + } + } + + assert(branch != 0 && "There must be a terminator for the kernel machine basic block!\n"); + + //Update kernel self loop branch + for(unsigned opNum = 0; opNum < branch->getNumOperands(); ++opNum) { + MachineOperand &mOp = branch->getOperand(opNum); + + if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { + mOp.setValueReg(llvmKernelBB); + } + } + + //Update kernelLLVM branches + const BranchInst *branchVal = dyn_cast<BranchInst>(BB->getBasicBlock()->getTerminator()); + TerminatorInst *newBranch = new BranchInst(llvmKernelBB, + llvm_epilogues[0], + new TmpInstruction(branchVal->getCondition()), + llvmKernelBB); + + //Add kernel noop + BuildMI(machineKernelBB, V9::NOP, 0); + + //Add unconditional branch to first epilogue + BuildMI(machineKernelBB, V9::BA, 1).addPCDisp(llvm_epilogues[0]); + + + //Add kernel noop + BuildMI(machineKernelBB, V9::NOP, 0); + + //Lastly add unconditional branches for the epilogues + for(unsigned I = 0; I < epilogues.size(); ++I) { + + //Now since I don't trust fall throughs, add a unconditional branch to the next prologue + if(I != epilogues.size()-1) { + BuildMI(epilogues[I], V9::BA, 1).addPCDisp(llvm_epilogues[I+1]); + //Add unconditional branch to end of epilogue + TerminatorInst *newBranch = new BranchInst(llvm_epilogues[I+1], + llvm_epilogues[I]); + + } + else { + MachineBasicBlock *origBlock = (MachineBasicBlock*) BB; + for(MachineBasicBlock::reverse_iterator inst = origBlock->rbegin(), instEnd = origBlock->rend(); inst != instEnd; ++inst) { + MachineOpCode OC = inst->getOpcode(); + if(TMI->isBranch(OC)) { + branch = &*inst; + DEBUG(std::cerr << "Exit branch from loop" << *inst << "\n"); + break; + + } + + for(unsigned opNum = 0; opNum < branch->getNumOperands(); ++opNum) { + MachineOperand &mOp = branch->getOperand(opNum); + + if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { + BuildMI(epilogues[I], V9::BA, 1).addPCDisp(mOp.getVRegValue()); + break; + } + } + + } + + //Update last epilogue exit branch + BranchInst *branchVal = (BranchInst*) dyn_cast<BranchInst>(BB->getBasicBlock()->getTerminator()); + //Find where we are supposed to branch to + BasicBlock *nextBlock = 0; + for(unsigned j=0; j <branchVal->getNumSuccessors(); ++j) { + if(branchVal->getSuccessor(j) != BB->getBasicBlock()) + nextBlock = branchVal->getSuccessor(j); + } + TerminatorInst *newBranch = new BranchInst(nextBlock, llvm_epilogues[I]); + } + //Add one more nop! + BuildMI(epilogues[I], V9::NOP, 0); + + } + + //FIX UP Machine BB entry!! + //We are looking at the predecesor of our loop basic block and we want to change its ba instruction + + + //Find all llvm basic blocks that branch to the loop entry and change to our first prologue. + const BasicBlock *llvmBB = BB->getBasicBlock(); + + for(pred_const_iterator P = pred_begin(llvmBB), PE = pred_end(llvmBB); P != PE; ++PE) { + if(*P == llvmBB) + continue; + else { + DEBUG(std::cerr << "Found our entry BB\n"); + //Get the Terminator instruction for this basic block and print it out + DEBUG(std::cerr << *((*P)->getTerminator()) << "\n"); + //Update the terminator + TerminatorInst *term = ((BasicBlock*)*P)->getTerminator(); + for(unsigned i=0; i < term->getNumSuccessors(); ++i) { + if(term->getSuccessor(i) == llvmBB) { + DEBUG(std::cerr << "Replacing successor bb\n"); + if(llvm_prologues.size() > 0) { + term->setSuccessor(i, llvm_prologues[0]); + //Also update its corresponding machine instruction + MachineCodeForInstruction & tempMvec = + MachineCodeForInstruction::get(term); + for (unsigned j = 0; j < tempMvec.size(); j++) { + MachineInstr *temp = tempMvec[j]; + MachineOpCode opc = temp->getOpcode(); + if(TMI->isBranch(opc)) { + DEBUG(std::cerr << *temp << "\n"); + //Update branch + for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) { + MachineOperand &mOp = temp->getOperand(opNum); + if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { + mOp.setValueReg(llvm_prologues[0]); + } + } + } + } + } + else { + term->setSuccessor(i, llvmKernelBB); + //Also update its corresponding machine instruction + MachineCodeForInstruction & tempMvec = + MachineCodeForInstruction::get(term); + for (unsigned j = 0; j < tempMvec.size(); j++) { + MachineInstr *temp = tempMvec[j]; + MachineOpCode opc = temp->getOpcode(); + if(TMI->isBranch(opc)) { + DEBUG(std::cerr << *temp << "\n"); + //Update branch + for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) { + MachineOperand &mOp = temp->getOperand(opNum); + if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { + mOp.setValueReg(llvmKernelBB); + } + } + } + } + } + } + } + break; + } + } + + removePHIs(BB, prologues, epilogues, machineKernelBB, newValLocation); + + + + //Print out epilogues and prologue + DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = prologues.begin(), E = prologues.end(); + I != E; ++I) { + std::cerr << "PROLOGUE\n"; + (*I)->print(std::cerr); + }); + + DEBUG(std::cerr << "KERNEL\n"); + DEBUG(machineKernelBB->print(std::cerr)); + + DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = epilogues.begin(), E = epilogues.end(); + I != E; ++I) { + std::cerr << "EPILOGUE\n"; + (*I)->print(std::cerr); + }); + + + DEBUG(std::cerr << "New Machine Function" << "\n"); + DEBUG(std::cerr << BB->getParent() << "\n"); + + //BB->getParent()->getBasicBlockList().erase(BB); + +} + |

