diff options
author | Marina Yatsina <marina.yatsina@intel.com> | 2018-01-22 10:06:33 +0000 |
---|---|---|
committer | Marina Yatsina <marina.yatsina@intel.com> | 2018-01-22 10:06:33 +0000 |
commit | 3d8efa4f0c3cb8fdcd5e052c081786f2b9aaaf8b (patch) | |
tree | 3457077b05deeb0957a3bf4844e881e79fe1db4c /llvm/lib/CodeGen/ExecutionDomainFix.cpp | |
parent | c757c0b6baa0a0e40da91ace8f29078fb04dcdd0 (diff) | |
download | bcm5719-llvm-3d8efa4f0c3cb8fdcd5e052c081786f2b9aaaf8b.tar.gz bcm5719-llvm-3d8efa4f0c3cb8fdcd5e052c081786f2b9aaaf8b.zip |
Rename ExecutionDepsFix files to ExecutionDomainFix
This is the one of multiple patches that fix bugzilla https://bugs.llvm.org/show_bug.cgi?id=33869
Most of the patches are intended at refactoring the existent code.
Additional relevant reviews:
https://reviews.llvm.org/D40330
https://reviews.llvm.org/D40331
https://reviews.llvm.org/D40333
https://reviews.llvm.org/D40334
Differential Revision: https://reviews.llvm.org/D40332
Change-Id: I6a048cca7fdafbfc42fb1bac94343e483befded8
llvm-svn: 323094
Diffstat (limited to 'llvm/lib/CodeGen/ExecutionDomainFix.cpp')
-rw-r--r-- | llvm/lib/CodeGen/ExecutionDomainFix.cpp | 889 |
1 files changed, 889 insertions, 0 deletions
diff --git a/llvm/lib/CodeGen/ExecutionDomainFix.cpp b/llvm/lib/CodeGen/ExecutionDomainFix.cpp new file mode 100644 index 00000000000..47ff39342c7 --- /dev/null +++ b/llvm/lib/CodeGen/ExecutionDomainFix.cpp @@ -0,0 +1,889 @@ +//===- ExecutionDepsFix.cpp - Fix execution domain issues ----*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/ExecutionDomainFix.h" +#include "llvm/ADT/PostOrderIterator.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/TargetInstrInfo.h" + +using namespace llvm; + +#define DEBUG_TYPE "execution-deps-fix" + +char ReachingDefAnalysis::ID = 0; +INITIALIZE_PASS(ReachingDefAnalysis, "reaching-deps-analysis", + "ReachingDefAnalysis", false, true) + +char BreakFalseDeps::ID = 0; +INITIALIZE_PASS_BEGIN(BreakFalseDeps, "break-false-deps", "BreakFalseDeps", + false, false) +INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis) +INITIALIZE_PASS_END(BreakFalseDeps, "break-false-deps", "BreakFalseDeps", false, + false) + +iterator_range<SmallVectorImpl<int>::const_iterator> +ExecutionDomainFix::regIndices(unsigned Reg) const { + assert(Reg < AliasMap.size() && "Invalid register"); + const auto &Entry = AliasMap[Reg]; + return make_range(Entry.begin(), Entry.end()); +} + +DomainValue *ExecutionDomainFix::alloc(int domain) { + DomainValue *dv = Avail.empty() ? new (Allocator.Allocate()) DomainValue + : Avail.pop_back_val(); + if (domain >= 0) + dv->addDomain(domain); + assert(dv->Refs == 0 && "Reference count wasn't cleared"); + assert(!dv->Next && "Chained DomainValue shouldn't have been recycled"); + return dv; +} + +void ExecutionDomainFix::release(DomainValue *DV) { + while (DV) { + assert(DV->Refs && "Bad DomainValue"); + if (--DV->Refs) + return; + + // There are no more DV references. Collapse any contained instructions. + if (DV->AvailableDomains && !DV->isCollapsed()) + collapse(DV, DV->getFirstDomain()); + + DomainValue *Next = DV->Next; + DV->clear(); + Avail.push_back(DV); + // Also release the next DomainValue in the chain. + DV = Next; + } +} + +DomainValue *ExecutionDomainFix::resolve(DomainValue *&DVRef) { + DomainValue *DV = DVRef; + if (!DV || !DV->Next) + return DV; + + // DV has a chain. Find the end. + do + DV = DV->Next; + while (DV->Next); + + // Update DVRef to point to DV. + retain(DV); + release(DVRef); + DVRef = DV; + return DV; +} + +void ExecutionDomainFix::setLiveReg(int rx, DomainValue *dv) { + assert(unsigned(rx) < NumRegs && "Invalid index"); + assert(!LiveRegs.empty() && "Must enter basic block first."); + + if (LiveRegs[rx] == dv) + return; + if (LiveRegs[rx]) + release(LiveRegs[rx]); + LiveRegs[rx] = retain(dv); +} + +void ExecutionDomainFix::kill(int rx) { + assert(unsigned(rx) < NumRegs && "Invalid index"); + assert(!LiveRegs.empty() && "Must enter basic block first."); + if (!LiveRegs[rx]) + return; + + release(LiveRegs[rx]); + LiveRegs[rx] = nullptr; +} + +void ExecutionDomainFix::force(int rx, unsigned domain) { + assert(unsigned(rx) < NumRegs && "Invalid index"); + assert(!LiveRegs.empty() && "Must enter basic block first."); + if (DomainValue *dv = LiveRegs[rx]) { + if (dv->isCollapsed()) + dv->addDomain(domain); + else if (dv->hasDomain(domain)) + collapse(dv, domain); + else { + // This is an incompatible open DomainValue. Collapse it to whatever and + // force the new value into domain. This costs a domain crossing. + collapse(dv, dv->getFirstDomain()); + assert(LiveRegs[rx] && "Not live after collapse?"); + LiveRegs[rx]->addDomain(domain); + } + } else { + // Set up basic collapsed DomainValue. + setLiveReg(rx, alloc(domain)); + } +} + +void ExecutionDomainFix::collapse(DomainValue *dv, unsigned domain) { + assert(dv->hasDomain(domain) && "Cannot collapse"); + + // Collapse all the instructions. + while (!dv->Instrs.empty()) + TII->setExecutionDomain(*dv->Instrs.pop_back_val(), domain); + dv->setSingleDomain(domain); + + // If there are multiple users, give them new, unique DomainValues. + if (!LiveRegs.empty() && dv->Refs > 1) + for (unsigned rx = 0; rx != NumRegs; ++rx) + if (LiveRegs[rx] == dv) + setLiveReg(rx, alloc(domain)); +} + +bool ExecutionDomainFix::merge(DomainValue *A, DomainValue *B) { + assert(!A->isCollapsed() && "Cannot merge into collapsed"); + assert(!B->isCollapsed() && "Cannot merge from collapsed"); + if (A == B) + return true; + // Restrict to the domains that A and B have in common. + unsigned common = A->getCommonDomains(B->AvailableDomains); + if (!common) + return false; + A->AvailableDomains = common; + A->Instrs.append(B->Instrs.begin(), B->Instrs.end()); + + // Clear the old DomainValue so we won't try to swizzle instructions twice. + B->clear(); + // All uses of B are referred to A. + B->Next = retain(A); + + for (unsigned rx = 0; rx != NumRegs; ++rx) { + assert(!LiveRegs.empty() && "no space allocated for live registers"); + if (LiveRegs[rx] == B) + setLiveReg(rx, A); + } + return true; +} + +void ReachingDefAnalysis::enterBasicBlock( + const LoopTraversal::TraversedMBBInfo &TraversedMBB) { + + MachineBasicBlock *MBB = TraversedMBB.MBB; + int MBBNumber = MBB->getNumber(); + assert(MBBNumber < MBBReachingDefs.size() && + "Unexpected basic block number."); + MBBReachingDefs[MBBNumber].resize(NumRegUnits); + + // Reset instruction counter in each basic block. + CurInstr = 0; + + // Set up LiveRegs to represent registers entering MBB. + // Default values are 'nothing happened a long time ago'. + if (LiveRegs.empty()) + LiveRegs.assign(NumRegUnits, ReachingDedDefaultVal); + + // This is the entry block. + if (MBB->pred_empty()) { + for (const auto &LI : MBB->liveins()) { + for (MCRegUnitIterator Unit(LI.PhysReg, TRI); Unit.isValid(); ++Unit) { + // Treat function live-ins as if they were defined just before the first + // instruction. Usually, function arguments are set up immediately + // before the call. + LiveRegs[*Unit] = -1; + MBBReachingDefs[MBBNumber][*Unit].push_back(LiveRegs[*Unit]); + } + } + DEBUG(dbgs() << printMBBReference(*MBB) << ": entry\n"); + return; + } + + // Try to coalesce live-out registers from predecessors. + for (MachineBasicBlock *pred : MBB->predecessors()) { + assert(pred->getNumber() < MBBOutRegsInfos.size() && + "Should have pre-allocated MBBInfos for all MBBs"); + const LiveRegsDefInfo &Incoming = MBBOutRegsInfos[pred->getNumber()]; + // Incoming is null if this is a backedge from a BB + // we haven't processed yet + if (Incoming.empty()) + continue; + + for (unsigned Unit = 0; Unit != NumRegUnits; ++Unit) { + // Use the most recent predecessor def for each register. + LiveRegs[Unit] = std::max(LiveRegs[Unit], Incoming[Unit]); + if ((LiveRegs[Unit] != ReachingDedDefaultVal)) + MBBReachingDefs[MBBNumber][Unit].push_back(LiveRegs[Unit]); + } + } + + DEBUG(dbgs() << printMBBReference(*MBB) + << (!TraversedMBB.IsDone ? ": incomplete\n" + : ": all preds known\n")); +} + +void ExecutionDomainFix::enterBasicBlock( + const LoopTraversal::TraversedMBBInfo &TraversedMBB) { + + MachineBasicBlock *MBB = TraversedMBB.MBB; + + // Set up LiveRegs to represent registers entering MBB. + // Set default domain values to 'no domain' (nullptr) + if (LiveRegs.empty()) + LiveRegs.assign(NumRegs, nullptr); + + // This is the entry block. + if (MBB->pred_empty()) { + DEBUG(dbgs() << printMBBReference(*MBB) << ": entry\n"); + return; + } + + // Try to coalesce live-out registers from predecessors. + for (MachineBasicBlock *pred : MBB->predecessors()) { + assert(pred->getNumber() < MBBOutRegsInfos.size() && + "Should have pre-allocated MBBInfos for all MBBs"); + LiveRegsDVInfo &Incoming = MBBOutRegsInfos[pred->getNumber()]; + // Incoming is null if this is a backedge from a BB + // we haven't processed yet + if (Incoming.empty()) + continue; + + for (unsigned rx = 0; rx != NumRegs; ++rx) { + DomainValue *pdv = resolve(Incoming[rx]); + if (!pdv) + continue; + if (!LiveRegs[rx]) { + setLiveReg(rx, pdv); + continue; + } + + // We have a live DomainValue from more than one predecessor. + if (LiveRegs[rx]->isCollapsed()) { + // We are already collapsed, but predecessor is not. Force it. + unsigned Domain = LiveRegs[rx]->getFirstDomain(); + if (!pdv->isCollapsed() && pdv->hasDomain(Domain)) + collapse(pdv, Domain); + continue; + } + + // Currently open, merge in predecessor. + if (!pdv->isCollapsed()) + merge(LiveRegs[rx], pdv); + else + force(rx, pdv->getFirstDomain()); + } + } + DEBUG(dbgs() << printMBBReference(*MBB) + << (!TraversedMBB.IsDone ? ": incomplete\n" + : ": all preds known\n")); +} + +void ReachingDefAnalysis::leaveBasicBlock( + const LoopTraversal::TraversedMBBInfo &TraversedMBB) { + assert(!LiveRegs.empty() && "Must enter basic block first."); + int MBBNumber = TraversedMBB.MBB->getNumber(); + assert(MBBNumber < MBBOutRegsInfos.size() && + "Unexpected basic block number."); + // Save register clearances at end of MBB - used by enterBasicBlock(). + MBBOutRegsInfos[MBBNumber] = LiveRegs; + + // While processing the basic block, we kept `Def` relative to the start + // of the basic block for convenience. However, future use of this information + // only cares about the clearance from the end of the block, so adjust + // everything to be relative to the end of the basic block. + for (int &OutLiveReg : MBBOutRegsInfos[MBBNumber]) + OutLiveReg -= CurInstr; + LiveRegs.clear(); +} + +void ExecutionDomainFix::leaveBasicBlock( + const LoopTraversal::TraversedMBBInfo &TraversedMBB) { + assert(!LiveRegs.empty() && "Must enter basic block first."); + int MBBNumber = TraversedMBB.MBB->getNumber(); + assert(MBBNumber < MBBOutRegsInfos.size() && + "Unexpected basic block number."); + // Save register clearances at end of MBB - used by enterBasicBlock(). + for (DomainValue *OldLiveReg : MBBOutRegsInfos[MBBNumber]) { + release(OldLiveReg); + } + MBBOutRegsInfos[MBBNumber] = LiveRegs; + LiveRegs.clear(); +} + +bool ExecutionDomainFix::visitInstr(MachineInstr *MI) { + // Update instructions with explicit execution domains. + std::pair<uint16_t, uint16_t> DomP = TII->getExecutionDomain(*MI); + if (DomP.first) { + if (DomP.second) + visitSoftInstr(MI, DomP.second); + else + visitHardInstr(MI, DomP.first); + } + + return !DomP.first; +} + +bool BreakFalseDeps::pickBestRegisterForUndef(MachineInstr *MI, unsigned OpIdx, + unsigned Pref) { + MachineOperand &MO = MI->getOperand(OpIdx); + assert(MO.isUndef() && "Expected undef machine operand"); + + unsigned OriginalReg = MO.getReg(); + + // Update only undef operands that have reg units that are mapped to one root. + for (MCRegUnitIterator Unit(OriginalReg, TRI); Unit.isValid(); ++Unit) { + unsigned NumRoots = 0; + for (MCRegUnitRootIterator Root(*Unit, TRI); Root.isValid(); ++Root) { + NumRoots++; + if (NumRoots > 1) + return false; + } + } + + // Get the undef operand's register class + const TargetRegisterClass *OpRC = + TII->getRegClass(MI->getDesc(), OpIdx, TRI, *MF); + + // If the instruction has a true dependency, we can hide the false depdency + // behind it. + for (MachineOperand &CurrMO : MI->operands()) { + if (!CurrMO.isReg() || CurrMO.isDef() || CurrMO.isUndef() || + !OpRC->contains(CurrMO.getReg())) + continue; + // We found a true dependency - replace the undef register with the true + // dependency. + MO.setReg(CurrMO.getReg()); + return true; + } + + // Go over all registers in the register class and find the register with + // max clearance or clearance higher than Pref. + unsigned MaxClearance = 0; + unsigned MaxClearanceReg = OriginalReg; + ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(OpRC); + for (MCPhysReg Reg : Order) { + unsigned Clearance = RDA->getClearance(MI, Reg); + if (Clearance <= MaxClearance) + continue; + MaxClearance = Clearance; + MaxClearanceReg = Reg; + + if (MaxClearance > Pref) + break; + } + + // Update the operand if we found a register with better clearance. + if (MaxClearanceReg != OriginalReg) + MO.setReg(MaxClearanceReg); + + return false; +} + +bool BreakFalseDeps::shouldBreakDependence(MachineInstr *MI, unsigned OpIdx, + unsigned Pref) { + unsigned reg = MI->getOperand(OpIdx).getReg(); + unsigned Clearance = RDA->getClearance(MI, reg); + DEBUG(dbgs() << "Clearance: " << Clearance << ", want " << Pref); + + if (Pref > Clearance) { + DEBUG(dbgs() << ": Break dependency.\n"); + return true; + } + DEBUG(dbgs() << ": OK .\n"); + return false; +} + +void ExecutionDomainFix::processDefs(MachineInstr *MI, bool Kill) { + assert(!MI->isDebugValue() && "Won't process debug values"); + const MCInstrDesc &MCID = MI->getDesc(); + for (unsigned i = 0, + e = MI->isVariadic() ? MI->getNumOperands() : MCID.getNumDefs(); + i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (!MO.isReg()) + continue; + if (MO.isUse()) + continue; + for (int rx : regIndices(MO.getReg())) { + // This instruction explicitly defines rx. + DEBUG(dbgs() << printReg(RC->getRegister(rx), TRI) << ":\t" << *MI); + + // Kill off domains redefined by generic instructions. + if (Kill) + kill(rx); + } + } +} + +void ReachingDefAnalysis::processDefs(MachineInstr *MI) { + assert(!MI->isDebugValue() && "Won't process debug values"); + + int MBBNumber = MI->getParent()->getNumber(); + assert(MBBNumber < MBBReachingDefs.size() && + "Unexpected basic block number."); + const MCInstrDesc &MCID = MI->getDesc(); + for (unsigned i = 0, + e = MI->isVariadic() ? MI->getNumOperands() : MCID.getNumDefs(); + i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (!MO.isReg() || !MO.getReg()) + continue; + if (MO.isUse()) + continue; + for (MCRegUnitIterator Unit(MO.getReg(), TRI); Unit.isValid(); ++Unit) { + // This instruction explicitly defines the current reg unit. + DEBUG(dbgs() << printReg(MO.getReg(), TRI) << ":\t" << CurInstr << '\t' + << *MI); + + // How many instructions since this reg unit was last written? + LiveRegs[*Unit] = CurInstr; + MBBReachingDefs[MBBNumber][*Unit].push_back(CurInstr); + } + } + InstIds[MI] = CurInstr; + ++CurInstr; +} + +void BreakFalseDeps::processDefs(MachineInstr *MI) { + assert(!MI->isDebugValue() && "Won't process debug values"); + + // Break dependence on undef uses. Do this before updating LiveRegs below. + unsigned OpNum; + unsigned Pref = TII->getUndefRegClearance(*MI, OpNum, TRI); + if (Pref) { + bool HadTrueDependency = pickBestRegisterForUndef(MI, OpNum, Pref); + // We don't need to bother trying to break a dependency if this + // instruction has a true dependency on that register through another + // operand - we'll have to wait for it to be available regardless. + if (!HadTrueDependency && shouldBreakDependence(MI, OpNum, Pref)) + UndefReads.push_back(std::make_pair(MI, OpNum)); + } + + const MCInstrDesc &MCID = MI->getDesc(); + for (unsigned i = 0, + e = MI->isVariadic() ? MI->getNumOperands() : MCID.getNumDefs(); + i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (!MO.isReg() || !MO.getReg()) + continue; + if (MO.isUse()) + continue; + // Check clearance before partial register updates. + unsigned Pref = TII->getPartialRegUpdateClearance(*MI, i, TRI); + if (Pref && shouldBreakDependence(MI, i, Pref)) + TII->breakPartialRegDependency(*MI, i, TRI); + } +} + +void BreakFalseDeps::processUndefReads(MachineBasicBlock *MBB) { + if (UndefReads.empty()) + return; + + // Collect this block's live out register units. + LiveRegSet.init(*TRI); + // We do not need to care about pristine registers as they are just preserved + // but not actually used in the function. + LiveRegSet.addLiveOutsNoPristines(*MBB); + + MachineInstr *UndefMI = UndefReads.back().first; + unsigned OpIdx = UndefReads.back().second; + + for (MachineInstr &I : make_range(MBB->rbegin(), MBB->rend())) { + // Update liveness, including the current instruction's defs. + LiveRegSet.stepBackward(I); + + if (UndefMI == &I) { + if (!LiveRegSet.contains(UndefMI->getOperand(OpIdx).getReg())) + TII->breakPartialRegDependency(*UndefMI, OpIdx, TRI); + + UndefReads.pop_back(); + if (UndefReads.empty()) + return; + + UndefMI = UndefReads.back().first; + OpIdx = UndefReads.back().second; + } + } +} + +void ExecutionDomainFix::visitHardInstr(MachineInstr *mi, unsigned domain) { + // Collapse all uses. + for (unsigned i = mi->getDesc().getNumDefs(), + e = mi->getDesc().getNumOperands(); + i != e; ++i) { + MachineOperand &mo = mi->getOperand(i); + if (!mo.isReg()) + continue; + for (int rx : regIndices(mo.getReg())) { + force(rx, domain); + } + } + + // Kill all defs and force them. + for (unsigned i = 0, e = mi->getDesc().getNumDefs(); i != e; ++i) { + MachineOperand &mo = mi->getOperand(i); + if (!mo.isReg()) + continue; + for (int rx : regIndices(mo.getReg())) { + kill(rx); + force(rx, domain); + } + } +} + +void ExecutionDomainFix::visitSoftInstr(MachineInstr *mi, unsigned mask) { + // Bitmask of available domains for this instruction after taking collapsed + // operands into account. + unsigned available = mask; + + // Scan the explicit use operands for incoming domains. + SmallVector<int, 4> used; + if (!LiveRegs.empty()) + for (unsigned i = mi->getDesc().getNumDefs(), + e = mi->getDesc().getNumOperands(); + i != e; ++i) { + MachineOperand &mo = mi->getOperand(i); + if (!mo.isReg()) + continue; + for (int rx : regIndices(mo.getReg())) { + DomainValue *dv = LiveRegs[rx]; + if (dv == nullptr) + continue; + // Bitmask of domains that dv and available have in common. + unsigned common = dv->getCommonDomains(available); + // Is it possible to use this collapsed register for free? + if (dv->isCollapsed()) { + // Restrict available domains to the ones in common with the operand. + // If there are no common domains, we must pay the cross-domain + // penalty for this operand. + if (common) + available = common; + } else if (common) + // Open DomainValue is compatible, save it for merging. + used.push_back(rx); + else + // Open DomainValue is not compatible with instruction. It is useless + // now. + kill(rx); + } + } + + // If the collapsed operands force a single domain, propagate the collapse. + if (isPowerOf2_32(available)) { + unsigned domain = countTrailingZeros(available); + TII->setExecutionDomain(*mi, domain); + visitHardInstr(mi, domain); + return; + } + + // Kill off any remaining uses that don't match available, and build a list of + // incoming DomainValues that we want to merge. + SmallVector<int, 4> Regs; + for (int rx : used) { + assert(!LiveRegs.empty() && "no space allocated for live registers"); + DomainValue *&LR = LiveRegs[rx]; + // This useless DomainValue could have been missed above. + if (!LR->getCommonDomains(available)) { + kill(rx); + continue; + } + // Sorted insertion. + // Enables giving priority to the latest domains during merging. + auto I = std::upper_bound( + Regs.begin(), Regs.end(), rx, [&](int LHS, const int RHS) { + return RDA->getReachingDef(mi, RC->getRegister(LHS)) < + RDA->getReachingDef(mi, RC->getRegister(RHS)); + }); + Regs.insert(I, rx); + } + + // doms are now sorted in order of appearance. Try to merge them all, giving + // priority to the latest ones. + DomainValue *dv = nullptr; + while (!Regs.empty()) { + if (!dv) { + dv = LiveRegs[Regs.pop_back_val()]; + // Force the first dv to match the current instruction. + dv->AvailableDomains = dv->getCommonDomains(available); + assert(dv->AvailableDomains && "Domain should have been filtered"); + continue; + } + + DomainValue *Latest = LiveRegs[Regs.pop_back_val()]; + // Skip already merged values. + if (Latest == dv || Latest->Next) + continue; + if (merge(dv, Latest)) + continue; + + // If latest didn't merge, it is useless now. Kill all registers using it. + for (int i : used) { + assert(!LiveRegs.empty() && "no space allocated for live registers"); + if (LiveRegs[i] == Latest) + kill(i); + } + } + + // dv is the DomainValue we are going to use for this instruction. + if (!dv) { + dv = alloc(); + dv->AvailableDomains = available; + } + dv->Instrs.push_back(mi); + + // Finally set all defs and non-collapsed uses to dv. We must iterate through + // all the operators, including imp-def ones. + for (MachineOperand &mo : mi->operands()) { + if (!mo.isReg()) + continue; + for (int rx : regIndices(mo.getReg())) { + if (!LiveRegs[rx] || (mo.isDef() && LiveRegs[rx] != dv)) { + kill(rx); + setLiveReg(rx, dv); + } + } + } +} + +void ExecutionDomainFix::processBasicBlock( + const LoopTraversal::TraversedMBBInfo &TraversedMBB) { + enterBasicBlock(TraversedMBB); + // If this block is not done, it makes little sense to make any decisions + // based on clearance information. We need to make a second pass anyway, + // and by then we'll have better information, so we can avoid doing the work + // to try and break dependencies now. + for (MachineInstr &MI : *TraversedMBB.MBB) { + if (!MI.isDebugValue()) { + bool Kill = false; + if (TraversedMBB.PrimaryPass) + Kill = visitInstr(&MI); + processDefs(&MI, Kill); + } + } + leaveBasicBlock(TraversedMBB); +} + +void ReachingDefAnalysis::processBasicBlock( + const LoopTraversal::TraversedMBBInfo &TraversedMBB) { + enterBasicBlock(TraversedMBB); + for (MachineInstr &MI : *TraversedMBB.MBB) { + if (!MI.isDebugValue()) + processDefs(&MI); + } + leaveBasicBlock(TraversedMBB); +} + +void BreakFalseDeps::processBasicBlock(MachineBasicBlock *MBB) { + UndefReads.clear(); + // If this block is not done, it makes little sense to make any decisions + // based on clearance information. We need to make a second pass anyway, + // and by then we'll have better information, so we can avoid doing the work + // to try and break dependencies now. + for (MachineInstr &MI : *MBB) { + if (!MI.isDebugValue()) + processDefs(&MI); + } + processUndefReads(MBB); +} + +bool LoopTraversal::isBlockDone(MachineBasicBlock *MBB) { + int MBBNumber = MBB->getNumber(); + assert(MBBNumber < MBBInfos.size() && "Unexpected basic block number."); + return MBBInfos[MBBNumber].PrimaryCompleted && + MBBInfos[MBBNumber].IncomingCompleted == + MBBInfos[MBBNumber].PrimaryIncoming && + MBBInfos[MBBNumber].IncomingProcessed == MBB->pred_size(); +} + +LoopTraversal::TraversalOrder LoopTraversal::traverse(MachineFunction &MF) { + // Initialize the MMBInfos + MBBInfos.assign(MF.getNumBlockIDs(), MBBInfo()); + + MachineBasicBlock *Entry = &*MF.begin(); + ReversePostOrderTraversal<MachineBasicBlock *> RPOT(Entry); + SmallVector<MachineBasicBlock *, 4> Workqueue; + SmallVector<TraversedMBBInfo, 4> MBBTraversalOrder; + for (MachineBasicBlock *MBB : RPOT) { + // N.B: IncomingProcessed and IncomingCompleted were already updated while + // processing this block's predecessors. + int MBBNumber = MBB->getNumber(); + assert(MBBNumber < MBBInfos.size() && "Unexpected basic block number."); + MBBInfos[MBBNumber].PrimaryCompleted = true; + MBBInfos[MBBNumber].PrimaryIncoming = MBBInfos[MBBNumber].IncomingProcessed; + bool Primary = true; + Workqueue.push_back(MBB); + while (!Workqueue.empty()) { + MachineBasicBlock *ActiveMBB = &*Workqueue.back(); + Workqueue.pop_back(); + bool Done = isBlockDone(ActiveMBB); + MBBTraversalOrder.push_back(TraversedMBBInfo(ActiveMBB, Primary, Done)); + for (MachineBasicBlock *Succ : ActiveMBB->successors()) { + int SuccNumber = Succ->getNumber(); + assert(SuccNumber < MBBInfos.size() && + "Unexpected basic block number."); + if (!isBlockDone(Succ)) { + if (Primary) + MBBInfos[SuccNumber].IncomingProcessed++; + if (Done) + MBBInfos[SuccNumber].IncomingCompleted++; + if (isBlockDone(Succ)) + Workqueue.push_back(Succ); + } + } + Primary = false; + } + } + + // We need to go through again and finalize any blocks that are not done yet. + // This is possible if blocks have dead predecessors, so we didn't visit them + // above. + for (MachineBasicBlock *MBB : RPOT) { + if (!isBlockDone(MBB)) + MBBTraversalOrder.push_back(TraversedMBBInfo(MBB, false, true)); + // Don't update successors here. We'll get to them anyway through this + // loop. + } + + MBBInfos.clear(); + + return MBBTraversalOrder; +} + +bool ExecutionDomainFix::runOnMachineFunction(MachineFunction &mf) { + if (skipFunction(mf.getFunction())) + return false; + MF = &mf; + TII = MF->getSubtarget().getInstrInfo(); + TRI = MF->getSubtarget().getRegisterInfo(); + LiveRegs.clear(); + assert(NumRegs == RC->getNumRegs() && "Bad regclass"); + + DEBUG(dbgs() << "********** FIX EXECUTION DOMAIN: " + << TRI->getRegClassName(RC) << " **********\n"); + + // If no relevant registers are used in the function, we can skip it + // completely. + bool anyregs = false; + const MachineRegisterInfo &MRI = mf.getRegInfo(); + for (unsigned Reg : *RC) { + if (MRI.isPhysRegUsed(Reg)) { + anyregs = true; + break; + } + } + if (!anyregs) + return false; + + RDA = &getAnalysis<ReachingDefAnalysis>(); + + // Initialize the AliasMap on the first use. + if (AliasMap.empty()) { + // Given a PhysReg, AliasMap[PhysReg] returns a list of indices into RC and + // therefore the LiveRegs array. + AliasMap.resize(TRI->getNumRegs()); + for (unsigned i = 0, e = RC->getNumRegs(); i != e; ++i) + for (MCRegAliasIterator AI(RC->getRegister(i), TRI, true); AI.isValid(); + ++AI) + AliasMap[*AI].push_back(i); + } + + // Initialize the MBBOutRegsInfos + MBBOutRegsInfos.resize(mf.getNumBlockIDs()); + + // Traverse the basic blocks. + LoopTraversal Traversal; + LoopTraversal::TraversalOrder TraversedMBBOrder = Traversal.traverse(mf); + for (LoopTraversal::TraversedMBBInfo TraversedMBB : TraversedMBBOrder) { + processBasicBlock(TraversedMBB); + } + + for (LiveRegsDVInfo OutLiveRegs : MBBOutRegsInfos) { + for (DomainValue *OutLiveReg : OutLiveRegs) { + if (OutLiveReg) + release(OutLiveReg); + } + } + MBBOutRegsInfos.clear(); + Avail.clear(); + Allocator.DestroyAll(); + + return false; +} + +bool ReachingDefAnalysis::runOnMachineFunction(MachineFunction &mf) { + if (skipFunction(mf.getFunction())) + return false; + MF = &mf; + TII = MF->getSubtarget().getInstrInfo(); + TRI = MF->getSubtarget().getRegisterInfo(); + + LiveRegs.clear(); + NumRegUnits = TRI->getNumRegUnits(); + + MBBReachingDefs.resize(mf.getNumBlockIDs()); + + DEBUG(dbgs() << "********** REACHING DEFINITION ANALYSIS **********\n"); + + // Initialize the MBBOutRegsInfos + MBBOutRegsInfos.resize(mf.getNumBlockIDs()); + + // Traverse the basic blocks. + LoopTraversal Traversal; + LoopTraversal::TraversalOrder TraversedMBBOrder = Traversal.traverse(mf); + for (LoopTraversal::TraversedMBBInfo TraversedMBB : TraversedMBBOrder) { + processBasicBlock(TraversedMBB); + } + + // Sorting all reaching defs found for a ceartin reg unit in a given BB. + for (MBBDefsInfo &MBBDefs : MBBReachingDefs) { + for (MBBRegUnitDefs &RegUnitDefs : MBBDefs) + std::sort(RegUnitDefs.begin(), RegUnitDefs.end()); + } + + return false; +} + +void ReachingDefAnalysis::releaseMemory() { + // Clear the internal vectors. + MBBOutRegsInfos.clear(); + MBBReachingDefs.clear(); + InstIds.clear(); +} + +bool BreakFalseDeps::runOnMachineFunction(MachineFunction &mf) { + if (skipFunction(mf.getFunction())) + return false; + MF = &mf; + TII = MF->getSubtarget().getInstrInfo(); + TRI = MF->getSubtarget().getRegisterInfo(); + RDA = &getAnalysis<ReachingDefAnalysis>(); + + RegClassInfo.runOnMachineFunction(mf); + + DEBUG(dbgs() << "********** BREAK FALSE DEPENDENCIES **********\n"); + + // Traverse the basic blocks. + for (MachineBasicBlock &MBB : mf) { + processBasicBlock(&MBB); + } + + return false; +} + +int ReachingDefAnalysis::getReachingDef(MachineInstr *MI, int PhysReg) { + assert(InstIds.count(MI) && "Unexpected machine instuction."); + int InstId = InstIds[MI]; + int DefRes = ReachingDedDefaultVal; + int MBBNumber = MI->getParent()->getNumber(); + assert(MBBNumber < MBBReachingDefs.size() && + "Unexpected basic block number."); + int LatestDef = ReachingDedDefaultVal; + for (MCRegUnitIterator Unit(PhysReg, TRI); Unit.isValid(); ++Unit) { + for (int Def : MBBReachingDefs[MBBNumber][*Unit]) { + if (Def >= InstId) + break; + DefRes = Def; + } + LatestDef = std::max(LatestDef, DefRes); + } + return LatestDef; +} + +int ReachingDefAnalysis::getClearance(MachineInstr *MI, MCPhysReg PhysReg) { + assert(InstIds.count(MI) && "Unexpected machine instuction."); + return InstIds[MI] - getReachingDef(MI, PhysReg); +} |