summaryrefslogtreecommitdiffstats
path: root/llvm/lib/CodeGen/ExecutionDomainFix.cpp
diff options
context:
space:
mode:
authorMarina Yatsina <marina.yatsina@intel.com>2018-01-22 10:06:33 +0000
committerMarina Yatsina <marina.yatsina@intel.com>2018-01-22 10:06:33 +0000
commit3d8efa4f0c3cb8fdcd5e052c081786f2b9aaaf8b (patch)
tree3457077b05deeb0957a3bf4844e881e79fe1db4c /llvm/lib/CodeGen/ExecutionDomainFix.cpp
parentc757c0b6baa0a0e40da91ace8f29078fb04dcdd0 (diff)
downloadbcm5719-llvm-3d8efa4f0c3cb8fdcd5e052c081786f2b9aaaf8b.tar.gz
bcm5719-llvm-3d8efa4f0c3cb8fdcd5e052c081786f2b9aaaf8b.zip
Rename ExecutionDepsFix files to ExecutionDomainFix
This is the one of multiple patches that fix bugzilla https://bugs.llvm.org/show_bug.cgi?id=33869 Most of the patches are intended at refactoring the existent code. Additional relevant reviews: https://reviews.llvm.org/D40330 https://reviews.llvm.org/D40331 https://reviews.llvm.org/D40333 https://reviews.llvm.org/D40334 Differential Revision: https://reviews.llvm.org/D40332 Change-Id: I6a048cca7fdafbfc42fb1bac94343e483befded8 llvm-svn: 323094
Diffstat (limited to 'llvm/lib/CodeGen/ExecutionDomainFix.cpp')
-rw-r--r--llvm/lib/CodeGen/ExecutionDomainFix.cpp889
1 files changed, 889 insertions, 0 deletions
diff --git a/llvm/lib/CodeGen/ExecutionDomainFix.cpp b/llvm/lib/CodeGen/ExecutionDomainFix.cpp
new file mode 100644
index 00000000000..47ff39342c7
--- /dev/null
+++ b/llvm/lib/CodeGen/ExecutionDomainFix.cpp
@@ -0,0 +1,889 @@
+//===- ExecutionDepsFix.cpp - Fix execution domain issues ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/ExecutionDomainFix.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "execution-deps-fix"
+
+char ReachingDefAnalysis::ID = 0;
+INITIALIZE_PASS(ReachingDefAnalysis, "reaching-deps-analysis",
+ "ReachingDefAnalysis", false, true)
+
+char BreakFalseDeps::ID = 0;
+INITIALIZE_PASS_BEGIN(BreakFalseDeps, "break-false-deps", "BreakFalseDeps",
+ false, false)
+INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
+INITIALIZE_PASS_END(BreakFalseDeps, "break-false-deps", "BreakFalseDeps", false,
+ false)
+
+iterator_range<SmallVectorImpl<int>::const_iterator>
+ExecutionDomainFix::regIndices(unsigned Reg) const {
+ assert(Reg < AliasMap.size() && "Invalid register");
+ const auto &Entry = AliasMap[Reg];
+ return make_range(Entry.begin(), Entry.end());
+}
+
+DomainValue *ExecutionDomainFix::alloc(int domain) {
+ DomainValue *dv = Avail.empty() ? new (Allocator.Allocate()) DomainValue
+ : Avail.pop_back_val();
+ if (domain >= 0)
+ dv->addDomain(domain);
+ assert(dv->Refs == 0 && "Reference count wasn't cleared");
+ assert(!dv->Next && "Chained DomainValue shouldn't have been recycled");
+ return dv;
+}
+
+void ExecutionDomainFix::release(DomainValue *DV) {
+ while (DV) {
+ assert(DV->Refs && "Bad DomainValue");
+ if (--DV->Refs)
+ return;
+
+ // There are no more DV references. Collapse any contained instructions.
+ if (DV->AvailableDomains && !DV->isCollapsed())
+ collapse(DV, DV->getFirstDomain());
+
+ DomainValue *Next = DV->Next;
+ DV->clear();
+ Avail.push_back(DV);
+ // Also release the next DomainValue in the chain.
+ DV = Next;
+ }
+}
+
+DomainValue *ExecutionDomainFix::resolve(DomainValue *&DVRef) {
+ DomainValue *DV = DVRef;
+ if (!DV || !DV->Next)
+ return DV;
+
+ // DV has a chain. Find the end.
+ do
+ DV = DV->Next;
+ while (DV->Next);
+
+ // Update DVRef to point to DV.
+ retain(DV);
+ release(DVRef);
+ DVRef = DV;
+ return DV;
+}
+
+void ExecutionDomainFix::setLiveReg(int rx, DomainValue *dv) {
+ assert(unsigned(rx) < NumRegs && "Invalid index");
+ assert(!LiveRegs.empty() && "Must enter basic block first.");
+
+ if (LiveRegs[rx] == dv)
+ return;
+ if (LiveRegs[rx])
+ release(LiveRegs[rx]);
+ LiveRegs[rx] = retain(dv);
+}
+
+void ExecutionDomainFix::kill(int rx) {
+ assert(unsigned(rx) < NumRegs && "Invalid index");
+ assert(!LiveRegs.empty() && "Must enter basic block first.");
+ if (!LiveRegs[rx])
+ return;
+
+ release(LiveRegs[rx]);
+ LiveRegs[rx] = nullptr;
+}
+
+void ExecutionDomainFix::force(int rx, unsigned domain) {
+ assert(unsigned(rx) < NumRegs && "Invalid index");
+ assert(!LiveRegs.empty() && "Must enter basic block first.");
+ if (DomainValue *dv = LiveRegs[rx]) {
+ if (dv->isCollapsed())
+ dv->addDomain(domain);
+ else if (dv->hasDomain(domain))
+ collapse(dv, domain);
+ else {
+ // This is an incompatible open DomainValue. Collapse it to whatever and
+ // force the new value into domain. This costs a domain crossing.
+ collapse(dv, dv->getFirstDomain());
+ assert(LiveRegs[rx] && "Not live after collapse?");
+ LiveRegs[rx]->addDomain(domain);
+ }
+ } else {
+ // Set up basic collapsed DomainValue.
+ setLiveReg(rx, alloc(domain));
+ }
+}
+
+void ExecutionDomainFix::collapse(DomainValue *dv, unsigned domain) {
+ assert(dv->hasDomain(domain) && "Cannot collapse");
+
+ // Collapse all the instructions.
+ while (!dv->Instrs.empty())
+ TII->setExecutionDomain(*dv->Instrs.pop_back_val(), domain);
+ dv->setSingleDomain(domain);
+
+ // If there are multiple users, give them new, unique DomainValues.
+ if (!LiveRegs.empty() && dv->Refs > 1)
+ for (unsigned rx = 0; rx != NumRegs; ++rx)
+ if (LiveRegs[rx] == dv)
+ setLiveReg(rx, alloc(domain));
+}
+
+bool ExecutionDomainFix::merge(DomainValue *A, DomainValue *B) {
+ assert(!A->isCollapsed() && "Cannot merge into collapsed");
+ assert(!B->isCollapsed() && "Cannot merge from collapsed");
+ if (A == B)
+ return true;
+ // Restrict to the domains that A and B have in common.
+ unsigned common = A->getCommonDomains(B->AvailableDomains);
+ if (!common)
+ return false;
+ A->AvailableDomains = common;
+ A->Instrs.append(B->Instrs.begin(), B->Instrs.end());
+
+ // Clear the old DomainValue so we won't try to swizzle instructions twice.
+ B->clear();
+ // All uses of B are referred to A.
+ B->Next = retain(A);
+
+ for (unsigned rx = 0; rx != NumRegs; ++rx) {
+ assert(!LiveRegs.empty() && "no space allocated for live registers");
+ if (LiveRegs[rx] == B)
+ setLiveReg(rx, A);
+ }
+ return true;
+}
+
+void ReachingDefAnalysis::enterBasicBlock(
+ const LoopTraversal::TraversedMBBInfo &TraversedMBB) {
+
+ MachineBasicBlock *MBB = TraversedMBB.MBB;
+ int MBBNumber = MBB->getNumber();
+ assert(MBBNumber < MBBReachingDefs.size() &&
+ "Unexpected basic block number.");
+ MBBReachingDefs[MBBNumber].resize(NumRegUnits);
+
+ // Reset instruction counter in each basic block.
+ CurInstr = 0;
+
+ // Set up LiveRegs to represent registers entering MBB.
+ // Default values are 'nothing happened a long time ago'.
+ if (LiveRegs.empty())
+ LiveRegs.assign(NumRegUnits, ReachingDedDefaultVal);
+
+ // This is the entry block.
+ if (MBB->pred_empty()) {
+ for (const auto &LI : MBB->liveins()) {
+ for (MCRegUnitIterator Unit(LI.PhysReg, TRI); Unit.isValid(); ++Unit) {
+ // Treat function live-ins as if they were defined just before the first
+ // instruction. Usually, function arguments are set up immediately
+ // before the call.
+ LiveRegs[*Unit] = -1;
+ MBBReachingDefs[MBBNumber][*Unit].push_back(LiveRegs[*Unit]);
+ }
+ }
+ DEBUG(dbgs() << printMBBReference(*MBB) << ": entry\n");
+ return;
+ }
+
+ // Try to coalesce live-out registers from predecessors.
+ for (MachineBasicBlock *pred : MBB->predecessors()) {
+ assert(pred->getNumber() < MBBOutRegsInfos.size() &&
+ "Should have pre-allocated MBBInfos for all MBBs");
+ const LiveRegsDefInfo &Incoming = MBBOutRegsInfos[pred->getNumber()];
+ // Incoming is null if this is a backedge from a BB
+ // we haven't processed yet
+ if (Incoming.empty())
+ continue;
+
+ for (unsigned Unit = 0; Unit != NumRegUnits; ++Unit) {
+ // Use the most recent predecessor def for each register.
+ LiveRegs[Unit] = std::max(LiveRegs[Unit], Incoming[Unit]);
+ if ((LiveRegs[Unit] != ReachingDedDefaultVal))
+ MBBReachingDefs[MBBNumber][Unit].push_back(LiveRegs[Unit]);
+ }
+ }
+
+ DEBUG(dbgs() << printMBBReference(*MBB)
+ << (!TraversedMBB.IsDone ? ": incomplete\n"
+ : ": all preds known\n"));
+}
+
+void ExecutionDomainFix::enterBasicBlock(
+ const LoopTraversal::TraversedMBBInfo &TraversedMBB) {
+
+ MachineBasicBlock *MBB = TraversedMBB.MBB;
+
+ // Set up LiveRegs to represent registers entering MBB.
+ // Set default domain values to 'no domain' (nullptr)
+ if (LiveRegs.empty())
+ LiveRegs.assign(NumRegs, nullptr);
+
+ // This is the entry block.
+ if (MBB->pred_empty()) {
+ DEBUG(dbgs() << printMBBReference(*MBB) << ": entry\n");
+ return;
+ }
+
+ // Try to coalesce live-out registers from predecessors.
+ for (MachineBasicBlock *pred : MBB->predecessors()) {
+ assert(pred->getNumber() < MBBOutRegsInfos.size() &&
+ "Should have pre-allocated MBBInfos for all MBBs");
+ LiveRegsDVInfo &Incoming = MBBOutRegsInfos[pred->getNumber()];
+ // Incoming is null if this is a backedge from a BB
+ // we haven't processed yet
+ if (Incoming.empty())
+ continue;
+
+ for (unsigned rx = 0; rx != NumRegs; ++rx) {
+ DomainValue *pdv = resolve(Incoming[rx]);
+ if (!pdv)
+ continue;
+ if (!LiveRegs[rx]) {
+ setLiveReg(rx, pdv);
+ continue;
+ }
+
+ // We have a live DomainValue from more than one predecessor.
+ if (LiveRegs[rx]->isCollapsed()) {
+ // We are already collapsed, but predecessor is not. Force it.
+ unsigned Domain = LiveRegs[rx]->getFirstDomain();
+ if (!pdv->isCollapsed() && pdv->hasDomain(Domain))
+ collapse(pdv, Domain);
+ continue;
+ }
+
+ // Currently open, merge in predecessor.
+ if (!pdv->isCollapsed())
+ merge(LiveRegs[rx], pdv);
+ else
+ force(rx, pdv->getFirstDomain());
+ }
+ }
+ DEBUG(dbgs() << printMBBReference(*MBB)
+ << (!TraversedMBB.IsDone ? ": incomplete\n"
+ : ": all preds known\n"));
+}
+
+void ReachingDefAnalysis::leaveBasicBlock(
+ const LoopTraversal::TraversedMBBInfo &TraversedMBB) {
+ assert(!LiveRegs.empty() && "Must enter basic block first.");
+ int MBBNumber = TraversedMBB.MBB->getNumber();
+ assert(MBBNumber < MBBOutRegsInfos.size() &&
+ "Unexpected basic block number.");
+ // Save register clearances at end of MBB - used by enterBasicBlock().
+ MBBOutRegsInfos[MBBNumber] = LiveRegs;
+
+ // While processing the basic block, we kept `Def` relative to the start
+ // of the basic block for convenience. However, future use of this information
+ // only cares about the clearance from the end of the block, so adjust
+ // everything to be relative to the end of the basic block.
+ for (int &OutLiveReg : MBBOutRegsInfos[MBBNumber])
+ OutLiveReg -= CurInstr;
+ LiveRegs.clear();
+}
+
+void ExecutionDomainFix::leaveBasicBlock(
+ const LoopTraversal::TraversedMBBInfo &TraversedMBB) {
+ assert(!LiveRegs.empty() && "Must enter basic block first.");
+ int MBBNumber = TraversedMBB.MBB->getNumber();
+ assert(MBBNumber < MBBOutRegsInfos.size() &&
+ "Unexpected basic block number.");
+ // Save register clearances at end of MBB - used by enterBasicBlock().
+ for (DomainValue *OldLiveReg : MBBOutRegsInfos[MBBNumber]) {
+ release(OldLiveReg);
+ }
+ MBBOutRegsInfos[MBBNumber] = LiveRegs;
+ LiveRegs.clear();
+}
+
+bool ExecutionDomainFix::visitInstr(MachineInstr *MI) {
+ // Update instructions with explicit execution domains.
+ std::pair<uint16_t, uint16_t> DomP = TII->getExecutionDomain(*MI);
+ if (DomP.first) {
+ if (DomP.second)
+ visitSoftInstr(MI, DomP.second);
+ else
+ visitHardInstr(MI, DomP.first);
+ }
+
+ return !DomP.first;
+}
+
+bool BreakFalseDeps::pickBestRegisterForUndef(MachineInstr *MI, unsigned OpIdx,
+ unsigned Pref) {
+ MachineOperand &MO = MI->getOperand(OpIdx);
+ assert(MO.isUndef() && "Expected undef machine operand");
+
+ unsigned OriginalReg = MO.getReg();
+
+ // Update only undef operands that have reg units that are mapped to one root.
+ for (MCRegUnitIterator Unit(OriginalReg, TRI); Unit.isValid(); ++Unit) {
+ unsigned NumRoots = 0;
+ for (MCRegUnitRootIterator Root(*Unit, TRI); Root.isValid(); ++Root) {
+ NumRoots++;
+ if (NumRoots > 1)
+ return false;
+ }
+ }
+
+ // Get the undef operand's register class
+ const TargetRegisterClass *OpRC =
+ TII->getRegClass(MI->getDesc(), OpIdx, TRI, *MF);
+
+ // If the instruction has a true dependency, we can hide the false depdency
+ // behind it.
+ for (MachineOperand &CurrMO : MI->operands()) {
+ if (!CurrMO.isReg() || CurrMO.isDef() || CurrMO.isUndef() ||
+ !OpRC->contains(CurrMO.getReg()))
+ continue;
+ // We found a true dependency - replace the undef register with the true
+ // dependency.
+ MO.setReg(CurrMO.getReg());
+ return true;
+ }
+
+ // Go over all registers in the register class and find the register with
+ // max clearance or clearance higher than Pref.
+ unsigned MaxClearance = 0;
+ unsigned MaxClearanceReg = OriginalReg;
+ ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(OpRC);
+ for (MCPhysReg Reg : Order) {
+ unsigned Clearance = RDA->getClearance(MI, Reg);
+ if (Clearance <= MaxClearance)
+ continue;
+ MaxClearance = Clearance;
+ MaxClearanceReg = Reg;
+
+ if (MaxClearance > Pref)
+ break;
+ }
+
+ // Update the operand if we found a register with better clearance.
+ if (MaxClearanceReg != OriginalReg)
+ MO.setReg(MaxClearanceReg);
+
+ return false;
+}
+
+bool BreakFalseDeps::shouldBreakDependence(MachineInstr *MI, unsigned OpIdx,
+ unsigned Pref) {
+ unsigned reg = MI->getOperand(OpIdx).getReg();
+ unsigned Clearance = RDA->getClearance(MI, reg);
+ DEBUG(dbgs() << "Clearance: " << Clearance << ", want " << Pref);
+
+ if (Pref > Clearance) {
+ DEBUG(dbgs() << ": Break dependency.\n");
+ return true;
+ }
+ DEBUG(dbgs() << ": OK .\n");
+ return false;
+}
+
+void ExecutionDomainFix::processDefs(MachineInstr *MI, bool Kill) {
+ assert(!MI->isDebugValue() && "Won't process debug values");
+ const MCInstrDesc &MCID = MI->getDesc();
+ for (unsigned i = 0,
+ e = MI->isVariadic() ? MI->getNumOperands() : MCID.getNumDefs();
+ i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg())
+ continue;
+ if (MO.isUse())
+ continue;
+ for (int rx : regIndices(MO.getReg())) {
+ // This instruction explicitly defines rx.
+ DEBUG(dbgs() << printReg(RC->getRegister(rx), TRI) << ":\t" << *MI);
+
+ // Kill off domains redefined by generic instructions.
+ if (Kill)
+ kill(rx);
+ }
+ }
+}
+
+void ReachingDefAnalysis::processDefs(MachineInstr *MI) {
+ assert(!MI->isDebugValue() && "Won't process debug values");
+
+ int MBBNumber = MI->getParent()->getNumber();
+ assert(MBBNumber < MBBReachingDefs.size() &&
+ "Unexpected basic block number.");
+ const MCInstrDesc &MCID = MI->getDesc();
+ for (unsigned i = 0,
+ e = MI->isVariadic() ? MI->getNumOperands() : MCID.getNumDefs();
+ i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || !MO.getReg())
+ continue;
+ if (MO.isUse())
+ continue;
+ for (MCRegUnitIterator Unit(MO.getReg(), TRI); Unit.isValid(); ++Unit) {
+ // This instruction explicitly defines the current reg unit.
+ DEBUG(dbgs() << printReg(MO.getReg(), TRI) << ":\t" << CurInstr << '\t'
+ << *MI);
+
+ // How many instructions since this reg unit was last written?
+ LiveRegs[*Unit] = CurInstr;
+ MBBReachingDefs[MBBNumber][*Unit].push_back(CurInstr);
+ }
+ }
+ InstIds[MI] = CurInstr;
+ ++CurInstr;
+}
+
+void BreakFalseDeps::processDefs(MachineInstr *MI) {
+ assert(!MI->isDebugValue() && "Won't process debug values");
+
+ // Break dependence on undef uses. Do this before updating LiveRegs below.
+ unsigned OpNum;
+ unsigned Pref = TII->getUndefRegClearance(*MI, OpNum, TRI);
+ if (Pref) {
+ bool HadTrueDependency = pickBestRegisterForUndef(MI, OpNum, Pref);
+ // We don't need to bother trying to break a dependency if this
+ // instruction has a true dependency on that register through another
+ // operand - we'll have to wait for it to be available regardless.
+ if (!HadTrueDependency && shouldBreakDependence(MI, OpNum, Pref))
+ UndefReads.push_back(std::make_pair(MI, OpNum));
+ }
+
+ const MCInstrDesc &MCID = MI->getDesc();
+ for (unsigned i = 0,
+ e = MI->isVariadic() ? MI->getNumOperands() : MCID.getNumDefs();
+ i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || !MO.getReg())
+ continue;
+ if (MO.isUse())
+ continue;
+ // Check clearance before partial register updates.
+ unsigned Pref = TII->getPartialRegUpdateClearance(*MI, i, TRI);
+ if (Pref && shouldBreakDependence(MI, i, Pref))
+ TII->breakPartialRegDependency(*MI, i, TRI);
+ }
+}
+
+void BreakFalseDeps::processUndefReads(MachineBasicBlock *MBB) {
+ if (UndefReads.empty())
+ return;
+
+ // Collect this block's live out register units.
+ LiveRegSet.init(*TRI);
+ // We do not need to care about pristine registers as they are just preserved
+ // but not actually used in the function.
+ LiveRegSet.addLiveOutsNoPristines(*MBB);
+
+ MachineInstr *UndefMI = UndefReads.back().first;
+ unsigned OpIdx = UndefReads.back().second;
+
+ for (MachineInstr &I : make_range(MBB->rbegin(), MBB->rend())) {
+ // Update liveness, including the current instruction's defs.
+ LiveRegSet.stepBackward(I);
+
+ if (UndefMI == &I) {
+ if (!LiveRegSet.contains(UndefMI->getOperand(OpIdx).getReg()))
+ TII->breakPartialRegDependency(*UndefMI, OpIdx, TRI);
+
+ UndefReads.pop_back();
+ if (UndefReads.empty())
+ return;
+
+ UndefMI = UndefReads.back().first;
+ OpIdx = UndefReads.back().second;
+ }
+ }
+}
+
+void ExecutionDomainFix::visitHardInstr(MachineInstr *mi, unsigned domain) {
+ // Collapse all uses.
+ for (unsigned i = mi->getDesc().getNumDefs(),
+ e = mi->getDesc().getNumOperands();
+ i != e; ++i) {
+ MachineOperand &mo = mi->getOperand(i);
+ if (!mo.isReg())
+ continue;
+ for (int rx : regIndices(mo.getReg())) {
+ force(rx, domain);
+ }
+ }
+
+ // Kill all defs and force them.
+ for (unsigned i = 0, e = mi->getDesc().getNumDefs(); i != e; ++i) {
+ MachineOperand &mo = mi->getOperand(i);
+ if (!mo.isReg())
+ continue;
+ for (int rx : regIndices(mo.getReg())) {
+ kill(rx);
+ force(rx, domain);
+ }
+ }
+}
+
+void ExecutionDomainFix::visitSoftInstr(MachineInstr *mi, unsigned mask) {
+ // Bitmask of available domains for this instruction after taking collapsed
+ // operands into account.
+ unsigned available = mask;
+
+ // Scan the explicit use operands for incoming domains.
+ SmallVector<int, 4> used;
+ if (!LiveRegs.empty())
+ for (unsigned i = mi->getDesc().getNumDefs(),
+ e = mi->getDesc().getNumOperands();
+ i != e; ++i) {
+ MachineOperand &mo = mi->getOperand(i);
+ if (!mo.isReg())
+ continue;
+ for (int rx : regIndices(mo.getReg())) {
+ DomainValue *dv = LiveRegs[rx];
+ if (dv == nullptr)
+ continue;
+ // Bitmask of domains that dv and available have in common.
+ unsigned common = dv->getCommonDomains(available);
+ // Is it possible to use this collapsed register for free?
+ if (dv->isCollapsed()) {
+ // Restrict available domains to the ones in common with the operand.
+ // If there are no common domains, we must pay the cross-domain
+ // penalty for this operand.
+ if (common)
+ available = common;
+ } else if (common)
+ // Open DomainValue is compatible, save it for merging.
+ used.push_back(rx);
+ else
+ // Open DomainValue is not compatible with instruction. It is useless
+ // now.
+ kill(rx);
+ }
+ }
+
+ // If the collapsed operands force a single domain, propagate the collapse.
+ if (isPowerOf2_32(available)) {
+ unsigned domain = countTrailingZeros(available);
+ TII->setExecutionDomain(*mi, domain);
+ visitHardInstr(mi, domain);
+ return;
+ }
+
+ // Kill off any remaining uses that don't match available, and build a list of
+ // incoming DomainValues that we want to merge.
+ SmallVector<int, 4> Regs;
+ for (int rx : used) {
+ assert(!LiveRegs.empty() && "no space allocated for live registers");
+ DomainValue *&LR = LiveRegs[rx];
+ // This useless DomainValue could have been missed above.
+ if (!LR->getCommonDomains(available)) {
+ kill(rx);
+ continue;
+ }
+ // Sorted insertion.
+ // Enables giving priority to the latest domains during merging.
+ auto I = std::upper_bound(
+ Regs.begin(), Regs.end(), rx, [&](int LHS, const int RHS) {
+ return RDA->getReachingDef(mi, RC->getRegister(LHS)) <
+ RDA->getReachingDef(mi, RC->getRegister(RHS));
+ });
+ Regs.insert(I, rx);
+ }
+
+ // doms are now sorted in order of appearance. Try to merge them all, giving
+ // priority to the latest ones.
+ DomainValue *dv = nullptr;
+ while (!Regs.empty()) {
+ if (!dv) {
+ dv = LiveRegs[Regs.pop_back_val()];
+ // Force the first dv to match the current instruction.
+ dv->AvailableDomains = dv->getCommonDomains(available);
+ assert(dv->AvailableDomains && "Domain should have been filtered");
+ continue;
+ }
+
+ DomainValue *Latest = LiveRegs[Regs.pop_back_val()];
+ // Skip already merged values.
+ if (Latest == dv || Latest->Next)
+ continue;
+ if (merge(dv, Latest))
+ continue;
+
+ // If latest didn't merge, it is useless now. Kill all registers using it.
+ for (int i : used) {
+ assert(!LiveRegs.empty() && "no space allocated for live registers");
+ if (LiveRegs[i] == Latest)
+ kill(i);
+ }
+ }
+
+ // dv is the DomainValue we are going to use for this instruction.
+ if (!dv) {
+ dv = alloc();
+ dv->AvailableDomains = available;
+ }
+ dv->Instrs.push_back(mi);
+
+ // Finally set all defs and non-collapsed uses to dv. We must iterate through
+ // all the operators, including imp-def ones.
+ for (MachineOperand &mo : mi->operands()) {
+ if (!mo.isReg())
+ continue;
+ for (int rx : regIndices(mo.getReg())) {
+ if (!LiveRegs[rx] || (mo.isDef() && LiveRegs[rx] != dv)) {
+ kill(rx);
+ setLiveReg(rx, dv);
+ }
+ }
+ }
+}
+
+void ExecutionDomainFix::processBasicBlock(
+ const LoopTraversal::TraversedMBBInfo &TraversedMBB) {
+ enterBasicBlock(TraversedMBB);
+ // If this block is not done, it makes little sense to make any decisions
+ // based on clearance information. We need to make a second pass anyway,
+ // and by then we'll have better information, so we can avoid doing the work
+ // to try and break dependencies now.
+ for (MachineInstr &MI : *TraversedMBB.MBB) {
+ if (!MI.isDebugValue()) {
+ bool Kill = false;
+ if (TraversedMBB.PrimaryPass)
+ Kill = visitInstr(&MI);
+ processDefs(&MI, Kill);
+ }
+ }
+ leaveBasicBlock(TraversedMBB);
+}
+
+void ReachingDefAnalysis::processBasicBlock(
+ const LoopTraversal::TraversedMBBInfo &TraversedMBB) {
+ enterBasicBlock(TraversedMBB);
+ for (MachineInstr &MI : *TraversedMBB.MBB) {
+ if (!MI.isDebugValue())
+ processDefs(&MI);
+ }
+ leaveBasicBlock(TraversedMBB);
+}
+
+void BreakFalseDeps::processBasicBlock(MachineBasicBlock *MBB) {
+ UndefReads.clear();
+ // If this block is not done, it makes little sense to make any decisions
+ // based on clearance information. We need to make a second pass anyway,
+ // and by then we'll have better information, so we can avoid doing the work
+ // to try and break dependencies now.
+ for (MachineInstr &MI : *MBB) {
+ if (!MI.isDebugValue())
+ processDefs(&MI);
+ }
+ processUndefReads(MBB);
+}
+
+bool LoopTraversal::isBlockDone(MachineBasicBlock *MBB) {
+ int MBBNumber = MBB->getNumber();
+ assert(MBBNumber < MBBInfos.size() && "Unexpected basic block number.");
+ return MBBInfos[MBBNumber].PrimaryCompleted &&
+ MBBInfos[MBBNumber].IncomingCompleted ==
+ MBBInfos[MBBNumber].PrimaryIncoming &&
+ MBBInfos[MBBNumber].IncomingProcessed == MBB->pred_size();
+}
+
+LoopTraversal::TraversalOrder LoopTraversal::traverse(MachineFunction &MF) {
+ // Initialize the MMBInfos
+ MBBInfos.assign(MF.getNumBlockIDs(), MBBInfo());
+
+ MachineBasicBlock *Entry = &*MF.begin();
+ ReversePostOrderTraversal<MachineBasicBlock *> RPOT(Entry);
+ SmallVector<MachineBasicBlock *, 4> Workqueue;
+ SmallVector<TraversedMBBInfo, 4> MBBTraversalOrder;
+ for (MachineBasicBlock *MBB : RPOT) {
+ // N.B: IncomingProcessed and IncomingCompleted were already updated while
+ // processing this block's predecessors.
+ int MBBNumber = MBB->getNumber();
+ assert(MBBNumber < MBBInfos.size() && "Unexpected basic block number.");
+ MBBInfos[MBBNumber].PrimaryCompleted = true;
+ MBBInfos[MBBNumber].PrimaryIncoming = MBBInfos[MBBNumber].IncomingProcessed;
+ bool Primary = true;
+ Workqueue.push_back(MBB);
+ while (!Workqueue.empty()) {
+ MachineBasicBlock *ActiveMBB = &*Workqueue.back();
+ Workqueue.pop_back();
+ bool Done = isBlockDone(ActiveMBB);
+ MBBTraversalOrder.push_back(TraversedMBBInfo(ActiveMBB, Primary, Done));
+ for (MachineBasicBlock *Succ : ActiveMBB->successors()) {
+ int SuccNumber = Succ->getNumber();
+ assert(SuccNumber < MBBInfos.size() &&
+ "Unexpected basic block number.");
+ if (!isBlockDone(Succ)) {
+ if (Primary)
+ MBBInfos[SuccNumber].IncomingProcessed++;
+ if (Done)
+ MBBInfos[SuccNumber].IncomingCompleted++;
+ if (isBlockDone(Succ))
+ Workqueue.push_back(Succ);
+ }
+ }
+ Primary = false;
+ }
+ }
+
+ // We need to go through again and finalize any blocks that are not done yet.
+ // This is possible if blocks have dead predecessors, so we didn't visit them
+ // above.
+ for (MachineBasicBlock *MBB : RPOT) {
+ if (!isBlockDone(MBB))
+ MBBTraversalOrder.push_back(TraversedMBBInfo(MBB, false, true));
+ // Don't update successors here. We'll get to them anyway through this
+ // loop.
+ }
+
+ MBBInfos.clear();
+
+ return MBBTraversalOrder;
+}
+
+bool ExecutionDomainFix::runOnMachineFunction(MachineFunction &mf) {
+ if (skipFunction(mf.getFunction()))
+ return false;
+ MF = &mf;
+ TII = MF->getSubtarget().getInstrInfo();
+ TRI = MF->getSubtarget().getRegisterInfo();
+ LiveRegs.clear();
+ assert(NumRegs == RC->getNumRegs() && "Bad regclass");
+
+ DEBUG(dbgs() << "********** FIX EXECUTION DOMAIN: "
+ << TRI->getRegClassName(RC) << " **********\n");
+
+ // If no relevant registers are used in the function, we can skip it
+ // completely.
+ bool anyregs = false;
+ const MachineRegisterInfo &MRI = mf.getRegInfo();
+ for (unsigned Reg : *RC) {
+ if (MRI.isPhysRegUsed(Reg)) {
+ anyregs = true;
+ break;
+ }
+ }
+ if (!anyregs)
+ return false;
+
+ RDA = &getAnalysis<ReachingDefAnalysis>();
+
+ // Initialize the AliasMap on the first use.
+ if (AliasMap.empty()) {
+ // Given a PhysReg, AliasMap[PhysReg] returns a list of indices into RC and
+ // therefore the LiveRegs array.
+ AliasMap.resize(TRI->getNumRegs());
+ for (unsigned i = 0, e = RC->getNumRegs(); i != e; ++i)
+ for (MCRegAliasIterator AI(RC->getRegister(i), TRI, true); AI.isValid();
+ ++AI)
+ AliasMap[*AI].push_back(i);
+ }
+
+ // Initialize the MBBOutRegsInfos
+ MBBOutRegsInfos.resize(mf.getNumBlockIDs());
+
+ // Traverse the basic blocks.
+ LoopTraversal Traversal;
+ LoopTraversal::TraversalOrder TraversedMBBOrder = Traversal.traverse(mf);
+ for (LoopTraversal::TraversedMBBInfo TraversedMBB : TraversedMBBOrder) {
+ processBasicBlock(TraversedMBB);
+ }
+
+ for (LiveRegsDVInfo OutLiveRegs : MBBOutRegsInfos) {
+ for (DomainValue *OutLiveReg : OutLiveRegs) {
+ if (OutLiveReg)
+ release(OutLiveReg);
+ }
+ }
+ MBBOutRegsInfos.clear();
+ Avail.clear();
+ Allocator.DestroyAll();
+
+ return false;
+}
+
+bool ReachingDefAnalysis::runOnMachineFunction(MachineFunction &mf) {
+ if (skipFunction(mf.getFunction()))
+ return false;
+ MF = &mf;
+ TII = MF->getSubtarget().getInstrInfo();
+ TRI = MF->getSubtarget().getRegisterInfo();
+
+ LiveRegs.clear();
+ NumRegUnits = TRI->getNumRegUnits();
+
+ MBBReachingDefs.resize(mf.getNumBlockIDs());
+
+ DEBUG(dbgs() << "********** REACHING DEFINITION ANALYSIS **********\n");
+
+ // Initialize the MBBOutRegsInfos
+ MBBOutRegsInfos.resize(mf.getNumBlockIDs());
+
+ // Traverse the basic blocks.
+ LoopTraversal Traversal;
+ LoopTraversal::TraversalOrder TraversedMBBOrder = Traversal.traverse(mf);
+ for (LoopTraversal::TraversedMBBInfo TraversedMBB : TraversedMBBOrder) {
+ processBasicBlock(TraversedMBB);
+ }
+
+ // Sorting all reaching defs found for a ceartin reg unit in a given BB.
+ for (MBBDefsInfo &MBBDefs : MBBReachingDefs) {
+ for (MBBRegUnitDefs &RegUnitDefs : MBBDefs)
+ std::sort(RegUnitDefs.begin(), RegUnitDefs.end());
+ }
+
+ return false;
+}
+
+void ReachingDefAnalysis::releaseMemory() {
+ // Clear the internal vectors.
+ MBBOutRegsInfos.clear();
+ MBBReachingDefs.clear();
+ InstIds.clear();
+}
+
+bool BreakFalseDeps::runOnMachineFunction(MachineFunction &mf) {
+ if (skipFunction(mf.getFunction()))
+ return false;
+ MF = &mf;
+ TII = MF->getSubtarget().getInstrInfo();
+ TRI = MF->getSubtarget().getRegisterInfo();
+ RDA = &getAnalysis<ReachingDefAnalysis>();
+
+ RegClassInfo.runOnMachineFunction(mf);
+
+ DEBUG(dbgs() << "********** BREAK FALSE DEPENDENCIES **********\n");
+
+ // Traverse the basic blocks.
+ for (MachineBasicBlock &MBB : mf) {
+ processBasicBlock(&MBB);
+ }
+
+ return false;
+}
+
+int ReachingDefAnalysis::getReachingDef(MachineInstr *MI, int PhysReg) {
+ assert(InstIds.count(MI) && "Unexpected machine instuction.");
+ int InstId = InstIds[MI];
+ int DefRes = ReachingDedDefaultVal;
+ int MBBNumber = MI->getParent()->getNumber();
+ assert(MBBNumber < MBBReachingDefs.size() &&
+ "Unexpected basic block number.");
+ int LatestDef = ReachingDedDefaultVal;
+ for (MCRegUnitIterator Unit(PhysReg, TRI); Unit.isValid(); ++Unit) {
+ for (int Def : MBBReachingDefs[MBBNumber][*Unit]) {
+ if (Def >= InstId)
+ break;
+ DefRes = Def;
+ }
+ LatestDef = std::max(LatestDef, DefRes);
+ }
+ return LatestDef;
+}
+
+int ReachingDefAnalysis::getClearance(MachineInstr *MI, MCPhysReg PhysReg) {
+ assert(InstIds.count(MI) && "Unexpected machine instuction.");
+ return InstIds[MI] - getReachingDef(MI, PhysReg);
+}
OpenPOWER on IntegriCloud