summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Analysis/ValueTracking.cpp
diff options
context:
space:
mode:
authorMehdi Amini <mehdi.amini@apple.com>2015-03-10 02:37:25 +0000
committerMehdi Amini <mehdi.amini@apple.com>2015-03-10 02:37:25 +0000
commita28d91d81b5daa4d8b92452ea8203a57023b576f (patch)
treecbefa13abba5df48124e2f93e7d7d5b13562ad72 /llvm/lib/Analysis/ValueTracking.cpp
parentb3d5209927dc4f61c5eaaa48ceac48b8adf6d524 (diff)
downloadbcm5719-llvm-a28d91d81b5daa4d8b92452ea8203a57023b576f.tar.gz
bcm5719-llvm-a28d91d81b5daa4d8b92452ea8203a57023b576f.zip
DataLayout is mandatory, update the API to reflect it with references.
Summary: Now that the DataLayout is a mandatory part of the module, let's start cleaning the codebase. This patch is a first attempt at doing that. This patch is not exactly NFC as for instance some places were passing a nullptr instead of the DataLayout, possibly just because there was a default value on the DataLayout argument to many functions in the API. Even though it is not purely NFC, there is no change in the validation. I turned as many pointer to DataLayout to references, this helped figuring out all the places where a nullptr could come up. I had initially a local version of this patch broken into over 30 independant, commits but some later commit were cleaning the API and touching part of the code modified in the previous commits, so it seemed cleaner without the intermediate state. Test Plan: Reviewers: echristo Subscribers: llvm-commits From: Mehdi Amini <mehdi.amini@apple.com> llvm-svn: 231740
Diffstat (limited to 'llvm/lib/Analysis/ValueTracking.cpp')
-rw-r--r--llvm/lib/Analysis/ValueTracking.cpp472
1 files changed, 213 insertions, 259 deletions
diff --git a/llvm/lib/Analysis/ValueTracking.cpp b/llvm/lib/Analysis/ValueTracking.cpp
index f28e3f22d39..cf6b92d74f9 100644
--- a/llvm/lib/Analysis/ValueTracking.cpp
+++ b/llvm/lib/Analysis/ValueTracking.cpp
@@ -41,11 +41,11 @@ const unsigned MaxDepth = 6;
/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
/// 0). For vector types, returns the element type's bitwidth.
-static unsigned getBitWidth(Type *Ty, const DataLayout *TD) {
+static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
if (unsigned BitWidth = Ty->getScalarSizeInBits())
return BitWidth;
- return TD ? TD->getPointerTypeSizeInBits(Ty) : 0;
+ return DL.getPointerTypeSizeInBits(Ty);
}
// Many of these functions have internal versions that take an assumption
@@ -97,73 +97,73 @@ static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
}
static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
- const DataLayout *TD, unsigned Depth,
- const Query &Q);
+ const DataLayout &DL, unsigned Depth,
+ const Query &Q);
void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
- const DataLayout *TD, unsigned Depth,
+ const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT) {
- ::computeKnownBits(V, KnownZero, KnownOne, TD, Depth,
+ ::computeKnownBits(V, KnownZero, KnownOne, DL, Depth,
Query(AC, safeCxtI(V, CxtI), DT));
}
static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
- const DataLayout *TD, unsigned Depth,
- const Query &Q);
+ const DataLayout &DL, unsigned Depth,
+ const Query &Q);
void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
- const DataLayout *TD, unsigned Depth,
+ const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT) {
- ::ComputeSignBit(V, KnownZero, KnownOne, TD, Depth,
+ ::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth,
Query(AC, safeCxtI(V, CxtI), DT));
}
static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
- const Query &Q);
+ const Query &Q, const DataLayout &DL);
-bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
- AssumptionCache *AC, const Instruction *CxtI,
+bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero,
+ unsigned Depth, AssumptionCache *AC,
+ const Instruction *CxtI,
const DominatorTree *DT) {
return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
- Query(AC, safeCxtI(V, CxtI), DT));
+ Query(AC, safeCxtI(V, CxtI), DT), DL);
}
-static bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
+static bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
const Query &Q);
-bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
+bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT) {
- return ::isKnownNonZero(V, TD, Depth, Query(AC, safeCxtI(V, CxtI), DT));
+ return ::isKnownNonZero(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT));
}
-static bool MaskedValueIsZero(Value *V, const APInt &Mask,
- const DataLayout *TD, unsigned Depth,
- const Query &Q);
+static bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
+ unsigned Depth, const Query &Q);
-bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout *TD,
+bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
unsigned Depth, AssumptionCache *AC,
const Instruction *CxtI, const DominatorTree *DT) {
- return ::MaskedValueIsZero(V, Mask, TD, Depth,
+ return ::MaskedValueIsZero(V, Mask, DL, Depth,
Query(AC, safeCxtI(V, CxtI), DT));
}
-static unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
+static unsigned ComputeNumSignBits(Value *V, const DataLayout &DL,
unsigned Depth, const Query &Q);
-unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
+unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL,
unsigned Depth, AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT) {
- return ::ComputeNumSignBits(V, TD, Depth, Query(AC, safeCxtI(V, CxtI), DT));
+ return ::ComputeNumSignBits(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT));
}
static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
APInt &KnownZero, APInt &KnownOne,
APInt &KnownZero2, APInt &KnownOne2,
- const DataLayout *TD, unsigned Depth,
+ const DataLayout &DL, unsigned Depth,
const Query &Q) {
if (!Add) {
if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
@@ -175,7 +175,7 @@ static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
// NLZ can't be BitWidth with no sign bit
APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
- computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1, Q);
+ computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q);
// If all of the MaskV bits are known to be zero, then we know the
// output top bits are zero, because we now know that the output is
@@ -194,8 +194,8 @@ static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
// If an initial sequence of bits in the result is not needed, the
// corresponding bits in the operands are not needed.
APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
- computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1, Q);
- computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1, Q);
+ computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, DL, Depth + 1, Q);
+ computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q);
// Carry in a 1 for a subtract, rather than a 0.
APInt CarryIn(BitWidth, 0);
@@ -243,11 +243,11 @@ static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
APInt &KnownZero, APInt &KnownOne,
APInt &KnownZero2, APInt &KnownOne2,
- const DataLayout *TD, unsigned Depth,
+ const DataLayout &DL, unsigned Depth,
const Query &Q) {
unsigned BitWidth = KnownZero.getBitWidth();
- computeKnownBits(Op1, KnownZero, KnownOne, TD, Depth+1, Q);
- computeKnownBits(Op0, KnownZero2, KnownOne2, TD, Depth+1, Q);
+ computeKnownBits(Op1, KnownZero, KnownOne, DL, Depth + 1, Q);
+ computeKnownBits(Op0, KnownZero2, KnownOne2, DL, Depth + 1, Q);
bool isKnownNegative = false;
bool isKnownNonNegative = false;
@@ -268,9 +268,9 @@ static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
// negative or zero.
if (!isKnownNonNegative)
isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
- isKnownNonZero(Op0, TD, Depth, Q)) ||
+ isKnownNonZero(Op0, DL, Depth, Q)) ||
(isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
- isKnownNonZero(Op1, TD, Depth, Q));
+ isKnownNonZero(Op1, DL, Depth, Q));
}
}
@@ -382,8 +382,7 @@ static bool isAssumeLikeIntrinsic(const Instruction *I) {
return false;
}
-static bool isValidAssumeForContext(Value *V, const Query &Q,
- const DataLayout *DL) {
+static bool isValidAssumeForContext(Value *V, const Query &Q) {
Instruction *Inv = cast<Instruction>(V);
// There are two restrictions on the use of an assume:
@@ -403,8 +402,7 @@ static bool isValidAssumeForContext(Value *V, const Query &Q,
for (BasicBlock::const_iterator I =
std::next(BasicBlock::const_iterator(Q.CxtI)),
IE(Inv); I != IE; ++I)
- if (!isSafeToSpeculativelyExecute(I, DL) &&
- !isAssumeLikeIntrinsic(I))
+ if (!isSafeToSpeculativelyExecute(I) && !isAssumeLikeIntrinsic(I))
return false;
return !isEphemeralValueOf(Inv, Q.CxtI);
@@ -428,8 +426,7 @@ static bool isValidAssumeForContext(Value *V, const Query &Q,
for (BasicBlock::const_iterator I =
std::next(BasicBlock::const_iterator(Q.CxtI)),
IE(Inv); I != IE; ++I)
- if (!isSafeToSpeculativelyExecute(I, DL) &&
- !isAssumeLikeIntrinsic(I))
+ if (!isSafeToSpeculativelyExecute(I) && !isAssumeLikeIntrinsic(I))
return false;
return !isEphemeralValueOf(Inv, Q.CxtI);
@@ -440,10 +437,9 @@ static bool isValidAssumeForContext(Value *V, const Query &Q,
bool llvm::isValidAssumeForContext(const Instruction *I,
const Instruction *CxtI,
- const DataLayout *DL,
const DominatorTree *DT) {
- return ::isValidAssumeForContext(const_cast<Instruction*>(I),
- Query(nullptr, CxtI, DT), DL);
+ return ::isValidAssumeForContext(const_cast<Instruction *>(I),
+ Query(nullptr, CxtI, DT));
}
template<typename LHS, typename RHS>
@@ -475,8 +471,7 @@ m_c_Xor(const LHS &L, const RHS &R) {
}
static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
- APInt &KnownOne,
- const DataLayout *DL,
+ APInt &KnownOne, const DataLayout &DL,
unsigned Depth, const Query &Q) {
// Use of assumptions is context-sensitive. If we don't have a context, we
// cannot use them!
@@ -504,8 +499,7 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
Value *Arg = I->getArgOperand(0);
- if (Arg == V &&
- isValidAssumeForContext(I, Q, DL)) {
+ if (Arg == V && isValidAssumeForContext(I, Q)) {
assert(BitWidth == 1 && "assume operand is not i1?");
KnownZero.clearAllBits();
KnownOne.setAllBits();
@@ -525,15 +519,15 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
ConstantInt *C;
// assume(v = a)
if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
KnownZero |= RHSKnownZero;
KnownOne |= RHSKnownOne;
// assume(v & b = a)
- } else if (match(Arg, m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)),
- m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ } else if (match(Arg,
+ m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
@@ -546,7 +540,7 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
// assume(~(v & b) = a)
} else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
@@ -557,9 +551,9 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
KnownZero |= RHSKnownOne & MaskKnownOne;
KnownOne |= RHSKnownZero & MaskKnownOne;
// assume(v | b = a)
- } else if (match(Arg, m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)),
- m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ } else if (match(Arg,
+ m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
@@ -572,7 +566,7 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
// assume(~(v | b) = a)
} else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
@@ -583,9 +577,9 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
KnownZero |= RHSKnownOne & BKnownZero;
KnownOne |= RHSKnownZero & BKnownZero;
// assume(v ^ b = a)
- } else if (match(Arg, m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)),
- m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ } else if (match(Arg,
+ m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
@@ -601,7 +595,7 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
// assume(~(v ^ b) = a)
} else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
@@ -617,7 +611,7 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
// assume(v << c = a)
} else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
// For those bits in RHS that are known, we can propagate them to known
@@ -627,7 +621,7 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
// assume(~(v << c) = a)
} else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
// For those bits in RHS that are known, we can propagate them inverted
@@ -637,10 +631,9 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
// assume(v >> c = a)
} else if (match(Arg,
m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
- m_AShr(m_V,
- m_ConstantInt(C))),
- m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ m_AShr(m_V, m_ConstantInt(C))),
+ m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
// For those bits in RHS that are known, we can propagate them to known
@@ -649,10 +642,10 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
KnownOne |= RHSKnownOne << C->getZExtValue();
// assume(~(v >> c) = a)
} else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
- m_LShr(m_V, m_ConstantInt(C)),
- m_AShr(m_V, m_ConstantInt(C)))),
+ m_LShr(m_V, m_ConstantInt(C)),
+ m_AShr(m_V, m_ConstantInt(C)))),
m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
// For those bits in RHS that are known, we can propagate them inverted
@@ -661,8 +654,7 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
KnownOne |= RHSKnownZero << C->getZExtValue();
// assume(v >=_s c) where c is non-negative
} else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_SGE &&
- isValidAssumeForContext(I, Q, DL)) {
+ Pred == ICmpInst::ICMP_SGE && isValidAssumeForContext(I, Q)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
@@ -672,8 +664,7 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
}
// assume(v >_s c) where c is at least -1.
} else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_SGT &&
- isValidAssumeForContext(I, Q, DL)) {
+ Pred == ICmpInst::ICMP_SGT && isValidAssumeForContext(I, Q)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
@@ -683,8 +674,7 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
}
// assume(v <=_s c) where c is negative
} else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_SLE &&
- isValidAssumeForContext(I, Q, DL)) {
+ Pred == ICmpInst::ICMP_SLE && isValidAssumeForContext(I, Q)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
@@ -694,8 +684,7 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
}
// assume(v <_s c) where c is non-positive
} else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_SLT &&
- isValidAssumeForContext(I, Q, DL)) {
+ Pred == ICmpInst::ICMP_SLT && isValidAssumeForContext(I, Q)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
@@ -705,8 +694,7 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
}
// assume(v <=_u c)
} else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_ULE &&
- isValidAssumeForContext(I, Q, DL)) {
+ Pred == ICmpInst::ICMP_ULE && isValidAssumeForContext(I, Q)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
@@ -715,14 +703,13 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
// assume(v <_u c)
} else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_ULT &&
- isValidAssumeForContext(I, Q, DL)) {
+ Pred == ICmpInst::ICMP_ULT && isValidAssumeForContext(I, Q)) {
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
// Whatever high bits in c are zero are known to be zero (if c is a power
// of 2, then one more).
- if (isKnownToBeAPowerOfTwo(A, false, Depth+1, Query(Q, I)))
+ if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I), DL))
KnownZero |=
APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
else
@@ -743,13 +730,12 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
/// this won't lose us code quality.
///
/// This function is defined on values with integer type, values with pointer
-/// type (but only if TD is non-null), and vectors of integers. In the case
+/// type, and vectors of integers. In the case
/// where V is a vector, known zero, and known one values are the
/// same width as the vector element, and the bit is set only if it is true
/// for all of the elements in the vector.
void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
- const DataLayout *TD, unsigned Depth,
- const Query &Q) {
+ const DataLayout &DL, unsigned Depth, const Query &Q) {
assert(V && "No Value?");
assert(Depth <= MaxDepth && "Limit Search Depth");
unsigned BitWidth = KnownZero.getBitWidth();
@@ -757,8 +743,7 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
assert((V->getType()->isIntOrIntVectorTy() ||
V->getType()->getScalarType()->isPointerTy()) &&
"Not integer or pointer type!");
- assert((!TD ||
- TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
+ assert((DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
(!V->getType()->isIntOrIntVectorTy() ||
V->getType()->getScalarSizeInBits() == BitWidth) &&
KnownZero.getBitWidth() == BitWidth &&
@@ -797,7 +782,7 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// The address of an aligned GlobalValue has trailing zeros.
if (auto *GO = dyn_cast<GlobalObject>(V)) {
unsigned Align = GO->getAlignment();
- if (Align == 0 && TD) {
+ if (Align == 0) {
if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
Type *ObjectType = GVar->getType()->getElementType();
if (ObjectType->isSized()) {
@@ -805,9 +790,9 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// it the preferred alignment. Otherwise, we have to assume that it
// may only have the minimum ABI alignment.
if (!GVar->isDeclaration() && !GVar->isWeakForLinker())
- Align = TD->getPreferredAlignment(GVar);
+ Align = DL.getPreferredAlignment(GVar);
else
- Align = TD->getABITypeAlignment(ObjectType);
+ Align = DL.getABITypeAlignment(ObjectType);
}
}
}
@@ -823,11 +808,11 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
if (Argument *A = dyn_cast<Argument>(V)) {
unsigned Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0;
- if (!Align && TD && A->hasStructRetAttr()) {
+ if (!Align && A->hasStructRetAttr()) {
// An sret parameter has at least the ABI alignment of the return type.
Type *EltTy = cast<PointerType>(A->getType())->getElementType();
if (EltTy->isSized())
- Align = TD->getABITypeAlignment(EltTy);
+ Align = DL.getABITypeAlignment(EltTy);
}
if (Align)
@@ -838,7 +823,7 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// Don't give up yet... there might be an assumption that provides more
// information...
- computeKnownBitsFromAssume(V, KnownZero, KnownOne, TD, Depth, Q);
+ computeKnownBitsFromAssume(V, KnownZero, KnownOne, DL, Depth, Q);
return;
}
@@ -854,12 +839,12 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// the bits of its aliasee.
if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
if (!GA->mayBeOverridden())
- computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth + 1, Q);
+ computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, DL, Depth + 1, Q);
return;
}
// Check whether a nearby assume intrinsic can determine some known bits.
- computeKnownBitsFromAssume(V, KnownZero, KnownOne, TD, Depth, Q);
+ computeKnownBitsFromAssume(V, KnownZero, KnownOne, DL, Depth, Q);
Operator *I = dyn_cast<Operator>(V);
if (!I) return;
@@ -873,8 +858,8 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
break;
case Instruction::And: {
// If either the LHS or the RHS are Zero, the result is zero.
- computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
- computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
+ computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
// Output known-1 bits are only known if set in both the LHS & RHS.
KnownOne &= KnownOne2;
@@ -883,8 +868,8 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
break;
}
case Instruction::Or: {
- computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
- computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
+ computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
// Output known-0 bits are only known if clear in both the LHS & RHS.
KnownZero &= KnownZero2;
@@ -893,8 +878,8 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
break;
}
case Instruction::Xor: {
- computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
- computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
+ computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
// Output known-0 bits are known if clear or set in both the LHS & RHS.
APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
@@ -905,21 +890,20 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
}
case Instruction::Mul: {
bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
- computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW,
- KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
- Depth, Q);
+ computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
+ KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
break;
}
case Instruction::UDiv: {
// For the purposes of computing leading zeros we can conservatively
// treat a udiv as a logical right shift by the power of 2 known to
// be less than the denominator.
- computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
unsigned LeadZ = KnownZero2.countLeadingOnes();
KnownOne2.clearAllBits();
KnownZero2.clearAllBits();
- computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
+ computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
if (RHSUnknownLeadingOnes != BitWidth)
LeadZ = std::min(BitWidth,
@@ -929,8 +913,8 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
break;
}
case Instruction::Select:
- computeKnownBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1, Q);
- computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
+ computeKnownBits(I->getOperand(2), KnownZero, KnownOne, DL, Depth + 1, Q);
+ computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
// Only known if known in both the LHS and RHS.
KnownOne &= KnownOne2;
@@ -946,8 +930,6 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::AddrSpaceCast: // Pointers could be different sizes.
- // We can't handle these if we don't know the pointer size.
- if (!TD) break;
// FALL THROUGH and handle them the same as zext/trunc.
case Instruction::ZExt:
case Instruction::Trunc: {
@@ -956,17 +938,12 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
unsigned SrcBitWidth;
// Note that we handle pointer operands here because of inttoptr/ptrtoint
// which fall through here.
- if(TD) {
- SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType());
- } else {
- SrcBitWidth = SrcTy->getScalarSizeInBits();
- if (!SrcBitWidth) break;
- }
+ SrcBitWidth = DL.getTypeSizeInBits(SrcTy->getScalarType());
assert(SrcBitWidth && "SrcBitWidth can't be zero");
KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
KnownZero = KnownZero.zextOrTrunc(BitWidth);
KnownOne = KnownOne.zextOrTrunc(BitWidth);
// Any top bits are known to be zero.
@@ -980,7 +957,7 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// TODO: For now, not handling conversions like:
// (bitcast i64 %x to <2 x i32>)
!I->getType()->isVectorTy()) {
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
break;
}
break;
@@ -991,7 +968,7 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
KnownZero = KnownZero.trunc(SrcBitWidth);
KnownOne = KnownOne.trunc(SrcBitWidth);
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
KnownZero = KnownZero.zext(BitWidth);
KnownOne = KnownOne.zext(BitWidth);
@@ -1007,7 +984,7 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
KnownZero <<= ShiftAmt;
KnownOne <<= ShiftAmt;
KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
@@ -1020,7 +997,7 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
// Unsigned shift right.
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
// high bits known zero.
@@ -1034,7 +1011,7 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
// Signed shift right.
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
@@ -1048,15 +1025,15 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
case Instruction::Sub: {
bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
- KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
- Depth, Q);
+ KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
+ Depth, Q);
break;
}
case Instruction::Add: {
bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
- KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
- Depth, Q);
+ KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
+ Depth, Q);
break;
}
case Instruction::SRem:
@@ -1064,8 +1041,8 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
APInt RA = Rem->getValue().abs();
if (RA.isPowerOf2()) {
APInt LowBits = RA - 1;
- computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD,
- Depth+1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1,
+ Q);
// The low bits of the first operand are unchanged by the srem.
KnownZero = KnownZero2 & LowBits;
@@ -1089,8 +1066,8 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// remainder is zero.
if (KnownZero.isNonNegative()) {
APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
- computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
- Depth+1, Q);
+ computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, DL,
+ Depth + 1, Q);
// If it's known zero, our sign bit is also zero.
if (LHSKnownZero.isNegative())
KnownZero.setBit(BitWidth - 1);
@@ -1102,8 +1079,8 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
APInt RA = Rem->getValue();
if (RA.isPowerOf2()) {
APInt LowBits = (RA - 1);
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD,
- Depth+1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1,
+ Q);
KnownZero |= ~LowBits;
KnownOne &= LowBits;
break;
@@ -1112,8 +1089,8 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// Since the result is less than or equal to either operand, any leading
// zero bits in either operand must also exist in the result.
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
- computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
+ computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
KnownZero2.countLeadingOnes());
@@ -1125,8 +1102,8 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
case Instruction::Alloca: {
AllocaInst *AI = cast<AllocaInst>(V);
unsigned Align = AI->getAlignment();
- if (Align == 0 && TD)
- Align = TD->getABITypeAlignment(AI->getType()->getElementType());
+ if (Align == 0)
+ Align = DL.getABITypeAlignment(AI->getType()->getElementType());
if (Align > 0)
KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
@@ -1136,8 +1113,8 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// Analyze all of the subscripts of this getelementptr instruction
// to determine if we can prove known low zero bits.
APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
- computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
- Depth+1, Q);
+ computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, DL,
+ Depth + 1, Q);
unsigned TrailZ = LocalKnownZero.countTrailingOnes();
gep_type_iterator GTI = gep_type_begin(I);
@@ -1145,10 +1122,6 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Value *Index = I->getOperand(i);
if (StructType *STy = dyn_cast<StructType>(*GTI)) {
// Handle struct member offset arithmetic.
- if (!TD) {
- TrailZ = 0;
- break;
- }
// Handle case when index is vector zeroinitializer
Constant *CIndex = cast<Constant>(Index);
@@ -1159,7 +1132,7 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Index = CIndex->getSplatValue();
unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
- const StructLayout *SL = TD->getStructLayout(STy);
+ const StructLayout *SL = DL.getStructLayout(STy);
uint64_t Offset = SL->getElementOffset(Idx);
TrailZ = std::min<unsigned>(TrailZ,
countTrailingZeros(Offset));
@@ -1171,9 +1144,10 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
break;
}
unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
- uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
+ uint64_t TypeSize = DL.getTypeAllocSize(IndexedTy);
LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
- computeKnownBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1, Q);
+ computeKnownBits(Index, LocalKnownZero, LocalKnownOne, DL, Depth + 1,
+ Q);
TrailZ = std::min(TrailZ,
unsigned(countTrailingZeros(TypeSize) +
LocalKnownZero.countTrailingOnes()));
@@ -1215,11 +1189,11 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
break;
// Ok, we have a PHI of the form L op= R. Check for low
// zero bits.
- computeKnownBits(R, KnownZero2, KnownOne2, TD, Depth+1, Q);
+ computeKnownBits(R, KnownZero2, KnownOne2, DL, Depth + 1, Q);
// We need to take the minimum number of known bits
APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
- computeKnownBits(L, KnownZero3, KnownOne3, TD, Depth+1, Q);
+ computeKnownBits(L, KnownZero3, KnownOne3, DL, Depth + 1, Q);
KnownZero = APInt::getLowBitsSet(BitWidth,
std::min(KnownZero2.countTrailingOnes(),
@@ -1250,8 +1224,8 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
KnownOne2 = APInt(BitWidth, 0);
// Recurse, but cap the recursion to one level, because we don't
// want to waste time spinning around in loops.
- computeKnownBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
- MaxDepth-1, Q);
+ computeKnownBits(P->getIncomingValue(i), KnownZero2, KnownOne2, DL,
+ MaxDepth - 1, Q);
KnownZero &= KnownZero2;
KnownOne &= KnownOne2;
// If all bits have been ruled out, there's no need to check
@@ -1303,19 +1277,19 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
case Intrinsic::sadd_with_overflow:
computeKnownBitsAddSub(true, II->getArgOperand(0),
II->getArgOperand(1), false, KnownZero,
- KnownOne, KnownZero2, KnownOne2, TD, Depth, Q);
+ KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
break;
case Intrinsic::usub_with_overflow:
case Intrinsic::ssub_with_overflow:
computeKnownBitsAddSub(false, II->getArgOperand(0),
II->getArgOperand(1), false, KnownZero,
- KnownOne, KnownZero2, KnownOne2, TD, Depth, Q);
+ KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
break;
case Intrinsic::umul_with_overflow:
case Intrinsic::smul_with_overflow:
- computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1),
- false, KnownZero, KnownOne,
- KnownZero2, KnownOne2, TD, Depth, Q);
+ computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
+ KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
+ Depth, Q);
break;
}
}
@@ -1328,9 +1302,8 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
/// Determine whether the sign bit is known to be zero or one.
/// Convenience wrapper around computeKnownBits.
void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
- const DataLayout *TD, unsigned Depth,
- const Query &Q) {
- unsigned BitWidth = getBitWidth(V->getType(), TD);
+ const DataLayout &DL, unsigned Depth, const Query &Q) {
+ unsigned BitWidth = getBitWidth(V->getType(), DL);
if (!BitWidth) {
KnownZero = false;
KnownOne = false;
@@ -1338,7 +1311,7 @@ void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
}
APInt ZeroBits(BitWidth, 0);
APInt OneBits(BitWidth, 0);
- computeKnownBits(V, ZeroBits, OneBits, TD, Depth, Q);
+ computeKnownBits(V, ZeroBits, OneBits, DL, Depth, Q);
KnownOne = OneBits[BitWidth - 1];
KnownZero = ZeroBits[BitWidth - 1];
}
@@ -1348,7 +1321,7 @@ void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
/// be a power of two when defined. Supports values with integer or pointer
/// types and vectors of integers.
bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
- const Query &Q) {
+ const Query &Q, const DataLayout &DL) {
if (Constant *C = dyn_cast<Constant>(V)) {
if (C->isNullValue())
return OrZero;
@@ -1375,20 +1348,19 @@ bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
// A shift of a power of two is a power of two or zero.
if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
match(V, m_Shr(m_Value(X), m_Value()))))
- return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth, Q);
+ return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL);
if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
- return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
+ return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q, DL);
if (SelectInst *SI = dyn_cast<SelectInst>(V))
- return
- isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
- isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
+ return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q, DL) &&
+ isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q, DL);
if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
// A power of two and'd with anything is a power of two or zero.
- if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth, Q) ||
- isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth, Q))
+ if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL) ||
+ isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q, DL))
return true;
// X & (-X) is always a power of two or zero.
if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
@@ -1403,19 +1375,19 @@ bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
if (match(X, m_And(m_Specific(Y), m_Value())) ||
match(X, m_And(m_Value(), m_Specific(Y))))
- if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
+ if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q, DL))
return true;
if (match(Y, m_And(m_Specific(X), m_Value())) ||
match(Y, m_And(m_Value(), m_Specific(X))))
- if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
+ if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q, DL))
return true;
unsigned BitWidth = V->getType()->getScalarSizeInBits();
APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
- computeKnownBits(X, LHSZeroBits, LHSOneBits, nullptr, Depth, Q);
+ computeKnownBits(X, LHSZeroBits, LHSOneBits, DL, Depth, Q);
APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
- computeKnownBits(Y, RHSZeroBits, RHSOneBits, nullptr, Depth, Q);
+ computeKnownBits(Y, RHSZeroBits, RHSOneBits, DL, Depth, Q);
// If i8 V is a power of two or zero:
// ZeroBits: 1 1 1 0 1 1 1 1
// ~ZeroBits: 0 0 0 1 0 0 0 0
@@ -1433,7 +1405,7 @@ bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
- Depth, Q);
+ Depth, Q, DL);
}
return false;
@@ -1445,7 +1417,7 @@ bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
/// to be non-null.
///
/// Currently this routine does not support vector GEPs.
-static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL,
+static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout &DL,
unsigned Depth, const Query &Q) {
if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
return false;
@@ -1458,10 +1430,6 @@ static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL,
if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q))
return true;
- // Past this, if we don't have DataLayout, we can't do much.
- if (!DL)
- return false;
-
// Walk the GEP operands and see if any operand introduces a non-zero offset.
// If so, then the GEP cannot produce a null pointer, as doing so would
// inherently violate the inbounds contract within address space zero.
@@ -1471,7 +1439,7 @@ static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL,
if (StructType *STy = dyn_cast<StructType>(*GTI)) {
ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
unsigned ElementIdx = OpC->getZExtValue();
- const StructLayout *SL = DL->getStructLayout(STy);
+ const StructLayout *SL = DL.getStructLayout(STy);
uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
if (ElementOffset > 0)
return true;
@@ -1479,7 +1447,7 @@ static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL,
}
// If we have a zero-sized type, the index doesn't matter. Keep looping.
- if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0)
+ if (DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
continue;
// Fast path the constant operand case both for efficiency and so we don't
@@ -1528,7 +1496,7 @@ static bool rangeMetadataExcludesValue(MDNode* Ranges,
/// For vectors return true if every element is known to be non-zero when
/// defined. Supports values with integer or pointer type and vectors of
/// integers.
-bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
+bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
const Query &Q) {
if (Constant *C = dyn_cast<Constant>(V)) {
if (C->isNullValue())
@@ -1561,21 +1529,20 @@ bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
if (isKnownNonNull(V))
return true;
if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
- if (isGEPKnownNonNull(GEP, TD, Depth, Q))
+ if (isGEPKnownNonNull(GEP, DL, Depth, Q))
return true;
}
- unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD);
+ unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), DL);
// X | Y != 0 if X != 0 or Y != 0.
Value *X = nullptr, *Y = nullptr;
if (match(V, m_Or(m_Value(X), m_Value(Y))))
- return isKnownNonZero(X, TD, Depth, Q) ||
- isKnownNonZero(Y, TD, Depth, Q);
+ return isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q);
// ext X != 0 if X != 0.
if (isa<SExtInst>(V) || isa<ZExtInst>(V))
- return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth, Q);
+ return isKnownNonZero(cast<Instruction>(V)->getOperand(0), DL, Depth, Q);
// shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
// if the lowest bit is shifted off the end.
@@ -1583,11 +1550,11 @@ bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
// shl nuw can't remove any non-zero bits.
OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
if (BO->hasNoUnsignedWrap())
- return isKnownNonZero(X, TD, Depth, Q);
+ return isKnownNonZero(X, DL, Depth, Q);
APInt KnownZero(BitWidth, 0);
APInt KnownOne(BitWidth, 0);
- computeKnownBits(X, KnownZero, KnownOne, TD, Depth, Q);
+ computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q);
if (KnownOne[0])
return true;
}
@@ -1597,29 +1564,28 @@ bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
// shr exact can only shift out zero bits.
PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
if (BO->isExact())
- return isKnownNonZero(X, TD, Depth, Q);
+ return isKnownNonZero(X, DL, Depth, Q);
bool XKnownNonNegative, XKnownNegative;
- ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth, Q);
+ ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q);
if (XKnownNegative)
return true;
}
// div exact can only produce a zero if the dividend is zero.
else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
- return isKnownNonZero(X, TD, Depth, Q);
+ return isKnownNonZero(X, DL, Depth, Q);
}
// X + Y.
else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
bool XKnownNonNegative, XKnownNegative;
bool YKnownNonNegative, YKnownNegative;
- ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth, Q);
- ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth, Q);
+ ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q);
+ ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, DL, Depth, Q);
// If X and Y are both non-negative (as signed values) then their sum is not
// zero unless both X and Y are zero.
if (XKnownNonNegative && YKnownNonNegative)
- if (isKnownNonZero(X, TD, Depth, Q) ||
- isKnownNonZero(Y, TD, Depth, Q))
+ if (isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q))
return true;
// If X and Y are both negative (as signed values) then their sum is not
@@ -1630,22 +1596,22 @@ bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
APInt Mask = APInt::getSignedMaxValue(BitWidth);
// The sign bit of X is set. If some other bit is set then X is not equal
// to INT_MIN.
- computeKnownBits(X, KnownZero, KnownOne, TD, Depth, Q);
+ computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q);
if ((KnownOne & Mask) != 0)
return true;
// The sign bit of Y is set. If some other bit is set then Y is not equal
// to INT_MIN.
- computeKnownBits(Y, KnownZero, KnownOne, TD, Depth, Q);
+ computeKnownBits(Y, KnownZero, KnownOne, DL, Depth, Q);
if ((KnownOne & Mask) != 0)
return true;
}
// The sum of a non-negative number and a power of two is not zero.
if (XKnownNonNegative &&
- isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth, Q))
+ isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q, DL))
return true;
if (YKnownNonNegative &&
- isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth, Q))
+ isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q, DL))
return true;
}
// X * Y.
@@ -1654,21 +1620,20 @@ bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
// If X and Y are non-zero then so is X * Y as long as the multiplication
// does not overflow.
if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
- isKnownNonZero(X, TD, Depth, Q) &&
- isKnownNonZero(Y, TD, Depth, Q))
+ isKnownNonZero(X, DL, Depth, Q) && isKnownNonZero(Y, DL, Depth, Q))
return true;
}
// (C ? X : Y) != 0 if X != 0 and Y != 0.
else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
- if (isKnownNonZero(SI->getTrueValue(), TD, Depth, Q) &&
- isKnownNonZero(SI->getFalseValue(), TD, Depth, Q))
+ if (isKnownNonZero(SI->getTrueValue(), DL, Depth, Q) &&
+ isKnownNonZero(SI->getFalseValue(), DL, Depth, Q))
return true;
}
if (!BitWidth) return false;
APInt KnownZero(BitWidth, 0);
APInt KnownOne(BitWidth, 0);
- computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
+ computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
return KnownOne != 0;
}
@@ -1677,15 +1642,14 @@ bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
/// cannot have.
///
/// This function is defined on values with integer type, values with pointer
-/// type (but only if TD is non-null), and vectors of integers. In the case
+/// type, and vectors of integers. In the case
/// where V is a vector, the mask, known zero, and known one values are the
/// same width as the vector element, and the bit is set only if it is true
/// for all of the elements in the vector.
-bool MaskedValueIsZero(Value *V, const APInt &Mask,
- const DataLayout *TD, unsigned Depth,
- const Query &Q) {
+bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
+ unsigned Depth, const Query &Q) {
APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
- computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
+ computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
return (KnownZero & Mask) == Mask;
}
@@ -1699,14 +1663,9 @@ bool MaskedValueIsZero(Value *V, const APInt &Mask,
///
/// 'Op' must have a scalar integer type.
///
-unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
- unsigned Depth, const Query &Q) {
- assert((TD || V->getType()->isIntOrIntVectorTy()) &&
- "ComputeNumSignBits requires a DataLayout object to operate "
- "on non-integer values!");
- Type *Ty = V->getType();
- unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
- Ty->getScalarSizeInBits();
+unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, unsigned Depth,
+ const Query &Q) {
+ unsigned TyBits = DL.getTypeSizeInBits(V->getType()->getScalarType());
unsigned Tmp, Tmp2;
unsigned FirstAnswer = 1;
@@ -1721,7 +1680,7 @@ unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
default: break;
case Instruction::SExt:
Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
- return ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q) + Tmp;
+ return ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q) + Tmp;
case Instruction::SDiv: {
const APInt *Denominator;
@@ -1733,7 +1692,7 @@ unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
break;
// Calculate the incoming numerator bits.
- unsigned NumBits = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
+ unsigned NumBits = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
// Add floor(log(C)) bits to the numerator bits.
return std::min(TyBits, NumBits + Denominator->logBase2());
@@ -1753,7 +1712,8 @@ unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
// Calculate the incoming numerator bits. SRem by a positive constant
// can't lower the number of sign bits.
- unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
+ unsigned NumrBits =
+ ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
// Calculate the leading sign bit constraints by examining the
// denominator. The remainder is in the range 0..C-1, which is
@@ -1767,7 +1727,7 @@ unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
}
case Instruction::AShr: {
- Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
+ Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
// ashr X, C -> adds C sign bits. Vectors too.
const APInt *ShAmt;
if (match(U->getOperand(1), m_APInt(ShAmt))) {
@@ -1780,7 +1740,7 @@ unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
const APInt *ShAmt;
if (match(U->getOperand(1), m_APInt(ShAmt))) {
// shl destroys sign bits.
- Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
+ Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Tmp2 = ShAmt->getZExtValue();
if (Tmp2 >= TyBits || // Bad shift.
Tmp2 >= Tmp) break; // Shifted all sign bits out.
@@ -1792,9 +1752,9 @@ unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
case Instruction::Or:
case Instruction::Xor: // NOT is handled here.
// Logical binary ops preserve the number of sign bits at the worst.
- Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
+ Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
if (Tmp != 1) {
- Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
+ Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
FirstAnswer = std::min(Tmp, Tmp2);
// We computed what we know about the sign bits as our first
// answer. Now proceed to the generic code that uses
@@ -1803,22 +1763,23 @@ unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
break;
case Instruction::Select:
- Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
+ Tmp = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
if (Tmp == 1) return 1; // Early out.
- Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1, Q);
+ Tmp2 = ComputeNumSignBits(U->getOperand(2), DL, Depth + 1, Q);
return std::min(Tmp, Tmp2);
case Instruction::Add:
// Add can have at most one carry bit. Thus we know that the output
// is, at worst, one more bit than the inputs.
- Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
+ Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
if (Tmp == 1) return 1; // Early out.
// Special case decrementing a value (ADD X, -1):
if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
if (CRHS->isAllOnesValue()) {
APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
- computeKnownBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
+ computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL, Depth + 1,
+ Q);
// If the input is known to be 0 or 1, the output is 0/-1, which is all
// sign bits set.
@@ -1831,19 +1792,20 @@ unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
return Tmp;
}
- Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
+ Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
if (Tmp2 == 1) return 1;
return std::min(Tmp, Tmp2)-1;
case Instruction::Sub:
- Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
+ Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
if (Tmp2 == 1) return 1;
// Handle NEG.
if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
if (CLHS->isNullValue()) {
APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
- computeKnownBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
+ computeKnownBits(U->getOperand(1), KnownZero, KnownOne, DL, Depth + 1,
+ Q);
// If the input is known to be 0 or 1, the output is 0/-1, which is all
// sign bits set.
if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
@@ -1859,7 +1821,7 @@ unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
// Sub can have at most one carry bit. Thus we know that the output
// is, at worst, one more bit than the inputs.
- Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
+ Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
if (Tmp == 1) return 1; // Early out.
return std::min(Tmp, Tmp2)-1;
@@ -1873,12 +1835,11 @@ unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
// Take the minimum of all incoming values. This can't infinitely loop
// because of our depth threshold.
- Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1, Q);
+ Tmp = ComputeNumSignBits(PN->getIncomingValue(0), DL, Depth + 1, Q);
for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
if (Tmp == 1) return Tmp;
- Tmp = std::min(Tmp,
- ComputeNumSignBits(PN->getIncomingValue(i), TD,
- Depth+1, Q));
+ Tmp = std::min(
+ Tmp, ComputeNumSignBits(PN->getIncomingValue(i), DL, Depth + 1, Q));
}
return Tmp;
}
@@ -1893,7 +1854,7 @@ unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
// use this information.
APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
APInt Mask;
- computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
+ computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
if (KnownZero.isNegative()) { // sign bit is 0
Mask = KnownZero;
@@ -2378,23 +2339,19 @@ Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
/// Analyze the specified pointer to see if it can be expressed as a base
/// pointer plus a constant offset. Return the base and offset to the caller.
Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
- const DataLayout *DL) {
- // Without DataLayout, conservatively assume 64-bit offsets, which is
- // the widest we support.
- unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(Ptr->getType()) : 64;
+ const DataLayout &DL) {
+ unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
APInt ByteOffset(BitWidth, 0);
while (1) {
if (Ptr->getType()->isVectorTy())
break;
if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
- if (DL) {
- APInt GEPOffset(BitWidth, 0);
- if (!GEP->accumulateConstantOffset(*DL, GEPOffset))
- break;
+ APInt GEPOffset(BitWidth, 0);
+ if (!GEP->accumulateConstantOffset(DL, GEPOffset))
+ break;
- ByteOffset += GEPOffset;
- }
+ ByteOffset += GEPOffset;
Ptr = GEP->getPointerOperand();
} else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
@@ -2560,8 +2517,8 @@ uint64_t llvm::GetStringLength(Value *V) {
return Len == ~0ULL ? 1 : Len;
}
-Value *
-llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
+Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
+ unsigned MaxLookup) {
if (!V->getType()->isPointerTy())
return V;
for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
@@ -2578,7 +2535,7 @@ llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
// See if InstructionSimplify knows any relevant tricks.
if (Instruction *I = dyn_cast<Instruction>(V))
// TODO: Acquire a DominatorTree and AssumptionCache and use them.
- if (Value *Simplified = SimplifyInstruction(I, TD, nullptr)) {
+ if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
V = Simplified;
continue;
}
@@ -2590,17 +2547,14 @@ llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
return V;
}
-void
-llvm::GetUnderlyingObjects(Value *V,
- SmallVectorImpl<Value *> &Objects,
- const DataLayout *TD,
- unsigned MaxLookup) {
+void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
+ const DataLayout &DL, unsigned MaxLookup) {
SmallPtrSet<Value *, 4> Visited;
SmallVector<Value *, 4> Worklist;
Worklist.push_back(V);
do {
Value *P = Worklist.pop_back_val();
- P = GetUnderlyingObject(P, TD, MaxLookup);
+ P = GetUnderlyingObject(P, DL, MaxLookup);
if (!Visited.insert(P).second)
continue;
@@ -2634,8 +2588,7 @@ bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
return true;
}
-bool llvm::isSafeToSpeculativelyExecute(const Value *V,
- const DataLayout *TD) {
+bool llvm::isSafeToSpeculativelyExecute(const Value *V) {
const Operator *Inst = dyn_cast<Operator>(V);
if (!Inst)
return false;
@@ -2681,7 +2634,8 @@ bool llvm::isSafeToSpeculativelyExecute(const Value *V,
// Speculative load may create a race that did not exist in the source.
LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
return false;
- return LI->getPointerOperand()->isDereferenceablePointer(TD);
+ const DataLayout &DL = LI->getModule()->getDataLayout();
+ return LI->getPointerOperand()->isDereferenceablePointer(DL);
}
case Instruction::Call: {
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
@@ -2773,7 +2727,7 @@ bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
}
OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
- const DataLayout *DL,
+ const DataLayout &DL,
AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT) {
@@ -2823,7 +2777,7 @@ OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
}
OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
- const DataLayout *DL,
+ const DataLayout &DL,
AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT) {
OpenPOWER on IntegriCloud