summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Analysis/ScalarEvolution.cpp
diff options
context:
space:
mode:
authorMax Kazantsev <max.kazantsev@azul.com>2017-03-22 04:48:46 +0000
committerMax Kazantsev <max.kazantsev@azul.com>2017-03-22 04:48:46 +0000
commit15e76aa0f8b9790071e5c9709bb20e5e4a1e4f2e (patch)
treea8a1a98d2008da843871e567746b4588ffa124cf /llvm/lib/Analysis/ScalarEvolution.cpp
parent6ba6673dfde0976f31918913507f4f86722fd1ca (diff)
downloadbcm5719-llvm-15e76aa0f8b9790071e5c9709bb20e5e4a1e4f2e.tar.gz
bcm5719-llvm-15e76aa0f8b9790071e5c9709bb20e5e4a1e4f2e.zip
[ScalarEvolution] Predicate implication from operations
This patch allows SCEV predicate analysis to prove implication of some expression predicates from context predicates related to arguments of those expressions. It introduces three new rules: For addition: (A >X && B >= 0) || (B >= 0 && A > X) ===> (A + B) > X. For division: (A > X) && (0 < B <= X + 1) ===> (A / B > 0). (A > X) && (-B <= X < 0) ===> (A / B >= 0). Using these rules, SCEV is able to prove facts like "if X > 1 then X / 2 > 0". They can also be combined with the same context, to prove more complex expressions like "if X > 1 then X/2 + 1 > 1". Diffirential Revision: https://reviews.llvm.org/D30887 Reviewed by: sanjoy llvm-svn: 298481
Diffstat (limited to 'llvm/lib/Analysis/ScalarEvolution.cpp')
-rw-r--r--llvm/lib/Analysis/ScalarEvolution.cpp163
1 files changed, 147 insertions, 16 deletions
diff --git a/llvm/lib/Analysis/ScalarEvolution.cpp b/llvm/lib/Analysis/ScalarEvolution.cpp
index c820464c1da..d67a9cee75c 100644
--- a/llvm/lib/Analysis/ScalarEvolution.cpp
+++ b/llvm/lib/Analysis/ScalarEvolution.cpp
@@ -137,6 +137,11 @@ static cl::opt<unsigned> MaxSCEVCompareDepth(
cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
cl::init(32));
+static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
+ "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
+ cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
+ cl::init(4));
+
static cl::opt<unsigned> MaxValueCompareDepth(
"scalar-evolution-max-value-compare-depth", cl::Hidden,
cl::desc("Maximum depth of recursive value complexity comparisons"),
@@ -3418,6 +3423,10 @@ Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
return getDataLayout().getIntPtrType(Ty);
}
+Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
+ return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
+}
+
const SCEV *ScalarEvolution::getCouldNotCompute() {
return CouldNotCompute.get();
}
@@ -8532,19 +8541,137 @@ static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
llvm_unreachable("covered switch fell through?!");
}
+bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
+ const SCEV *LHS, const SCEV *RHS,
+ const SCEV *FoundLHS,
+ const SCEV *FoundRHS,
+ unsigned Depth) {
+ // We want to avoid hurting the compile time with analysis of too big trees.
+ if (Depth > MaxSCEVOperationsImplicationDepth)
+ return false;
+ // We only want to work with ICMP_SGT comparison so far.
+ // TODO: Extend to ICMP_UGT?
+ if (Pred == ICmpInst::ICMP_SLT) {
+ Pred = ICmpInst::ICMP_SGT;
+ std::swap(LHS, RHS);
+ std::swap(FoundLHS, FoundRHS);
+ }
+ if (Pred != ICmpInst::ICMP_SGT)
+ return false;
+
+ auto GetOpFromSExt = [&](const SCEV *S) {
+ if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
+ return Ext->getOperand();
+ return S;
+ };
+
+ // Acquire values from extensions.
+ auto *OrigFoundLHS = FoundLHS;
+ LHS = GetOpFromSExt(LHS);
+ FoundLHS = GetOpFromSExt(FoundLHS);
+
+ // Is a predicate can be proved trivially or using the found context.
+ auto IsProvedViaContext = [&](ICmpInst::Predicate Pred,
+ const SCEV *S1, const SCEV *S2) {
+ return isKnownViaSimpleReasoning(Pred, S1, S2) ||
+ isImpliedViaOperations(Pred, S1, S2, OrigFoundLHS, FoundRHS,
+ Depth + 1);
+ };
+
+ if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
+ // Should not overflow.
+ if (!LHSAddExpr->hasNoSignedWrap())
+ return false;
+ auto *LL = LHSAddExpr->getOperand(0);
+ auto *LR = LHSAddExpr->getOperand(1);
+
+ // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
+ auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
+ return IsProvedViaContext(ICmpInst::ICMP_SGT, S2, RHS) &&
+ IsProvedViaContext(Pred, S1, getZero(RHS->getType()));
+ };
+ // Try to prove the following rule:
+ // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
+ // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
+ if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
+ return true;
+ } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
+ Value *LL, *LR;
+ // FIXME: Once we have SDiv implemented, we can get rid of this matching.
+ using namespace llvm::PatternMatch;
+ if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
+ // Rules for division.
+ // We are going to perform some comparisons with Denominator and its
+ // derivative expressions. In general case, creating a SCEV for it may
+ // lead to a complex analysis of the entire graph, and in particular it
+ // can request trip count recalculation for the same loop. This would
+ // cache as SCEVCouldNotCompute to avoid the infinite recursion. This is a
+ // sad thing. To avoid this, we only want to create SCEVs that are
+ // constants in this section. So we bail if Denominator is not a constant.
+ if (!isa<ConstantInt>(LR))
+ return false;
+
+ auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
+
+ // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
+ // then a SCEV for the numerator already exists and matches with FoundLHS.
+ auto *Numerator = getExistingSCEV(LL);
+
+ // Make sure that it exists and has the same type.
+ if (!Numerator || Numerator->getType() != FoundLHS->getType())
+ return false;
+
+ // Make sure that the numerator matches with FoundLHs and the denominator
+ // is positive.
+ if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
+ return false;
+
+ // Given that:
+ // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
+ auto *Ty2 = getWiderType(Denominator->getType(), FoundRHS->getType());
+ auto *DenominatorExt = getNoopOrSignExtend(Denominator, Ty2);
+ auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, Ty2);
+
+ // Try to prove the following rule:
+ // (Denominator - 1 <= FoundRHS) && (RHS <= 0) => (LHS > RHS).
+ // For example, given that FoundLHS > 2. It means that FoundLHS is at
+ // least 3. If we divide it by Denominator <= 3, we will have at least 1.
+ auto *DenomMinusOne = getMinusSCEV(DenominatorExt, getOne(Ty2));
+ if (isKnownNonPositive(RHS) &&
+ IsProvedViaContext(ICmpInst::ICMP_SLE, DenomMinusOne, FoundRHSExt))
+ return true;
+
+ // Try to prove the following rule:
+ // (-Denominator <= FoundRHS) && (RHS < 0) => (LHS > RHS).
+ // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
+ // If we divide it by Denominator >= 3, then:
+ // 1. If FoundLHS is negative, then the result is 0.
+ // 2. If FoundLHS is non-negative, then the result is non-negative.
+ // Anyways, the result is non-negative.
+ auto *NegDenominator = getNegativeSCEV(DenominatorExt);
+ if (isKnownNegative(RHS) &&
+ IsProvedViaContext(ICmpInst::ICMP_SLE, NegDenominator, FoundRHSExt))
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool
+ScalarEvolution::isKnownViaSimpleReasoning(ICmpInst::Predicate Pred,
+ const SCEV *LHS, const SCEV *RHS) {
+ return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
+ IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
+ IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
+ isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
+}
+
bool
ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS,
const SCEV *FoundLHS,
const SCEV *FoundRHS) {
- auto IsKnownPredicateFull =
- [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
- return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
- IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
- IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
- isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
- };
-
switch (Pred) {
default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
case ICmpInst::ICMP_EQ:
@@ -8554,30 +8681,34 @@ ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
break;
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_SLE:
- if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
- IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
+ if (isKnownViaSimpleReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
+ isKnownViaSimpleReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
return true;
break;
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_SGE:
- if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
- IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
+ if (isKnownViaSimpleReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
+ isKnownViaSimpleReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
return true;
break;
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_ULE:
- if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
- IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
+ if (isKnownViaSimpleReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
+ isKnownViaSimpleReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
return true;
break;
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_UGE:
- if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
- IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
+ if (isKnownViaSimpleReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
+ isKnownViaSimpleReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
return true;
break;
}
+ // Maybe it can be proved via operations?
+ if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
+ return true;
+
return false;
}
OpenPOWER on IntegriCloud