diff options
| author | Misha Brukman <brukman+llvm@gmail.com> | 2004-06-22 18:13:24 +0000 | 
|---|---|---|
| committer | Misha Brukman <brukman+llvm@gmail.com> | 2004-06-22 18:13:24 +0000 | 
| commit | df6339bee764e3da528d6614a1e01ea52a5e4609 (patch) | |
| tree | fd17e8706d26ee95b3c1b5acb9641d4007ead93c /llvm/lib/Analysis/DataStructure/MemoryDepAnalysis.cpp | |
| parent | ddc90adca3eb670940276ec053b3faaf1730eb59 (diff) | |
| download | bcm5719-llvm-df6339bee764e3da528d6614a1e01ea52a5e4609.tar.gz bcm5719-llvm-df6339bee764e3da528d6614a1e01ea52a5e4609.zip | |
Files depend on DSA, moved to lib/Analysis/DataStructure
llvm-svn: 14326
Diffstat (limited to 'llvm/lib/Analysis/DataStructure/MemoryDepAnalysis.cpp')
| -rw-r--r-- | llvm/lib/Analysis/DataStructure/MemoryDepAnalysis.cpp | 500 | 
1 files changed, 500 insertions, 0 deletions
| diff --git a/llvm/lib/Analysis/DataStructure/MemoryDepAnalysis.cpp b/llvm/lib/Analysis/DataStructure/MemoryDepAnalysis.cpp new file mode 100644 index 00000000000..97bc9816031 --- /dev/null +++ b/llvm/lib/Analysis/DataStructure/MemoryDepAnalysis.cpp @@ -0,0 +1,500 @@ +//===- MemoryDepAnalysis.cpp - Compute dep graph for memory ops -----------===// +//  +//                     The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +//  +//===----------------------------------------------------------------------===// +// +// This file implements a pass (MemoryDepAnalysis) that computes memory-based +// data dependences between instructions for each function in a module.   +// Memory-based dependences occur due to load and store operations, but +// also the side-effects of call instructions. +// +// The result of this pass is a DependenceGraph for each function +// representing the memory-based data dependences between instructions. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/MemoryDepAnalysis.h" +#include "llvm/Module.h" +#include "llvm/iMemory.h" +#include "llvm/iOther.h" +#include "llvm/Analysis/IPModRef.h" +#include "llvm/Analysis/DataStructure.h" +#include "llvm/Analysis/DSGraph.h" +#include "llvm/Support/InstVisitor.h" +#include "llvm/Support/CFG.h" +#include "Support/SCCIterator.h" +#include "Support/Statistic.h" +#include "Support/STLExtras.h" +#include "Support/hash_map" +#include "Support/hash_set" + +namespace llvm { + +///-------------------------------------------------------------------------- +/// struct ModRefTable: +///  +/// A data structure that tracks ModRefInfo for instructions: +///   -- modRefMap is a map of Instruction* -> ModRefInfo for the instr. +///   -- definers  is a vector of instructions that define    any node +///   -- users     is a vector of instructions that reference any node +///   -- numUsersBeforeDef is a vector indicating that the number of users +///                seen before definers[i] is numUsersBeforeDef[i]. +///  +/// numUsersBeforeDef[] effectively tells us the exact interleaving of +/// definers and users within the ModRefTable. +/// This is only maintained when constructing the table for one SCC, and +/// not copied over from one table to another since it is no longer useful. +///-------------------------------------------------------------------------- + +struct ModRefTable { +  typedef hash_map<Instruction*, ModRefInfo> ModRefMap; +  typedef ModRefMap::const_iterator                 const_map_iterator; +  typedef ModRefMap::      iterator                       map_iterator; +  typedef std::vector<Instruction*>::const_iterator const_ref_iterator; +  typedef std::vector<Instruction*>::      iterator       ref_iterator; + +  ModRefMap                 modRefMap; +  std::vector<Instruction*> definers; +  std::vector<Instruction*> users; +  std::vector<unsigned>     numUsersBeforeDef; + +  // Iterators to enumerate all the defining instructions +  const_ref_iterator defsBegin()  const {  return definers.begin(); } +        ref_iterator defsBegin()        {  return definers.begin(); } +  const_ref_iterator defsEnd()    const {  return definers.end(); } +        ref_iterator defsEnd()          {  return definers.end(); } + +  // Iterators to enumerate all the user instructions +  const_ref_iterator usersBegin() const {  return users.begin(); } +        ref_iterator usersBegin()       {  return users.begin(); } +  const_ref_iterator usersEnd()   const {  return users.end(); } +        ref_iterator usersEnd()         {  return users.end(); } + +  // Iterator identifying the last user that was seen *before* a +  // specified def.  In particular, all users in the half-closed range +  //    [ usersBegin(), usersBeforeDef_End(defPtr) ) +  // were seen *before* the specified def.  All users in the half-closed range +  //    [ usersBeforeDef_End(defPtr), usersEnd() ) +  // were seen *after* the specified def. +  //  +  ref_iterator usersBeforeDef_End(const_ref_iterator defPtr) { +    unsigned defIndex = (unsigned) (defPtr - defsBegin()); +    assert(defIndex < numUsersBeforeDef.size()); +    assert(usersBegin() + numUsersBeforeDef[defIndex] <= usersEnd());  +    return usersBegin() + numUsersBeforeDef[defIndex];  +  } +  const_ref_iterator usersBeforeDef_End(const_ref_iterator defPtr) const { +    return const_cast<ModRefTable*>(this)->usersBeforeDef_End(defPtr); +  } + +  //  +  // Modifier methods +  //  +  void AddDef(Instruction* D) { +    definers.push_back(D); +    numUsersBeforeDef.push_back(users.size()); +  } +  void AddUse(Instruction* U) { +    users.push_back(U); +  } +  void Insert(const ModRefTable& fromTable) { +    modRefMap.insert(fromTable.modRefMap.begin(), fromTable.modRefMap.end()); +    definers.insert(definers.end(), +                    fromTable.definers.begin(), fromTable.definers.end()); +    users.insert(users.end(), +                 fromTable.users.begin(), fromTable.users.end()); +    numUsersBeforeDef.clear(); /* fromTable.numUsersBeforeDef is ignored */ +  } +}; + + +///-------------------------------------------------------------------------- +/// class ModRefInfoBuilder: +///  +/// A simple InstVisitor<> class that retrieves the Mod/Ref info for +/// Load/Store/Call instructions and inserts this information in +/// a ModRefTable.  It also records all instructions that Mod any node +/// and all that use any node. +///-------------------------------------------------------------------------- + +class ModRefInfoBuilder : public InstVisitor<ModRefInfoBuilder> { +  const DSGraph&            funcGraph; +  const FunctionModRefInfo& funcModRef; +  struct ModRefTable&       modRefTable; + +  ModRefInfoBuilder();                         // DO NOT IMPLEMENT +  ModRefInfoBuilder(const ModRefInfoBuilder&); // DO NOT IMPLEMENT +  void operator=(const ModRefInfoBuilder&);    // DO NOT IMPLEMENT + +public: +  ModRefInfoBuilder(const DSGraph& _funcGraph, +                    const FunctionModRefInfo& _funcModRef, +                    ModRefTable& _modRefTable) +    : funcGraph(_funcGraph), funcModRef(_funcModRef), modRefTable(_modRefTable) +  { +  } + +  // At a call instruction, retrieve the ModRefInfo using IPModRef results. +  // Add the call to the defs list if it modifies any nodes and to the uses +  // list if it refs any nodes. +  //  +  void visitCallInst(CallInst& callInst) { +    ModRefInfo safeModRef(funcGraph.getGraphSize()); +    const ModRefInfo* callModRef = funcModRef.getModRefInfo(callInst); +    if (callModRef == NULL) { +      // call to external/unknown function: mark all nodes as Mod and Ref +      safeModRef.getModSet().set(); +      safeModRef.getRefSet().set(); +      callModRef = &safeModRef; +    } + +    modRefTable.modRefMap.insert(std::make_pair(&callInst, +                                                ModRefInfo(*callModRef))); +    if (callModRef->getModSet().any()) +      modRefTable.AddDef(&callInst); +    if (callModRef->getRefSet().any()) +      modRefTable.AddUse(&callInst); +  } + +  // At a store instruction, add to the mod set the single node pointed to +  // by the pointer argument of the store.  Interestingly, if there is no +  // such node, that would be a null pointer reference! +  void visitStoreInst(StoreInst& storeInst) { +    const DSNodeHandle& ptrNode = +      funcGraph.getNodeForValue(storeInst.getPointerOperand()); +    if (const DSNode* target = ptrNode.getNode()) { +      unsigned nodeId = funcModRef.getNodeId(target); +      ModRefInfo& minfo = +        modRefTable.modRefMap.insert( +          std::make_pair(&storeInst, +                         ModRefInfo(funcGraph.getGraphSize()))).first->second; +      minfo.setNodeIsMod(nodeId); +      modRefTable.AddDef(&storeInst); +    } else +      std::cerr << "Warning: Uninitialized pointer reference!\n"; +  } + +  // At a load instruction, add to the ref set the single node pointed to +  // by the pointer argument of the load.  Interestingly, if there is no +  // such node, that would be a null pointer reference! +  void visitLoadInst(LoadInst& loadInst) { +    const DSNodeHandle& ptrNode = +      funcGraph.getNodeForValue(loadInst.getPointerOperand()); +    if (const DSNode* target = ptrNode.getNode()) { +      unsigned nodeId = funcModRef.getNodeId(target); +      ModRefInfo& minfo = +        modRefTable.modRefMap.insert( +          std::make_pair(&loadInst, +                         ModRefInfo(funcGraph.getGraphSize()))).first->second; +      minfo.setNodeIsRef(nodeId); +      modRefTable.AddUse(&loadInst); +    } else +      std::cerr << "Warning: Uninitialized pointer reference!\n"; +  } +}; + + +//---------------------------------------------------------------------------- +// class MemoryDepAnalysis: A dep. graph for load/store/call instructions +//---------------------------------------------------------------------------- + + +/// getAnalysisUsage - This does not modify anything.  It uses the Top-Down DS +/// Graph and IPModRef. +/// +void MemoryDepAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { +  AU.setPreservesAll(); +  AU.addRequired<TDDataStructures>(); +  AU.addRequired<IPModRef>(); +} + + +/// Basic dependence gathering algorithm, using scc_iterator on CFG: +///  +/// for every SCC S in the CFG in PostOrder on the SCC DAG +///     { +///       for every basic block BB in S in *postorder* +///         for every instruction I in BB in reverse +///           Add (I, ModRef[I]) to ModRefCurrent +///           if (Mod[I] != NULL) +///               Add I to DefSetCurrent:  { I \in S : Mod[I] != NULL } +///           if (Ref[I] != NULL) +///               Add I to UseSetCurrent:  { I       : Ref[I] != NULL } +///  +///       for every def D in DefSetCurrent +///  +///           // NOTE: D comes after itself iff S contains a loop +///           if (HasLoop(S) && D & D) +///               Add output-dep: D -> D2 +///  +///           for every def D2 *after* D in DefSetCurrent +///               // NOTE: D2 comes before D in execution order +///               if (D & D2) +///                   Add output-dep: D2 -> D +///                   if (HasLoop(S)) +///                       Add output-dep: D -> D2 +///  +///           for every use U in UseSetCurrent that was seen *before* D +///               // NOTE: U comes after D in execution order +///               if (U & D) +///                   if (U != D || HasLoop(S)) +///                       Add true-dep: D -> U +///                   if (HasLoop(S)) +///                       Add anti-dep: U -> D +///  +///           for every use U in UseSetCurrent that was seen *after* D +///               // NOTE: U comes before D in execution order +///               if (U & D) +///                   if (U != D || HasLoop(S)) +///                       Add anti-dep: U -> D +///                   if (HasLoop(S)) +///                       Add true-dep: D -> U +///  +///           for every def Dnext in DefSetAfter +///               // NOTE: Dnext comes after D in execution order +///               if (Dnext & D) +///                   Add output-dep: D -> Dnext +///  +///           for every use Unext in UseSetAfter +///               // NOTE: Unext comes after D in execution order +///               if (Unext & D) +///                   Add true-dep: D -> Unext +///  +///       for every use U in UseSetCurrent +///           for every def Dnext in DefSetAfter +///               // NOTE: Dnext comes after U in execution order +///               if (Dnext & D) +///                   Add anti-dep: U -> Dnext +///  +///       Add ModRefCurrent to ModRefAfter: { (I, ModRef[I] ) } +///       Add DefSetCurrent to DefSetAfter: { I : Mod[I] != NULL } +///       Add UseSetCurrent to UseSetAfter: { I : Ref[I] != NULL } +///     } +///          +/// +void MemoryDepAnalysis::ProcessSCC(std::vector<BasicBlock*> &S, +                                   ModRefTable& ModRefAfter, bool hasLoop) { +  ModRefTable ModRefCurrent; +  ModRefTable::ModRefMap& mapCurrent = ModRefCurrent.modRefMap; +  ModRefTable::ModRefMap& mapAfter   = ModRefAfter.modRefMap; + +  // Builder class fills out a ModRefTable one instruction at a time. +  // To use it, we just invoke it's visit function for each basic block: +  //  +  //   for each basic block BB in the SCC in *postorder* +  //       for each instruction  I in BB in *reverse* +  //           ModRefInfoBuilder::visit(I) +  //           : Add (I, ModRef[I]) to ModRefCurrent.modRefMap +  //           : Add I  to ModRefCurrent.definers if it defines any node +  //           : Add I  to ModRefCurrent.users    if it uses any node +  //  +  ModRefInfoBuilder builder(*funcGraph, *funcModRef, ModRefCurrent); +  for (std::vector<BasicBlock*>::iterator BI = S.begin(), BE = S.end(); +       BI != BE; ++BI) +    // Note: BBs in the SCC<> created by scc_iterator are in postorder. +    for (BasicBlock::reverse_iterator II=(*BI)->rbegin(), IE=(*BI)->rend(); +         II != IE; ++II) +      builder.visit(*II); + +  ///       for every def D in DefSetCurrent +  ///  +  for (ModRefTable::ref_iterator II=ModRefCurrent.defsBegin(), +         IE=ModRefCurrent.defsEnd(); II != IE; ++II) +    { +      ///           // NOTE: D comes after itself iff S contains a loop +      ///           if (HasLoop(S)) +      ///               Add output-dep: D -> D2 +      if (hasLoop) +        funcDepGraph->AddSimpleDependence(**II, **II, OutputDependence); + +      ///           for every def D2 *after* D in DefSetCurrent +      ///               // NOTE: D2 comes before D in execution order +      ///               if (D2 & D) +      ///                   Add output-dep: D2 -> D +      ///                   if (HasLoop(S)) +      ///                       Add output-dep: D -> D2 +      for (ModRefTable::ref_iterator JI=II+1; JI != IE; ++JI) +        if (!Disjoint(mapCurrent.find(*II)->second.getModSet(), +                      mapCurrent.find(*JI)->second.getModSet())) +          { +            funcDepGraph->AddSimpleDependence(**JI, **II, OutputDependence); +            if (hasLoop) +              funcDepGraph->AddSimpleDependence(**II, **JI, OutputDependence); +          } +   +      ///           for every use U in UseSetCurrent that was seen *before* D +      ///               // NOTE: U comes after D in execution order +      ///               if (U & D) +      ///                   if (U != D || HasLoop(S)) +      ///                       Add true-dep: U -> D +      ///                   if (HasLoop(S)) +      ///                       Add anti-dep: D -> U +      ModRefTable::ref_iterator JI=ModRefCurrent.usersBegin(); +      ModRefTable::ref_iterator JE = ModRefCurrent.usersBeforeDef_End(II); +      for ( ; JI != JE; ++JI) +        if (!Disjoint(mapCurrent.find(*II)->second.getModSet(), +                      mapCurrent.find(*JI)->second.getRefSet())) +          { +            if (*II != *JI || hasLoop) +              funcDepGraph->AddSimpleDependence(**II, **JI, TrueDependence); +            if (hasLoop) +              funcDepGraph->AddSimpleDependence(**JI, **II, AntiDependence); +          } + +      ///           for every use U in UseSetCurrent that was seen *after* D +      ///               // NOTE: U comes before D in execution order +      ///               if (U & D) +      ///                   if (U != D || HasLoop(S)) +      ///                       Add anti-dep: U -> D +      ///                   if (HasLoop(S)) +      ///                       Add true-dep: D -> U +      for (/*continue JI*/ JE = ModRefCurrent.usersEnd(); JI != JE; ++JI) +        if (!Disjoint(mapCurrent.find(*II)->second.getModSet(), +                      mapCurrent.find(*JI)->second.getRefSet())) +          { +            if (*II != *JI || hasLoop) +              funcDepGraph->AddSimpleDependence(**JI, **II, AntiDependence); +            if (hasLoop) +              funcDepGraph->AddSimpleDependence(**II, **JI, TrueDependence); +          } + +      ///           for every def Dnext in DefSetPrev +      ///               // NOTE: Dnext comes after D in execution order +      ///               if (Dnext & D) +      ///                   Add output-dep: D -> Dnext +      for (ModRefTable::ref_iterator JI=ModRefAfter.defsBegin(), +             JE=ModRefAfter.defsEnd(); JI != JE; ++JI) +        if (!Disjoint(mapCurrent.find(*II)->second.getModSet(), +                      mapAfter.find(*JI)->second.getModSet())) +          funcDepGraph->AddSimpleDependence(**II, **JI, OutputDependence); + +      ///           for every use Unext in UseSetAfter +      ///               // NOTE: Unext comes after D in execution order +      ///               if (Unext & D) +      ///                   Add true-dep: D -> Unext +      for (ModRefTable::ref_iterator JI=ModRefAfter.usersBegin(), +             JE=ModRefAfter.usersEnd(); JI != JE; ++JI) +        if (!Disjoint(mapCurrent.find(*II)->second.getModSet(), +                      mapAfter.find(*JI)->second.getRefSet())) +          funcDepGraph->AddSimpleDependence(**II, **JI, TrueDependence); +    } + +  ///  +  ///       for every use U in UseSetCurrent +  ///           for every def Dnext in DefSetAfter +  ///               // NOTE: Dnext comes after U in execution order +  ///               if (Dnext & D) +  ///                   Add anti-dep: U -> Dnext +  for (ModRefTable::ref_iterator II=ModRefCurrent.usersBegin(), +         IE=ModRefCurrent.usersEnd(); II != IE; ++II) +    for (ModRefTable::ref_iterator JI=ModRefAfter.defsBegin(), +           JE=ModRefAfter.defsEnd(); JI != JE; ++JI) +      if (!Disjoint(mapCurrent.find(*II)->second.getRefSet(), +                    mapAfter.find(*JI)->second.getModSet())) +        funcDepGraph->AddSimpleDependence(**II, **JI, AntiDependence); +     +  ///       Add ModRefCurrent to ModRefAfter: { (I, ModRef[I] ) } +  ///       Add DefSetCurrent to DefSetAfter: { I : Mod[I] != NULL } +  ///       Add UseSetCurrent to UseSetAfter: { I : Ref[I] != NULL } +  ModRefAfter.Insert(ModRefCurrent); +} + + +/// Debugging support methods +///  +void MemoryDepAnalysis::print(std::ostream &O) const +{ +  // TEMPORARY LOOP +  for (hash_map<Function*, DependenceGraph*>::const_iterator +         I = funcMap.begin(), E = funcMap.end(); I != E; ++I) +    { +      Function* func = I->first; +      DependenceGraph* depGraph = I->second; + +  O << "\n================================================================\n"; +  O << "DEPENDENCE GRAPH FOR MEMORY OPERATIONS IN FUNCTION " << func->getName(); +  O << "\n================================================================\n\n"; +  depGraph->print(*func, O); + +    } +} + + +///  +/// Run the pass on a function +///  +bool MemoryDepAnalysis::runOnFunction(Function &F) { +  assert(!F.isExternal()); + +  // Get the FunctionModRefInfo holding IPModRef results for this function. +  // Use the TD graph recorded within the FunctionModRefInfo object, which +  // may not be the same as the original TD graph computed by DS analysis. +  //  +  funcModRef = &getAnalysis<IPModRef>().getFunctionModRefInfo(F); +  funcGraph  = &funcModRef->getFuncGraph(); + +  // TEMPORARY: ptr to depGraph (later just becomes "this"). +  assert(!funcMap.count(&F) && "Analyzing function twice?"); +  funcDepGraph = funcMap[&F] = new DependenceGraph(); + +  ModRefTable ModRefAfter; + +  for (scc_iterator<Function*> I = scc_begin(&F), E = scc_end(&F); I != E; ++I) +    ProcessSCC(*I, ModRefAfter, I.hasLoop()); + +  return true; +} + + +//------------------------------------------------------------------------- +// TEMPORARY FUNCTIONS TO MAKE THIS A MODULE PASS --- +// These functions will go away once this class becomes a FunctionPass. +//  + +// Driver function to compute dependence graphs for every function. +// This is temporary and will go away once this is a FunctionPass. +//  +bool MemoryDepAnalysis::run(Module& M) +{ +  for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI) +    if (! FI->isExternal()) +      runOnFunction(*FI); // automatically inserts each depGraph into funcMap +  return true; +} +   +// Release all the dependence graphs in the map. +void MemoryDepAnalysis::releaseMemory() +{ +  for (hash_map<Function*, DependenceGraph*>::const_iterator +         I = funcMap.begin(), E = funcMap.end(); I != E; ++I) +    delete I->second; +  funcMap.clear(); + +  // Clear pointers because the pass constructor will not be invoked again. +  funcDepGraph = NULL; +  funcGraph = NULL; +  funcModRef = NULL; +} + +MemoryDepAnalysis::~MemoryDepAnalysis() +{ +  releaseMemory(); +} + +//----END TEMPORARY FUNCTIONS---------------------------------------------- + + +void MemoryDepAnalysis::dump() const +{ +  this->print(std::cerr); +} + +static RegisterAnalysis<MemoryDepAnalysis> +Z("memdep", "Memory Dependence Analysis"); + + +} // End llvm namespace | 

