diff options
author | DeLesley Hutchins <delesley@google.com> | 2014-09-10 22:12:52 +0000 |
---|---|---|
committer | DeLesley Hutchins <delesley@google.com> | 2014-09-10 22:12:52 +0000 |
commit | 4e38f100b54508a041ffd09df8f8d73f58dfaaba (patch) | |
tree | 286521144b89aed7787223c762920e19b25489ba /clang/lib/Analysis/ThreadSafetyTIL.cpp | |
parent | a00a6526dc5b3529bc94ad50f01f87b51154952f (diff) | |
download | bcm5719-llvm-4e38f100b54508a041ffd09df8f8d73f58dfaaba.tar.gz bcm5719-llvm-4e38f100b54508a041ffd09df8f8d73f58dfaaba.zip |
Thread Safety Analysis: major update to thread safety TIL.
Numerous changes, including:
* Changed the way variables and instructions are handled in basic blocks to
be more efficient.
* Eliminated SExprRef.
* Simplified futures.
* Fixed documentation.
* Compute dominator and post dominator trees.
llvm-svn: 217556
Diffstat (limited to 'clang/lib/Analysis/ThreadSafetyTIL.cpp')
-rw-r--r-- | clang/lib/Analysis/ThreadSafetyTIL.cpp | 286 |
1 files changed, 222 insertions, 64 deletions
diff --git a/clang/lib/Analysis/ThreadSafetyTIL.cpp b/clang/lib/Analysis/ThreadSafetyTIL.cpp index 0bb7d4c2dbb..a15063631d9 100644 --- a/clang/lib/Analysis/ThreadSafetyTIL.cpp +++ b/clang/lib/Analysis/ThreadSafetyTIL.cpp @@ -48,12 +48,20 @@ StringRef getBinaryOpcodeString(TIL_BinaryOpcode Op) { } +SExpr* Future::force() { + Status = FS_evaluating; + Result = compute(); + Status = FS_done; + return Result; +} + + unsigned BasicBlock::addPredecessor(BasicBlock *Pred) { unsigned Idx = Predecessors.size(); Predecessors.reserveCheck(1, Arena); Predecessors.push_back(Pred); - for (Variable *V : Args) { - if (Phi* Ph = dyn_cast<Phi>(V->definition())) { + for (SExpr *E : Args) { + if (Phi* Ph = dyn_cast<Phi>(E)) { Ph->values().reserveCheck(1, Arena); Ph->values().push_back(nullptr); } @@ -61,105 +69,73 @@ unsigned BasicBlock::addPredecessor(BasicBlock *Pred) { return Idx; } + void BasicBlock::reservePredecessors(unsigned NumPreds) { Predecessors.reserve(NumPreds, Arena); - for (Variable *V : Args) { - if (Phi* Ph = dyn_cast<Phi>(V->definition())) { + for (SExpr *E : Args) { + if (Phi* Ph = dyn_cast<Phi>(E)) { Ph->values().reserve(NumPreds, Arena); } } } -void BasicBlock::renumberVars() { - unsigned VID = 0; - for (Variable *V : Args) { - V->setID(BlockID, VID++); - } - for (Variable *V : Instrs) { - V->setID(BlockID, VID++); - } -} - -void SCFG::renumberVars() { - for (BasicBlock *B : Blocks) { - B->renumberVars(); - } -} - - // If E is a variable, then trace back through any aliases or redundant // Phi nodes to find the canonical definition. const SExpr *getCanonicalVal(const SExpr *E) { - while (auto *V = dyn_cast<Variable>(E)) { - const SExpr *D; - do { - if (V->kind() != Variable::VK_Let) - return V; - D = V->definition(); - auto *V2 = dyn_cast<Variable>(D); - if (V2) - V = V2; - else - break; - } while (true); - - if (ThreadSafetyTIL::isTrivial(D)) - return D; - - if (const Phi *Ph = dyn_cast<Phi>(D)) { + while (true) { + if (auto *V = dyn_cast<Variable>(E)) { + if (V->kind() == Variable::VK_Let) { + E = V->definition(); + continue; + } + } + if (const Phi *Ph = dyn_cast<Phi>(E)) { if (Ph->status() == Phi::PH_SingleVal) { E = Ph->values()[0]; continue; } } - return V; + break; } return E; } - // If E is a variable, then trace back through any aliases or redundant // Phi nodes to find the canonical definition. // The non-const version will simplify incomplete Phi nodes. SExpr *simplifyToCanonicalVal(SExpr *E) { - while (auto *V = dyn_cast<Variable>(E)) { - SExpr *D; - do { + while (true) { + if (auto *V = dyn_cast<Variable>(E)) { if (V->kind() != Variable::VK_Let) return V; - D = V->definition(); - auto *V2 = dyn_cast<Variable>(D); - if (V2) - V = V2; - else - break; - } while (true); - - if (ThreadSafetyTIL::isTrivial(D)) - return D; - - if (Phi *Ph = dyn_cast<Phi>(D)) { + // Eliminate redundant variables, e.g. x = y, or x = 5, + // but keep anything more complicated. + if (til::ThreadSafetyTIL::isTrivial(V->definition())) { + E = V->definition(); + continue; + } + return V; + } + if (auto *Ph = dyn_cast<Phi>(E)) { if (Ph->status() == Phi::PH_Incomplete) - simplifyIncompleteArg(V, Ph); - + simplifyIncompleteArg(Ph); + // Eliminate redundant Phi nodes. if (Ph->status() == Phi::PH_SingleVal) { E = Ph->values()[0]; continue; } } - return V; + return E; } - return E; } - // Trace the arguments of an incomplete Phi node to see if they have the same // canonical definition. If so, mark the Phi node as redundant. // getCanonicalVal() will recursively call simplifyIncompletePhi(). -void simplifyIncompleteArg(Variable *V, til::Phi *Ph) { +void simplifyIncompleteArg(til::Phi *Ph) { assert(Ph && Ph->status() == Phi::PH_Incomplete); // eliminate infinite recursion -- assume that this node is not redundant. @@ -168,18 +144,200 @@ void simplifyIncompleteArg(Variable *V, til::Phi *Ph) { SExpr *E0 = simplifyToCanonicalVal(Ph->values()[0]); for (unsigned i=1, n=Ph->values().size(); i<n; ++i) { SExpr *Ei = simplifyToCanonicalVal(Ph->values()[i]); - if (Ei == V) + if (Ei == Ph) continue; // Recursive reference to itself. Don't count. if (Ei != E0) { return; // Status is already set to MultiVal. } } Ph->setStatus(Phi::PH_SingleVal); - // Eliminate Redundant Phi node. - V->setDefinition(Ph->values()[0]); } +// Renumbers the arguments and instructions to have unique, sequential IDs. +int BasicBlock::renumberInstrs(int ID) { + for (auto *Arg : Args) + Arg->setID(this, ID++); + for (auto *Instr : Instrs) + Instr->setID(this, ID++); + TermInstr->setID(this, ID++); + return ID; +} + +// Sorts the CFGs blocks using a reverse post-order depth-first traversal. +// Each block will be written into the Blocks array in order, and its BlockID +// will be set to the index in the array. Sorting should start from the entry +// block, and ID should be the total number of blocks. +int BasicBlock::topologicalSort(SimpleArray<BasicBlock*>& Blocks, int ID) { + if (Visited) return ID; + Visited = 1; + for (auto *Block : successors()) + ID = Block->topologicalSort(Blocks, ID); + // set ID and update block array in place. + // We may lose pointers to unreachable blocks. + assert(ID > 0); + BlockID = --ID; + Blocks[BlockID] = this; + return ID; +} + +// Performs a reverse topological traversal, starting from the exit block and +// following back-edges. The dominator is serialized before any predecessors, +// which guarantees that all blocks are serialized after their dominator and +// before their post-dominator (because it's a reverse topological traversal). +// ID should be initially set to 0. +// +// This sort assumes that (1) dominators have been computed, (2) there are no +// critical edges, and (3) the entry block is reachable from the exit block +// and no blocks are accessable via traversal of back-edges from the exit that +// weren't accessable via forward edges from the entry. +int BasicBlock::topologicalFinalSort(SimpleArray<BasicBlock*>& Blocks, int ID) { + // Visited is assumed to have been set by the topologicalSort. This pass + // assumes !Visited means that we've visited this node before. + if (!Visited) return ID; + Visited = 0; + if (DominatorNode.Parent) + ID = DominatorNode.Parent->topologicalFinalSort(Blocks, ID); + for (auto *Pred : Predecessors) + ID = Pred->topologicalFinalSort(Blocks, ID); + assert(ID < Blocks.size()); + BlockID = ID++; + Blocks[BlockID] = this; + return ID; +} + +// Computes the immediate dominator of the current block. Assumes that all of +// its predecessors have already computed their dominators. This is achieved +// by visiting the nodes in topological order. +void BasicBlock::computeDominator() { + BasicBlock *Candidate = nullptr; + // Walk backwards from each predecessor to find the common dominator node. + for (auto *Pred : Predecessors) { + // Skip back-edges + if (Pred->BlockID >= BlockID) continue; + // If we don't yet have a candidate for dominator yet, take this one. + if (Candidate == nullptr) { + Candidate = Pred; + continue; + } + // Walk the alternate and current candidate back to find a common ancestor. + auto *Alternate = Pred; + while (Alternate != Candidate) { + if (Candidate->BlockID > Alternate->BlockID) + Candidate = Candidate->DominatorNode.Parent; + else + Alternate = Alternate->DominatorNode.Parent; + } + } + DominatorNode.Parent = Candidate; + DominatorNode.SizeOfSubTree = 1; +} + +// Computes the immediate post-dominator of the current block. Assumes that all +// of its successors have already computed their post-dominators. This is +// achieved visiting the nodes in reverse topological order. +void BasicBlock::computePostDominator() { + BasicBlock *Candidate = nullptr; + // Walk back from each predecessor to find the common post-dominator node. + for (auto *Succ : successors()) { + // Skip back-edges + if (Succ->BlockID <= BlockID) continue; + // If we don't yet have a candidate for post-dominator yet, take this one. + if (Candidate == nullptr) { + Candidate = Succ; + continue; + } + // Walk the alternate and current candidate back to find a common ancestor. + auto *Alternate = Succ; + while (Alternate != Candidate) { + if (Candidate->BlockID < Alternate->BlockID) + Candidate = Candidate->PostDominatorNode.Parent; + else + Alternate = Alternate->PostDominatorNode.Parent; + } + } + PostDominatorNode.Parent = Candidate; + PostDominatorNode.SizeOfSubTree = 1; +} + + +// Renumber instructions in all blocks +void SCFG::renumberInstrs() { + int InstrID = 0; + for (auto *Block : Blocks) + InstrID = Block->renumberInstrs(InstrID); +} + + +static inline void computeNodeSize(BasicBlock *B, + BasicBlock::TopologyNode BasicBlock::*TN) { + BasicBlock::TopologyNode *N = &(B->*TN); + if (N->Parent) { + BasicBlock::TopologyNode *P = &(N->Parent->*TN); + // Initially set ID relative to the (as yet uncomputed) parent ID + N->NodeID = P->SizeOfSubTree; + P->SizeOfSubTree += N->SizeOfSubTree; + } +} + +static inline void computeNodeID(BasicBlock *B, + BasicBlock::TopologyNode BasicBlock::*TN) { + BasicBlock::TopologyNode *N = &(B->*TN); + if (N->Parent) { + BasicBlock::TopologyNode *P = &(N->Parent->*TN); + N->NodeID += P->NodeID; // Fix NodeIDs relative to starting node. + } +} + + +// Normalizes a CFG. Normalization has a few major components: +// 1) Removing unreachable blocks. +// 2) Computing dominators and post-dominators +// 3) Topologically sorting the blocks into the "Blocks" array. +void SCFG::computeNormalForm() { + // Topologically sort the blocks starting from the entry block. + int NumUnreachableBlocks = Entry->topologicalSort(Blocks, Blocks.size()); + if (NumUnreachableBlocks > 0) { + // If there were unreachable blocks shift everything down, and delete them. + for (size_t I = NumUnreachableBlocks, E = Blocks.size(); I < E; ++I) { + size_t NI = I - NumUnreachableBlocks; + Blocks[NI] = Blocks[I]; + Blocks[NI]->BlockID = NI; + // FIXME: clean up predecessor pointers to unreachable blocks? + } + Blocks.drop(NumUnreachableBlocks); + } + + // Compute dominators. + for (auto *Block : Blocks) + Block->computeDominator(); + + // Once dominators have been computed, the final sort may be performed. + int NumBlocks = Exit->topologicalFinalSort(Blocks, 0); + assert(NumBlocks == Blocks.size()); + (void) NumBlocks; + + // Renumber the instructions now that we have a final sort. + renumberInstrs(); + + // Compute post-dominators and compute the sizes of each node in the + // dominator tree. + for (auto *Block : Blocks.reverse()) { + Block->computePostDominator(); + computeNodeSize(Block, &BasicBlock::DominatorNode); + } + // Compute the sizes of each node in the post-dominator tree and assign IDs in + // the dominator tree. + for (auto *Block : Blocks) { + computeNodeID(Block, &BasicBlock::DominatorNode); + computeNodeSize(Block, &BasicBlock::PostDominatorNode); + } + // Assign IDs in the post-dominator tree. + for (auto *Block : Blocks.reverse()) { + computeNodeID(Block, &BasicBlock::PostDominatorNode); + } +} + } // end namespace til } // end namespace threadSafety } // end namespace clang |